
◦

ii

Remerciements iii

Remerciements

Un grand merci à mes directeurs de thèse Ralf et André : vous m'avez aidé, conseillé, soutenu
durant ces trois années, tout en me laissant une grande liberté dans mon travail de recherche et
d'enseignement. Vous m'avez appris beaucoup sur le plan scienti�que (et celà depuis le Master)
mais aussi sur le fonctionnement du monde de la recherche. Vous m'avez permis de rencon-
trer des chercheurs intéressants et de participer à de nombreuses manifestations scienti�ques :
conférences, colloques, écoles thématiques.

Merci aux membres de mon jury de thèse pour être venus à la soutenance et pour vous être
intéressés à mes travaux. Merci aux rapporteurs Olivier Hudry, Sandi Klavºar et Pete Slater, et
aux examinateurs Sylvain Gravier, Julien Moncel et Éric Sopena.

J'adresse un remerciement particulier à Adrian et Reza. Adrian, pour avoir travaillé avec Ralf
et moi pendant mon stage de Master au printemps 2009 ; ces moments de travail collaboratif ont
fortement contribué à me donner goût à la recherche. Reza, pour les nombreux moments passés
ensemble à travailler (mais pas seulement) ; tu m'as énormément appris (de sorte que je peux
presque te considérer comme un directeur de thèse non-o�ciel), et ton grand enthousiasme pour
beaucoup de problèmes mathématiques est toujours fortement contagieux!

Merci en général à tous les collègues avec lesquels j'ai cherché ou enseigné, en particulier les
membres du groupe de travail �Graphes et Applications� et l'équipe de l'IUT. Je remercie en
particulier les personnes ayant gravité autour du projet de recherche �IDEA�. Nous nous sommes
réunis régulièrement autour d'une thématique commune, ce qui a conduit à des collaborations
nombreuses et dynamiques, mais aussi à des amitiés qui, je l'espère, perdureront. Les réunions
du projet, le colloque �BWIC� ou encore les visites de recherche sont des souvenirs qui me sont
agréables, entre Bordeaux et Grenoble. Merci aux personnes qui ont contribué à organiser ce
projet, notamment André, Arnaud, Éric, Gilles, Mickaël, Olivier D., Ralf, Sylvain. Je pense
aussi tout particulièrement aux jeunes chercheurs du projet Aline, Eleonora, Matjaº, Petru et
Reza, avec qui j'ai passé beaucoup de bons moments sur les plans scienti�ques et personnels, à
Bordeaux, Budapest, Caen, Chi³in u, Grenoble, Orsay, Paris, Thézac, Turku...

Je remercie aussi les personnes qui m'ont accueilli lors de séjours de recherche à l'étranger,
séjours qui m'ont beaucoup apporté. Merci à Adrian et Marek Kubale pour leur accueil à Gda«sk,
alors que je commençais juste ma thèse. Merci à Tibor Szabó pour l'organisation de deux écoles
thématiques à Berlin qui m'ont beaucoup apporté. Merci à Olivier Baudon pour m'avoir invité à
travailler avec lui et merci à ses collègues de Cracovie Monika Pil±niak et Mariusz Wo¹niak pour
leur accueil. Merci à Oriol Serra et Guillem pour leur accueil à Barcelone (et Guillem, pour les
bons moments passés à Barcelone, Berlin et Bordeaux). Merci à Tero Laihonen, Aline et aux
autres �nlandais pour leur accueil à Turku. Merci à Rolf Niedermeier et son équipe pour leur
accueil à Berlin, alors que je �nissais de rédiger ce manuscrit.

Je remercie aussi les personnes rencontrées lors de séjours scienti�ques, particulièrement
Adriana, Alexandru, António, Ararat, George, Guillem, Ismael, Jan, John Louis, Laurent, Louis,
Matthieu, Nathann, Oliver, Pete, Valentin, Will...

Merci également à tous les collègues du LaBRI, de l'IMB ou de l'IMS qui ont marqué
l'ambiance quotidienne de ces trois années. Je pense particulièrement à mes collègues de bu-
reau Thomas, Vincent, Matjaº, Eleonora, Julien C. et Julien B. (dans l'ordre d'arrivée). Merci
aux membres de l'AFoDIB, en particulier aux membres du bureau de 2010-2011 Benjamin, Bis-
syandé et Thomas. En�n, je pense aux autres collègues croisés pendant cette période : Abbas,
Adrian, Allyx, Anaïs, Anna, Cédric, Clément, Dominik, Eleonora, Émilie, Eve, Gabriel, Hervé,
Julien A., Julien B., Julien C., Lorenzo, Matjaº, Michaël, Min, Noémie-Fleur, Petru, Pierre B.,
Pierre H., Razanne, Reza, Sagnik, Sri, Thomas, Vincent, Youssouf... Merci également à Brigitte,
Philippe et les autres du pôle administratif, pour leur sympathie et leur bonne humeur.

En�n, j'adresse un remerciement à ma famille et à mes amis non chercheurs, en particulier
mes parents, Isaline, Damien, Arto, Dagmar, Klára, Lukas, Julia, Adrien, ainsi que les membres
du Samovar et des jardins AOC, et mes amis de Calicut. Merci pour les bons moments vécus en
parallèle de cette thèse.

iv Résumé

Aspects combinatoires et algorithmiques

des codes identi�ants dans les graphes

Résumé : Un code identi�ant est un ensemble de sommets d'un graphe tel que, d'une part,
chaque sommet hors du code a un voisin dans le code (propriété de domination) et, d'autre
part, tous les sommets ont un voisinage distinct à l'intérieur du code (propriété de séparation).
Dans cette thèse, nous nous intéressons à des aspects combinatoires et algorithmiques relatifs
aux codes identi�ants.

Pour la partie combinatoire, nous étudions tout d'abord des questions extrémales en don-
nant une caractérisation complète des graphes non-orientés �nis ayant comme taille minimum
de code identi�ant leur ordre moins un. Nous caractérisons également les graphes orientés �-
nis, les graphes non-orientés in�nis et les graphes orientés asymétriques in�nis ayant pour seul
code identi�ant leur ensemble de sommets. Ces résultats répondent à des questions ouvertes
précédemment étudiées dans la littérature.

Puis, nous étudions la relation entre la taille minimum d'un code identi�ant et le degré
maximum d'un graphe, en particulier en donnant divers majorants pour ce paramètre en fonction
de l'ordre et du degré maximum. Ces majorants sont obtenus via deux techniques. L'une est
basée sur la construction d'ensembles indépendants satisfaisant certaines propriétés, et l'autre
utilise la combinaison de deux outils de la méthode probabiliste : le lemme local de Lovász et
une borne de Cherno�. Nous donnons également des constructions de familles de graphes en
relation avec ce type de majorants, et nous conjecturons que ces constructions sont optimales à
une constante additive près.

Nous présentons également de nouveaux minorants et majorants pour la cardinalité minimum
d'un code identi�ant dans des classes de graphes particulières. Nous étudions les graphes de
maille au moins 5 et de degré minimum donné en montrant que la combinaison de ces deux
paramètres in�ue fortement sur la taille minimum d'un code identi�ant. Nous appliquons ensuite
ces résultats aux graphes réguliers aléatoires. Puis, nous donnons des minorants pour la taille
d'un code identi�ant des graphes d'intervalles et des graphes d'intervalles unitaires. En�n, nous
donnons divers minorants et majorants pour cette quantité lorsque l'on se restreint aux graphes
adjoints. Cette dernière question est abordée via la notion nouvelle de codes arête-identi�ants.

Pour la partie algorithmique, il est connu que le problème de décision associés à la notion
de code identi�ant est NP-complet même pour des classes de graphes restreintes. Nous étendons
ces résultats à d'autres classes de graphes telles que celles des graphes split, des co-bipartis, des
adjoints ou d'intervalles. Pour cela nous proposons des réductions polynomiales depuis divers
problèmes algorithmiques classiques. Ces résultats montrent que dans beaucoup de classes de
graphes, le problème des codes identi�ants est algorithmiquement plus di�cile que des problèms
liés (tel que le problème des ensembles dominants).

Par ailleurs, nous complétons les connaissances relatives à l'approximabilité du problème
d'optimisation associé aux codes identi�ants. Nous étendons le résultat connu de NP-di�culté
pour l'approximation de ce problème avec un facteur sous-logarithmique (en fonction de la taille
du graphe instance) aux graphes bipartis, split et co-bipartis, respectivement. Nous étendons
également le résultat connu d'APX-complétude pour les graphes de degré maximum donné à une
sous-classe des graphes split, aux graphes bipartis de degré maximum 4 et aux graphes adjoints.
En�n, nous montrons l'existence d'un algorithme de type PTAS pour les graphes d'intervalles
unitaires.

Mots-clé : codes identi�ants, ensembles dominants, théorie des graphes, NP-complétude, al-
gorithmes d'approximation

Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université Bordeaux 1

351 cours de la Libération, 33405 Talence Cedex, France

Abstract v

Combinatorial and algorithmic aspects

of identifying codes in graphs

Abstract: An identifying code is a set of vertices of a graph such that, on the one hand, each
vertex out of the code has a neighbour in the code (the domination property), and, on the other
hand, all vertices have a distinct neighbourhood within the code (the separation property). In
this thesis, we investigate combinatorial and algorithmic aspects of identifying codes.

For the combinatorial part, we �rst study extremal questions by giving a complete charac-
terization of all �nite undirected graphs having their order minus one as the minimum size of an
identifying code. We also characterize �nite directed graphs, in�nite undirected graphs and in�-
nite oriented graphs having their whole vertex set as the unique identifying code. These results
answer open questions that were previously studied in the literature.

We then study the relationship between the minimum size of an identifying code and the
maximum degree of a graph. In particular, we give several upper bounds for this parameter as a
function of the order and the maximum degree. These bounds are obtained using two techniques.
The �rst one consists in the construction of independent sets satisfying certain properties, and
the second one is the combination of two tools from the probabilistic method: the Lovász local
lemma and a Cherno� bound. We also provide constructions of graph families related to this
type of upper bounds, and we conjecture that they are optimal up to an additive constant.

We also present new lower and upper bounds for the minimum cardinality of an identifying
code in speci�c graph classes. We study graphs of girth at least 5 and of given minimum degree
by showing that the combination of these two parameters has a strong in�uence on the minimum
size of an identifying code. We apply these results to random regular graphs. Then, we give lower
bounds on the size of a minimum identifying code of interval and unit interval graphs. Finally,
we prove several lower and upper bounds for this parameter when considering line graphs. The
latter question is tackled using the new notion of an edge-identifying code.

For the algorithmic part, it is known that the decision problem associated with the notion of
an identifying code is NP-complete, even for restricted graph classes. We extend the known results
to other classes such as split graphs, co-bipartite graphs, line graphs or interval graphs. To this
end, we propose polynomial-time reductions from several classical hard algorithmic problems.
These results show that in many graph classes, the identifying code problem is computationally
more di�cult than related problems (such as the dominating set problem).

Furthermore, we extend the knowledge of the approximability of the optimization problem
associated to identifying codes. We extend the known result of NP-hardness of approximating
this problem within a sub-logarithmic factor (as a function of the instance graph) to bipartite,
split and co-bipartite graphs, respectively. We also extend the known result of its APX-hardness
for graphs of given maximum degree to a subclass of split graphs, bipartite graphs of maximum
degree 4 and line graphs. Finally, we show the existence of a PTAS algorithm for unit interval
graphs.

Keywords: identifying codes, dominating sets, graph theory, NP-completeness, approximation
algorithms

Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université Bordeaux 1

351 cours de la Libération, 33405 Talence Cedex, France

vi Contents

Contents vii

Contents

1 Introduction 1

1.1 Identifying codes in graphs . 1
1.1.1 Formal de�nition . 2
1.1.2 First observations . 3

1.2 Applications and motivations of identifying codes 5
1.3 Overview and contributions of the thesis . 6

1.3.1 Part I: combinatorial aspects . 6
1.3.2 Part II: algorithmic aspects . 7

1.4 Other work done during the PhD . 7
1.5 Summary of known bounds on the identifying code number and complexity results

for identifying codes . 8

2 De�nitions, notations and related work 15

2.1 A few mathematical notations . 15
2.2 Graphs and hypergraphs . 15

2.2.1 Basic de�nitions . 16
2.2.2 Operations, transformations and substructures for graphs and hypergraphs 18
2.2.3 Graph classes . 22

2.3 Computational complexity . 27
2.3.1 Computational problems and algorithms 27
2.3.2 Decision problems and related classes . 28
2.3.3 Optimization problems, approximation algorithms and related classes . . . 29
2.3.4 Complexity classes de�ned using logic and Courcelle's theorem 32
2.3.5 Other decision and optimization problems that we will use 33

2.4 Identi�cation problems that are related to identifying codes 34
2.4.1 Codes identifying sets of vertices at a given distance 34
2.4.2 Test covers, discriminating codes and Bondy's theorem 35
2.4.3 Identifying open codes . 36
2.4.4 Identi�cation of vertices using stars, cycles and paths 36
2.4.5 Identifying the edges of a graph . 37
2.4.6 Resolving sets and metric dimension . 37
2.4.7 Identifying colourings . 37

2.5 Existing work on identifying codes in (di)graphs related to this thesis 37
2.5.1 General bounds on the identifying code number 38
2.5.2 Bounds in speci�c graph classes . 39
2.5.3 Complexity of Identifying Code, Min Id Code and related problems . 41

I Combinatorial aspects 45

3 Extremal (di)graphs for identifying codes 47

3.1 A useful proposition . 48
3.2 Digraphs with their whole vertex set as only identifying code 48

3.2.1 A new family of extremal digraphs . 49
3.2.2 The characterization . 50
3.2.3 An application to extremal cases in Bondy's theorem 51

3.3 The case of in�nite oriented graphs . 52
3.3.1 Families of extremal in�nite oriented graphs 52

viii Contents

3.3.2 The characterization . 54
3.4 Undirected graphs having as identifying code number their order minus one . . . 55

3.4.1 Preliminary tools . 55
3.4.2 New constructions . 56
3.4.3 The characterization . 57
3.4.4 Tightness of the bound of Theorem 2.27 in various graph classes 58

3.5 In�nite undirected graphs with their whole vertex set as only identifying code . . 59
3.5.1 A family of in�nite extremal graphs . 59
3.5.2 The characterization . 60

3.6 Conclusion . 60

4 Identifying codes in graphs of given maximum degree 63

4.1 Graphs reaching the lower bound of Theorem 2.29 64
4.2 Upper bounds depending on the order and the maximum degree - a conjecture

and some constructions . 66
4.2.1 A conjecture . 66
4.2.2 Extremal constructions . 67
4.2.3 On the number and structure of false twins and forced vertices in a graph 70

4.2.3.1 False twins . 70
4.2.3.2 Forced vertices . 71

4.3 Using complements of independent sets to approach Conjecture 4.4 75
4.3.1 First bounds . 75
4.3.2 A re�ned general approach . 76
4.3.3 An application to triangle-free graphs . 77

4.3.3.1 Proof ideas . 77
4.3.3.2 Preliminary considerations . 78
4.3.3.3 Quasi-identifying the vertices around a strong induced matching 81
4.3.3.4 The upper bound . 85
4.3.3.5 Applying Theorem 4.37 . 88

4.4 Using the probabilistic method to tackle Conjecture 4.4 90
4.4.1 Probabilistic tools . 90
4.4.2 The upper bound . 90
4.4.3 Corollaries of the bound . 94

4.5 Conclusion . 95

5 Identifying codes in speci�c graph classes 97

5.1 Graphs of given minimum degree and girth at least 5 98
5.1.1 Minimum degree 2 and girth at least 5 . 98
5.1.2 Larger minimum degree and girth at least 5 101
5.1.3 An application to identifying codes of random regular graphs 103

5.2 Interval graphs . 104
5.3 Line graphs . 106

5.3.1 First results . 107
5.3.2 Lower Bounds . 108

5.3.2.1 A �rst lower bound . 108
5.3.2.2 Applying the lower bound to hypercubes 109
5.3.2.3 Re�ning the lower bound . 110

5.3.3 Upper bounds . 113
5.3.3.1 Line graphs with identifying code number their order minus one 113
5.3.3.2 A minimal edge-identifying code induces a 2-degenerate graph . 113
5.3.3.3 An application to Conjecture 4.4 in line graphs 114

5.4 Conclusion . 115

Contents ix

II Algorithmic aspects 117

6 Graph classes for which Min Id Code is log-APX-complete 119

6.1 Some useful constructions . 119
6.2 Min Id Code for bipartite graphs . 120
6.3 Min Id Code for split graphs . 122
6.4 Min Id Code for DSP graphs . 124
6.5 Min Id Code for co-bipartite graphs . 125
6.6 Conclusion . 128

7 Graph classes for which Min Id Code is APX-hard or Identifying Code is

NP-complete 129

7.1 Min Id Code for bipartite graphs of small maximum degree and Identifying

Code for planar bipartite graphs and for chordal bipartite graphs 130
7.1.1 A reduction from Min Vertex Cover 130
7.1.2 A reduction from Min Dom Set . 132

7.2 Min Id Code for split graphs of bounded maximum CS-degree 133
7.2.1 Min Id Code for split graphs of bounded maximum CS-degree is in APX 133
7.2.2 Min Id Code for split graphs of bounded maximum CS-degree is APX-hard134

7.3 Min Id Code for line graphs . 138
7.3.1 Min Id Code for line graphs is 4-approximable 138
7.3.2 Min Id Code for line graphs is APX-hard 138

7.4 Identifying Code for interval graphs is NP-complete 143
7.5 Conclusion . 148

8 Graph classes where Min Id Code is in PTAS or in PO 151

8.1 Identifying Code for unit interval graphs . 151
8.1.1 Reducing Min Id Code to Min Ladder Cycle Cover 152
8.1.2 Min Id Code for unit interval graphs is in PTAS 153

8.2 Edge-Identifying Code for graphs of bounded tree-width 156
8.3 A class of graphs for which Identifying Code is in P but Dominating Set is

NP-complete . 157
8.4 Conclusion . 158

9 General conclusion and perspectives 161

A Appendix: omitted proofs 163

A.1 Proof of Lemma 4.15 . 163
A.2 Proof of Theorem 4.28 . 163
A.3 Proof of validity of codes Ca and Cb in Lemma 4.36 165
A.4 Proof of Theorem 4.44 . 166
A.5 Proof of Theorem 5.5 . 169
A.6 Proof of Theorem 5.17 . 170
A.7 Proof of Corollary 5.28 . 171
A.8 Proof of Theorem 7.10 . 172
A.9 Proofs from Section 7.3 . 174

Bibliography 177

General references . 177
Author's publications . 187

Index of de�nitions 189

List of notations 193

Chapter 1. Introduction 1

Chapter 1

Introduction

This thesis deals with the subject of identifying codes in graphs. This topic has been proposed
to me during my Master thesis in early 2009 by my advisors R. Klasing and A. Raspaud. This
has been the starting point of a fruitful line of research thanks to the active collaboration and
exchange of ideas among the small group participating in the 3-year ANR1 research project
IDEA: Identifying coDes in Evolving grAphs (2009�2012).2 In this thesis, we present
results arising from this fruitful collaboration (see the publications or manuscripts [FGK+11,
FGN+12, FKKR12, FKM+12, FNP12, FP12]) as well as results that are solely the author's
work and have not yet been presented elsewhere than in this thesis.

I would like to point out that this thesis is part of a growing series of PhD manuscripts on
the topic of identifying codes, that started with J. Moncel's thesis in 2005 [156], and continued
with R. D. Skagg's and S. Ranto's theses in 2007 [181, 169], M. Laifenfeld's thesis in 2008 [142],
D. Auger's thesis in 2010 [7], B. Stanton's and V. Junnila theses in 2011 [186, 128] and, most
recently, M. Bouznif's, A. Parreau's and P. Valicov's theses in 2012 [31, 167, 196] (sorted by
order of defense date).

In this introductory chapter, we will present and motivate the concept of an identifying
code, before giving an overview of the author's results that are presented in this work. Formal
de�nitions and notations about graphs and computational complexity will be given in Chapter 2.

1.1 Identifying codes in graphs . 1

1.2 Applications and motivations of identifying codes 5

1.3 Overview and contributions of the thesis 6

1.4 Other work done during the PhD . 7

1.5 Summary of known bounds on the identifying code number and
complexity results for identifying codes 8

1.1 Identifying codes in graphs

An identifying code of a graph G is a subset of vertices of G that allows one to distinguish each
vertex of G by means of its neighbourhood within the identifying code. This notion, de�ned
by M. G. Karpovsky, K. Chakrabarty and L. B. Levitin in 1998 [132] has been widely studied
since then (more than 240 publications are listed in a bibliography maintained by A. Lobstein
and available online [145]). It is related to many other kinds of identi�cation problems in com-
binatorial structures (graphs, digraphs and hypergraphs) such as the notions of test covers,
discriminating codes, locating-dominating sets, etc. As we will see, all these problems have var-
ious applications, e.g. in the areas of testing of diseases, fault-detection in networks or location
of threats in facilities.

1Agence Nationale de la Recherche
2See http://idea.labri.fr.

http://idea.labri.fr

2 1.1. Identifying codes in graphs

1.1.1 Formal de�nition

We �rst present the notions of a dominating set and a separating code of a graph. In fact, we
will see later that identifying codes are exactly the combination of these two notions.

Dominating sets

A dominating set is a set of vertices of a graph that covers all closed neighbourhoods:

De�nition 1.1. A dominating set of a graph G is a subset D of vertices of G such that for each
vertex v ∈ V (G), D ∩N [v] 6= ∅.

An example of a dominating set is depicted in Figure 1.1(a). A vertex x of D is said to
dominate vertex v if either x = v, or x is adjacent to v. The minimum size of a dominating set
in G, its domination number , is denoted γ(G).

In a digraph, we have the same de�nition but replacing the closed neighbourhood N [v] by
the closed in-neighbourhood N−[v]: a vertex x dominates itself and all its out-neighbours.3

We point out that dominating sets and many of their variants have been studied extensively
over the years; two classic textbooks about this topic are [109, 110].

Separating codes

A separating code of a graph is a subset of vertices that allows one to distinguish all vertices
from each other using their neighbourhoods within the code:

De�nition 1.2. A separating code is a subset C of vertices of G such that for each pair u, v of
distinct vertices of G, we have N [u] ∩ C 6= N [v] ∩ C.

Equivalently, the condition N [u] ∩ C 6= N [v] ∩ C can be replaced by C ∩ (N [u] 	 N [v]) 6= ∅
(where 	 denotes the symmetric di�erence operator between two sets), that is, there is a vertex
x ∈ C such that x ∈ N [u] but x /∈ N [v], or x ∈ N [v] but x /∈ N [u]; in that case we say that x
separates the pair u, v. In the literature, separating codes have also been designated under the
name of separating sets.

An example of a graph with a separating code is represented in Figure 1.1(b), where the
vertices are labelled and the sets N [x] ∩ C are indicated.

The minimum size of a separating code of a graph G, its separating code number, is denoted
γS(G).

When considering digraphs, as in the case of dominating sets, the notion of a separating code
has the same de�nition as in the undirected case, except that in the de�nition, we replace the
closed neighbourhood by the closed in-neighbourhood. The separating code number of a digraph
D is denoted

−→
γS(D).

Identifying codes

We are now ready to de�ne the central notion of this thesis.

De�nition 1.3 ([132]). Given a (di)graph G, a subset C of V (G) is an identifying code of G if
C is both a dominating set and a separating code of G.

An example of a graph with an identifying code is represented in Figure 1.1(c), where the
vertices are labelled and the sets N [x]∩C are indicated. We point out that both the dominating
set of Figure 1.1(a) and the separating code of Figure 1.1(b) are not identifying codes since in the
�rst case, vertices d and f are not separated, and in the second case vertex h is not dominated.

The minimum size of an identifying code of a (di)graph G is called the identifying code

number of G and is denoted γID(G) if G is an undirected graph, and
−→
γID(G) if G is a digraph.

Identifying codes have been introduced in [132]; they have also been studied under the name
of di�erentiating-dominating sets in [90, 111, 181].

3We remark that one may as well choose to consider out-neighbourhoods and get a similar de�nition; but one
may just reverse the direction of all arcs of the considered digraph to go from one to the other de�nition without
changes.

Chapter 1. Introduction 3

a b

c

d

e

f

g

h

(a) A dominating set.

a
{a, c, d}

b {b, c, d}

c{a, b, c}

d {a, b, d}

e

{b, c}

f {d}

g {c}

h ∅

(b) A separating code.

a
{c, d}

b {b, c, d}

c{b, c, g}

d {b, d}

e

{b, c}

f {d}

g {c, g}

h {g}

(c) An identifying code.

Figure 1.1: A graph with a dominating set, a separating code and an identifying
code (black vertices).

