Thèse soutenue

Analyse de structures répétitives dans les séquences musicales

FR  |  
EN
Auteur / Autrice : Benjamin Martin
Direction : Myriam Desainte-CatherinePascal Ferraro
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 12/12/2012
Etablissement(s) : Bordeaux 1
Ecole(s) doctorale(s) : École doctorale Mathématiques et informatique (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire bordelais de recherche en informatique
Jury : Président / Présidente : Cédric Chauve
Examinateurs / Examinatrices : Jean-Julien Aucouturier, Pierre Hanna, Matthias Robine
Rapporteurs / Rapporteuses : Frédéric Bimbot, Thierry Lecroq

Résumé

FR  |  
EN

Cette thèse rend compte de travaux portant sur l’inférence de structures répétitives à partir du signal audio à l’aide d’algorithmes du texte. Son objectif principal est de proposer et d’évaluer des algorithmes d’inférence à partir d’une étude formelle des notions de similarité et de répétition musicale.Nous présentons d’abord une méthode permettant d’obtenir une représentation séquentielle à partir du signal audio. Nous introduisons des outils d’alignement permettant d’estimer la similarité entre de telles séquences musicales, et évaluons l’application de ces outils pour l’identification automatique de reprises. Nous adaptons alors une technique d’indexation de séquences biologiques permettant une estimation efficace de la similarité musicale au sein de bases de données conséquentes.Nous introduisons ensuite plusieurs répétitions musicales caractéristiques et employons les outils d’alignement pour identifier ces répétitions. Une première structure, la répétition d’un segment choisi, est analysée et évaluée dans le cadre dela reconstruction de données manquantes. Une deuxième structure, la répétition majeure, est définie, analysée et évaluée par rapport à un ensemble d’annotations d’experts, puis en tant qu’alternative d’indexation pour l’identification de reprises.Nous présentons enfin la problématique d’inférence de structures répétitives telle qu’elle est traitée dans la littérature, et proposons notre propre formalisation du problème. Nous exposons alors notre modélisation et proposons un algorithme permettant d’identifier une hiérarchie de répétitions. Nous montrons la pertinence de notre méthode à travers plusieurs exemples et en l’évaluant par rapport à l’état de l’art.