Thèse soutenue

Optimisation des requêtes de similarité dans les espaces métriques répondant aux besoins des usagers

FR  |  
EN  |  
PT
Auteur / Autrice : Monica Ribeiro porto ferreira
Direction : Richard ChbeirCaetano Júnior Traina
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 22/10/2012
Etablissement(s) : Dijon en cotutelle avec Universidade de São Paulo (Brésil)
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Electronique, Informatique et Image (LE2i) (Dijon, Côte d'Or ; Auxerre, Yonne ; Chalon-sur-Saône, Saône-et-Loire ; Le Creusot, Saône-et-Loire ; 1996-2018) - Laboratoire Electronique, Informatique et Image (LE2I)
Jury : Président / Présidente : Maria da Graça Campos Pimentel
Examinateurs / Examinatrices : Yannis Manolopoulos, Altigran Soares da Silva
Rapporteur / Rapporteuse : Philippe Aniorte, Mirella Moro

Résumé

FR  |  
EN  |  
PT

La complexité des données contenues dans les grandes bases de données a augmenté considérablement. Par conséquent, des opérations plus élaborées que les requêtes traditionnelles sont indispensable pour extraire toutes les informations requises de la base de données. L'intérêt de la communauté de base de données a particulièrement augmenté dans les recherches basées sur la similarité. Deux sortes de recherche de similarité bien connues sont la requête par intervalle (Rq) et par k-plus proches voisins (kNNq). Ces deux techniques, comme les requêtes traditionnelles, peuvent être accélérées par des structures d'indexation des Systèmes de Gestion de Base de Données (SGBDs).Une autre façon d'accélérer les requêtes est d'exécuter le procédé d'optimisation des requêtes. Dans ce procédé les données métriques sont recueillies et utilisées afin d'ajuster les paramètres des algorithmes de recherche lors de chaque exécution de la requête. Cependant, bien que l'intégration de la recherche de similarités dans le SGBD ait commencé à être étudiée en profondeur récemment, le procédé d'optimisation des requêtes a été développé et utilisé pour répondre à des requêtes traditionnelles. L'exécution des requêtes de similarité a tendance à présenter un coût informatique plus important que l'exécution des requêtes traditionnelles et ce même en utilisant des structures d'indexation efficaces. Deux stratégies peuvent être appliquées pour accélérer l'execution de quelques requêtes, et peuvent également être employées pour répondre aux requêtes de similarité. La première stratégie est la réécriture de requêtes basées sur les propriétés algébriques et les fonctions de coût. La deuxième stratégie est l'utilisation des facteurs externes de la requête, tels que la sémantique attendue par les usagers, pour réduire le nombre des résultats potentiels. Cette thèse vise à contribuer au développement des techniques afin d'améliorer le procédé d'optimisation des requêtes de similarité, tout en exploitant les propriétés algébriques et les restrictions sémantiques pour affiner les requêtes.