1.1.2 First observations

We now mention some preliminary facts about identifying codes.

Twins and identi�able graphs

A fundamental remark when dealing with identifying codes is that not all graphs admit one:
indeed, whenever two distinct vertices u, v are such that N [u] = N [v], that is, N [u]	N [v] = ∅,
u and v cannot be separated. In that case, we say that u and v are twins. An example of two
twins is depicted in Figure 1.2(a).

x y

(a) A pair x, y of twins.

u v w

(b) Three mutually false twins
u, v, w.

f
v u

(c) A uv-forced vertex f .

Figure 1.2: Twins, false twins and a forced vertex.

In a digraph, two vertices u, v are twins if they have the same closed in-neighbourhood.
Observe that in that case, there must exist a pair of symmetric arcs between u and v. Hence,
oriented graphs have no twins.

In fact, it is easily seen that being twin-free, i.e. having no pair of twins, is also a su�cient
condition for a (di)graph to admit an identifying code:

Observation 1.4. A (di)graph admits an identifying if and only if it is twin-free.

Indeed, in a twin-free graph G, C = V (G) is an identifying code of G: it is certainly a
dominating set, and for every vertex v, we have N [v] ∩ C = N [v]. Because of the twin-freeness
of G, all these sets are distinct, and C is also a separating code of G.

4 1.1. Identifying codes in graphs

In this thesis, a twin-free graph will be called identi�able. Twin-free graphs have been called
point-distinguishing in [189] and have been studied for their own sake, see also [5, 8, 10, 43, 47].

False twins

A notion related to twins is the one of false twins: two distinct vertices u, v are false twins if
N(u) = N(v) but u, v are not adjacent. An example of three mutually false twins is given in
Figure 1.2(b). The following observation is the reason for the importance of this notion in the
area of identifying codes:

Observation 1.5. Let G be an identi�able graph and let F be a set of vertices that are mutually
false twins. Then for any identifying code C of G, at least |F | − 1 vertices of F belong to C.

Indeed, for any pair u, v of distinct vertices of F , we have N [u]	N [v] = {u, v} and hence at
least one of u, v must belong to any identifying code of G.

Forced vertices

We also propose the notion of a forced vertex in a given identi�able graph G: vertex f is forced
in G if there exist two vertices u, v such that N [u] 	 N [v] = {f}. In other words, we have
N [v] = N [u] ∪ {f} (or N [u] = N [v] ∪ {f}). In the former case, we say that f is uv-forced ;
otherwise, f is vu-forced. In both cases, we say that f is forced by the pair {u, v}. An example
of a uv-forced vertex is depicted in Figure 1.2(c).

Observation 1.6. Let G be an identi�able graph and let f be a forced vertex of G. Then f
belongs to any identifying code of G.

This fact holds since if f is uv-forced, f is the only vertex that can separate u, v.

Supersets of identifying codes are identifying codes

The following observation is easy to make, but is worth mentioning here.

Observation 1.7. Let G be an identi�able graph and C an identifying code of G. Any set C′
such that C ⊆ C′ is also an identifying code of G.

The locality of identifying codes

The following observation gives an equivalent condition for a set to be an identifying code,
and follows from the fact that for two vertices u, v at distance at least 3 from each other,
N [u]	N [v] = N [u] ∪N [v].

Observation 1.8. For a graph G and a set C ⊆ V (G), if C is a dominating set and N [u] ∩ C 6=
N [v] ∩ C holds for each pair of vertices u, v at distance at most 2 from each other, then C is an
identifying code of G.

Informally speaking, this shows that identifying codes have a �local� structure in the sense
that a vertex from the identifying code does not in�uence vertices that lie arbitrarily far away
from it.

Associated computational problems

Let us de�ne the natural decision and optimization problems that are associated with identify-
ing codes, and that will be studied in the second part of the thesis. Formal de�nitions about
computational complexity will be given in Section 2.3.

Identifying Code

INSTANCE: An identi�able graph G and an integer k.
QUESTION: Does G have an identifying code of size at most k?

Chapter 1. Introduction 5

Min Id Code

INSTANCE: An identi�able graph G.
SOLUTION: An identifying code C of G.
MEASURE: The cardinality |C| of the code.

1.2 Applications and motivations of identifying codes

In general, identi�cation problems such as identifying codes or their generalizations and variants
presented in Section 2.4 have a broad variety of applications in situations involving di�erent
variants of testing. For example, test covers (a notion that generalizes separating codes to hy-
pergraphs and that will be de�ned in Chapter 2) can be used for the diagnosis of faults or
diseases, biological identi�cation of individuals according to their attributes, or pattern recogni-
tion [71, 159].

When we identify structures in a graph � as it is the case in identifying codes � the
main applications are to consider the graph as a real-life structure. In this regard, graphs can
for example model computer networks (each computer is a vertex and each edge is a network
connection), spatial networks (each vertex is a location, and each edge is a road or gateway
between two locations), social networks (each vertex is an individual, each edge is a social
relationship between two of them, e.g. friendship) or molecules (vertices are atoms and edges are
links between them). In general, a graph models any situation where we have a set of elements
and a binary relation between them.

Identifying codes have been particularly applied to situations where one wants to detect
failures in a computer network. Assume that we have an identifying code and each code vertex
represents a failure detector that is able to detect a fault within its closed neighbourhood (when
it does, we say it is in �alarm state�). Whenever there is one failure, by the domination property,
at least one fault-detector will be in alarm state. Moreover, by the separation property, the set
of detectors that are in alarm state precisely determines the vertex that is faulty. Assuming that
we have a central monitoring system where we know which are the detectors in alarm state, this
enables one to precisely locate the failure; see e.g. [132, 156] for more details. Observe that some
variants, such as (1,≤ `)-identifying codes that will be described later, allow one to handle the
case of several simultaneous failures.

A similar situation arises when the network is a complex of rooms and corridors, and detectors
are e.g. �re alarms or motion sensors. In the same way as in the previous application, when the
detectors are placed as an identifying code, they allow one to detect and locate an intruder or
a �re in the building. This idea has been explained in e.g. [170, 178] and a real experimental
motion sensor system based on identifying codes has been implemented and discussed in [195].

Identifying codes have also been used in the setting of routing problems in networks. This
problem, given two computers that are part of a network, is to send a message from one to
the other (under certain constraints depending on the network). Usually, the message transits
through speci�c computers of the network called routers. In some applications, these routers
form a dominating set. The naming problem (i.e. the problem of giving a unique identi�er to
each member of the network) is also often addressed in computer network design. By using the
fact that identifying codes are dominating sets and that they induce unique identi�ers to each
network node, both the routing and the naming problem can be solved using identifying codes
and domination-based routing schemes [144].

As a di�erent application, identifying codes (among other domination-related parameters)
have been used in the setting of comparing secondary RNA structures (viewing these molecules
as graphs) [111]. Indeed, experimentations have shown that the values of domination parameters
for RNA molecules help to give a good description of the molecular properties of these structures.

Finally, identifying codes have been rediscovered in [135] (under the name of sieves) and
used therein as a tool to give upper bounds on the de�nability of a graph, a tool to measure
the descriptive complexity of a graph in First Order logic. The de�nability of G is the smallest
number of nested quanti�ers in a First Order logical formula that determines G, that is, the

6 1.3. Overview and contributions of the thesis

formula is true for an input graph H if and only if H is isomorphic to G. The authors prove in
particular that if a graph has an identifying code C, then it has de�nability at most |C|+ 3, and
they apply this result to random graphs.

1.3 Overview and contributions of the thesis

Let us now give an overview of the results presented in this thesis, which is divided into two
parts: combinatorial aspects of identifying codes, and algorithmic aspects of identifying codes.
Before these technical parts, Chapter 2 gathers notations and useful de�nitions in graph theory,
combinatorics and computational complexity. Therein, we also present variants of identi�cation
problems related to identifying codes, as well as results about identifying codes that are related to
the results of this thesis. Chapter 9 contains the general conclusion of this thesis. In Appendix A,
we gather proofs that are repetitive, of minor interest or that come from the literature (but
are not accessible). The bibliography is divided into two parts: general references (referenced
using numbered citations) and references to the author's papers (referenced using alphabetical
citations). We also provide an index of de�nitions and a list of notations.

1.3.1 Part I: combinatorial aspects

The �rst part of this thesis is devoted to the study of bounds on the identifying code number,
and graphs that reach these bounds. It is divided into three chapters.

In Chapter 3, which is based on the papers [FGK+11, FNP12], we characterize graphs and
digraphs that are extremal with respect to the known upper bounds on parameters γID and−→
γID. In particular, we give full characterizations for �nite digraphs, in�nite oriented graphs and
in�nite undirected graphs that have their whole vertex set as only identifying code. For both the
�nite directed and the in�nite oriented case, we show that these graphs can be described as the
closures of rooted top-down oriented trees. For the in�nite undirected case, roughly speaking,
these graphs can be built from disjoint copies of a speci�c in�nite graph and complete joins
between them. We also characterize �nite undirected graphs that have their order minus one as
minimum size of an identifying code. We show that these graphs are either stars or they can be
built from a family of speci�c powers of paths using repeated complete join and disjoint union
operations as well as the addition of a universal vertex. This work solves some open problems
from the literature that had previously been studied in [36, 46, 96, 181].

Chapter 4 is based on the papers [FKKR12, FP12]. Therein, we discuss bounds on γID

in graphs of given maximum degree. We �rst characterize those graphs that reach the known
lower bound γID(G) ≥ 2|V (G)|

∆(G)+2 from the literature. We then propose the upper bound γID(G) ≤
|V (G)|− |V (G)|

∆(G) +c (where c is an absolute constant) in the form of a conjecture (Conjecture 4.4).
Discussing the tightness of our conjecture, we present several constructions of graphs that reach
its bound, or are close to it. In support of the conjecture, we closely approximate its bound both
for general graphs and for special graph classes such as triangle-free graphs or regular graphs.
To do so, we mainly use two techniques to tackle the problem. The �rst technique consists in
computing complements of special kinds of independent sets. We use it to prove that the bound
γID(G) ≤ |V (G)|− |V (G)|

(1+o∆(G))∆(G) holds for triangle-free graphs. The second technique is to use the

probabilistic method (more precisely, we use L. Lovász' well-celebrated Local Lemma together
with Cherno� bounds). We use it to show that the bound γID(G) ≤ |V (G)| − |V (G)|

Θ(∆(G)3)
holds in

general, and that γID(G) ≤ |V (G)| − |V (G)|
Θ(∆(G)) holds (among other classes) for regular graphs or

graphs of bounded clique number.
Finally, in Chapter 5 (which is based on the papers [FGN+12, FKM+12, FP12]), we consider

identifying codes in various graph classes. We �rst give upper bounds on parameter γID for graphs
of girth 5 and given minimum degree. It turns out that such graphs have essentially much smaller
identifying codes than when either one of the minimum degree or the girth condition is relaxed.
We �rst use a technique based on a DFS spanning tree to show that graphs on n vertices having
minimum degree at least 2 and girth at least 5 have an identifying code of size at most 7n

8 .

Chapter 1. Introduction 7

We then show that one can use 2-dominating sets to construct identifying codes in graphs of
girth at least 5, and we use the probabilistic method to give upper bounds on the size of these
constructions. This leads to bounds of the order γID(G) ≤ (1 + oδ(G)(1))3 ln δ(G)

2δ(G) n for graphs G
with girth at least 5. We use these bounds to compute (with high probability) the identifying code
number of a random regular graph. Then, we brie�y discuss the class of interval graphs, providing

a lower bound of the order γID(G) ≥ Ω
(√
|V (G)|

)
for the identifying code of an interval graph

G, and the lower bound γID(G) ≥ |V (G)|+1
2 when G is a unit interval graph. Finally, we study the

class of line graphs, where we present some nontrivial lower and upper bounds by introducing
the new concept of edge-identifying codes, a notion similar to identifying codes but which aims at
identifying edges instead of vertices. This notion is equivalent to the one of (vertex-)identifying
codes in line graphs. We �rst investigate basic properties of edge-identifying codes. We then show
that |V (G)|

2 ≤ γEID(G) ≤ 2|V (G)| − 3, where γEID(G) is the minimum size of an edge-identifying

code of G. The lower bound implies the lower bound γID(G) ≥ Ω
(√
|V (G)|

)
for any identi�able

line graph G. The upper bound is obtained by showing that any minimal edge-identifying code
induces a 2-degenerate graph. We also apply this bound to show that Conjecture 4.4 holds for
dense enough line graphs.

1.3.2 Part II: algorithmic aspects

In the second part of the thesis, we prove some complexity results for Identifying Code and
Min Id Code for various graph classes. This part is divided into three chapters.

In Chapter 6, we present four new AP-reductions which show that Min Id Code remains
log-APX-complete even for bipartite, split, DSP and co-bipartite graphs, respectively. Three of
these reductions are from Min Discrim Code. It was previously known that Min Id Code

is log-APX-complete, but without any speci�c restriction on the graph class. The results of this
chapter are new and solely the author's work, i.e. they have not been published elsewhere.

In Chapter 7, which is partly based on the papers [FGN+12, FKM+12] (the other results be-
ing new and solely the author's work), we show thatMin Id Code is APX-complete for bipartite
graphs of small maximum degree by reduction from Min Dom Set and Min Vertex Cover,
for a subclass of split graphs, and for line graphs (for the two latter cases, we give reductions
from restricted versions of Max SAT). Furthermore, our reductions imply that decision problem
Identifying Code is NP-complete for even more restricted graph classes (i.e. chordal bipartite
graphs, planar bipartite graphs of maximum degree 4 and planar perfect line graphs of maximum
degree 4). We also prove that Identifying Code is NP-complete for interval graphs by a new
reduction from 3-Dimensional Matching.

Finally, in Chapter 8 (which is based on the papers [FGN+12, FKM+12] but also contains
new results that are solely the author's work), we relateMin Id Code for unit interval graphs to
the new problem of covering the edges of a special graph (the ladder graph) by cycles from a given
input set of cycles. We call this problem Min Ladder Cycle Cover. We then give a PTAS

for Min Ladder Cycle Cover, implying a PTAS for Min Id Code for unit interval graphs.
We also show that Edge-Identifying Code is linear-time solvable for graphs of bounded tree-
width. This implies that Identifying Code is linear-time solvable for line graphs of graphs
of bounded tree-width. In the previous chapters, we show that in some classes of graphs such
as co-bipartite graphs or interval graphs, Dominating Set is in P but Identifying Code is
NP-complete. In Chapter 8, we de�ne the �rst known class of graphs for which Identifying

Code is in P but Dominating Set is NP-complete, that we call the class of SC-graphs.

1.4 Other work done during the PhD

In this thesis, only the work that has been done in the �eld of �classic� identifying codes will
be presented. I have also worked on other topics, resulting in the following publications or
manuscripts which are the fruit of successful collaborations. Article [FLP12] gives a new lower
bound for (1,≤ 2)-identifying codes in the in�nite king grid. Article [FHL+12] deals with

8 1.5. Summary of known bounds and complexity results

identifying colourings, that are proper vertex-colourings that enable to distinguish neighbouring
vertices from each other. Article [FK12] deals with the new topic of identifying the vertices of
a graph using paths. I have also worked on the topic of arbitrarily partitionable graphs, that is,
graphs on n vertices for which, given any decomposition of n as a sum of integers λ1, . . . , λk,
their vertex set can be partitioned into subsets S1, . . . , Sk inducing connected subgraphs with
|Si| = λi for each i from {1, . . . , k}. This work has resulted in the two articles [BBFP12,
BFPW12]. Finally, I have worked on the computational complexity of homomorphisms between
signed graphs (that are speci�c 2-edge-coloured graphs with a particular re-signing operation
de�ning an equivalence relation between signed graphs), resulting in the article [FN12].

1.5 Summary of known bounds on the identifying code number
and complexity results for identifying codes

Most of the �rst part of this thesis deals with lower and upper bounds on parameter γID in various
graph classes. We try to give an overview of the currently known bounds in Tables 1.3, 1.4, 1.5,
1.6 and 1.7. Some of them are proved in this thesis (those marked in red), and the others are
taken from the literature. Entries for which we have no information are marked �OPEN�. Each
table contains graph classes that can be de�ned in a similar way: Table 1.3 contains bounds for
classes of graphs that are de�ned using a set of forbidden induced subgraphs; Table 1.4 contains
bounds for classes de�ned using a set of forbidden minors; Table 1.5 contains bounds for classes
of intersection graphs; Table 1.6 contains bounds for graphs of given minimum degree; �nally,
Table 1.7 contains bounds for subclasses of graphs of maximum degree ∆ . We believe that this
presentation provides a good overview of the �eld; it might help us understanding some patterns
in these bounds.

Known results about the computational complexity of problems Identifying Code and
Min Id Code are summarized in Tables 1.8 and 1.9. In these tables, we compare these results
to the known complexities of Dominating Set andMin Dom Set when restricted to the same
graph classes, which are problems that have been well-studied for many years. Entries for which
we have no information are marked �OPEN�. We give the reference from the literature when the
result is already known, and from the thesis when the result is new. The information regarding
the decision problems Identifying Code and Min Id Code is also summarized in the graph
class inclusion diagram of Figure 1.10. The inclusions between graph classes of this diagram
have been determined with the help of the online Information System on Graph Classes and
their Inclusions (ISGCI) [73] (originally based on the book [32]). Here also, results that are in
red are those that are proved in this thesis (or follow from our results).

Chapter 1. Introduction 9

graph class Lower bound Tightness Upper bound Tightness

in general dlog2(n+ 1)e YES n− 1 YES
[132] [157] [23, 96] Cor. 3.28

bipartite dlog2(n+ 1)e YES n− 1 YES
[132] Cor. 2.26 [23, 96] Cor. 3.28

line 3
√

2
4

√
n YES n− 1 YES

Cor. 5.25 Cor. 5.25 [23, 96] Cor. 3.28

induced claw-free Θ(ln(n)) YES n− 1 YES
[132] Prop. 5.38 [23, 96] Cor. 3.28

chordal dlog2(n+ 1)e YES n− 1 YES
[132] Cor. 2.26 [23, 96] Cor. 3.28

interval
√

2n+ 1
4 − 1

2 YES n− 1 YES

Cor. 5.9 Cor. 5.9 [23, 96] Cor. 3.28

unit interval n+1
2 YES n− 1 YES

Thm. 5.11 [24, 90] [23, 96] Cor. 3.28

Table 1.3: Known bounds on parameter γID and their tightness for graphs on n
vertices belonging to chosen graph classes de�ned by a set of forbidden induced
subgraphs. Red entries are new results proved in this thesis.

graph class Lower bound Tightness Upper bound Tightness

in general dlog2(n+ 1)e YES n− 1 YES
[132] [157] [23, 96] Cor. 3.28

trees 3(n+1)
7 YES n− 1 YES

[25] [25] [23, 96] Cor. 3.28

planar n+10
7 OPEN n− 1 YES

[185] [23, 96] Cor. 3.28

series-parallel n+3
4 OPEN n− 1 YES

[185] [23, 96] Cor. 3.28

outerplanar 2n+3
7 OPEN n− 1 YES

[185] [23, 96] Cor. 3.28

Table 1.4: Known bounds on parameter γID and their tightness for graphs on n
vertices belonging to chosen graph classes de�ned by a set of forbidden minors. All
results are from the literature.

10 1.5. Summary of known bounds and complexity results

graph class Lower bound Tightness Upper bound Tightness

in general dlog2(n+ 1)e YES n− 1 YES
[132] [157] [23, 96] Cor. 3.28

line 3
√

2
4

√
n YES n− 1 YES

Cor. 5.25 Cor. 5.25 [23, 96] Cor. 3.28

chordal dlog2(n+ 1)e YES n− 1 YES
[132] Cor. 2.26 [23, 96] Cor. 3.28

undirected path dlog2(n+ 1)e OPEN n− 1 YES
[132] [23, 96] Cor. 3.28

directed path dlog2(n+ 1)e OPEN n− 1 YES
[132] [23, 96] Cor. 3.28

interval
√

2n+ 1
4 − 1

2 YES n− 1 YES

Cor. 5.9 Cor. 5.9 [23, 96] Cor. 3.28

unit interval n+1
2 YES n− 1 YES

Thm. 5.11 [24, 90] [23, 96] Cor. 3.28

permutation dlog2(n+ 1)e OPEN n− 1 YES
[132] [23, 96] Cor. 3.28

Table 1.5: Known bounds on parameter γID and their tightness for graphs on n
vertices belonging to chosen intersection graph classes. Red entries are new results
proved in this thesis.

graph class Lower bound Upper bound Tightness

girth 5, δ ≥ 2 OPEN 7n
8 OPEN

Thm. 5.1

girth 5 OPEN
3(ln δ+ln ln δ+1+ ln ln δ

ln δ
+ 1

ln δ)
2δ OPEN

Thm. 5.3

girth 5 and OPEN ln δ+ln ln δ+Oδ(1)
δ n YES (up to ±o

(
ln δ
δ

)
)

avg. deg. Oδ(δ(ln δ)2) Thm. 5.3 Thm. 5.4

Table 1.6: Bounds on parameter γID in graphs on n vertices with minimum de-
gree δ. Red entries are new results proved in this thesis.

Chapter 1. Introduction 11

graph class Lower bound Tightness Upper bound Tightness

max. deg. ∆ 2n
∆+2 YES n− n

103∆(∆+1)2 OPEN

[132] Cor. 4.2 Cor. 4.51

max. deg. ∆ 2n
∆+2 YES n− n

103∆ OPEN
no forced vertices [132] Cor. 4.2 Cor. 4.50

∆-regular 2n
∆+2 YES n− n

103∆ OPEN
[132] Cor. 4.2 Cor. 4.50

K3-free, 2n
∆+2 YES n− n

∆+ 3∆
ln ∆−1

OPEN

max. deg. ∆ [132] Cor. 4.2 Cor. 4.40

K3-free, max. deg. ∆ 2n
∆+2 YES n− n

3∆
ln ∆−1

OPEN

no false twins [132] Cor. 4.2 Cor. 4.40

bipartite, 2n
∆+2 YES n− n

∆+9 OPEN
max. deg. ∆ [132] Cor. 4.2 Cor. 4.42

planar K3-free max
{

2n
∆+2 ,

n+10
7

}
OPEN n− n

∆+9 OPEN

max. deg. ∆ [132, 185] Cor. 4.42

Kk+1-free,
2n

∆+2 YES n− n
103f(k)∆ OPEN

max. deg. ∆ [132] Cor. 4.2 Cor. 4.52

Table 1.7: Bounds on parameter γID in chosen subclasses of graphs on n vertices
with maximum degree ∆. Red entries are new results proved in this thesis.

12 1.5. Summary of known bounds and complexity results

graph class Identifying Code Dominating Set

bipartite NP-c [45] NP-c [22, 35]

chordal bipartite NP-c [Thm. 7.10] NP-c [160]

(subcubic) planar NP-c [9] NP-c [88, 188]

planar (with max. degree 4, arb. girth) NP-c [6] NP-c [188]

planar bipartite max. degree 4 NP-c [Thm. 7.7] NP-c [188]

subcubic planar bipartite OPEN NP-c [188]

line NP-c [Cor. 7.37] NP-c [201]

(planar bipartite) unit disk NP-c [161] NP-c [58]

bounded treewidth/cliquewidth P [156] P [64, 67]

line of bounded treewidth P [Cor. 8.11] P [64]

split NP-c [Cor. 6.8] NP-c [22]

split of bounded maximum CS-degree NP-c [Thm. 7.19] NP-c [22]

undirected path NP-c [Thm. 7.50] NP-c [30]

directed path NP-c [Thm. 7.50] P [30]

interval NP-c [Thm. 7.50] P [30]

unit interval OPEN P [30]

permutation OPEN P [83]

DSP NP-c [Cor. 6.11] P [139]

AT-free NP-c [Cor. 6.14] P [139]

co-bipartite NP-c [Cor. 6.14] P [139]

(planar) SC-graphs P [Cor. 8.14] NP-c [Thm. 8.15]

Table 1.8: Comparison of complexities of decision problems Identifying Code

andDominating Set for selected graph classes. Red entries are new results proved
in this thesis. The abbreviation �NP-c� stands for �NP-complete�.

