Thèse soutenue

Performances limites en termes d’estimation et de résolution et applications aux traitements d’antennes

FR  |  
EN
Auteur / Autrice : Nguyen Duy Tran
Direction : Pascal Larzabal
Type : Thèse de doctorat
Discipline(s) : Électronique Électrotechnique Automatique
Date : Soutenance le 24/09/2012
Etablissement(s) : Cachan, Ecole normale supérieure
Ecole(s) doctorale(s) : École doctorale Sciences pratiques (1998-2015 ; Cachan, Val-de-Marne)
Partenaire(s) de recherche : Laboratoire : Laboratoire des signaux et systèmes (Gif-sur-Yvette, Essonne ; 1974-....)
Jury : Examinateurs / Examinatrices : Rémy Boyer, Pascal Chevalier, Alexandre Renaux
Rapporteur / Rapporteuse : Yannick Berthoumieu, Pascal Chargé

Résumé

FR  |  
EN

Cette thèse porte sur l'analyse des performances en traitement du signal et se compose de deux parties: Premièrement, nous étudions les bornes inférieures dans la caractérisation et la prédiction des performances en termes d'erreur quadratique moyenne (EQM). Les bornes inférieures de l'EQM donne la variance minimale qu'un estimateur peut atteindre et peuvent être divisées en deux catégories: les bornes déterministes pour le modèle où les paramètres sont supposés déterministes (mais inconnus), et les bornes Bayésiennes pour le modèle où les paramètres sont supposés aléatoires. En particulier, nous dérivons les expressions analytiques de ces bornes pour deux applications différentes: (i) La première est la localisation des sources en utilisant un radar multiple-input multiple-output (MIMO). Nous considérons les bornes inférieures dans deux contextes c'est-à-dire avec ou sans erreurs de modèle. (ii) La deuxième est l'estimation de phase d'impulsion de pulsars à rayon X qui est une solution potentielle pour la navigation autonome dans l'espace. Pour cette application, nous avons calculé plusieurs bornes inférieures de l'EQM dans le contexte de données modélisées par une loi de Poisson (complétant ainsi les travaux disponibles dans la littérature où les données sont modélisées par une loi gaussienne). Deuxièmement, nous étudions le seuil statistique de résolution limite (SRL), qui est la distance minimale en termes des paramètres d'intérêts entre les deux signaux permettant de séparer / estimer correctement les paramètres d'intérêt. Plus précisément, nous dérivons le SRL dans deux contextes: le traitement d'antenne et le radar MIMO en utilisant deux approches basées sur la théorie de l'estimation et sur la théorie de l'information. Finalement, nous proposons des expressions compactes du SRL dans le cas d'erreurs de modèle.