Thèse soutenue

Couches initiales et limites de relaxation aux systèmes d'Euler-Poisson et d'Euler-Maxwell

FR  |  
EN
Auteur / Autrice : Mohamed Lasmer Hajjej
Direction : Yue-Jun Peng
Type : Thèse de doctorat
Discipline(s) : Mathématiques Appliquées
Date : Soutenance le 29/03/2012
Etablissement(s) : Clermont-Ferrand 2
Ecole(s) doctorale(s) : École doctorale des sciences fondamentales (Clermont-Ferrand)
Partenaire(s) de recherche : Equipe de recherche : Laboratoire de mathématiques appliquées (Clermont-Ferrand ; 1992-1995)
Laboratoire : Laboratoire de Mathématiques
Jury : Président / Présidente : Youcef Amirat
Examinateurs / Examinatrices : Laurent Lévi, Giuseppe Alì, Stéphane Junca
Rapporteurs / Rapporteuses : Laurent Lévi, Giuseppe Alì

Résumé

FR  |  
EN

Mes travaux concernent deux systèmes d’équations utilisés dans la modélisation mathématique de semi-conducteurs et de plasmas : le système d’Euler-Poisson et le système d’Euler-Maxwell. Le premier système est constitué des équations d’Euler pour la conservation de la masse et de la quantité de mouvement couplées à l’équation de Poisson pour le potentiel électrostatique. Le second système décrit le phénomène d’électro-magnétisme. C’est un système couplé, qui est constitué des équations d’Euler pour la conservation de la masse et de la quantité de mouvement et les équations de Maxwell, aussi appelées équations de Maxwell-Lorentz. Les équations de Maxwell sont dues aux lois fondamentales de la physique. Elles constituent les postulats de base de l’électromagnétisme, avec l’expression de la force électromagnétique de Lorentz. En utilisant une technique de développement asymptotique, nous étudions les limites en zéro du système d’Euler-Poisson dans les modèles unipolaire et bipolaire. Il est bien connu que la limite formelle du système d’Euler-Poisson est gouvernée par les équations de dérive-diffusion lorsque le temps de relaxation tend vers zéro. Par des estimations d’énergie aux systèmes hyperboliques symétriques, nous justifions rigoureusement cette limite lorsque les conditions initiales sont bien préparées. Le phénomène des conditions initiales mal préparées est interprété par l’apparition de couches initiales. Dans ce cas, nous faisons une analyse mathématique de ces couches initiales en ajoutant des termes de correction dans le développement asymptotique. En utilisant les techniques itératives des systèmes hyperboliques symétrisables et la technique de développement asymptotique, nous étudions la limite de relaxation en zéro du système d’Euler-Maxwell, avec des conditions initiales bien préparées ainsi que l’étude des couches initiales, dans le modèle évolutif bipolaire et unipolaire.