Chapter 1. Introduction 13

graph class Min Id Code Min Dom Set

lower bound upper bound lower bound upper bound

in general log-APX-hard O(ln(n)) log-APX-hard 1 + ln(n)
[21, 143, 187] [71] [171] [127]

bipartite log-APX-hard O(ln(n)) log-APX-hard 1 + ln(n)
Thm. 6.5 [71] [54, 171] [127]

split log-APX-hard O(ln(n)) log-APX-hard 1 + ln(n)
(also: chordal) Thm. 6.8 [71] [54, 171] [127]

split of max. APX-hard O(ln(∆)) APX-hard 1 + ln(∆)
CS-degree ∆ ∆ ≥ 5: Thm. 7.19 Thm. 7.12 [22] [127]

planar (∗) NP-hard 7 NP-hard PTAS

[9] Cor. 2.53 [88] [16]

line APX-hard 4 APX-hard 2
Thm. 7.38 Cor. 7.21 [53, 201] [201]

induced K1,`-free log-APX-hard O(ln(n)) APX-hard `− 1
(` ≥ 3) Thm. 6.14 [71] [53, 201] [54]

max. degree ∆ APX-hard O(ln(∆)) APX-hard 1 + ln ∆
∆ ≥ 3: [9] [71] ∆ ≥ 3: [165] [127]

max. degree ∆ APX-hard O(ln(∆)) APX-hard 1 + ln ∆
and bipartite ∆ ≥ 4: Thm. 7.8 [71] ∆ ≥ 3: [54] [127]

unit disk (∗) NP-hard O(ln(n)) NP-hard PTAS

[161] [71] [58] [125]

co-bipartite log-APX-hard O(ln(n)) P

(also: DSP, AT-free) Thm. 6.14 [71] [139]

strongly chordal (∗) NP-hard O(ln(n)) P

Thm. 7.50 [71] [82]

undirected path (∗) NP-hard O(ln(n)) APX-hard 1 + ln(n)
Thm. 7.50 [71] [30] [127]

directed path (∗) NP-hard O(ln(n)) P

Thm. 7.50 [71] [30]

interval (∗) NP-hard O(ln(n)) P

Thm. 7.50 [71] [30]

unit interval (∗) OPEN PTAS P

Cor. 8.8 [30]

permutation (∗) OPEN O(ln(n)) P

[71] [83]

Table 1.9: Comparison of complexities and approximation ratios (as functions of
the order n of the input graph) of optimization problems Min Id Code and Min

Dom Set for selected graph classes. Red entries are new results proved in this
thesis. Graph classes for which the precise complexity class of Min Id Code is not
fully determined are marked with (∗). For all these classes, the exact complexity
class forMin Dom Set is known, except (up to our knowledge) for undirected path
graphs.

14 1.5. Summary of known bounds and complexity results

trees

bounded TW

outerplanar

series-parallel

SC-graphs

planar SC-graphs

cographs

bounded CW

unit interval

line of trees

line of bounded TW

permutation

interval

trapezoid

directed path

strongly chordal

undirected path co-bipartite line of bipartite

bipartite

triangle-free

chordal bipartite

split co-comparability

quasi-line

line

unit 2-interval subcubic

2-interval planar

3-interval

comparability chordal AT-free

induced claw-free

induced K1,6-free

unit diskperfect DSP

Id. Code

NP-complete

Id. Code

in P

complexity of
Id. Code

unknown

Figure 1.10: Inclusion diagram of selected graph classes with known complexity
of decision problem Identifying Code, divided into three categories by the two
horizontal full lines. For a comparison, the dashed curve indicates the separation
between classes for which Dominating Set is NP-complete and classes where it is
in P. Classes in red are those for which the complexity was unknown prior to the
results of this thesis. An arrow from a class B to a class A means that A contains
B. Abbreviations TW and CW stand for tree-width and clique-width, respectively.
De�nitions of graph classes that are not de�ned in this dissertation can be found
in [32, 73].

Chapter 2. De�nitions, notations and related work 15

Chapter 2

De�nitions, notations and related work

In this chapter, we �rst recall a set of basic notions in mathematics, graph theory, combinatorics
and computational complexity theory, which constitute the framework of the studies of this thesis
(Sections 2.1, 2.2 and 2.3). We then present various identi�cation problems that are related to
identifying codes in Section 2.4. Finally, in Section 2.5, we survey some of the known results of
the literature that are relevant to this thesis.

2.1 A few mathematical notations . 15

2.2 Graphs and hypergraphs . 15

2.3 Computational complexity . 27

2.4 Identi�cation problems that are related to identifying codes 34

2.5 Existing work on identifying codes in (di)graphs related to this thesis 37

2.1 A few mathematical notations

Let us �rst �x a small number of general mathematical notations that will be used in this
thesis. Notations related to other notions will be introduced in the corresponding parts of this
introduction.

We will use the standard asymptotic notations o, ω,O,Ω,Θ throughout the thesis. Given two
non-zero functions f, g : R→ R or f, g : N→ N, we note f(x) = o(g(x)) if limx→+∞

f(x)
g(x) = 0 and

f(x) = ω(g(x)) if limx→+∞
f(x)
g(x) = +∞ (i.e. when g(x) = o(f(x))). We note f(x) = O(g(x)) if

there exists an x0 ∈ R and a positive constant c such that f(x) ≤ c ·g(x) when x ≥ x0. Similarly,
f(x) = Ω(g(x)) if there exists an x0 ∈ R and a positive constant c such that f(x) ≥ c ·g(x) when
x ≥ x0. When f(x) = O(g(x)) and f(x) = Ω(g(x)), we note f(x) = Θ(g(x)).

We also use a (non-standard) modi�ed version of these notations when functions f, g have
multiple variables, i.e. the notations on, ωn, On,Ωn,Θn. They indicate that variable n is the
variable to be considered in the asymptotics in the previous de�nitions.

Given two sets A and B, we will denote their symmetric di�erence by A	B.
When speaking about probabilities, we denote the proability of a given event A by Pr(A).

The expectance of a given random variable X is denoted by E(X).

2.2 Graphs and hypergraphs

In this section, we present some notions of graph theory (and more generally, combinatorics) that
are needed for this thesis. We also refer to the books [17, 26, 29, 32, 75] for deeper introductions
to this subject.

16 2.2. Graphs and hypergraphs

2.2.1 Basic de�nitions

Undirected graphs

An (undirected) graph G is composed of a set V (G) of elements called vertices, together with a
symmetric binary relation E(G) over V (G) called adjacency relation. The set V (G) is called the
vertex set of G. Relation E(G) can be represented by a multiset of non-ordered pairs of V (G),
called edges of G. Set E(G) is called the edge set of G. The cardinality of the vertex set is the
order of G, and the cardinality of the edge set is the size of G. We sometimes call a pair of
vertices that is not in E(G) a non-edge of G. The two vertices of an edge are called its endpoints.
Two vertices u, v of V (G) (or two edges e, f of E(G)) are said to be adjacent if {u, v} ∈ E(G)
(e 6= f and e∩ f 6= ∅, respectively). Adjacency between two vertices or two edges u, v is denoted
u ∼ v; non-adjacency is denoted u 6∼ v. Sometimes, to shorten our notations, we will denote
an edge {u, v} by uv. A vertex u and an edge e are incident if u ∈ e. A loop is an edge whose
two endpoints are the same vertex. An edge that exists twice in a graph is called multiple. A
graph is called simple if it does neither have loops nor multiple edges. In the following, by graph
and unless otherwise stated, we will mean undirected simple graph over a �nite vertex set. By
multigraph, we mean undirected graph over a �nite vertex set (i.e. multiple edges and loops
are allowed). An example of a graph is represented in Figure 2.1(a), where black dots represent
vertices and lines represent edges.

(a) An undirected graph. (b) A digraph.

Figure 2.1: An undirected and a directed graph.

Directed graphs

The concept of a graph can be generalized to the one of a directed graph (commonly called
digraph). As in a graph, in a digraph D we also have a set V (D) of vertices, but instead of
a symmetric adjacency relation E we have a (not necessarily symmetric) binary relation A(D)
over V (D). The elements of A(D) are called arcs and A(D) is called the arc set of D: A(D)
can be seen as a set of ordered pairs from V (D). We will usually denote an arc (u, v) by −→uv.
An undirected graph can be seen as a digraph in which the existence of an arc −→uv implies the
existence of the symmetric arc −→vu. Such a digraph is called symmetric. A digraph is called
an oriented graph if it does not contain any pair of symmetric arcs. The underlying graph of a
digraph D is the undirected graph over the same set of vertices as D, in which the edge uv is
present whenever at least one of the arcs −→uv and −→vu exists in D. An example of a digraph is
represented in Figure 2.1(b), where dots represent vertices and arrows represent arcs.

Hypergraphs

Another widely studied generalization of the concept of a graph is the one of a hypergraph.
A hypergraph H is also formed by a vertex set V (H), but now the edges of H (also called
hyperedges) are subsets of V (H) of any cardinality. The set of hyperedges of H is denoted E(H).
A hypergraph can also be viewed as a set system, i.e. a collection of subsets (the hyperedges)
of a set (the vertices). The concepts of adjacency and incidence carry over to hypergraphs: two
vertices are adjacent if they both belong to some hyperedge, and a vertex v is incident to some
hyperedge e from E(H) if v ∈ e. A hypergraph H is said to be uniform if all hyperedges have the
same cardinality m � in this case, we can say that H is m-uniform. A simple undirected graph

Chapter 2. De�nitions, notations and related work 17

is then a 2-uniform hypergraph. An example of two representations of the same hypergraph H
with V (H) = {u, v, w, x, y} and E(H) = {e1 = {u}, e2 = {u, v, w}, e3 = {v, y}, e4 = {w, x, y}} is
given in Figure 2.2. In Figure 2.2(a), dots represent vertices and ellipses represent hyperedges;
Figure 2.2(b) represents the bipartite incidence graph of H (the bipartite incidence graph of a
hypergraph H is the graph B(V (H), E(H)) with vertex set V (H)∪E(H), with an edge between
vertex v and edge e if and only if v ∈ e).

e1

e2

e3

e4

u

v

w
x

y

(a) Graphical representation of H.

V (H)

u

v

w

x

y

E(H)

e1

e2

e3

e4

(b) Bipartite incidence graph of H.

Figure 2.2: Two representations of hypergraph H.

Isomorphisms

Two graphs G and H are said to be isomorphic if there exists a bijection between V (G) and
V (H) which preserves the adjacency relation, i.e. two vertices of G are adjacent if and only if
their images in H are adjacent. We will denote that G and H are isomorphic by G ∼= H; if G
and H are not isomorphic, we note G 6∼= H.

Neighbourhoods and degree parameters

In an undirected graph G, given a vertex v, the vertices which are adjacent to v are called
neighbours of v. The set of neighbours of v is called the (open) neighbourhood of v and is
denoted N(v). The closed neighbourhood N [v] of v is the set N(v) ∪ {v}. We generalize the
notion of open and closed neighbourhoods of single vertices to the one of sets of vertices: given
a set X of vertices, we let N(X) = ∪x∈XN(x) and N [X] = ∪x∈XN [x]. The degree of v is the
number of its neighbours, and is denoted deg(v). The minimum degree of G (maximum degree of
G, respectively) is the minimum value (maximum value, respectively) of the degree of a vertex
among all vertices in G, and is denoted δ(G) (∆(G), respectively). Similarly, the average degree
of G, denoted d(G), is the average value of the degrees of all vertices of G. If all vertices of G
have the same degree k, then G is said to be regular , or, more precisely, k-regular. A 3-regular
graph is called cubic, and a graph with maximum degree 3 is subcubic. A vertex x is said to be
universal in G if N [x] = V (G), that is, all other vertices are neighbours of x. More generally,
given a set S of vertices of G, we call vertex x S-universal if S ⊆ N(x). On the contrary, vertex
x is isolated if it has no neighbour.

For a digraph D and a vertex v of D, we distinguish the in-neighbours (out-neighbours)
of v, that is, the vertices u such that (u, v) ∈ A(D) ((v, u) ∈ A(D), respectively). The in-
neighbourhood of v (out-neighbourhood of v, respectively) is the set of its in-neighbours (out-
neighbours, respectively); it is denoted N−(v) (N+(v), respectively), and its cardinality is the
in-degree of v, denoted d−(v) (out-degree of v denoted d+(v), respectively). We also have the
notions of closed in-neighbourhood N−[v] of v, and closed out-neighbourhood N+[v] of v. A vertex
with no incoming arc is called a source, and a vertex with no outgoing arc is called a sink .

Paths and distance

In an undirected graph G, a path between two vertices u and v is a sequence P = (u, . . . , v) of
at least two distinct vertices such that two consecutive vertices are adjacent in G. In this case

18 2.2. Graphs and hypergraphs

we say that u and v are joined by path P . The length of a path is its cardinality minus one, i.e.
the number of its edges. The distance between u and v is the smallest length of a path joining
u and v, and is denoted d(u, v).

We de�ne the distance-k closed neighbourhood of some vertex x, denoted Nk[x], to be the set
of vertices that are at distance at most k from x in G.

In a digraph D, a directed path between two vertices u and v is a sequence P = (u, . . . , v) of
at least two distinct vertices such that for each two consecutive vertices x, y of P , (x, y) ∈ A(D).

The path graph (usually simply called path) Pn is the graph which consists only of a path of
n vertices. The path P6 is depicted in Figure 2.3(a).

(a) The path P6. (b) The cycle C9.

Figure 2.3: A path and a cycle.

Cycles and girth

In an undirected graph, a cycle is a path whose �rst and last vertices u, v are adjacent. Similarly,
in a digraph, a directed cycle is a directed path whose �rst and last vertices u, v are joined by
an arc −→vu. The length of a cycle is the number of its vertices. The girth of an undirected graph
G is the length of one of its shortest cycles, and is denoted g(G). A cycle having an even (odd,
respectively) number of vertices is called an even cycle (odd cycle, respectively).

The cycle graph (usually simply called cycle) Cn is the graph which consists of a unique cycle
on n vertices. The cycle C9 is depicted in Figure 2.3(b).

Connected graphs

A graph G is said to be connected if there exists a path between each pair of vertices in G. If G
is not connected, its maximal connected subgraphs are called connected components.

2.2.2 Operations, transformations and substructures for graphs and hyper-

graphs

Complement of a graph

The complement of an undirected graph G is the graph denoted G having V (G) as its vertex set
and all non-edges of G as its edge set. An example of a graph and its complement are given in
Figure 2.4.

G G

Figure 2.4: A graph and its complement.

Chapter 2. De�nitions, notations and related work 19

Power of a graph

For an integer r ≥ 1, the rth power of a graph G, denoted Gr, is the graph with vertex set
V (Gr) = V (G) and where {u, v} ∈ E(Gr) if and only if dG(u, v) ≤ r. Conversely, G is called an
rth root of Gr. A graph G and its 2nd power are depicted in Figure 2.5.

G G2

Figure 2.5: A graph and its 2nd power.

Disjoint union of two (di)graphs

Given two disjoint graphs G1 and G2, the disjoint union of G1 and G2, denoted G1 ⊕G2, is the
graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). The same concept carries
over to digraphs.

Complete join of two graphs

Given two disjoint graphs G1 and G2, the complete join of G1 and G2, denoted G1 ./ G2, is the
disjoint union of G1 and G2 where we add all possible edges between G1 and G2: it has vertex set
V (G1) ∪ V (G2) and its edge set contains E(G1), E(G2) and all edges {u1, u2} with u1 ∈ V (G1)
and u2 ∈ V (G2). Two graphs G1, G2 and their complete join are shown in Figure 2.6.

G1 G2 G1 ./ G2

Figure 2.6: Two graphs and their complete join.

Neighbourhood hypergraph of a (di)graph

Given a graph G, the open/closed neighbourhood hypergraph of G is the hypergraph with vertex
set V (G) and whose edges are all closed/open neighbourhoods in G. The open/closed in- or
out-neighbourhood hypergraphs of a digraph D are de�ned similarly.

Subgraphs of a graph

Given a graph G, a graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) is a subset of edges
of E(G) with both endpoints in V (H).

Given a subset V ′ of V (G), the subgraph induced by V ′, denoted G[V ′], is the subgraph of G
with vertex set V ′ and having as its edge set all edges of G with both endpoints in V ′. Similarly,
given a subset E′ of E(G), the subgraph induced by E′, denoted G[E′], is the subgraph of G
with vertex set

⋃
e∈E′ e and edge set E′.

20 2.2. Graphs and hypergraphs

Given a vertex x or a set X of vertices, the subgraphs G[V (G) − x] and G[V (G) − X] are
denoted G− x and G−X, respectively.

A spanning subgraph of a graph G is a subgraph of G which has the same vertex set as G.

Minors of a graph

Given two graphs G and H, H is said to be a minor of G if one can obtain H from G using the
following operations: deleting an edge of G, contracting an edge of G,1 and deleting an isolated
vertex of G.

Cliques and complete graphs

The complete graph on n vertices, denoted Kn, is the graph having the set of all pairs of vertices
as its edge set. The graph K5 is depicted in Figure 2.7(a). We also denote by K−n the graph
obtained from Kn by removing one edge.

A clique in a graph G is a subset of vertices inducing a complete subgraph in G. A graph
with a clique of four vertices is given in Figure 2.7(b). A clique on three vertices is called a
triangle. The clique number of G, denoted ω(G), is the maximum size of a clique in G. A graph
having clique number at most 2 is called triangle-free.

(a) The graph K5. (b) A graph with a clique
(black vertices).

Figure 2.7: A complete graph and a clique.

Independent sets

An independent set of a graph G (sometimes called stable set) is a set S of vertices inducing
an edgeless graph, that is, G[S] ∼= K|S|. An example is given in Figure 2.8 (white vertices).
The independence number α(G) of G is the maximum size of an independent set in G. Note
that α(G) = ω(G). This notion can be generalized to the one of a distance-k-independent setS,
where it is asked that the distance between every two vertices of S is at least k. An independent
set is then a distance-2-independent set, and the maximum size of a distance-k-independent set,
αk(G), is equal to α(Gk−1).

Figure 2.8: A graph with a vertex cover (black vertices) and an independent set
(white vertices).

1The contraction of an edge {u, v} corresponds to the removal of edge {u, v} and vertex u from G, and each
other edge {u, x} is replaced by {v, x}.

Chapter 2. De�nitions, notations and related work 21

Hypergraph transversals and set covers

Given a hypergraph H, a transversal of H is a subset T of V (H) such that for each edge e of
E(H), e∩T 6= ∅. A transversal is sometimes called a hitting set when the hypergraph is viewed as
a set system (V (H), E(H)). Finding small transversals in hypergraphs is a well-studied problem
in combinatorics (see e.g. [26]).

The related notion of a set cover of a given set system (or hypergraph) (X,S) is de�ned as
a set C of S such that each element of X belongs to at least one set of C [88, 127]. In fact, a set
cover of a set system (X,S) is exactly a transversal of the dual of the hypergraph (X,S).2

Vertex covers

A vertex cover of a graph G is a subset C of V (G) such that for each edge e, e ∩ C 6= ∅. An
example is given in Figure 2.8 (black vertices). The minimum size of a vertex cover in G, the
vertex cover number of G, is denoted τ(G). Equivalently, a vertex cover is a transversal of G
(when G is viewed as a 2-uniform hypergraph).

We remark that any vertex cover is the complement of an independent set (and vice-versa);
hence, we have α(G) + τ(G) = |V (G)| for any graph G.

Proper colourings

A proper (vertex-)k-colouring of a graph G is a function c : V (G)→ {1, . . . , k} such that for any
two adjacent vertices u, v, we have c(u) 6= c(v). Equivalently, a k-colouring is a partition of V (G)
into k independent sets. A graph having a k-colouring is called k-colourable. The minimum k
such that G is k-colourable is called the chromatic number of G and is denoted χ(G).

Matchings and edge covers

An edge cover of a graph G is a subset S of its edges such that the union of the endpoints
of S equals V (G). A matching of G is a set of pairwise non-adjacent edges of G; an induced
matching is a matching whose edges induce a graph of maximum degree 1; a perfect matching
is a matching which is also an edge cover. Note that in order to admit a perfect matching, a
graph must have an even order. A graph G with an edge cover and di�erent types of matchings
is shown in Figure 2.9.

(a) An edge cover. (b) A matching.

(c) An induced matching. (d) A perfect matching.

Figure 2.9: A graph with matchings and an edge cover (thick edges).

2The dual of a hypergraph H is the hypergraph H ′ where vertex set and edge set are swapped, that is, each
vertex of H ′ corresponds to a hyperedge of H, each hyperedge of H ′ corresponds to a vertex of H, and each
hyperedge eH′ = vH of H ′ contains all vertices of H ′ (hyperedges of H) which are incident to vH in H.

22 2.2. Graphs and hypergraphs

Locating-dominating sets

The concept of a locating-dominating set was introduced in [14, 184] independently3 and has a
very rich literature (see e.g. [24, 44, 45, 46, 50, 62, 94, 117, 161, 173, 183, 185, 187]). A subset
D of vertices of G is a locating-dominating set if it is a dominating set and if for every pair u, v
of distinct vertices of V (G) \ D, the property N(u) ∩ D 6= N(v) ∩ D holds.

It is easily observed that any identifying code is also a locating-dominating set, though the
converse is not necessarily true. As a matter of fact, each graph admits a locating-dominating
set (e.g. the whole vertex set).

An example is shown in Figure 2.10, where the vertices are labelled and the sets N(x) ∩ D
are indicated for vertices that are not in the dominating set. The location-domination number of
a graph G is the minimum size of a locating-dominating set in G and is denoted γLD(G). Since
any locating-dominating set is a dominating set, we have γ(G) ≤ γLD(G). The fact that any
identifying code is a locating-dominating set implies that γLD(G) ≤ γID(G).

a
{c}

b

c

d {b, f}

e

{b, c, f}

f

g {c, h}

h

Figure 2.10: A graph with a locating-dominating set (black vertices).

2.2.3 Graph classes

Graphs with forbidden substructures

Given a (not necessarily �nite) set F of graphs, we say that a graph G is F-free if it does not
contain any of the graphs of F as a subgraph. Similarly, G is induced F-free if it does not contain
any of the graphs of F as an induced subgraph, and G is F-minor-free if it does not contain any
of the graphs of F as a minor.

If the forbidden set F is composed of one single graph F , we say that G is F -free (induced
F -free and F -minor-free, respectively).

Many important graph classes can be de�ned by means of such sets of forbidden substruc-
tures. For example, graphs of clique number at most k are exactly the Kk+1-free graphs; forests
are cycle-free; graphs of maximum degree ∆ are K1,∆+1-free. We will see below that perfect
graphs, chordal graphs, line graphs and other classes can be de�ned by lists of forbidden induced
subgraphs; trees, planar graphs, outerplanar graphs, series-parallel graphs, can be de�ned by a
list of forbidden minors. For a survey on the theory of minors, see [148]. For a survey on the
case of induced subgraphs, see [57].

A graph class G is called minor-closed if for any graph G of G and any minor H of G, H
belongs to G. An important theorem of N. Robertson and P. Seymour (proved in a series of about
twenty papers whose publication spans over about twenty years [174, 175]) connects minor-closed
classes to classes de�ned by a list of forbidden minors. Indeed, they show that any minor-closed
class of graphs G is the class of F(G)-minor-free graphs, for some �nite list of graphs F(G).4

Bipartite graphs, forests, trees

A graph is bipartite if its vertex set can be partitioned into two sets both inducing an independent
set. An example of a bipartite graph was already given in Figure 2.2(b), and two further examples

3In [14] it is called distinguishing set, and some authors use the term locating-dominating code.
4We refer to [75, Chapter 12] for an overview of this result and its proof. In fact, this theorem is a corollary

of a stronger result that we do not detail here.

Chapter 2. De�nitions, notations and related work 23

can be seen in Figure 2.11.
As an extremal case, the complete bipartite graph with parts of sizes n and m, denoted Kn,m,

is built from two independent sets A and B of sizes n and m, with its edge set containing all
pairs {a, b} with a ∈ A and b ∈ B. See Figure 2.11(a) for a drawing of K4,3.

(a) The graph K4,3. (b) The star K1,5.

Figure 2.11: Two bipartite graphs.

It is known that a graph is bipartite if and only if it has no odd cycle as a subgraph, see
e.g. [75, Proposition 1.6.1]. A graph is called chordal bipartite if it is bipartite and it has no
induced cycle of length more than 4.

An important theorem related to bipartite graphs, that will be used several times in this
thesis, is Hall's marriage theorem:

Theorem 2.1 ([103]). A bipartite (multi)graph G with parts A and B admits a perfect matching
if and only if for every subset of A, we have |A| ≤ |N(A)|.

An important subclass of bipartite graphs is the one of forests: a graph is a forest if it does
not contain any cycle as a subgraph. Equivalently, one can easily see that forests are exactly the
K3-minor-free graphs. A forest is a tree if it is connected. An example of a tree is the graph
G from Figure 2.5. The vertices of degree 1 of a tree are called its leaves. Special trees are the
star on n vertices, K1,n−1 (as an example, the star K1,5 is depicted in Figure 2.11(b)) and the
previously de�ned path.

Given a connected graph G, a spanning tree of G is a spanning subgraph of G that is also a
tree.

