Thèse soutenue

Estimation robuste de la matrice de covariance en traitement du signal

FR  |  
EN
Auteur / Autrice : Mélanie Mahot
Direction : Philippe Forster
Type : Thèse de doctorat
Discipline(s) : Électronique Électrotechnique Automatique
Date : Soutenance le 06/12/2012
Etablissement(s) : Cachan, Ecole normale supérieure
Ecole(s) doctorale(s) : École doctorale Sciences pratiques (1998-2015 ; Cachan, Val-de-Marne)
Jury : Examinateurs / Examinatrices : Frédéric Pascal, Jean-Philippe Ovarlez, Sylvie Marcos, Esa Ollila
Rapporteurs / Rapporteuses : Olivier Besson, Yannick Berthoumieu

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

De nombreuses applications de traitement de signal nécessitent la connaissance de la matrice de covariance des données reçues. Lorsqu'elle n'est pas directement accessible, elle est estimée préalablement à l'aide de données d'apprentissage. Traditionnellement, le milieu est considéré comme gaussien. L'estimateur du maximum de vraisemblance est alors la sample covariance matrix (SCM). Cependant, dans de nombreuses applications, notamment avec l'arrivée des techniques haute résolution, cette hypothèse n'est plus valable. De plus, même en milieu gaussien, il s'avère que la SCM peut-être très influencée par des perturbations (données aberrantes, données manquantes, brouilleurs...) sur les données. Dans cette thèse nous nous proposons de considérer un modèle plus général, celui des distributions elliptiques. Elles permettent de représenter de nombreuses distributions et des campagnes de mesures ont montré leur bonne adéquation avec les données réelles, dans de nombreuses applications telles que le radar ou l'imagerie hyperspectrale. Dans ce contexte, nous proposons des estimateurs plus robustes et plus adaptés : les M-estimateurs et l'estimateur du point-fixe (FPE). Leurs performances et leur robustesse sont étudiées et comparées à celles de la SCM. Nous montrons ainsi que dans de nombreuses applications, ces estimateurs peuvent remplacer très simplement la SCM, avec de meilleures performances lorsque les données sont non-gaussiennes et des performances comparables à la SCM lorsque les données sont gaussiennes. Les résultats théoriques développés dans cette thèse sont ensuite illustrés à partir de simulations puis à partir de données réels dans le cadre de traitements spatio-temporels adaptatifs.