Quelques problèmes d’écoulements multi-fluide : analyse mathématique, modélisation numérique et simulation
Auteur / Autrice : | Saad Benjelloun |
Direction : | Jean-Michel Ghidaglia, Laurent Desvillettes |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 03/12/2012 |
Etablissement(s) : | Cachan, Ecole normale supérieure |
Ecole(s) doctorale(s) : | École doctorale Sciences pratiques (1998-2015 ; Cachan, Val-de-Marne) |
Jury : | Examinateurs / Examinatrices : Laurent Brosset, Pauline Lafitte-Godillon |
Rapporteur / Rapporteuse : Fayssal Benkhaldoun, Thierry Colin |
Mots clés
Résumé
La présente thèse comporte trois parties indépendantes.<br>La première partie présente une preuve d'existence de solutions faibles globales pour un modèle de sprays de type Vlasov-Navier-Stokes-incompressible avec densité variable. Ce modèle est obtenu par une limite formelle à partir d'un modèle Vlasov-Navier-Stokes-incompressible avec fragmentation, où seules deux valeurs de rayons de particules sont considérées : un rayon r1 pour les particules avant fragmentation, et un rayon r2<<r1 pour les particules obtenues par fragmentation. Le modèle asymptotique est obtenu dans la limite r2 tendant vers zéro. La démonstration s'appuie sur des techniques de régularisation et de troncature en vitesse, sur le théorème de Schauder et enfin sur une méthode de compacité de Lions-Di-Perna pour l'élimination des régularisations introduites dans le système initial.La deuxième partie concerne la modélisation de l'impact d'une vague de liquide sur une paroi. L'objectif de cette partie est d'obtenir un modèle pour la fuite du gaz environnant sur les ''côtés'' de la vague. Un modèle numérique est réalisé en remplaçant la vague liquide par une masse solide indéformable et un schéma VFFC-ALE est conçu pour la simulation numérique du modèle. La mise sans dimension des équations permet de montrer les nombres sans dimension qui régissent le phénomène de fuite. La vitesse moyenne de fuite est comparée à la vitesse dans le cas d'un fluide incompressible (pour lequel on a une expression exacte). Enfin, via la simulation numérique, une étude paramétrique est réalisée en fonction des nombres sans dimensions.Dans la troisième partie on présente une méthode numérique pour la simulation d'un modèle Vlasov-Boltzmann-Euler pour les sprays. Cette méthode couple le schéma VFFC à la méthode PIC (Particle In Cell). Les résultats présentés concernent l'écoulement d'un spray dans un pipeline courbe qu'on modélise par un système Vlasov-Boltzmann-Euler quasi-1D.