A rooted tree is a tree with one of its vertices marked as its root . A rooted tree T with root r
can be decomposed into levels according to the distance to r: each level ` consists of all vertices
having the same distance d` to r, and the levels are numbered according d`. The height of T is
the number of its levels minus one. Given a vertex u of T at level `, a child of u is a neighbour
v of u at level ` + 1; u is called the parent of v. More generally, if two vertices u, v have levels
`u < `v, u is called an ancestor of v in T , and v is called a descendant of u in T .

A rooted oriented tree is an oriented graph whose underlying tree is rooted, and all arcs are
oriented away from the root.

Another important subclass of bipartite graphs is the one of hypercubes. For any integer
d ≥ 1, the hypercube of dimension d, denoted Hd, is the graph obtained from the cartesian
product of Hd−1 with K2 (where H1 is isomorphic to K2 itself). Alternatively, Hd can be seen
as the graph whose vertices are elements of Zd2 with two vertices being adjacent if their di�erence
belongs to the standard basis {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}. The �rst three
hypercubes are depicted in Figure 2.12.

Another graph of importance is the grid Ga,b which is isomorphic to the cartesian product
of the paths Pa and Pb.

Planar graphs, series-parallel graphs, outerplanar graphs, genus of a graph

A graph G is called planar if it is possible to draw it on the plane such that no edges intersect
each other. Such a drawing is called an embedding of G in the plane. Given an embedding of G,

24 2.2. Graphs and hypergraphs

H1 H2 H3

Figure 2.12: The three hypercubes H1, H2 and H3.

a face of G is de�ned by a closed region of the plane delimited by a set of edges of G. If G can
be drawn in such a way that all vertices lie on the same face, G is said to be outerplanar . The
classes of planar and outerplanar graphs can be de�ned by a set of forbidden minors. Indeed,
a famous theorem of K. Wagner states that the class of planar graphs is exactly the class of
{K5,K3,3}-minor-free graphs [197]. Similarly, the class of outerplanar graphs is exactly the class
of {K4,K2,3}-minor-free graphs (see [75, Exercise 4.20]). There also exists the intermediate class
of series-parallel graphs, that is, the class of K4-minor-free graphs.5

For some examples, note that the graph from Figure 2.1(a) and graph G2 from Figure 2.5
are planar, but not series-parallel (they both contain a K4-minor), whereas the graphs from
Figure 2.5 are outerplanar. The graph K5 from Figure 2.7(a) is not planar.

We also point out that planarity can be generalized as follows. A graph is said to be of genus
at most g if it can be embedded on a surface of genus g without edge crossings. We recall that
the plane has genus 0 and the torus has genus 1. We refer the reader to [75] for more details.

Intersection graphs

Let S be a collection of sets (they can be of any type). The intersection graph of S is the graph
with vertex set S and where S1 and S2 are adjacent if and only if S1 ∩S1 6= ∅. This notion is an
important one, as many special cases are of particular interest and have been studied extensively.
We present some classes that will be mentioned or studied in this thesis.

Let C4+ be the set of all cycles of length at least 4. A graph is chordal if it is induced C4+-free,
but it is also known that a graph G is chordal if and only if it is the intersection graph of a set
of vertex sets of subtrees of a tree [89]. If the subtrees are paths, then G is called an undirected
path graph. If the tree is a rooted top-down oriented tree and the subtrees are directed paths,
then G is called a directed path graph. An interval graph is the intersection graph of a set of
intervals of the real line. An example of a collection of intervals and the corresponding interval
graph are shown in Figure 2.13. A unit interval graph is the intersection graph of a set of unit
length intervals of the real line.

It follows from all the previous de�nitions that these graph classes are included one in the
other in the following sequence: unit interval graphs, interval graphs, directed path graphs,
undirected path graphs, chordal graphs.

Figure 2.13: A collection of intervals and the corresponding interval graph.

5Series-parallel graphs are sometimes de�ned slightly di�erently; we refer to [32, Chapter 11.2] for a survey of
several di�erent (but non-equivalent) de�nitions.

Chapter 2. De�nitions, notations and related work 25

A generalization of interval graphs is the one of t-interval graphs for t ≥ 1, which are inter-
section graphs of a collection of sets each containing t intervals of the real line. If each interval
has unit length, we have unit t-interval graphs. It is known that line graphs are 2-interval [86]
and that planar graphs are 3-interval [177].

Another important class of intersection graphs is the class of unit disk graphs: a graph is unit
disk if it is the intersection graph of a collection of disks all having unit radius and positioned in
the plane.

A graph is a permutation graph if, given two parallel lines, it is the intersection graph of
segments starting at one line and stopping at the other line.

Perfect graphs

A graph G is perfect if for every induced subgraph H of G, we have ω(H) = χ(H). For example,
any bipartite graph is perfect, since each such graph has clique number 2 and is 2-colourable;
odd cycles are easily seen not to be perfect, since they also have clique number 2, but are not
2-colourable.

The de�nition of a perfect graph is due to C. Berge, who conjectured that a graph is perfect
if and only if its complement is perfect. This conjecture was proved by L. Lovász [146]. C. Berge
also conjectured that a graph G is perfect if and only if neither G nor G contain an odd cycle of
length at least 5 as an induced subgraph [20]. One implication was proved by C. Berge, and the
other implication was proved to be true roughly fourty-�ve years later in [55]; this major result
in graph theory is now known under the name of Strong Perfect Graph Theorem.

Perfect graphs are not only important because of their nice de�nition, but also because many
important classes of graphs are subclasses of the class of perfect graphs, e.g. bipartite graphs,
chordal graphs, interval graphs, permutation graphs. Moreover, the problems of determining the
independence number and the chromatic number of a perfect graph are solvable in polynomial
time [100]. For all these reasons, perfect graphs are widely studied in the literature. In this
thesis, we also study various subclasses of perfect graphs.

Line graphs, quasi-line graphs, induced claw-free graphs

The line graph of a graph G, denoted L(G), is the graph with vertex set E(G), where two
vertices of L(G) are adjacent if the corresponding edges are adjacent in G. In other words, L(G)
is the intersection graph of the edge set of G. An example of a graph and its line graph is
given in Figure 2.14. In this thesis, we will study identifying codes in line graphs under various
perspectives.

G L(G)

Figure 2.14: A graph and its line graph.

Let B = {B1 = K1,3, B2, B3 = K−5 , B4, B5, B6, B7, B8 = P 2
6 , B9 = W5} be the list of graphs

depicted in Figure 2.15.6 We have the following theorem, due to L. W. Beineke:

Theorem 2.2 ([18]). A graph G is a line graph if and only if it does not contain any of the
graphs of B as an induced subgraph.

The following relation between the classes of line graphs and perfect graphs, due to L. E. Trot-
ter, is known:

6The notation W5 denotes the wheel on six vertices, which might be familiar to the reader.

26 2.2. Graphs and hypergraphs

(a) B1 = K1,3 (b) B2 (c) B3 = K−5 (d) B4 (e) B5

(f) B6 (g) B7 (h) B8 = P 2
6 (i) B9 = W5

Figure 2.15: L. W. Beineke's list B of forbidden induced subgraphs

Theorem 2.3 ([194]). A line graph L(G) is perfect if and only if G contains no odd cycles of
length more than 3 as a subgraph.

A superclass of line graphs is the one of quasi-line graphs: a graph is quasi-line if the neigh-
bourhood of each vertex is the union of two cliques. It follows that quasi-line graphs are induced
claw-free7, that is, induced K1,3-free. The structure of induced claw-free graphs and quasi-line
graphs is well-studied, see e.g. [56]. One can de�ne a whole hierarchy of classes de�ned by for-
bidden induced subgraphs by considering induced K1,`-free graphs, for ` ≥ 3. Unit disk graphs,
for example, are known to be induced K1,6-free.

Graphs of given tree-width and clique-width

An important graph parameter is the one of tree-width, which intuitively measures the similarity
of a graph to a tree. This parameter has been introduced in [102] (cited in [75, Notes to
Chapter 12]) and plays an important role in the aforementioned theory of graph minors [174, 175].
We refer to [75] for a de�nition. It is well-known that trees have tree-width at most 1 and series-
parallel graphs have tree-width at most 2. Planar graphs, however, are in general not of bounded
tree-width since the grid Ga,a has n = a2 vertices but tree-width Ω(

√
n).

Similar width parameters have been introduced in the literature; we mention only one further
parameter, introduced in [65]: the clique-width of a graph (however, we do not give a de�nition
here). A cograph is a graph that can be built from single vertices using the disjoint union and
complete join operations (cographs are also the induced P4-free graphs). The class of cographs
(which includes all cliques) is a subset of the class of graphs having clique-width at most 2. Trees
have clique-width at most 3. In fact, if a graph has tree-width at most k, it has also clique-width
at most O(2k) [66]. Parameters tree-width and clique-width have gained much interest because
of their connection with computational complexity, as we will discuss in Section 2.3.4.

Random graphs and the probabilistic method

There are several classic ways to de�ne random graphs, i.e. graphs generated using some speci�c
random process. The usual question, given a class of random graphs, is to determine what kind of
properties hold for one of these graphs in average, with high probability (for some valid de�nitions
of these concepts), etc. A classical model is the so-called Erd®s-Rényi model Gn,p [78], where
for some real probability p ∈ [0, 1] a graph G ∈ Gn,p on n (labelled) vertices8 is constructed by
setting each of its potential

(
n
2

)
edges with uniform probability p.

7The standard denomination of these graphs is claw-free, however in this thesis, to avoid confusion with
(non-induced) claw-free graphs, we call them induced claw-free.

8A graph is labelled if its n vertices are each assigned a distinct label, conveniently, integers from 1 to n.

Chapter 2. De�nitions, notations and related work 27

We will not use the Erd®s-Rényi model in this thesis; in Section 5.1.3, we will however
consider random regular graphs, which are de�ned using the con�guration model [27]. In this
model, a d-regular multigraph on n vertices9 is obtained by selecting some perfect matching of
Knd at random (see [27] for further reference). We will only consider cases where nd is even, as
otherwise there does not exist any d-regular graph on n vertices. In the Con�guration Model,
the set of vertices in Knd is partitioned into n cells of size d, and each cell Wv is associated to a
vertex v of the random regular graph. An edge e of a perfect matching of Knd induces either a
loop in v (if it connects two elements of Wv) or an edge between v and u (if it connects a vertex
from Wv to a vertex in Wu).

In general, this model may produce graphs with loops and multiple edges. We will denote
by G∗(n, d) the former probability space and by G(n, d) the same probability space conditioned
on the event that G is simple. It is shown in [150] that the following holds:

Pr
(
G ∈ G(n, d) | G ∈ G∗(n, d)

)
= (1 + o(1))e

1−d2

4 if d = o(
√
n).

Thus, for relatively small d (and in particular when d does not depend on n), any property that
holds with probability tending to 1 for G∗(n, d) as n→∞, will also hold with probability tending
to 1 for G(n, d). In this case we will say that the property holds with high probability (w.h.p.).

The probabilistic method is a technique where a property P of a class C of objects is proved by
selecting at random an object O from some probabilistic universe over C (for example, a random
graph). Then, one estimates the probability that P holds for O; if this probability is strictly
positive, one concludes that an object satisfying P necessarily exists in C. A classic reference
about the probabilistic method is the textbook by N. Alon and J. Spencer [2]. In this thesis, we
will use the probabilistic method in Sections 4.4 and 5.1.2.

Other important graph classes

Let us mention a few additional graph classes that will be studied or mentioned in this thesis.
A graph is a split graph if its vertex set can be partitioned into two sets, one of them being

a clique, and the other one being an independent set. Split graphs form a subclass of chordal
graphs.

A graph is a Dominating Shortest Path graph (DSP graph for short) if it contains a shortest
path whose vertices form a dominating set. This class has been introduced in [139], where it was
shown to be a superclass of the well-studied class of asteroidal triple-free graphs.

For some k ≥ 1, a graph is called k-degenerate if its vertices can be ordered v1, v2, . . . , vn
such that each vertex vi is adjacant to at most k vertices from {v1, v2, . . . , vi−1}.

2.3 Computational complexity

In this section, we introduce basic notions of computational complexity theory (also called the
theory of computation) that will mainly be needed in the second part of this thesis. We refer to
the books [3, 13, 88, 91, 164] for a more detailed introduction to the topic.

2.3.1 Computational problems and algorithms

The �eld of computational complexity aims at classifying computational problems according to
how e�ciently they can be solved under various computational models. A computational problem
is a task which is de�ned by an input (called an instance) and a desired output related to the
input. In this thesis, we consider two sorts of problems: decision problems and optimization
problems, which we will de�ne in the following subsections. The notion of an algorithm is a central
one here. An algorithm is a sequence of instructions that can be used to solve a computational
problem.

9As opposed to the remaining of this thesis, when dealing with this model we use d to designate the degree of
a random d-regular graph, as this notation is standard.

28 2.3. Computational complexity

The (worst-case) running time of an algorithm A , expressed as a function of |I|, the size of
the instance I, is the (worst-case) number of steps that are performed by A on I. Usually we
are interested only in the asymptotic running time of A . Within the last decades, it has been
assumed that an algorithm can be e�ciently used in practice if its running time is polynomial
in the size of the instance, that is, the running time is of the order O(|I|k) for some constant k.
This idea is generally attributed to A. Cobham [59] and J. Edmonds [76], independently (cited
in [91, Chapter 2.1]).

2.3.2 Decision problems and related classes

A decision problem P is de�ned by an in�nite set I(P) of instances, and, given one instance, a
question relative to this instance that can be answered either by �YES� or by �NO�. Given an
instance IP of P , an algorithm AP for P will be able to access IP , and will return either �YES�
or �NO�. The size |IP | of IP is the number of bits that are needed to represent IP in binary. We
give the following examples of decision problems.

SAT

INSTANCE: A collection Q of clauses of literals from a set X of boolean variables (a literal is a
variable x or its negation x).
QUESTION: Can Q be satis�ed, i.e. is there a truth assignment of the variables of X such that
each clause contains at least one true literal?

3-SAT

INSTANCE: A collection Q of clauses of literals from a set X of boolean variables, where each
clause contains at most three distinct literals.
QUESTION: Can Q be satis�ed, i.e. is there a truth assignment of the variables of X such that
each clause contains at least one true literal?

Matching

INSTANCE: A graph G and an integer k.
QUESTION: Does G have a matching of size at least k?

The de�nition of an e�cient algorithm as one that has polynomial running time has led to
the de�nition of the complexity class P, consisting of all decision problems for which there exists
a polynomial-time algorithm solving it. The class P is a subset of the class NP, consisting of all
decision problems P that can be veri�ed in polynomial time, that is, there exists for each instance
IP of P , a so-called certi�cate C(IP) of size polynomial in |IP | with a verifying algorithm V of
polynomial running time taking IP and C(IP) as an input, and outputting �YES� if and only if
IP is a �YES�-instance (otherwise it outputs �NO�).

One of the biggest (and most famous) open problems in computational complexity, introduced
by S. Cook [63] is the one of determining whether P=NP. It is widely believed (or hoped) that
the problems in NP are more di�cult than those of P (that is, there would exist problems in NP

that cannot be solved in polynomial time).
To this end, the framework of polynomial-time reductions between decision problems was

introduced. The most widely used type of reductions for decision problems is the one of Karp-
reductions, introduced in [131]. Given two decision problems P and Q, a Karp-reduction from
P to Q is a polynomial-time computable function f that transforms any instance IP of P into
an instance IQ = f(IP) of Q and such that IP is a �YES�-instance of P if and only if IQ is a
�YES�-instance of Q. As an immediate consequence, note that if Q is in P, then P is also in
P. A decision problem P is called NP-complete if it is in NP, and P is NP-hard, that is, each
problem in NP can be Karp-reduced to P . We note that, assuming that P is not equal to NP,
the existence of an in�nite number of so-called NP-intermediate problems (that are neither in P

nor NP-complete) was proved by R. Ladner [140].
For the examples we gave earlier, SAT (and its restricted version 3-SAT) is known to be

NP-complete [63], whereas Matching is in P [76].

Chapter 2. De�nitions, notations and related work 29

A �rst consequence of this de�nition is that if an NP-complete problem was proved to belong
to P, then P=NP. Another consequence is that if an NP-complete problem P can be Karp-
reduced to some problem Q of NP, then Q is also NP-complete. S. Cook proved in [63] that SAT
is NP-complete, and R. M. Karp reduced SAT to twenty-one other fundamental combinatorial
problems including 3-SAT, Set Cover, Vertex Cover [131] (see later sections for their
de�nitions). When faced with a (new) decision problem in NP, one wants to know whether it is
in P or it is NP-complete. Once this is settled, one can investigate the same question when the
set of instances is restricted. In the case of graph problems, there are many graph classes for
which some NP-complete problems become polynomial-time solvable, or remain NP-complete.
Summarizing and extending this classi�cation for Identifying Code is one of the goals of this
thesis.

2.3.3 Optimization problems, approximation algorithms and related classes

Many decision problems have a natural optimization variant, where it is not just asked to separate
�YES�-instances from �NO�-instances, but where one wants to compute a �good� solution to a
given question. For instance, in the case of SAT, instead of deciding whether a boolean formula is
satis�able, one would ask to output a truth assignment satisfying the maximum possible number
of clauses. If the solution to the optimization problem is optimal (according to some measure),
the solution is said to be exact ; otherwise it is called approximate. The goal of the �eld of
approximation is to classify optimization problems for which it is possible to provide e�cient
methods for �nding provably good approximate solutions. We give some formal de�nitions
but refer to [13] for all details. For a recent (and regularly updated) survey of the concept of
approximation, see [193].

An optimization problem P (either a minimization or a maximization problem) is de�ned by
a set of instances and a desired solution. The goal is to optimize (minimize or maximize) the
measure of the solution. The set of instances of P is denoted I(P), and the set of solutions of an
instance IP of P is denoted SOL(IP); the size of an optimal solution for IP is denoted OPT (IP)
(we may note OPTP (IP) to stress the fact that IP is an instance of P). We give the following
examples, from which the �rst two are special optimization variants of the �rst two examples
from the previous section, SAT:

Max SAT

INSTANCE: A collection Q of clauses of literals over a set X of boolean variables (a literal is a
variable x or its negation x).
SOLUTION: A boolean assignment s : X → {0, 1}.
MEASURE: The number of clauses which are satis�ed by s.

Max (≤ 3,≤ 3)-SAT
INSTANCE: A collection Q of clauses over a set X of boolean variables, where each clause
contains at most three distinct literals. Moreover, each variable appears in at most three clauses.
SOLUTION: A boolean assignment s : X → {0, 1}.
MEASURE: The number of clauses which are satis�ed by s.

Min Set Cover

INSTANCE: A set system (X,S).
SOLUTION: A set cover S ⊆ S of (X,S).
MEASURE: The cardinality |S| of the set cover.

Similar to decision problems, optimization problems for which the measure of a solution is
polynomial-time computable and it can be checked in polynomial time whether a given answer
is a valid solution, belong to the class NPO. If, moreover, an optimization problem can be solved
exactly by a polynomial-time algorithm (that is, it always outputs an optimal solution), it belongs
to the class PO.

The interest of studying optimization problems rather than decision problems comes from

30 2.3. Computational complexity

the possibility of judging the quality of a solution. A polynomial-time algorithm AP for an
optimization problem P is said to be an α-approximation algorithm for P if, given an instance IP ,
it returns a solution SOLIP whose measure is at most α·OPT (IP) if P is a minimization problem,

and at least OPT (IP)
α if P is a maximization problem, respectively. Note here that α can either be

a constant, or a function of the instance size. The value α =
|SOLIP |
OPT (IP) (α = OPT (IP)

|SOLIP |
, respectively)

is the performance ratio of AP .10 An optimization problem is said to be α-approximable if it
admits an α-approximation algorithm. These notions have �rst been proposed by D. Johnson
in [127].

Using this formalism, one can now classify optimization problems according to the kind of
performance ratios that they can be approximated within. For example, the class APX is the
class of optimization problems that are c-approximable for some constant c. More generally, for
a family F of functions from N to N, one can de�ne the class F-APX as the class of optimization
problems having an f(|I|)-approximation algorithm, where I is an instance of P and f ∈ F [68].

With respect to this de�nition, the main complexity classes (sorted by increasing approxi-
mation hardness) that have been considered are APX, log-APX (the class F -APX with F being
the family of all polylogarithmic functions, i.e. those being of the form O(ln(n)c) for some con-
stant c > 0) and poly-APX (the class F -APX with F being the family of all polynomials), see
e.g. [68, 133].

Another class of interest is the class PTAS of optimization problems P having a polynomial-
time approximation scheme, that is, an approximation algorithm taking an instance IP of P
and a constant ε > 0 as its input, and which provides a (1 + ε)-approximation of IP in time
polynomial in |IP | (but not necessarily in 1

ε : for example, the algorithm could have running time

O
(
f
(

1
ε

)
· |IP |g(

1
ε)
)
for arbitrary functions f, g). Its subclass FPTAS contains problems having

a fully polynomial-time approximation scheme, where the dependence on both |IP | and 1
ε in the

time complexity is polynomial (i.e. the running time can be of the form O
((

1
ε

)c1 · |IP |c2) for
constants c1, c2).

We have the following sequence of inclusions between complexity classes of optimization
problems:11,12

PO ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ log-APX ⊆ poly-APX ⊆ NPO.

In this thesis, we will mainly consider the classes PTAS, APX and log-APX.
We will use di�erent types of reductions between optimization problems that will be de�ned

thereafter. Given a complexity class C of optimization problems and a type of reductions, an
optimization problem P is said to be C-hard with respect to this type of reductions if each
problem in C has a reduction of the given type to P . If moreover, P belongs to C, then P is said
to be C-complete.

The following type of reductions, called L-reductions (for �linear reductions�) was introduced
in [165] for reducing problems in the class MAXSNP whose problems are expressed using speci�c
logical statements. In fact the closure of MAXSNP under some natural type of reductions was
shown to be computationally equivalent to the class APX [133]; these reductions are widely used
to prove APX-hardness of optimization problems.

10Some authors always take
|SOLIP

|
OPT (IP)

as the performance ratio, even for maximization problems. We follow the

style of [13] in this matter. Some authors, such as in [164], also use the relative error
|OPT (IP)−|SOLIP

||
max{OPT (IP),|SOLIP

|} to

measure the performance of an approximation algorithm, but the use of the performance ratio is more common
in the literature.

11The names of some of these classes (except for PTAS and APX) are not consensual. In [115, Chapter 10],
APX, log-APX and poly-APX are called Class I, Class II and Class IV, respectively (the authors of [115, Chapter
10], S. Arora and C. Lund, also consider a Class III lying between Class II and Class IV, that is however believed
to be equal to Class IV). In a more recent textbook [124], FPTAS, PTAS, APX, log-APX and poly-APX are called
NPO(I), NPO(II), NPO(III), NPO(IV) and NPO(V), respectively.

12Recent research has shown that there exist much more complexity classes in NPO than those mentioned
here (even if one considers only classes containing �natural� optimization problems); see the recent survey of
L. Trevisan [193] for further details.

Chapter 2. De�nitions, notations and related work 31

De�nition 2.4 ([165]). Let P and Q be two optimization problems. An L-reduction from P to
Q is a four-tuple (f, g, α, β) where f and g are polynomial time computable functions and α, β
are positive constants with the following properties:

1. Function f maps instances of P to instances of Q and for every instance IP of P :

OPTQ(f(IP)) ≤ α ·OPTP (IP).

2. For every instance IP of P and every solution SOLf(IP) of f(IP), g maps the pair
(f(IP), SOLf(IP)) to a solution SOLIP of IP such that:

|OPTP (IP)− |SOLIP || ≤ β · |OPTQ(f(IP))− |SOLf(IP)||.

L-reductions are useful due to the following fact:

Theorem 2.5 ([165]). Let P and Q be two optimization problems. If there exists an L-reduction
from P to Q with parameters α and β and Q has a (1 + ε)-approximation algorithm for some
ε > 0, then P has a (1 + αβε)-approximation algorithm.

It was shown in [165] thatMax 3-SAT is APX-complete with respect to L-reductions. Given
an optimization problem PO, it can be shown, assuming that P6=NP, that there is no approxima-
tion algorithm for PO with a given performance ratio r. In that case we say that it is NP-hard
to approximate PO within r. The following result is known:

Theorem 2.6 ([165]). Any optimization problem P that is APX-hard with respect to L-reductions
is NP-hard to approximate within a factor c, for some constant c > 1.

As a consequence of Theorems 2.5 and 2.6, no APX-hard optimization problem belongs to
PTAS, unless P=NP. We can state this fact in the following way:

Corollary 2.7 ([165]). Let P and Q be two optimization problems. If there exists an L-reduction
from P to Q with parameters α and β and it is NP-hard to approximate P within ratio rP = 1+δ,
then it is NP-hard to approximate Q within ratio rQ = 1 + δ

αβ .

We will use L-reductions in Chapter 7 to show that Min Id Code is APX-hard for several
graph classes.

