Réduction de dimensionalité et saillance pour la visualisation d'images spectrales
Auteur / Autrice : | Steven Le Moan |
Direction : | Yvon Voisin, Alamin Mansouri, Jon Yngve Hardeberg |
Type : | Thèse de doctorat |
Discipline(s) : | Instrumentation et informatique de l'image |
Date : | Soutenance le 26/09/2012 |
Etablissement(s) : | Dijon |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; 1991-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Electronique, Informatique et Image (LE2i) (Dijon, Côte d'Or ; Auxerre, Yonne ; Chalon-sur-Saône, Saône-et-Loire ; Le Creusot, Saône-et-Loire ; 1996-2018) |
Jury : | Président / Présidente : Jocelyn Chanussot |
Examinateurs / Examinatrices : Frank Marzani | |
Rapporteur / Rapporteuse : Christine Fernandez-Maloigne, Jean Sequeira |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
De nos jours, la plupart des dispositifs numériques d’acquisition et d’affichage d’images utilisent un petit nombre de couleurs dites primaires afin de représenter n’importe quelle couleur visible. Par exemple, la majorité des appareils photos ''grand public'' quantifient la couleur comme une certaine combinaison de Rouge, Vert et Bleu(RVB). Ce genre de technologie est qualifiée de tri-chromatique et, au même titre que les modèles tetra-chromatiques communs en imprimerie, elle présente un certain nombre d’inconvénients, tels que le métamérisme ou encore la limitation aux longueurs d’onde visibles. Afin de palier à ces limitations, les technologies multi-, hyper,voire ultra-spectrale ont connu un gain notable d’attention depuis plusieurs décennies. Un image spectrale est constituée d’un nombre de bandes (ou canaux) supérieur à 3, représentant des régions spectrales spécifiques et permettant de recouvrer la radiance ou reflectance d’objets avec plus de précision et indépendamment du capteur utilisé. De nombreux travaux de recherche ont fait considérablement progresser les méthodes d’acquisition et d’analyse, mais beaucoup de challenges demeurent, particulièrement en ce qui concernel a visualisation de ce type de données. En effet, si une image contient plusieurs dizaines de canaux comment la représenter sur un écran qui n’en accepte que trois ? Dans cette thèse, nous présentons un certain nombre de méthodes d’extraction d’attributs pour l’analyse d’images spectrales, avec une attention particulière sur la problématique de la visualisation.