The drawback of L-reductions is that one cannot use them for de�ning a notion of complete-
ness for other classes than APX [68]. One may use the stronger

AP-reductions (for �approximation preserving�) instead, which is now accepted as one of the
most suitable kind of reductions for preserving approximability factors [13, Chapter 8.6]. This
notion was introduced in [68], which also contains a discussion about the power of di�erent
kinds of approximation-preserving reductions that can be found in the literature. We give the
de�nition that can be found in [13, De�nition 8.3]:

De�nition 2.8 ([68, 13]). Let P and Q be two optimization problems. An AP-reduction from P
to Q is a triple (f, g, α) where f, g are functions and α is a positive constant, with the following
properties:

1. Function f maps any instance IP of P together with any c > 1 to an instance f(IP , c) of
Q.

2. For any instance IP of P , for any c > 1, and for any solution SOLf(IP ,c) of f(IP , c),
function g maps (IP , r, SOLf(IP ,c)) to a solution g(f(IP , c), SOLf(IP ,c)) of IP .

3. For any instance IP of P , for any c > 1, if IP has a solution, then f(IP , c) has a solution.

4. For any �xed c > 1, f(·, c) and g(·, ·, c) are computable in polynomial time.

5. For every instance IP of P , for any c > 1,and for any solution SOLf(IP ,c) of f(IP , c), if:

max

{ |SOLf(IP ,c)|
OPTQ(f(IP , c))

,
OPTQ(f(IP , c))

|SOLf(IP ,c)|

}
≤ c, then:

max

{ |g(f(IP , c), SOLf(IP ,c))|
OPTP (IP)

,
OPTP (IP)

|g(f(IP , c), SOLf(IP ,c))|

}
≤ 1 + α(c− 1).

32 2.3. Computational complexity

Theorem 2.9 ([68]). Any optimization problem P with instance IP that is log-APX-hard with
respect to AP-reductions is NP-hard to approximate within a factor c ln(|IP |), for some constant
c > 0.

For an example, it is known that Min Set Cover is log-APX-complete [133]; it can be
approximated within a factor of 1+ln(|I|) for instances I [127], but it is NP-hard to approximate
it within a factor c ln(|I|), for some constant c > 0 [171].

We will use AP-reductions in Chapter 6 to show that Min Id Code is log-APX-hard for
several graph classes.

2.3.4 Complexity classes de�ned using logic and Courcelle's theorem

We already saw that complexity classes can be de�ned by means of properties expressable in
a certain kind of logic, as for example the class of optimization problems MAXSNP [165, 133].
When considering decision problems, the class NP itself has been related to logic by R. Fagin
in [81], where it is proved that NP is exactly the set of decision problems asking whether a
property expressible in existential second-order logic13 is true or not.

A restriction of second-order logic is monadic second-order logic. Regarding graph proper-
ties, we distinguish τ1-monadic second-order logic and τ2-monadic second-order logic, de�ned as
follows:

A graph property P is expressible in τ1-monadic second-order logic, MSOL(τ1) for short, if
P can be de�ned using:

• vertices or sets of vertices of a graph G,

• the binary adjacency relation adj where adj(u, v) holds if and only if u, v are two adjacent
vertices of G,

• the unary cardinality operator card for sets of vertices of G,

• the logical operators OR (∨), AND (∧), NOT (¬), and

• the logical quanti�ers ∃ and ∀ over vertices or sets of vertices of G.

The τ2-monadic second-order logic (MSOL(τ2) for short) is an extension of MSOL(τ1), al-
lowing the use of the binary incidence relation inc, where inc(v, e) holds if and only if edge e is
incident to vertex v in G. Moreover, MSOL(τ2) allows the use of quanti�ers ∃ and ∀ over edges
and sets of edges of G.

The following results are extensions of B. Courcelle's theorem (which was originally stated
for MSOL(τ1) in [64]) and show that many graph properties can be checked in linear time for
graphs of bounded tree-width or clique-width.

Theorem 2.10 ([67]). Let P be a graph property expressible in MSOL(τ2) and let c be a constant.
Then, for any graph G of tree-width at most c, it can be checked in linear time whether G has
property P.
Theorem 2.11 ([66]). Let P be a graph property expressible in MSOL(τ1) and let c be a constant.
Then, for any graph G of clique-width at most c, it can be checked in linear time whether G has
property P.

However, it is very unlikely that the latter theorem can be extended to MSOL(τ2):

Theorem 2.12 ([66]). There exists a graph property P expressible in MSOL(τ2) such that if it
can be checked in polynomial time whether a complete graph has property P, then P=NP (recall
that complete graphs have clique-width 2).

13An existential second-order logic formula is a formula starting with an existential quanti�er over some entities
(possibly variables, sets of variables, relations, functions) followed by a �rst-order formula.

Chapter 2. De�nitions, notations and related work 33

2.3.5 Other decision and optimization problems that we will use

In this thesis, we will reduce various decision and optimization problems to Identifying Code

andMin Id Code, respectively, in order to demonstrate the complexity of solving these problems
in various graph classes. We de�ne these problems in this section.

Let us �rst describe restricted versions of boolean satis�ability problems. We de�ne (≤ r,≤
s)-SAT as the usual SAT problem where each variable appears at most r times in the for-
mula, and each clause has at most s literals. We denote by (= r,≤ s)-SAT the same problem
where each variable appears exactly r times in the formula. We will use the following version of
(= 3,≤ 3)-SAT:

Planar (= 3,≤ 3)-SAT
INSTANCE: A collection Q of clauses over a set X of boolean variables, where each clause
contains at least two and at most three distinct literals (a variable x or its negation x). Moreover,
each variable appears in exactly three clauses: twice in its non-negated form, and once in its
negated form. Finally, the bipartite incidence graph of Q, denoted B(Q, X), is planar.
QUESTION: Can Q be satis�ed, i.e. is there a truth assignment of the variables of X such that
each clause contains at least one true literal?

Planar (= 3,≤ 3)-SAT is known to be NP-complete [69]. We remark that some versions
of (≤ r,≤ s)-SAT are known to be in P:

Theorem 2.13 ([192]). For all k ≥ 1, any instance of (≤ k,≤ k)-SAT is satis�able.

We also use the problemMax (≤ 3,≤ 3)-SAT that we have de�ned earlier. Max (≤ 3,≤ 3)-
SAT is APX-complete [165].

Problem Min Vertex Cover will also be used. It is a special case of Set Cover that is
2-approximable (a result attributed to F. Gavril in [88]) and APX-complete [165].

Min Vertex Cover

INSTANCE: A graph G.
SOLUTION: A vertex cover C of G.
MEASURE: The cardinality |C| of the vertex cover.

We will also reduce from dominating set problems:

Dominating Set

INSTANCE: A graph G and an integer k.
QUESTION: Does G have a dominating set of size at most k?

Min Dom Set

INSTANCE: A graph G.
SOLUTION: A dominating set D of G.
MEASURE: The cardinality |D| of the dominating set.

Let us formally de�ne the optimization problems related to matchings and edge covers:

Max Matching

INSTANCE: A graph G.
SOLUTION: A matchingM of G.
MEASURE: The size |M| of the matching.

Min Edge Cover

INSTANCE: A graph G.
SOLUTION: An edge cover C of G.
MEASURE: The size |C| of the cover.

34 2.4. Identi�cation problems that are related to identifying codes

It is a famous result due to J. Edmonds [76] that Max Matching is solvable in polynomial-
time; later, the running time of his original algorithm has been improved:

Theorem 2.14 ([76, 151]). Max Matching can be solved in time O
(√
|V (G)| · |E(G)|

)
for

an input graph G.

In fact, the complexity of Min Edge Cover is the same as the one of Max Matching;
indeed, the best approach to solve the former problem is to compute a maximum matching and
to greedily cover the edges that remain uncovered [141] (cited in [88, Problem GT1]). Hence we
have the following corollary:

Corollary 2.15. Min Edge Cover can be solved in time O
(√
|V (G)| · |E(G)|

)
for an input

graph G.

We will also use a generalization of Matching, that is known to be NP-complete [88]. It is
de�ned as follows:

3-Dimensional Matching

INSTANCE: Three disjoint sets A = {a1, . . . , an}, B = {b1, . . . , bn}, C = {c1, . . . , cn} each of size
n, and a set T = {T1, . . . , Tt} of t triples of A×B × C.
QUESTION: Is there a perfect 3-dimensional matchingM⊆ T , i.e. a set of disjoint triples from
T of size n (i.e. such that each element of A ∪B ∪ C belongs to some triple ofM).

We will also study the new decision and optimization problems associated to the concept of
an edge-identifying code:

Edge-Identifying Code

INSTANCE: A graph G and an integer k.
QUESTION: Does G have an edge-identifying code of size at most k?

Min Edge-Id Code

INSTANCE: A graph G.
SOLUTION: An edge-identifying code CE of G.
MEASURE: The size |CE | of the code.

2.4 Identi�cation problems that are related to identifying codes

In this section, we present a number of problems related to identifying codes. Some of these
concepts are generalizations or restrictions of identifying codes; all deal with the identi�cation
of certain combinatorial structures using certain kinds of (sub)structures.

2.4.1 Codes identifying sets of vertices at a given distance

The notion of an identifying code of a graph G has been generalized to the one of an r-identifying
code. Given an integer r ≥ 1, an r-identifying code C of G is a subset of V (G) such that for every
vertex x, there is a vertex of C at distance at most r from x, and for each pair x, y of distinct
vertices, there is a vertex of C that is at distance at most r from exactly one of x, y. In other
words, all vertices are dominated and separated at distance r. We remark that an r-identifying
code of G is an identifying code of the power Gr. Graphs admitting an r-identifying code (i.e.
graphs G such that Gr is identi�able) are called r-twin-free.

This notion has subsequently been generalized to the one of an (r,≤ `)-identifying code,
in which all sets of vertices of size at most ` are dominated and separated from each other at
distance r. Graphs admitting an (r,≤ `)-identifying code have been called (r,≤ `)-twin-free [10].

We will not study these notions in this thesis, and refer to e.g. [9, 45, 85, 119, 156] for the
interested reader.

Chapter 2. De�nitions, notations and related work 35

2.4.2 Test covers, discriminating codes and Bondy's theorem

A problem that is much related to identifying codes and which has been studied for several
decades is the test cover problem, which generalizes separating codes. Let I be a set of elements
(�individuals�) and A, a set of subsets of I (�attributes�). We say that an attribute a of A
separates two distinct elements I, I ′ of I if a contains exactly one of I, I ′. A test cover of the
set system (I,A) is a set T ⊆ A such that each pair of distinct sets of I is separated by some
element of T . Note that, as in the case of separating codes, a test cover may only exist if all
pairs of individuals can actually be separated; we say that the set system (I,A) is I-identi�able.

The notion of a test cover appears in a large number of papers under di�erent denominations
(test cover in [71], test collection in [88], and test set in [159]). In fact, a well-celebrated theorem
of J. A. Bondy on induced subsets [28] (usually referred to as �Bondy's theorem�) can be seen as
the �rst study of this problem.

Theorem 2.16 (Bondy's theorem [28]). Let A = {A1, A2, · · · , An} be a collection of n distinct
subsets of an n-set X. Then there exists an element x of X such that the sets A1 − x,A2 −
x, · · · , An − x are all distinct.

Since its publication in 1972, this theorem has received a lot of attention. The original
proof of [28] is a nice one and uses a graph-theoretic argument. Various alternative proofs of
di�erent nature have been provided for it, we refer to [15, Exercise 4.1.1],[26, Chapter 2],[147,
Exercise 13.10] and [198] for some other interesting proofs. We also note that the theorem is
valid even when the cardinality of A is strictly larger than the one of X. We will study extremal
cases of Bondy's theorem in Section 3.2.3.

We observe that Bondy's theorem can be rephrased in the language of test covers as follows:

Theorem 2.17. Let (I,A) be an I-identi�able set system. Then there is a test cover of (I,A)
of at most |I| − 1 elements of A.

The analogy between test covers and identifying codes is however limited to some extent:
the test cover problem does not ask for each individual to actually belong to an attribute of the
test cover (i.e. there is no domination condition). However we have the following notion, which
slightly di�ers from the one of a test cover.

Given an I-identi�able set system (I,A), a subset C of A is a discriminating code of (I,A)
if it is a test cover of (I,A) and each element of I belongs to some set of C. The notion of a
discriminating code was introduced in [36] and further studied in [37].

We point out that the exact formalism used in [36, 37] is slightly di�erent, as the authors
study discriminating codes in bipartite graphs, that is, instead of considering set systems, they
consider their bipartite incidence graphs de�ned earlier. However the two points of view are
easily seen to be equivalent.

We note that identifying codes in (di)graphs are a special case of discriminating codes:

Observation 2.18. An identifying code in a graph G (digraph D, respectively) is precisely a
discriminating code of the closed neighbourhood hypergraph of G (closed out-neighbourhood hy-
pergraph of D, respectively).

In fact, just as some particular cases of the set cover problem arising from speci�c combina-
torial structures have gained a lot of interest (consider for example all variants of the dominating
set problem, or the vertex cover problem), it is of interest to investigate special cases of the
discriminating code problem having a particular structure. In this line of research and in the
�avour of identifying codes, many other speci�c cases arising from graph theory are of particular
interest. We will mention some of these problems in the next sections, where the sets I and A
are families of substructures of a graph G.

The following theorem contains a generalization of Theorem 2.24 to discriminating codes:

Theorem 2.19 ([36]). Let (I,A) be an I-identi�able set system, and let C be a test cover of
(I,A). Then |C| ≥ log2(|I|). If C is also a discriminating code of (I,A), |C| ≥ log2(|I|+ 1).

The following upper bound can be seen as a direct corollary of Bondy's theorem. We refer
to [36] for a formal proof in the context of discriminating codes.

36 2.4. Identi�cation problems that are related to identifying codes

Theorem 2.20 ([28, 36]). Let (I,A) be an I-identi�able set system, and let C be an inclusionwise
minimal discriminating code of (I,A). Then |C| ≤ |I|.

In Chapter 3, we will characterize those instances that reach the bound of Theorem 2.20 and
that are the closed neighbourhood hypergraphs of some digraph. We will also consider the case
of in�nite graphs and digraphs.

We make the following observation on the di�erence between the cardinalities of a minimum
test cover and a minimum discriminating code, which can be at most 1.

Observation 2.21. Let (I,A) be an I-identi�able set system, and let C be a test cover of (I,A).
If C is not a discriminating code of (I,A), there is an element A ∈ A such that C ∪ {A} is one.

Proof. All pairs of distinct individuals are separated by C. Observe that at most one individual
I may remain uncovered by C. It is then su�cient to add to C an arbitrary attribute A covering
I to get a valid discriminating code. 9

Observe that the problem of �nding a test cover or discriminating code of a set system (I,A)
is the same as the one of �nding a set cover of a related set system.

Reduction 2.22 (Min Test Cover → Min Set Cover). Let (I,A) be an I-identi�able set
system. Let (D,A) be the set system where D consists of all pairs of distinct elements of I, and
an element A of A contains a pair {I, I ′} of D if A separates I and I ′ in (I,A).

Reduction 2.23 (Min Discrim Code → Min Set Cover). Let (I,A) be an I-identi�able
set system. Let (D,A) be the set system built from (I,A) using Reduction 2.22. De�ne (D∗,A)
by adding the set I to D, as well as any element I of I to any set A ∈ A containing I in (I,A).

It is easily observed that �nding a test cover (discriminating code, respectively) of (I,A) is
equivalent to �nding a set cover of (D,A) as built in Reduction 2.22 (of (D∗,A) from Reduc-
tion 2.23, respectively).

Also recall that �nding a set cover of a set system is the same as �nding a transversal of the
dual of the corresponding hypergraph. Similarly, the notion of a distinguishing transversal of a
hypergraph (I,A) has been recently introduced in [113]. Finding a distinguishing transversal in
the dual of (I,A) is a reformulation of the problem of �nding a discriminating code of (I,A).

2.4.3 Identifying open codes

One immediate variation of the notion of identifying codes is the one where separation and dom-
ination are considered with respect to open neighbourhoods rather than closed neighbourhoods.
This notion has been �rst studied in [120] under the name of strongly identifying codes, and fur-
ther studied under the name of open neighborhood locating-dominating sets [178, 179] and very
recently, identifying open codes [113].

One can see a relation to the classic notion of a total dominating set, where domination in
the closed neighbourhood is replaced by domination in the open neighbourhood, see e.g. [109].
Moreover, such as for any classical identifying code, any identifying open code is also a locating-
dominating set.

In this setting, a graph admits an identifying open code if and only if it has no false twins;
such graphs are studied in [189] under the name of point-determining graphs. Similarly, when
considering digraphs, an interesting series of papers [152, 153, 154, 163] has considered the notion
of extensional acyclic digraphs, that is, digraphs in which no two vertices have the same open
out-neighbourhood.14

2.4.4 Identi�cation of vertices using stars, cycles and paths

The case where vertices of a graph G are identi�ed using partial closed neighbourhoods (i.e.
I = V (G) and A is the set of all stars in G) is called watching systems; it was introduced in [11]

14Following the de�nition of an identifying code in a digraph, a natural de�nition of open-identi�able digraphs
would rather consider open in-neighbourhoods, but of course the two concepts are equivalent: just reverse all arcs
of the digraphs to switch from one de�nition to the other.

Chapter 2. De�nitions, notations and related work 37

and further studied in [12]. See also the thesis of D. Auger [7].
The case where I = V (G) (I = V (G) ∪ E(G), respectively) and A is the set of all sets of

vertices (vertices and edges, respectively) inducing a cycle in G has also been considered in [118]
([176], respectively). Similarly, we studied the case where A is the set of paths of a graph [FK12].

2.4.5 Identifying the edges of a graph

Consider the case of an identifying vertex cover of a graph G, that is, a subset C of vertices of
G that is a vertex cover of G, and where for each pair e, e′ of distinct edges of G, e∩ C 6= e′ ∩ C.
This notion was very recently studied in [114]. It was also brie�y investigated in [156, Theorem
1.2], where this problem was shown to be equivalent to the one of �nding the complement of a
distance-3-independent set of G.

One can also study edge-identifying codes, that is, the identi�cation of edges using edges. We
introduced this concept in [FGN+12]; Section 5.3 (where we also de�ne this notion in detail) is
devoted to its study. Note that very recently in [130], the authors study 2-edge-identifying codes,
i.e. edge-codes which identify all sets of edges of size at most 2.

2.4.6 Resolving sets and metric dimension

One of the earliest concepts related to identifying vertices in graphs is the one of a resolving set,
introduced independently in [104] and [182] (under the name of locating set). In a graph G, a
subset C of vertices of G is a resolving set if for any pair of distinct vertices of G, there is an
element c of C for which the distances from c to both vertices of the pair are distinct (in this
context we may say that c separates the pair). The smallest cardinality of a resolving set of a
graph is its metric dimension. Results on this topic have been surveyed in [48].

We note that this problem does not have a natural formulation as a sub-problem of the
discriminating code problem. However, it is equivalent to the set cover problem in the set
system (I,A) with I being the set of pairs of distinct vertices of V (G), and where each set Ax of
A corresponds to a distinct vertex x of G and contains all pairs which are separated by x [134].

2.4.7 Identifying colourings

Several notions of identi�cation of adjacent vertices using colours have been studied. Recently,
the notion of locally identifying colouring has been introduced [80]; a proper vertex-colouring c
of a graph G is locally identifying if for each pair of adjacent vertices u, v which are not twins,
the sets {c(x) | x ∈ N [u]} and {c(x) | x ∈ N [v]} are distinct. We further studied this notion
in [FHL+12].

A similar notion has been considered with respect to edge-colourings: a proper edge-colouring
c is adjacent vertex-distinguishing if for each pair of adjacent vertices u, v, the sets {c(e) | e is
incident to u} and {c(e) | e is incident to v} are distinct [116] (the concept was introduced under
the name of strong edge-colouring in [203]).

Other kinds of identifying colourings have been studied, such as locating colourings, that are
proper colourings where for each pair u, v of adjacent vertices, there is a colour class C whose
members cu, cv that, among all vertices of C, are closest to u and to v respectively, have the
property that d(u, cu) 6= d(v, cv) [49].

2.5 Existing work on identifying codes in (di)graphs related to
this thesis

In this section, we present known results about identifying codes that are relevant with respect
to the topics addressed in this thesis.

38 2.5. Existing work on identifying codes in (di)graphs related to this thesis

2.5.1 General bounds on the identifying code number

The �rst part of this thesis is dedicated to study lower and upper bounds on the identifying code
number in restricted graph classes. We review the known bounds from the literature.

A lower bound

One of the �rst results about identifying codes is the following bound. It follows easily from the
fact that when having an identifying code C, we assign to each of the n vertices of our graph, a
nonempty and distinct subset of C; there are at most 2|C| − 1 such sets, hence n ≤ 2|C| − 1.

Theorem 2.24 ([132]). For any identi�able graph G on n vertices, γID(G) ≥ dlog2(n+ 1)e.
In fact, all graphs reaching the bound of Theorem 2.24 have been characterized as follows:

Theorem 2.25 ([157]). Let G be an identi�able graph on n vertices with γID(G) = dlog2(n+ 1)e
and a minimum identifying code C of G. Then C induces an identi�able graph in G, and each
vertex of V (G) \ C has a distinct nonempty set of {C′ | C′ ⊆ C} \ {NG[C][x] | x ∈ C} as its
neighbourhood within C. The subgraph induced by V (G) \ C may be arbitrary.

Theorem 2.25 gives a way of constructing all graphs reaching the bound of Theorem 2.24.
Observe that in this construction, whenever G[C] and G[V (G) \ C] have no edges, G is bipartite;
whenever G[C] has no edge but G[V (G) \ C] is a complete graph, G is a split graph:

Corollary 2.26. The bound of Theorem 2.24 is tight for in�nitely many bipartite graphs and
split graphs (and therefore chordal graphs).

Two examples of bipartite graphs on seven and �fteen vertices reaching the bound of Theo-
rem 2.24 are given in Figure 2.16.

Figure 2.16: Two graphs reaching the bound of Theorem 2.24. Black vertices
belong to an optimal identifying code.

An upper bound

Regarding upper bounds, observe that, as it is the case for dominating sets, the edgeless graph
Kn has γID(G) = γ(G) = n. However the following theorem shows that it is the only such (�nite)
example.

Theorem 2.27 ([23, 96]). Let G be an identi�able graph on n vertices. If G has at least one
edge, then γID(G) ≤ n− 1. This bound is tight for any value of n ≥ 3.

Examples of graphs reaching the bound of Theorem 2.27 are the star K1,n−1 and the path
P4. A part of this thesis (Section 3.4) will be dedicated to the classi�cation of all graphs reaching
this bound.

In fact, we note that Theorem 2.27 has been extended to in�nite graphs as follows.

Theorem 2.28 ([96]). Let G be a (not necessarily �nite) identi�able graph with at least one
edge and having all its vertices with a �nite degree. Then there exists a vertex x of G such that
V (G) \ {x} is an identifying code of G.

Chapter 2. De�nitions, notations and related work 39

We will strengthen this theorem by characterizing all in�nite graphs having their whole vertex
set as their only identifying code in Section 3.5.

2.5.2 Bounds in speci�c graph classes

One of the goals of this thesis is to investigate lower and upper bounds for the identifying code
number in various graph classes such as graphs of given maximum degree, graphs with girth 5,
interval graphs or line graphs. We �rst review bounds that can already be found in the literature.

Graphs of given maximum degree

A lower bound depending on the maximum degree and the order of the graph is known:

Theorem 2.29 ([132]). Let G be an identi�able graph on n vertices having maximum degree ∆.
Then γID(G) ≥ 2n

∆+2 .

Notice that the bound of Theorem 2.29 is an improvement over the bound of Theorem 2.24
whenever ∆ ≤ 2n

dlog2(n+1)e − 2. The bound is tight, and we characterize all graphs reaching it in
Section 4.1.

It seems that no upper bound on parameter γID involving only the order and the maximum
degree of a graph was known prior to our work. Chapter 4 is dedicated to this matter, where
we present a conjecture and several bounds approximating the conjectured one in various graph
classes.

Paths and cycles

The identifying code numbers of paths and cycles have been fully determined. We present the
known results.

Theorem 2.30 ([24, 90]). We have:

γID(Pn) =

{
n+1

2 , if n is odd,
n
2 + 1, if n is even and n ≥ 4.

Theorem 2.31 ([24, 90, 97]). We have:

γID(Cn) =


3, if 4 ≤ n ≤ 5,
n
2 , if n is even and n ≥ 6,
n+1

2 + 1, if n is odd and n ≥ 7.

We also note that the identifying code numbers of powers of paths and cycles (i.e. their
r-identifying code numbers, see Section 2.4.1) have all been determined, see [24, 50, 90, 97, 129,
173, 200].

Trees

The following lower bound on the identifying code number of a tree is an improved bound over
the general bound of Theorem 2.24:

Theorem 2.32 ([25]). Let T be a tree on n ≥ 3 vertices.15 Then γID(T) ≥ 3(n+1)
7 . This bound

is tight for in�nitely many trees.

The complete k-ary tree of height h is the rooted tree T hk of height h where each non-leaf

vertex of T hk has k children (hence ∆(T hk) = k + 1). We have |V (T hk)| = kh−1
k−1 . The following

theorem is known:

Theorem 2.33 ([25]). The bound γID(T h2) =
⌈

20|V (Thk)|
31

⌉
holds. For any k ≥ 3, it holds that

γID(T hk) =
⌈
k2|V (Thk)|
k2+k+1

⌉
=
⌈
|V (T hk)| − |V (Thk)|

∆(Thk)−1+1/∆(Thk)

⌉
.

15Note that any tree on n ≥ 3 vertices is identi�able.

40 2.5. Existing work on identifying codes in (di)graphs related to this thesis

Hypercubes

As many code-like structures, identifying codes have been much studied in the hypercube, and
it has been a challenging topic. The area is rich of results, but as it is not one of the main topics
of this thesis, we only mention a few of them. As to now, only the identifying code number
of the �rst seven hypercubes is known, see [38]. It has been proved as a non-trivial result,
that the identifying code number grows with the dimension of the hypercube: for any d ≥ 1,
γID(Hd) ≤ γID(Hd+1) [158]. Though precise formulas are not known, the asymptotic order of

magnitude of γID(Hd) is known to be given by γID(Hd) = O
(

2d

d

)
= O

(
|V (Hd)|

d

)
[122]. Checking

whether a given set of vertices of a hypercube is an identifying code is a computationally di�cult
task [121, 122]. We refer to the PhD theses [128, 156, 169] for further reference on the matter.

Grids

Identifying codes have been studied in many in�nite grid-like structures, where one asks for the
minimum density of an in�nite identifying code (the identifying code number is not well-de�ned
in an in�nite graph); we do not give a formal de�nition here, but intuitively, it measures the
average local ratio of the number of code vertices over the total number of vertices. In�nite graphs
that have been considered are the classic in�nite grid P∞�P∞ [19, 42, 132, 186], the in�nite strip

Pm�P∞ for small values ofm [31, 108, 156], the in�nite d-dimensional grid P (1)
∞ � . . .�P (d)

∞ [186],
the in�nite king grid (i.e. the grid with diagonals) [60, FLP12], the in�nite hexagonal grid [42,
132, 186] and the in�nite triangular grid [42, 132]. It turns out that �nite versions of these
in�nite grid-like graphs are even harder to study, as it is also the case for the domination number
of classical grids (which was determined completely only very recently [93]).

Planar, series-parallel, outerplanar graphs

The following theorem was originally stated for the location-domination number γLD. However,
it is also valid for the identifying code number since γLD(G) ≤ γID(G) for any identi�able graph
G.

Theorem 2.34 ([185]). Let G be an identi�able planar graph on n vertices. If γLD(G) ≥ 4,
then n+10

7 ≤ γLD(G) ≤ γID(G). If G is series-parallel, then n+3
4 ≤ γLD(G) ≤ γID(G). If G is

outerplanar, then 2n+3
7 ≤ γLD(G) ≤ γID(G).

Random graphs

In Section 5.1.3, we will study the identifying code number of random regular graphs. Identifying
codes have already been studied in several models of random graphs. The authors of [85] study
identifying codes in the Erd®s-Rényi model. They prove the following theorem:

Theorem 2.35 ([85]). Let p be a real from
[

4 ln(ln(n))
ln(n) , 1− 4 ln(ln(n))

ln(n)

]
and let G ∈ Gn,p. Then

w.h.p. G is identi�able and γID(G) = (1± o(1)) 2 ln(n)

ln
(

1
p2+(1−p)2

) .
In [85] are also given precise threshold functions according to p(n) for the property that

G ∈ Gn,p is identi�able.16 The authors also study (1,≤ `)-identifying codes in Gn,p.
Another model of random graphs has been studied in [161] in connection with identifying

codes: the model of random geometric graphs (for which the textbook [168] is a classic reference).
In this model, given an integer d ≥ 1 (the dimension), an integer n and a radius r = r(n),
n random vertices of [0, 1]d are considered, and two vertices are adjacent if and only if their
euclidean distance within Rd is at most r. The authors of [161] have studied the case where
d = 2 (i.e. the case of random unit disk graphs). They give threshold functions according to r(n)
for the property that a random unit disk graph G on n vertices with radius r(n) is identi�able. In

16A threshold function f(n) for property P(n) according to p(n) is a function such that, if p(n) = o(f(n)), then
w.h.p. P(n) does not hold, and if p(n) = ω(f(n)), then w.h.p. P(n) holds (or vice-versa). See e.g. [2] for more
details.

Chapter 2. De�nitions, notations and related work 41

contrast to the threshold functions for Gn,p from [85], except when r(n) = o
(

1
n

)
, the probability

that G is identi�able is at most 1
2 . The authors also turn their attention to locating-dominating

sets in the same setting, which are very close to identifying codes but have the advantage of
existing in any graph. They prove the following tight bounds on γLD(G):

Theorem 2.36 ([161]). Let G be a random unit disk graph on n vertices and radius r(n). If

r(n) = o

(√
ln(n)
n

)
, then w.h.p. γLD(G) = n1−o(1). If for some ε > 0, r(n) ≤

√
2

2 − ε and

r(n) = ω
(

1√
n

)
, then w.h.p. γLD(G) =

(
n
r(n)

)2/3+o(1)
.

2.5.3 Complexity of Identifying Code,Min Id Code and related problems

In this section, we gather results from the literature about the decision and optimization problems
Identifying Code andMin Id Code and related problems. This is relevant since in the second
part of this thesis, we will consider these two problems for various restricted graph classes,
extending the work from the literature.

Test covers and discriminating codes

Since identifying codes are special cases of discriminating codes (who are related to test covers),
we �rst present complexity results for the related computational problems. We �rst de�ne the
following restriction of Min Set Cover:

k-bounded Min Set Cover

INSTANCE: A set system (X,S) such that each set of S has size at most k.
SOLUTION: A set cover S ⊆ S of (X,S).
MEASURE: The cardinality |S| of the set cover.

As mentioned before, Min Set Cover is log-APX-complete. Its variant k-bounded Min

Set Cover is known to be (1 + ln(k))-approximable [127], but it is APX-hard [165].
We also de�ne decision and optimization problems for the notion of a discriminating code

and a test cover, as well as restrictions similar to the one of Min Set Cover:

Test Cover

INSTANCE: An I-identi�able set system (I,A) and an integer k.
QUESTION: Is there a test cover of (I,A) having size at most k?

Min Test Cover

INSTANCE: An I-identi�able set system (I,A).
SOLUTION: A test cover T ⊆ A of (I,A).
MEASURE: The cardinality |T | of the test cover.

k-bounded Min Test Cover

INSTANCE: An I-identi�able set system (I,A) such that each element of A has size at most k.
SOLUTION: A test cover T ⊆ A of (I,A).
MEASURE: The cardinality |T | of the test cover.

Discriminating Code

INSTANCE: An I-identi�able set system (I,A) and an integer k.
QUESTION: Is there a discriminating code of (I,A) having size at most k?

Min Discrim Code

INSTANCE: An I-identi�able set system (I,A).
SOLUTION: A discriminating code D ⊆ A of (I,A).
MEASURE: The cardinality |D| of the discriminating code.

42 2.5. Existing work on identifying codes in (di)graphs related to this thesis

k-bounded Min Discrim Code

INSTANCE: An I-identi�able set system (I,A) such that each element of A has size at most k.
SOLUTION: A discriminating code D ⊆ A of (I,A).
MEASURE: The cardinality |D| of the discriminating code.

The two decision problems related to discriminating codes and test covers are NP-complete:

Theorem 2.37 ([88]). Test Cover is NP-complete.

Theorem 2.38 ([37]). Discriminating Code is NP-complete, even when the bipartite incidence
graph of the instance set system is planar.

Because of the immediate proximity of their de�nitions,Min Test Cover andMin Discrim

Code have the same computational complexity. The following is known.

Theorem 2.39 ([71, 159]). Both Min Test Cover and Min Discrim Code are log-APX-
complete.

Theorem 2.40 ([71, 159]). For any k ≥ 1, both k-bounded Min Test Cover and k-bounded
Min Discrim Code are O(ln(k))-approximable. For any k ≥ 2, they are APX-hard.

These results follow from reductions to and fromMin Set Cover and k-bounded Min Set

Cover. The positive approximation results follow from the reductions from problemsMin Test

Cover and Min Discrim Code to Min Set Cover described in Reductions 2.22 and 2.23.
We note that by Observation 2.18, the problem of �nding an identifying code of a graph G can

be reduced to the one of �nding a discriminating code of a given set system. This implies that,
as a corollary of Theorems 2.39 and 2.40, Min Id Code is O(ln(n))-approximable (where n is
the number of vertices of the instance graph), and that Min Id Code is O(ln(∆))-approximable
for graphs of maximum degree ∆. However, the hardness results from Theorems 2.39 and 2.40
so not apply to Min Id Code. We will see that similar results hold indeed for this problem.

Decision problem Identifying Code

We de�ne the decision problem related to �nding an r-identifying code of a given size:

r-Identifying Code

INSTANCE: An r-identi�able graph G and an integer k.
QUESTION: Does G have an r-identifying code of size at most k?

The decision problem Identifying Code was �rst proved to be NP-complete in [61] by a
reduction from 3-SAT. This result was then improved by the following theorem, also by reduction
from 3-SAT:

Theorem 2.41 ([45]). r-Identifying Code is NP-complete for any r ≥ 1, even for bipartite
graphs.

Reductions from Vertex Cover have led to the two following theorems, showing that
Identifying Code is NP-complete in restricted subclasses of planar graphs:

Theorem 2.42 ([9]). Identifying Code is NP-complete, even when restricted to planar graphs
of maximum degree 3 and with girth 9. r-Identifying Code is NP-complete for any r ≥ 1 when
restricted to planar graphs of maximum degree 3.

Theorem 2.43 ([6]). Identifying Code is NP-complete, even when restricted to planar graphs
of maximum degree 4 and with arbitrarily large girth.

The following theorem (via a reduction from Planar 3-SAT) showed that Identifying
Code is hard, even in planar bipartite unit disk graphs. It is a well-known fact that unit disk
graphs are induced K1,6-free.

Theorem 2.44 ([161]). Identifying Code is NP-complete, even when restricted to planar
bipartite unit disk graphs, and hence to planar bipartite induced K1,6-free graphs.

Chapter 2. De�nitions, notations and related work 43

The problem, when extended to digraphs, is also intractable in several special cases.

Directed Identifying Code

INSTANCE: An identi�able digraph D and an integer k.
QUESTION: Does D have an identifying code of size at most k?

Theorem 2.45 ([44]). Directed Identifying Code is NP-complete, even when restricted to
strongly connected asymmetric bipartite digraphs and to asymmetric bipartite digraphs without
directed cycles.17

On the positive side, we have the following theorems regarding trees:

Theorem 2.46 ([6]). There is a linear-time algorithm to solve Identifying Code for the class
of trees.

Theorem 2.47 ([41]). There is a linear-time algorithm to solve Directed Identifying Code

for the class of oriented trees.

In fact, using the framework of monadic second-order logic, one can generalize Theorem 2.46
using the following proposition:

Proposition 2.48 ([156, Chapter 2]). Given a graph G and an integer k, let ID(G, k) be the
property that γID(G) ≤ k. Property ID(G, k) can be expressed in MSOL(τ1).

We get the following corollary of Theorem 2.11:

Corollary 2.49. Identifying Code can be solved in linear time when restricted to classes of
graphs having their clique-width (and hence tree-width) bounded by a constant.

We remark however, that Corollary 2.49 does not provide practical linear-time algorithms,
as the algorithms given by this technique have huge complexities, due to constants that are
exponential in the length of the MSOL(τ1) formula.

Optimization problem Min Id Code

Regarding the optimization problem Min Id Code, the following theorems are known:

Theorem 2.50 ([21, 143, 187]). Min Id Code is log-APX-complete.

Theorem 2.51 ([94]). Min Id Code is APX-hard, even in graphs of maximum degree 8.

In fact, we note that the reduction from Vertex Cover of [9] giving Theorem 2.42 can
also be seen as an L-reduction when applied to non-planar subcubic graphs; this strengthens
Theorem 2.51 in the following way:

Theorem 2.52 ([9]). Min Id Code is APX-hard, even in graphs of maximum degree 3 and
girth 9.

When considering Min Id Code for planar graphs, we can make use of Theorem 2.34,
stating that n+10

7 ≤ γLD(G) for any identi�able planar graph G (recall that if G is identi�able,
γLD(G) ≤ γID(G)), since V (G) is always an identifying code of any identi�able graph G:

Corollary 2.53. Min Id Code and Min Loc-Dom Set are 7-approximable for planar graphs.

Locating-dominating sets

In the literature, the computational complexity of �nding an identifying code is often studied
together with the one of �nding a locating-dominating set. We brie�y recall some of the results,
before mentioning that when dealing with approximation theory, these problems are closely re-
lated. But �rst, we formally de�ne the computational problems related to locating-dominating
sets:

17A digraph is strongly connected if for every two vertices x, y there is a directed path from x to y.

44 2.5. Existing work on identifying codes in (di)graphs related to this thesis

Locating-Dominating Set

INSTANCE: A graph G and an integer k.
QUESTION: Does G have a locating-dominating set of size at most k?

Min Loc-Dom Set

INSTANCE: A graph G.
SOLUTION: A locating-dominating set C of G.
MEASURE: The cardinality |C| of the set.

We have the following theorems:

Theorem 2.54 ([183]). Locating-Dominating Set has a linear-time algorithm for trees.

Theorem 2.55 ([62]). Locating-Dominating Set is NP-complete, but polynomial-time solv-
able in the class of series-parallel graphs.

We note that similar methods than the ones used for Corollary 2.49 for the case of identifying
codes can be used to extend the previous positive complexity results to all graphs of bounded
clique-width.

Theorem 2.56 ([187]). Min Loc-Dom Set is log-APX-complete.

Theorem 2.57 ([94, 187]). Min Loc-Dom Set is APX-complete when restricted to graphs of
maximum degree 5.

We note that all (in)approximability results for Min Id Code carry over to Min Loc-Dom

Set with a multiplicative factor of 2 on the performance ratios:

Theorem 2.58 ([94]). Let G be an identi�able graph. We have γLD(G) ≤ γID(G) ≤ 2γLD(G).

The proof of Theorem 2.58 is constructive: given a locating-dominating set D of G, the
authors of [94] show a simple way to obtain an identifying code of G of cardinality at most 2|D|.
The reverse construction is trivial, since any identifying code is a locating-dominating set. Using
this result, we are able to tightly link the complexity of approximating Min Loc-Dom Set and
Min Id Code:

Corollary 2.59. Any α-approximation algorithm for Min Loc-Dom Set or Min Id Code

can be transformed into a 2α-approximation algorithm for Min Id Code or Min Loc-Dom

Set, respectively.

Corollary 2.60. If it is NP-hard to α-approximate Min Id Code or Min Loc-Dom Set, then
it is NP-hard to α

2 -approximate Min Loc-Dom Set or Min Id Code, respectively.

Dominating sets

The computational complexity of �nding a dominating set of a graph is a well-studied problem.
We will relate this complexity to the one of �nding an identifying code in Tables 1.8 and 1.9 for
various graph classes.

In general, Dominating Set is NP-complete [88] and Min Dom Set is log-APX-complete
[127, 171]. Of course, when restricted to some graph classes, these general complexities vary. We
do not formally present all results regarding this topic, but refer to Figure 1.10 instead, which
graphically represents some of the known results, and to Table 1.8 and 1.9, where references to
the literature can be found for all covered graph classes. We also refer the reader to [54], [109,
Chapter 12] and to [110, Chapters 8 and 9] for further reference.

Part I

Combinatorial aspects

Chapter 3. Extremal (di)graphs for identifying codes 47

Chapter 3

Extremal (di)graphs for identifying codes

This chapter is dedicated to the study of those graphs and digraphs that reach the upper
bound of Theorem 2.17 for the minimum size of a discriminating code1 and the re�ned upper
bound on the identifying code number of an undirected graph from Theorem 2.27. Recall that
for a �nite undirected graph G on n vertices, γID(G) = n if and only if G ∼= Kn; otherwise,
γID(G) ≤ n − 1 (Theorem 2.27). The case of digraphs was not much studied in the literature;
we point the reader to [41, 44, 181].

3.1 A useful proposition . 48

3.2 Digraphs with their whole vertex set as only identifying code . . . 48

3.3 The case of in�nite oriented graphs 52

3.4 Undirected graphs having as identifying code number their order
minus one . 55

3.5 In�nite undirected graphs with their whole vertex set as only iden-
tifying code . 59

3.6 Conclusion . 60

We start with providing a general tool in Section 3.1 that we will use several times in this
chapter (Proposition 3.1). This result will allow us to work using induction.

In Section 3.2, we show that the class of digraphsD with
−→
γID(D) = |V (D)| is much richer than

in the undirected case by exhibiting a new family of oriented graphs satisfying this property. This
family can be described as the set of oriented graphs that are the closure of some top-down rooted
oriented tree. We then give a full characterization of digraphs D for which

−→
γID(D) = |V (D)| in

Theorem 3.8 by showing that any such graph is the closure of an oriented tree as described before.
We then apply this theorem to extremal cases in Bondy's theorem, by giving, in Theorem 3.11,
a characterization of those set systems that have the set of all elements as only discriminating
code (stated in the language of Bondy's theorem, they are such that any removal of an element
will make one set empty).

In Section 3.3, we tackle the case of in�nite digraphs having their whole vertex set as unique
identifying code. We extend the previous class of closures of rooted oriented trees to in�nite trees
de�ned similarly. We then characterize all in�nite oriented graphs having their whole vertex set
as unique identifying code in Theorem 3.15 by proving that they must also be isomorphic to
the closure of some in�nite oriented tree. It seems that this result cannot be extended easily to
directed graphs, a case that we leave open.

Then, in Section 3.4, we investigate those �nite undirected graphsG with γID(G) = |V (G)|−1.
We introduce a new in�nite family of such graphs in De�nition 3.21, and show that, roughly
speaking, the closure of this family under disjoint union and complete join still yields examples of
graphs G with γID(G) = |V (G)|−1. We then fully characterize all those graphs in Theorem 3.27,
by showing that they are either a star or built in the way described above.

Finally, in Section 3.5, we extend De�nition 3.21 to de�ne an in�nite undirected graph that
we call A∞. We show that this graph, as well as other in�nite graphs built from it, need their

1This bound, of course, also holds for the identifying code number of a (di)graph.

48 3.1. A useful proposition

whole vertex set in any identifying code. We show that this construction fully describes all such
in�nite undirected graphs in Theorem 3.31.

The results contained in this chapter appeared in [FGK+11] (joint work with E. Guerrini,
M. Kov²e, R. Naserasr, A. Parreau and P. Valicov) for those dealing with undirected graphs, and
in [FNP12] (joint work with R. Naserasr and A. Parreau) for those about digraphs.

We point out that compared to the version of [FGK+11] that has been published, a minor
�aw has been corrected in the proof of Theorem 3.27 (Case b).

3.1 A useful proposition

In this section, we provide a proposition that is useful for proving upper bounds on minimum
identifying codes by induction. We will use it indeed in the proofs of several theorems of this
chapter.

We give a general version of this proposition, for the case of discriminating codes. This
version was also given in A. Parreau's PhD thesis [167, Proposition 2.6]. As a matter of fact, this
proposition is also valid for the cases of identifying codes in digraphs and in undirected graphs,
since these are sub-problems of the discriminating code problem. Up to our knowledge, this
proposition was �rst given in [FGK+11, Proposition 3] for the speci�c case of identifying codes
in undirected graphs.

Proposition 3.1. Let (I,A) be an I-identi�able set system, and let S ⊆ I. Denoting (I ′,A′)
the set system obtained from (I,A) by removing all elements of S, let C ⊆ I ′ be a discriminating
code of (I ′,A′). Then, (I,A) has a discriminating code of size at most |C|+ |S|.

Proof. First of all, note that since (I,A) is I-identi�able, (I ′,A′) is I ′-identi�able (removing
elements does not destroy this property). Let C ⊆ I ′ be a discriminating code of (I ′,A′), and
let us order the elements of S arbitraily i1, . . . , i|S|. We set C0 = C and follow the given order
in a step by step procedure. At each step k, we build the set Ck from Ck−1 as follows. If Ck−1

dominates and separates all the elements of (I \S)∪{i1, . . . , ik} in the original set system (I,A),
we let Ck = Ck−1. Otherwise, either ik does not belong to any set of Ck−1, or it is not separated
from some unique element i. In the �rst case, we add any set of I containing ik to Ck−1 to build
Ck. In the other case, since (I,A) is I-identi�able, there exists a set of A which separates ik
from i; we add this set to Ck−1 to get Ck. It is clear that in the end of the process, all elements
are dominated and separated. Since at each step, we have only added at most one element to
the solution, the claim follows. 9

Of course, since an identifying code in a (di)graph is just a discriminating code in its closed
(out-)neighbourhood hypergraph, Proposition 3.1 also holds for these special cases. However,
we would like to apply Proposition 3.1 to (di)graphs G in such a way that we choose a set S of
vertices, and consider a (minimum) identifying code of G− S. For this, we need the additional
condition that G− S is identi�able.

Proposition 3.2. Let D be an identi�able digraph and let S be a subset of its vertices such that

D − S is identi�able. Then
−→
γID(D) ≤ −→γID(D − S) + |S|.

We state the previous proposition with digraphs, but of course it can be applied to undirected
graphs since an identifying code of an undirected graphG is just an identifying code of the digraph
obtained from G by replacing each edge by two symmetric arcs.

3.2 Digraphs with their whole vertex set as only identifying code

In this section, we classify all �nite digraphs in which the whole vertex set is the only identifying
code. We call such digraphs extremal.

Chapter 3. Extremal (di)graphs for identifying codes 49

3.2.1 A new family of extremal digraphs

As for the case of undirected graphs, a digraph D with no arc has
−→
γID(D) = |V (D)|. However,

there are more examples for which this holds, such as the digraph on two vertices and with a
unique arc, or the one on three vertices (a source and two sinks) and two arcs (see Figure 3.1).

Figure 3.1: Two small extremal digraphs

As we will see, there are much more such digraphs. We begin with the following de�nitions
of operations on digraphs, illustrated in Figure 3.2, which will help us to describe them.

We recall that the disjoint union of two digraphs D1 and D2, D1 ⊕D2, is the digraph whose
vertex set is V (D1) ∪ V (D2) and whose arc set is A(D1) ∪A(D2).

Given a digraph D and a vertex x not in V (D) we de�ne x−→/ (D) to be the digraph with
vertex set V (D)∪{x} whose arcs are the arcs of D together with each arc −→xv for every v ∈ V (D).

D1 D2

D1 ⊕D2

x D

x−→/ (D)

Figure 3.2: Illustrations of the two operations

De�nition 3.3. Let (K1,⊕,−→/) be the closure of the one-vertex graph K1 with respect to the
operations ⊕ and −→/ . That is, the class of all graphs that can be built from K1 by repeated
applications of ⊕ and −→/ .

The transitive closure of a digraph D is a digraph obtained from D by adding the arc −→xy
whenever there is a directed path from x to y. We recall that a rooted oriented tree is an
oriented tree with a speci�c vertex v (called the root) such that for every other vertex u the path
connecting u to v is a directed path from v to u. In such a tree, given an arc −→xy, we say that x
is the parent of y and that y is a child of x. The vertices with a directed path to x are called
ancestors of x and vertices with a directed path from x are descendants of x. A rooted oriented
forest is a disjoint union of rooted oriented trees.

By these de�nitions it is easy to check that:

Observation 3.4. Every element of (K1,⊕,−→/) is the transitive closure of a rooted oriented
forest.

For a digraph D in (K1,⊕,−→/) let us denote by
−→
F (D) the rooted oriented forest whose

transitive closure is D.

Proposition 3.5. For every digraph D in (K1,⊕,−→/) we have
−→
γID(D) = |V (D)|. Furthermore,

if a vertex x is a source in D, then V (D)− x is a separating code of D. Otherwise, the vertex x

and its parent in
−→
F (D) are the only ones not being separated from each other by the set V (D)−x.

Proof. Let C be an identifying code of D. Except for its roots, each vertex of the forest
−→
F (D)

must be in C in order to be separated from its parent. But the sources need also to be in C in
order to be dominated. 9

50 3.2. Digraphs with their whole vertex set as only identifying code

LetD be an identi�able digraph with vertex set {x1, x2, · · · , xn} and letA = {N+[x1], N+[x2],
. . . , N+[xn]}. Then (A, V (D)) forms a set system satisfying the conditions of Bondy's theorem.
Therefore we have:

Proposition 3.6. Let D be a �nite identi�able digraph. Then
−→
γS(D) ≤ |V (D)| − 1.

The following corollary of the previous proposition will also be needed.

Proposition 3.7. In a �nite identi�able digraph D,
−→
γID(D) = |V (D)| if and only if

−→
γS(D) =

|V (D)|−1 and for every minimum separating code of D, there is a vertex which is not dominated.

Proof. Suppose
−→
γID(D) = |V (D)|. By Proposition 3.6 we know that

−→
γS(D) ≤ |V (D)|−1. On the

other hand,
−→
γID(D) ≤ −→γS(D)+1 thus

−→
γS(D) = |V (D)|−1. Now, if all the vertices were dominated

by some minimum separating code of D, that code would also be identifying, a contradiction.

Conversely, if
−→
γS(D) = |V (D)| − 1 and for any minimum separating code of D, there is a

vertex which is not dominated, we are forced to take all the vertices in any identifying code in
order to get the domination property. 9

3.2.2 The characterization

The following theorem shows that the family of De�nition 3.3 is exactly the class of �nite digraphs
in which the whole vertex set is the only identifying code.

Theorem 3.8. Let D be a �nite identi�able digraph. If
−→
γID(D) = |V (D)| then D ∈ (K1,⊕,−→/).

Proof. By contradiction, assume D is the smallest digraph for which
−→
γID(D) = |V (D)| but

D /∈ (K1,⊕,−→/). We consider two cases:
Case a. Assume that there exists a vertex x of D such that x has no out-neighbours. Then

D − x is an identi�able digraph. By Proposition 3.2 we have
−→
γID(D − x) = |V (D − x)| and,

therefore, by the minimality of D, D − x ∈ (K1,⊕,−→/). Thus
−→
F (D − x) is well-de�ned. Since

V (D) − x is not an identifying code of D, in V (D) − x either there is a vertex y which is not
separated from x, or x is not dominated.

If x is not dominated, then x is an isolated vertex and, therefore, D is the disjoint union of
two members of (K1,⊕,−→/), hence D is also in the family. So, there is a vertex y which is not
separated from x. Therefore, N+(x) = N+(y) ∪ {y}. Then D is the transitive closure of the

oriented tree built from
−→
F (D − x) by adding x as a child of y, a contradiction.

Case b. Every vertex has at least one out-neighbour. By Proposition 3.6 we know that
there exists a vertex x such that D − x is identi�able and as in the previous case

−→
F (D − x) is

well-de�ned.
Since every vertex, in particular, every leaf t of

−→
F (D − x) has an out-neighbour in D, we

must have
−→
tx ∈ A(D). Thus d+(x) ≥ 1 and, therefore, V (D)− x is a dominating set. But since

it is not an identifying code there is a vertex y 6= x which is not separated from x by V (D)− x,
i.e., N+(x) = N+(y) ∪ {y}.

We now claim that y is the only leaf of
−→
F (D − x). That is because if t 6= y is a leaf then

t ∈ N+(x) so t ∈ N+(y) which is a contradiction. But there has to be at least one leaf in−→
F (D − x) thus y is the only leaf in

−→
F (D − x) and, therefore,

−→
F (D − x) is a path. Now since

d−(x) > 0, there is a vertex in N−(x). We have y /∈ N−(x) since otherwise we would have
N+(x) = N+(y).

First, assume that there exists a vertex t ∈ N−(x) such that the parent of t in
−→
F (D − x) is

not in N−(x). We claim that C = V (D)− t is an identifying code. Indeed, x is the only vertex
dominated by all vertices of C. Vertex t and its parent are separated by x. Finally, each other
pair of vertices from V (D) − x is separated by the one which is a descendant of the other in−→
F (D − x).

Now, assume that there is no vertex in N−(x) with its parent in
−→
F (D− x) not belonging to

N−(x). Let r be the root of
−→
F (D − x). In particular, r ∈ N−(x). We claim that C = V (D)− r

is an identifying code. Indeed, x is the only vertex dominated by all vertices of C. Each pair of

Chapter 3. Extremal (di)graphs for identifying codes 51

vertices from V (D)− x is separated by the one which is a descendant of the other in
−→
F (D− x).

Finally, r is the only vertex which is dominated only by x. 9

3.2.3 An application to extremal cases in Bondy's theorem

In this section, unless speci�cally mentioned, a set system is a pair (A, X) with X being any set
of size n and A being a collection of n distinct subsets of X. When applying Bondy's theorem
(Theorem 2.16) to a set system (A, X) where all subsets in A are distinct and nonempty, it is a
natural request to be able to choose an element x of X such that Ai − x 6= ∅ for each Ai ∈ A.2
Such set systems will be called extremal. More precisely, an extremal set system is a set system
(A, X) in which elements of A are all distinct and nonempty, and where for any element x of X
either there is an element Ai ∈ A with Ai−x = ∅ or there is a pair of distinct sets Ai, Aj ∈ A such
that Ai−x = Aj−x. In other words, they are the set systems that have only one discriminating
code: the whole set X. In this section we characterize all such extremal cases.

We would like to mention that almost any proof of Bondy's theorem (e.g., see [15, 26, 28, 147])
works for an extension of this theorem in which we are allowed to have more elements in X than
in A. We then look for a subset X ′ ⊂ X of size |X| − |A| + 1 such that all the induced sets
Ai−X ′ are distinct. The following proposition is now an easy consequence of this general version
of Bondy's theorem.

Proposition 3.9. Let (A, X) be a set system with |X| > |A| where all the subsets in A are
distinct and nonempty. There is a subset X ′ of X of size |X| − |A| such that all the subsets
A ∩ (X −X ′) for A ∈ A are nonempty and distinct.

Proof. Let X0 be the subset of size |X| − |A|+ 1 found by extended version of Bondy's theorem
i.e., all the subsets A ∩ (X − X0) are distinct. Thus there is at most one subset A0 such that
A0 ∩ (X −X0) is empty. Let x0 ∈ X0 be an element of A0. Then X ′ = X0 − {x0} satis�es the
proposition. 9

As in the case of set systems, one can also de�ne the incidence bipartite graph of a digraph. To
this end, given a digraph D on a vertex set {x1, x2, · · · , xn}, we de�ne B(D) to be the bipartite
graph on S = {x1, x2, · · · , xn} and T = {x′1, x′2, · · · , x′n} with xi being adjacent to x′j if either−−→xixj ∈ A(D) or i = j. The latter condition of adjacency implies that for a bipartite graph to
be the incidence bipartite graph of some digraph it must admit a perfect matching. Below we
prove that this is also a su�cient condition.

Lemma 3.10. A bipartite graph G = (S ∪T,E) is the incidence bipartite graph of some digraph
D if and only if |S| = |T | and G admits a perfect matching ϕ : S → T .

Proof. It follows from the de�nition of the incidence bipartite graph of a digraph that G must
have both parts of the same size and admits a perfect matching which matches the two copies
of each vertex.

Now, given a bipartite graph G with parts S and T of equal size together with a perfect
matching ϕ, one can construct a digraph D with vertex set S in the following way. For each pair
x, y of vertices if xϕ(y) ∈ E(G), then −→xy is an arc of D. The constructed digraph has G as its
incidence bipartite graph. 9

An example of the correspondence between a bipartite graph with a perfect matching (thick
edges) and a digraph is given in Figure 3.3.

We are now ready to achieve our goal of classifying the extremal set systems in Bondy's
theorem when |A| = |X|.
Theorem 3.11. A set system (A, X) with |A| = |X| is extremal if and only if its incidence
bipartite graph B(A, X) is the incidence bipartite graph of a digraph in (K1,⊕,−→/).

2This is not always possible: consider the set system A consisting of all singletons of X.

52 3.3. The case of in�nite oriented graphs

A

{1}

{1, 3}

{2, 3}

{1, 3, 4}

X

1

2

3

4 {1}/1 {2, 3}/2

{1, 3}/3 {1, 3, 4}/4

Figure 3.3: A bipartite graph B(A, X) with a perfect matching (thick edges) and
the corresponding digraph

Proof. If B(A, X) is the incidence bipartite graph of a member D of (K1,⊕,−→/), then by The-

orem 3.8 we have
−→
γID(D) = |V (D)| thus by Proposition 3.7 with any separating code of size

|V (D)| − 1 there must be a vertex which is not dominated. Any separating code V (D)− x of D
corresponds to the choice of x in Bondy's theorem, and leaves some vertex in D undominated
� that is, there exists Ai ∈ A such that Ai − x = ∅. Hence (A, X) is extremal.

For the other direction, we distinguish two cases.
Case a. B(A, X) admits a perfect matching. Then the directed graph D built from B(A, X)

using this matching as in the method of Proposition 3.7 is such that
−→
γID(D) = |V (D)|. Thus by

Theorem 3.8, D ∈ (K1,⊕,−→/) and we are done.
Case b. B = B(A, X) does not contain a perfect matching. Then by P. Hall's marriage

theorem (Theorem 2.1), there is a subset X ′ of X such that |NB(X ′)| < |X ′|. For Ai ∈ A we
de�ne A′i = Ai ∩X ′ and A′ = {A′1 · · ·A′|A|} − ∅. Consider the set system (A′, X ′) (|A′| < |X ′|).
By Proposition 3.9 there is an element x0 in X ′ such that A′i− x0 are all nonempty and distinct
as long as they induce distinct elements in A′. Now it is easy to check that X − x0 induces
nonempty and distinct elements on A. 9

Using the previous theorem we can describe the extremal set systems (A, X) with |A| = |X|
purely in the terminology of sets:

Corollary 3.12. A set system (A, X) with |A| = |X| is extremal if and only if:

• ⋃Ai∈AAi = X

• for any subset Ai with at least two elements, there is an element x of Ai such that Ai−x ∈ A
Proof. If D is a digraph of (K1,⊕,−→/), it is easy to see that the set system corresponding to its
incidence bipartite graph B(D) has the properties.

Now, let (A, X) be a set system having the properties of the corollary. Assume there is an
element x such that all Ai − x are distinct and nonempty. Take Ai to be the smallest subset
containing x, it exists because

⋃
Ai = X. Then Ai 6= {x} and so there is an element y such that

Ai − y = Aj . Then necessarily x 6= y and Aj is a smaller set than Ai containing x. This is a
contradiction. 9

3.3 The case of in�nite oriented graphs

In this section, we consider the case of in�nite digraphs in which the whole vertex set is the only
identifying code. To avoid set theoretic problems we only consider in�nite graphs on a countable
vertex set.

3.3.1 Families of extremal in�nite oriented graphs

As we will see in Section 3.5, the set of symmetric digraphs that are extremal with respect to
identifying codes is very rich. Hence the family of all such digraphs (not necessarily symmetric)

Chapter 3. Extremal (di)graphs for identifying codes 53

seems to be too rich to characterize. In this section, we provide such a characterization for the
class of all oriented graphs. We begin with some de�nitions.

A connected (and possibly in�nite) oriented graph D is a �nite-source transitive tree (f.s.t.
tree for short) if:

(1) for each vertex v of D, N+[v] induces the transitive closure of a �nite directed path, Pv,
with v as its end vertex, and

(2) for each pair x, y of vertices, there is a vertex z ∈ V (D) such that Px ∩ Py = Pz.

Note that in an f.s.t. tree D, since each path Px is �nite, point (2) of the de�nition implies that
for any pair x, y of vertices, Px and Py begin with the same vertex. Hence all paths Px begin
with the same vertex, which is the unique source of D.

An oriented graph D is an in�nite-source transitive tree (i.s.t. tree for short) if:

(1) for all vertices x of D, N+[x] induces the transitive closure of an in�nite path (we denote
it by Px), and

(2) for any pair x, y of vertices of D, there is a vertex z ∈ V (D) such that Px ∩ Py = Pz.

Note that an i.s.t. tree has no source vertex but one can imagine in�nity as its source.
Finally we say that an oriented graph D is a source transitive tree if it is either an f.s.t. tree

or an i.s.t. tree, see Figure 3.4 for examples. For each pair x, y of vertices of a source transitive
tree D, paths Px and Py share the vertices of a path Pz which includes the �beginning� of both
Px and Py. Hence, all arcs of D can be oriented in the same direction. Moreover, there cannot
be any cycle in the union of all paths Px. This implies that each source transitive tree D is the
transitive closure of a �nite or in�nite �rooted� oriented tree (even if an i.s.t. tree has no properly
de�ned root vertex, one can regard in�nity as its root) which we call the underlying tree of D.
Notice that the collection of f.s.t. trees on a �nite set of vertices is exactly the set of connected
elements of (K1,⊕,−→/).

��

���� �� �� ������

��
��
��
��
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���� �� ������ ��

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�
�

���������� ������

�������� ����

��
��
��
��

��

��

· · ·

··
·

ist-tree

· · ·

fst-tree on a �nite set fst-tree on an in�nite set

Figure 3.4: Underlying trees of source transitive trees

Proposition 3.13. The only identifying code of a source transitive tree is its whole set of vertices.

Proof. Let D = (V,A) be a source transitive tree and x be any vertex of D. If x is a source (it
can only happen if D is an f.s.t. tree), then x must be in any identifying code of D in order to
be dominated. If x is not a source, then to separate x from its parent in the underlying tree of
D, x itself must be in any identifying code. 9

54 3.3. The case of in�nite oriented graphs

We are now ready to build the whole family of oriented graphs that need their whole vertex
set to be identi�ed. To this end given any oriented graph H we �rst build the family Ψ(H) of
extremal oriented graphs as follows:

For each vertex x of H if x is a source of H, then we assign an f.s.t. tree Tx to x. If x is
not a source, then we assign an i.s.t. tree Tx to x. The choice of Tx is free but each Tx has its
distinct set of vertices. For each arc −→xy of H we also associate a subset V−→xy of V (Tx) (the choice
of V−→xy is also free). We now build a member of Ψ(H) by taking ∪V (Tx) as the vertex set, arcs
of Tx are also arcs of the new graph and, furthermore, for any z ∈ V−→xy and any t ∈ V (Ty), we

add an arc
−→
zt.

Proposition 3.14. Given an oriented graph H, any digraph D in Ψ(H) can only be identi�ed
by its whole vertex set.

Proof. The sources of D are exactly the sources of the f.s.t. trees Tx for source-vertices x of H
and need to be in any identifying code in order to be dominated. If a vertex u of D is not a
source, then it is in an fst or i.s.t. tree Tx and there is, like in the proof of Proposition 3.13, a
vertex v of Tx such that N+[u]∩ V (Tx) = (N+[v]∩ V (Tx))∪ {u} (v simply is the parent of u in
the underlying tree of Tx). By our construction, any incoming neighbour of u not in Tx is also
an incoming neighbour of v so N+[u] = N+[v] ∪ {u} and u must be in any identifying code of
D. 9

3.3.2 The characterization

Theorem 3.15. Let D be an in�nite identi�able oriented graph. Then a proper subset of V (D)
is an identifying code of D unless G ∈ Ψ(H) for some �nite or in�nite oriented graph H.

Proof. Let D be an in�nite oriented graph that needs its whole vertex set to be identi�ed. Let x
be a vertex of D. The set V (D)−{x} is not an identifying code. Either x is not dominated and
so, x is a source or there is a pair of vertices, say u and v, such that N+[v] = N+[u] ∪ {x}. If
x 6= v, we must have −→uv ∈ A and −→vu ∈ A. Since D has no symmetric arc, this is not possible so,
necessarily, x = v, N+[x] = N+[u]∪{x} and u is the only vertex such that N+[x] = N+[u]∪{x}.
So for any vertex x of D which is not a source there is a unique vertex we call x−1 such that
N+[x] = N+[x−1] ∪ {x}. We may repeat this argument on x−i to get x−i−1 for i = 1, 2, · · · as
long as x−i is not a source. This will result in a well de�ned set {· · · , x−i, · · · , x0 = x} which
induces a transitive closure of a �nite or in�nite path, which we denote by Px (if x is a source
itself, then Px = {x}).

Assume that for two vertices x and y, Px ∩ Py 6= ∅. Then let xi be the �rst (in the order
de�ned by the path Px) vertex of Px in Px ∩ Py. We have Px ∩ Py = Pxi .

We now de�ne an equivalence relation on the vertices of D: x ≡ y if and only if Px ∩Py 6= ∅.
This gives us the equivalence class of x: Tx = {y ∈ V (D)|x ≡ y}. The set of vertices of Tx
induces either an f.s.t. tree or an i.s.t. tree in D. Furthermore, if u /∈ Tx, then −→uv is an arc of D
for either every v ∈ V (Tx) or no v ∈ V (Tx). In fact, if there is an arc −→uy in D for y ∈ Tx, then
if z ∈ Tx we have Py ∩ Pz = Pyi . But N+[y] = N+[t] ∪ {y, y−1, ..., yi+1} so u ∈ N+[t]. Now,
N+[t] ⊂ N+[z] so u ∈ N+[z] and −→uz is also an arc of D.

We construct a graph H as follows: the vertices of H are the equivalence classes Tx and there
is an arc

−−→
TxTy if there is an arc −→uv of D such that u ∈ V (Tx) and v ∈ V (Ty). It is now clear that

D ∈ Ψ(H). 9

We conclude this section by the following remarks:

• The proof of Theorem 3.15 also works for the classi�cation of �nite oriented graphs with−→
γID(D) = |V (D)|. But the characterization of Theorem 3.8 is for all digraphs, thus it is a
stronger statement.

• The oriented graphs for which the only separating code is their whole vertex set are graphs
in Ψ(H) as long as H has no source vertex.

Chapter 3. Extremal (di)graphs for identifying codes 55

3.4 Undirected graphs having as identifying code number their
order minus one

In this section, we characterize all graphsG for which γID(G) = |V (G)|−1. As already mentioned,
it was known that γID(G) = |V (G)| if and only if G ∼= Kn. Graphs with identifying code
number |V (G)| − 1 were already studied in [46, 181]. Some of them where known: the star
K1,n−1 (n ≥ 3) [46], the complete graph minus the edges of a maximum matching M , Kn \M
(n ≥ 3) [46], and the complete join of at least one copy of P4 with a possible additional universal
vertex [181]. Moreover, two conjectures had been made about them:

Conjecture 3.16 ([46, Conjecture 1]). The only connected graphs with n vertices such that
there is a minimum identifying code with size n− 1 are the star and the complete graph minus a
maximum matching.

Conjecture 3.17 ([181, Conjecture 3.13]). If γID(G) = |V (G)|−1, then either G is the complete
join of at least one copy of P4 with a possible additional universal vertex, or G is not identi�able.

In the following, we disprove both these conjectures by providing new examples of graphs
with identifying code number |V (G)| − 1 (whose complement is identi�able); special powers of
paths are the basic examples of such graphs. We then prove that any other example is mainly
obtained from the complete join of some of these basic elements.

3.4.1 Preliminary tools

The following proposition is useful when considering the join operation between two graphs. We
recall that γS(G) denotes the separating code number of an identi�able graph G.

Proposition 3.18. Let G1 and G2 be identi�able graphs such that for every minimum separating
code S there is an S-universal vertex. If G1 ./ G2 is identi�able, then we have γS(G1 ./ G2) =
γS(G1) + γS(G2) + 1. Furthermore, if S is a separating code of size γS(G1) + γS(G2) + 1 of
G1 ./ G2, then there is an S-universal vertex.

Proof. Let S be a minimum separating code of G1 ./ G2. Since vertices of G2 do not separate any
pair of vertices in G1 then S∩V (G1) is a separating code of G1. By the same argument S∩V (G2)
is a separating code of G2. Therefore, |S| ≥ γS(G1) + γS(G2). But if |S| = γS(G1) + γS(G2),
then there is an [S ∩ V (G1)]-universal vertex x in G1 and an [S ∩ V (G2)]-universal vertex y in
G2. But then, x and y are not separated by S.

Given a separating code S1 of G1 and a separating code S2 of G2, the set S1 ∪ S2 separates
all pairs of vertices except the S1-universal vertex of G1 from the S2-universal vertex of G2. But
since G1 ./ G2 is identi�able, we could add one more vertex to S1 ∪ S2 to obtain a separating
code of G1 ./ G2 of size γS(G1) + γS(G2) + 1.

For the second part assume S is a separating code of size γS(G1) + γS(G2) + 1 of G1 ./ G2.
Then we have either |S ∩ V (G1)| = γS(G1) or |S ∩ V (G2)| = γS(G2). Without loss of generality
assume the former. Then there is an [S∩V (G1)]-universal vertex z of G1. Since z is also adjacent
to all the vertices of G2, it is an S-universal vertex of G1 ./ G2. 9

We remark that in Proposition 3.18, if G1 � K1 and G2 � K1, then γID(G1 ./ G2) = γS(G1 ./
G2) = γS(G1) + γS(G2) + 1.

We will also need the following strengthening for the case |S| = 1 of Proposition 3.2 for
identifying codes in connected undirected graphs:

Corollary 3.19. Let G be a connected identi�able graph with γID(G) = |V (G)| − 1, G � K1,2,
then there is a vertex x of G such that G− x is still connected and γID(G− x) = |V (G− x)| − 1.

Proof. If G ∼= K1,n−1, n 6= 3, then any leaf vertex works. Thus, we may suppose G � K1,n−1.
Then by Theorem 2.27, there is a vertex x of G such that V (G − x) is an identifying code of
G and thus G − x is identi�able and G − x � Kn. By Proposition 3.2, we have γID(G − x) ≥
γID(G)− 1 = |V (G− x)| − 1. Equality holds since otherwise γID(G) = |V (G)|. To complete the

56 3.4. Undirected graphs having as identifying code number their order minus one

proof, we show that x can be chosen such that G− x is connected. To see this, assume G− x is
not connected. Since γID(G− x) = |V (G− x)| − 1, except one component, every component of
G−x is an isolated vertex. If there are two or more such isolated vertices, then either one of them
can be the vertex we want. Otherwise there is only one isolated vertex, call it y. Now if G − y
is identi�able, then y is the desired vertex, else there is a vertex x′ such that N [x′] = N [x]− y.
Then G− x′ is connected and identi�able. 9

The following lemma will also be useful.

Lemma 3.20. Let G be an identi�able graph and let v ∈ V (G) be a vertex forced by a pair x, y
of vertices of G. If x or y are also forced by some pair, then v must be one of the vertices of this
pair.

Proof. Since v separates x and y, it is adjacent to one of them (say x) and not to the other.
Suppose z, t are twins in G− x. Suppose z is adjacent to x and t is not. If z 6= v then y is also
adjacent to z and, therefore, t is also adjacent to y which implies x being adjacent to t. This
contradicts the fact that x separates z and t. The other case is proved similarly. 9

3.4.2 New constructions

De�nition 3.21. For an integer k ≥ 1, let Ak = (Vk, Ek) be the graph with vertex set Vk =
{x1, . . . , x2k} and edge set Ek = {xixj

∣∣ |i− j| ≤ k − 1}.

xk+1 xk+2 xk+3 ... x2k−1 x2k

x1 x2 x3

...
xk−1 xk

Clique on {xk+1, ..., x2k}

Clique on {x1, ..., xk}

Figure 3.5: The graph Ak which needs |V (Ak)| − 1 vertices for any identifying
code

We note that for k ≥ 2 we have Ak = P k−1
2k (hence A2 = P4) and A1 = K2. It is also easy to

check that the only nontrivial automorphism of Ak is the mapping xi → x2k+1−i. It is not hard
to observe that Ak is identi�able, ∆(Ak) = 2k − 2 and that Ak and Ak are connected if k ≥ 2.

Proposition 3.22. For k ≥ 1, we have γS(Ak) = 2k− 1 with N [xk] and N [xk+1] being the only
separating codes of size 2k − 1 of Ak. Furthermore, if k ≥ 2, γID(Ak) = 2k − 1.

Proof. Let S be a separating code of Ak. For i < k, we have N [xi] 	 N [xi+1] = {xi+k} and
for k < i ≤ 2k − 1, we have N [xi] 	 N [xi+1] = {xi−k+1}. Thus, {x2, . . . , x2k−1} ⊂ S. But to
separate xk and xk+1, we must add x1 or x2k. It is now easy to see that Vk \{x1} = N [xk+1] and
Vk \ {x2k} = N [xk], each is a separating code of size 2k − 1. If k ≥ 2, then they both dominate
Ak and therefore are also identifying codes. 9

In the previous proof in fact we have also proved that:

Corollary 3.23. For k ≥ 1 every minimum separating code S of Ak has an S-universal vertex.
Let A be the closure of {Ai | i = 1, 2, . . .} with respect to the complete join operation ./.

It is shown below that elements of A are also extremal graphs with respect to both separating
codes and identifying codes.

Chapter 3. Extremal (di)graphs for identifying codes 57

Proposition 3.24. For every graph G ∈ A, we have γS(G) = |V (G)| − 1. Furthermore, every
minimum separating code S of G has an S-universal vertex.

Proof. The proposition is true for basic elements of A by Proposition 3.22 and by Corollary 3.23.
For a general element G = G1 ./ G2 it is true by Proposition 3.18 and by induction. 9

Corollary 3.25. If G ∈ A and G � A1, then γ
ID(G) = |V (G)| − 1.

Further examples of graphs extremal with respect to separating codes and identifying codes
can be obtained by adding a universal vertex to each of the graphs in A, as we prove below. We
let A ./ K1 denote the set of all graphs of A with an additional universal vertex.

Proposition 3.26. For every graph G in A ./ K1 we have γID(G) = γS(G) = |V (G)| − 1.

Proof. Assume G = G1 ./ K1 with G1 ∈ A, and assume u is the vertex corresponding to K1.
Suppose S is a minimum separating code of G. We �rst note that since S∩V (G1) is a separating
code of G1, we have |S ∩ V (G1)| ≥ |V (G1)| − 1. But if |S ∩ V (G1)| = |V (G1)| − 1, then by
Proposition 3.24, there is an [S ∩ V (G1)]-universal vertex y of G1. Then y is not separated from
x. Thus |S ∩ V (G1)| = |V (G1)| and therefore S = V (G1). It is easy to check that S is also an
identifying code. 9

It was proved in [46] that γID(Kn \M) = n− 1 where Kn \M is the complete graph minus a
maximal matching. We note that this graph, for even values of n, is the join of n2 disjoint copies
of A1, thus it belongs to A. For odd values of n, it is built from the previous graph by adding a
universal vertex.

So far we have seen that γID(G) = |V (G)| − 1 for G ∈ {K1,n−1 | n ≥ 3} ∪ A ∪ (A ./ K1),
G 6∼= A1. We also know that γID(Kn) = n. More examples of graphs with γID(G) = |V (G)| − 1
can be obtained by adding isolated vertices. In the next subsection we show that for any other
identi�able graph G we have γID(G) ≤ |V (G)| − 2.

3.4.3 The characterization

Theorem 3.27. Given a connected graph G, we have γID(G) = |V (G)| − 1 if and only if G ∈
{K1,n−1 | n ≥ 3} ∪ A ∪ (A ./ K1) and G 6∼= A1.

Proof. The �if� part of the theorem is already proved. The proof of the �only if� part is based
on induction on the number of vertices of G. For graphs on at most 4 vertices this is easy to
check. Assume the claim is true for graphs on at most n− 1 vertices and, by contradiction, let
G be an identi�able graph on n ≥ 5 vertices such that γID(G) = n − 1 and G /∈ {K1,n−1 | n ≥
3} ∪ A ∪ (A ./ K1).

By Corollary 3.19 there is a vertex x ∈ V (G) such that G−x is connected and γID(G−x) =
|V (G− x)| − 1. By the induction hypothesis we have G− x ∈ {K1,n−1 | n ≥ 3} ∪A∪ (A ./ K1).
Depending on which one of these three sets G− x belongs to, we will have three cases.

Case a. G− x ∈ {K1,n−1 | n ≥ 3}. In this case we consider a minimum identifying code C
of G− x. If C does not already identify x then either deg(x) ≤ 3 or deg(x) ≥ n− 2. We leave it
to the reader to check that in each of these cases, there is an identifying code of size n− 2.

Case b. G − x ∈ A. We consider two sub-cases. Either G − x ∼= Ak for some k or
G− x = G1 ./ G2, with G1, G2 ∈ A.

(1) G−x ∼= Ak, for some k ≥ 2. If x is adjacent to all the vertices of G−x, then G ∈ A ./ K1

and we are done. Otherwise there is a pair of consecutive vertices of Ak, say xi and xi+1,
such that one is adjacent to x and the other is not. By the symmetry of Ak we may
assume i ≤ k. We claim that one of the sets C = V (G) \ {x1, x}, C′ = V (G) \ {x2k, x} or
C′′ = V (G)\{xk, xk+1} is an identifying code of G. This would contradict our assumption.
Note that for each of the sets C, C′ and C′′, the vertices of V (G− x) are all separated. If x
is also separated from all the vertices of G− x then we are done. Otherwise there will be
two possibilities.

58 3.4. Undirected graphs having as identifying code number their order minus one

First we consider the possibility: x is not adjacent to some xi, but adjacent to xi+1.
Consider the set C. Each vertex xj , j > i+ k, is separated from x by xi+1 and each vertex
xj , j < i+ k, is separated from x by xi. Thus x is not separated from xi+k and therefore
x must be adjacent to xi+1, . . . , x2k−1. On the other hand, if C′ is not an identifying code
of G, it means that x is not separated only from xk (it is the only vertex adjacent to x2k−1

but not to x2k). Therefore, x is adjacent to exactly x2, . . . , x2k−1. In this case C′′ is an
identifying code of G. Indeed, x is separated from all other vertices of G. Since xk and xk+1

were needed only to separate x1 from x2 and x2k−1, x2k, respectively, x is now separating
these pairs.

In the other possibility, x is adjacent to xi but not adjacent to xi+1. If we consider C,
a similar argument implies that x is separated from every vertex but x2k. Then C′ is an
identifying code.

(2) G − x ∼= G1 ./ G2 with G1, G2 ∈ A. If x is adjacent to all the vertices of G − x, then
G ∈ A ./ K1 and we are done. Thus there is a vertex, say y, that is not adjacent to x.
Without loss of generality, we can assume y ∈ V (G1). Let C1 be an identifying code of
size γID(G1) = |V (G1)| − 1 of G1 which contains y. The existence of such an identifying
code becomes apparent from the proof of Proposition 3.24. Then C = C1 ∪ V (G2) is an
identifying code of G1 ./ G2 of size |V (G1 ./ G2)| − 1 = |V (G)| − 2. Thus C does not
separate a vertex of G1 ./ G2 from x. Call this vertex z. Since y ∈ C, z is not adjacent to
y, hence z ∈ V (G1). Therefore, z is adjacent to all the vertices of G2. So x should also be
adjacent to all the vertices of G2. Thus we have G = (G1 + x) ./ G2 and any minimum
identifying code of G1 +x together with all vertices of G2 would form an identifying code of
G. This proves that γID(G1 + x) = |V (G1 + x)| − 1. Since G1 + x has less vertices than G,
by induction hypothesis, we have G1 + x ∈ {K1,n−1 | n ≥ 3} ∪A∪ (A ./ K1) and G 6∼= A1.
Since G1 ∈ A, and since x is not adjacent to a vertex of G1, we should have G1 + x ∈ A
but all graphs in A have an even number of vertices and this is not possible.

Case c. G− x ∈ A ./ K1. Suppose G− x ∼= Ai1 ./ Ai2 .// Aij ./ K1 and let u be the
vertex corresponding to K1.

If x is also adjacent to u, then u is a universal vertex of G and G− u is also identi�able. In
this case we apply the induction on G− u: by Proposition 3.1, γID(G− u) = |V (G− u)| − 1 and
by induction hypothesis G−u ∈ {K1,n−1 | n ≥ 3}∪A∪ (A ./ K1). But if G−u ∈ {K1,n−1 | n ≥
3} ∪ (A ./ K1), there will be two universal vertices, and therefore twins. Thus G − u ∈ A and
G ∈ A ./ K1.

We now assume x is not adjacent to u and we repeat the argument with G − u if it is
identi�able. In this case if G − u ∈ {K1,n−1 | n ≥ 3} ∪ A, we apply Case a or Case b. If
G− u ∈ A ./ K1 with u′ being the vertex of K1, then u and u′ induce an isomorphic copy of A1

and G ∈ A.
If G−u is not identi�able then, by Lemma 3.20, x must be one of the twin vertices. Let x′ be

its twin and suppose x′ ∈ V (Ai1) with V (Ai1) = {z1, z2, . . . , z2k}. Without loss of generality we
may assume x′ = zl with l ≤ k. If l ≥ 2, then we claim C = V (G)\{zl, z2k} is an identifying code
of G which is a contradiction. To prove our claim notice �rst that vertices of Ai2 ./ · · · ./ Aij
are already identi�ed from each other and from the other vertices. Now each pair of vertices
of Ai1 is separated by a vertex in V (Ai1) ∩ C except zl+k−1 and zl+k which are separated by x.
The vertex x is also separated from all the other vertices by u. It remains to show that u is
separated from vertices of Ai1 . It is separated from vertices in {z1, . . . , zl+k−1} by x and from
{zk+1, . . . , z2k} by z1 (l ≥ 2). Thus x′ = x1 and now it is easy to see that the subgraph induced
by V (Ai1), u and x is isomorphic to Ai1+1 and, therefore, G ∼= Ai1+1 ./ Ai2 .// Aij . 9

3.4.4 Tightness of the bound of Theorem 2.27 in various graph classes

As we have classi�ed all graphs reaching this bound, we can determine for which graph classes the
bound γID(G) ≤ |V (G)|−1 is tight. We can observe that the star is a tree, and therefore it is also
outerplanar, series-parallel, planar, chordal, bipartite. One can check that each graph Ak is a unit

Chapter 3. Extremal (di)graphs for identifying codes 59

interval graph and a permutation graph [80], and that the graphs P3, P4, C4, P4 ./ K1, C4 ./ K1

and K6 \M are the only line graphs in the extremal family.

Corollary 3.28. There are in�nitely many trees (and therefore chordal graphs, bipartite graphs,
series-parallel graphs, (outer)planar graphs), unit interval graphs (and therefore interval graphs,
(un)directed path graphs and induced claw-free graphs) and permutation graphs G such that
γID(G) = |V (G)| − 1. There are exactly six such line graphs.

3.5 In�nite undirected graphs with their whole vertex set as only
identifying code

It is shown in [46] that Theorem 2.27 does not have a direct extension to the family of in�nite
graphs. In other words, there are nontrivial examples of identi�able in�nite graphs requiring the
whole vertex set for any identifying code. The basic example of such in�nite graphs, originally
de�ned in [46], is given in Subsection 3.5.1. In Subsection 3.5.2, we classify all such in�nite
graphs. This strengthens a theorem of [96] (see Theorem 2.28), which claims that there are no
such in�nite graphs in which all vertices have �nite degrees.

3.5.1 A family of in�nite extremal graphs

De�nition 3.29. Let X = {. . . , x−1, x0, x1, . . .} and Y = {. . . , y−1, y0, y1, . . .}. A∞ = (X∪Y,E)
is the graph on X ∪ Y having edge set E = {xixj | i 6= j} ∪ {yiyj | i 6= j} ∪ {xiyj | i < j}.

See Figure 3.6 for an illustration.

... x−2 x−1 x0 x1 x2 ...

...
y−2 y−1 y0 y1 y2

...

In�nite clique on X

In�nite clique on Y

Figure 3.6: The graph A∞ which needs all its vertices for any identifying code

It is shown in [46] that the only separating code of A∞ is V (A∞). One should note that
the graph induced by {y1, y2, . . . , yk, x1, x2 . . . , xk} is isomorphic to the graph Ak from De�ni-
tion 3.21.

Before introducing our theorem let us see again why every separating code of A∞ needs the
whole vertex set: for every i, xi and xi+1 are only separated by yi+1, while yi and yi+1 are
separated only by xi.

This property would still hold if we add a new vertex which is adjacent either to all vertices
in X (similarly in Y) or to none. This leads to the following family:

Let H be a �nite or in�nite simple graph with a perfect matching ρ, that is a mapping
x → ρ(x) of V (H) to itself such that ρ2(x) = x and xρ(x) is an edge of H. We de�ne Ψ(H, ρ)
to be the graph built as follows: for every vertex x of H we assign Φ(x) = {. . . x−1, x0, x1, . . .}.
The vertex set of Ψ(H, ρ) is

⋃
x∈V (H)

Φ(x). For each edge xρ(x) of H we build a copy of A∞ on

Φ(x)∪Φ(ρ(x)) and for every other edge xy of H we join every vertex in Φ(x) to every vertex in
Φ(y). An example of such construction is illustrated in Figure 3.7.

We now have:

60 3.6. Conclusion

x1

y1

y2

x2

y3

x3

H and ρ = {x1y1, x2y2, x3y3}

Ψ−→

A∞

Y1

X1

A∞

Y3

X3

././

A∞
X2

Y2

Figure 3.7: Construction of Ψ(H, ρ) from (H, ρ)

Proposition 3.30. For every simple, �nite or in�nite, graph H with a perfect matching ρ, the
graph Ψ(H, ρ) can only be identi�ed with V (Ψ(H, ρ)).

Proof. Let Ax be the copy of A∞ which corresponds to the edge xρ(x). Then for every vertex y
in V (Ψ(H, ρ)) \ V (Ax), either y is connected to every vertex in Ax or to neither of them. Thus
to separate vertices in Ax, we need all the vertices of Ax. Since x is arbitrary, we need all the
vertices in V (Ψ(H, ρ)) in any separating code. 9

3.5.2 The characterization

In the next theorem, we prove that every extremal connected in�nite graph is Ψ(H, ρ) for some
connected �nite or in�nite graph H together with a matching ρ.

Theorem 3.31. Let G be an in�nite connected graph. Then G admits only V (G) as an identi-
fying code if and only if G ∼= Ψ(H, ρ) for some �nite or in�nite graph H together with a perfect
matching ρ.

Proof. We already have seen that if G ∼= Ψ(H, ρ), then the only identifying code of G is V (G). To
prove the converse suppose G− v has a pair of twin vertices for every vertex v of G. It is enough
to show that every vertex v of G belongs to a unique induced subgraph Av of G isomorphic to
A∞ and that if a vertex not in Av is adjacent to a vertex in the X (respectively, Y) part of Av
then it is adjacent to all the vertices of the X (respectively, Y).

Let x1 be a vertex of G. The subgraph G− x1 has a pair of twins, let y1 and y2 be one such
pair. Assume, without loss of generality, that x1 is adjacent to y2 and not to y1. By Lemma 3.20,
x1 must be one of the vertices of a pair of twins in G − y1. Let the other be x2. Now consider
the subgraph G− y1. This subgraph must have a pair of twins and x1 must be one of them. Let
x0 be the other one.

Continuing this process in both directions (with negative and positive indices) we build our
Ax1
∼= A∞ as a subgraph of G. Since each consecutive pair of vertices in X ⊂ Ax1 is separated

only by a vertex in Y ⊂ Ax1 , every pair of vertices in X are twins in G − Y . Thus each vertex
not in Ax1 , either is adjacent to all the vertices in X or to none of them. Similarly, every vertex
in Ax1 , either is adjacent to all the vertices in Y or to none. Hence Ax1 is unique. This proves
the theorem. 9

3.6 Conclusion

In this chapter, we fully characterized the �nite digraphs, in�nite oriented graphs and in�nite
undirected graphs that have their whole vertex set as only identifying code. These characteriza-
tions are rich and nontrivial. However, we note that we have only characterized in�nite oriented

Chapter 3. Extremal (di)graphs for identifying codes 61

graphs having their whole vertex set as unique identifying code, giving rise to the following
question.

Question 3.32. Is it possible to give a nice characterization of all in�nite digraphs having only
their whole vertex set as an identifying code?

The characterization for �nite digraphs also led to an interesting application to Bondy's
theorem. Moreover, it gives a nice corollary, by noticing that digraphs in (K1,⊕,−→/) have
no symmetric arcs. Indeed, we have the following extension of Theorem 2.27 (stating that
γID(G) ≤ n − 1 if G is identi�able, undirected and has at least one edge), a direct consequence
of Theorem 3.8:

Corollary 3.33. Let D be a �nite identi�able digraph having some symmetric arcs. Then−→
γID(D) ≤ |V (D)| − 1.

Regarding �nite undirected graphs, the class of graphs having their whole vertex set as unique
identifying code consists only of all edgeless graphs. We however fully characterized those �nite
undirected graphs that have their order minus one as identifying code number, providing new
constructions and thereby answering several questions from the literature. A further question to
study could be the following one, even though we suspect it might not lead to a nice classi�cation.

Question 3.34. What can be said about graphs having their order minus two as minimum size
of an identifying code?

We note that the graphs with location-domination number equal to their order minus two
have been recently characterized in [34].3

We make an interesting observation regarding our classi�cation. Since every graph on n
vertices from the family {K1,n−1 | n ≥ 3} ∪ A ∪ (A ./ K1) has maximum degree n− 1 or n− 2,
we have:

Corollary 3.35. Let G be an identi�able connected graph on n ≥ 3 vertices and maximum degree
∆ ≤ n− 3. Then γID(G) ≤ n− 2.

We also remark that the graphs of {K1,n−1 | n ≥ 3} ∪ A ∪ (A ./ K1) can be recognized in
polynomial time. Indeed, it is easy to check whether a graph is a star or a path power from A.
Moreover, one can check in polynomial time whether a graph is a complete join of two other
graphs, and whether it has a universal vertex. Similarly, checking whether a digraph is the
closure of a top-down rooted oriented tree can be done in polynomial time by comparing the
out-degrees of all vertices.

Besides answering in negative two conjectures from [46] and from [181] (as mentioned in the
beginning of Section 3.4), our classi�cation also answers two questions of R. D. Skaggs from his
PhD thesis [181]:

1. Do there exist k-regular graphs G of order n with γID(G) = n− 1 for k < n− 2?

2. Do there exist graphsG of odd order n and maximum degree ∆ < n−1 with γID(G) = n−1?

As a corollary of Theorem 3.27, we can answer these questions in the negative. Indeed, for
the �rst question, if G is a k-regular (k ≥ 2) graph of order n with γID(G) = n− 1 then G is the
join of k disjoint copies of A1. For the second question, noting that each graph in A has an even
order, we conclude that if a graph G on an odd number n of vertices has γID(G) = n − 1, then
G ∈ {K1,n−1 | n ≥ 3} ∪ (A ./ K1) and, therefore ∆(G) = n− 1.

The case of r-identifying codes is much studied in the literature. In order to give characteri-
zations analogous to our results, one should �nd the r-roots of the graphs of our classi�cations.
We tried to solve this question for the case of the graphs of {K1,n−1 | n ≥ 3}} ∪ A ∪ (A ./ K1),
but it does not seem to be an easy task. In particular, if s divides k − 1 and r = k−1

s , then the

3However, the set of graphs having location-domination number equal to their order minus one is much easier
to describe than for the case of the identifying code number, as this set contains only the complete graphs and
the stars [184]. It is possible that in a similar way, the set of graphs having identifying code number equal to their
order minus two is also much more di�cult to describe than the set of graphs having location-domination number
equal to their order minus two. Then it would be di�cult to answer Question 3.34 by a complete characterization.

62 3.6. Conclusion

graph G = P s2k is one of the r-roots of Ak. It is easy to see that, in most cases, one can remove
many edges of G and still have Gr ∼= Ak. The di�culty of the problem is that an r-root of Ak
is not necessarily a subgraph of P s2k. An example of such a 2-root of A5 is given in Figure 3.8.

1 2 3 4 5 6 7 8 9 10

Figure 3.8: A 2-root of A5 which is not a subgraph of P 2
10

Question 3.36. What can be said about �nite undirected graphs having their minimum r-
identifying code of size their order minus one?

For the case of in�nite graphs, we note that there exists a 2-root of A∞. This graph is de�ned
as follows: it has the same vertex set X ∪ Y as A∞ and the same edges between X and Y , but
no edges within X or Y . However, we do not know whether there exist other roots of graphs
described in Theorem 3.31.

Question 3.37. What can be said about in�nite graphs and digraphs having as only r-identifying
code their whole vertex set?

We conclude by relating our work to the case of discriminating codes. The extremal cases we
have studied in Section 3.2, where a minimum separating code does always give an undominated
vertex, is equivalent to the one where the only minimum discriminating code of a set system
(I,A) consists in the whole set A. Therefore Theorem 3.11 can be stated in the language of
discriminating codes (recall that the closed out-neighbourhood hypergraph of a digraph D is the
hypergraph with vertex set V (D) and whose edges are all closed out-neighbourhoods in D):

Corollary 3.38. Let (I,A) be an I-identi�able set system with |I| = |A|. A minimum dis-
criminating code C ⊆ A of (I,A) has size |A| if and only if (I,A) is isomorphic to the closed
out-neighbourhood hypergraph of some digraph in (K1,⊕,−→/).

We remark that the class of set systems (I,A) in which any discriminating code has size at
least |A| are classi�ed in [36] in terms of trees obtained by observing the structure of symmetric
di�erences between sets of A. However, we believe that our classi�cation is more explicit. The
authors of [36] further asked the following question:

Question 3.39 ([36]). Which are the set systems (I,A) for which every discriminating code has
at least |A| − 1 elements of A?

In Theorem 3.27, we answered this question for those set systems that are isomorphic to a
closed neighbourhood hypergraph of some identi�able graph.

Corollary 3.40. Let (I,A) be an I-identi�able set system with |I| = |A| which is isomor-
phic to the closed neighbourhood hypergraph of some identi�able graph G. Then a minimum
discriminating code C ⊆ A of (I,A) has size |A| − 1 if and only if G belongs to the family
{K1,n−1 | n ≥ 3} ∪ A ∪ (A ./ K1) (G 6∼= A1) de�ned in Section 3.4.2.

However, to our knowledge, Question 3.39 remains open for the other cases.

Chapter 4. Identifying codes in graphs of given maximum degree 63

Chapter 4

Identifying codes in graphs of given max-
imum degree

In this chapter, we study the in�uence of the maximum degree ∆(G) on the identifying code
number γID(G) of an identi�able graph G.

4.1 Graphs reaching the lower bound of Theorem 2.29 64

4.2 Upper bounds depending on the order and the maximum degree -
a conjecture and some constructions 66

4.3 Using complements of independent sets to approach Conjecture 4.4 75

4.4 Using the probabilistic method to tackle Conjecture 4.4 90

4.5 Conclusion . 95

In Section 4.1, we give a full characterization of all graphs G reaching the lower bound
γID(G) ≥ 2|V (G)|

∆(G)+2 from Theorem 2.29. These results are an improved version from part of the
author's master thesis [Fo09].

In Section 4.2, we discuss upper bounds on the identifying code number depending solely
on the order and the maximum degree of the graph. To the best of our knowledge, a similar
discussion cannot be found in the literature. In this regard, we conjecture in Conjecture 4.4
that for any connected identi�able graph G, the bound γID(G) ≤ n − n

∆ + c holds (for some
constant c independent of n and ∆). We further discuss the tightness of this conjectured bound
by providing constructions of families of graphs reaching it. We also study the structure of false
twins and forced vertices in a graph, a study related to the conjecture.

In Section 4.3, we introduce a new technique to provide upper bounds that approximate the
bound of Conjecture 4.4. This technique uses the construction of independent sets having a
few special properties; taking the complement of this set yields an identifying code. We �rst
introduce this idea by giving an easy bound of the form γID(G) ≤ n− n

Θ(∆5)
in Subsection 4.3.1

(Theorem 4.24). We then re�ne the general idea in Subsection 4.3.2 to provide a general frame-
work (Proposition 4.25) to build an identifying code using a (special) independent set. We apply
this technique to get an improved bound of the form γID(G) ≤ n− n

Θ(∆4)
(Theorem 4.27). Sub-

sequently, in Subsection 4.3.3, these ideas are further re�ned for the special case of triangle-free
graphs. We prove a bound of the form γID(G) ≤ n− n

∆(1+o∆(1)) for general triangle-free graphs,
and of the form γID(G) ≤ n− n

o(∆) for triangle-free graphs without false twins (Corollary 4.40).

Finally, we use the probabilistic method (in form of a combination of L. Lovász' Local Lemma
together with the Cherno� bound) in Section 4.4 to prove a bound of the form γID(G) ≤ n− n

Θ(∆)

for graphs having few forced vertices, which includes regular graphs (Corollary 4.50), and a bound
of the form γID(G) ≤ n− n

Θ(∆3)
valid for all graphs (Corollary 4.51).

The results of this chapter have appeared in [FGK+11] for Subsection 4.3.1 (joint work
with E. Guerrini, M. Kov²e, R. Naserasr, A. Parreau and P. Valicov), [FKKR12] for Subsubsec-
tion 4.2.3.1, Subsection 4.3.3 and Conjecture 4.4 (joint work with R. Klasing, A. Kosowski and
A. Raspaud), [FP12] for Subsection 4.2.2, Subsubsection 4.2.3 and for Section 4.4 (joint work
with G. Perarnau).

64 4.1. Graphs reaching the lower bound of Theorem 2.29

4.1 Graphs reaching the lower bound of Theorem 2.29

We recall the bound γID(G) ≥ 2|V (G)|
∆(G)+2 that was already mentioned in Chapter 2 (Theorem 2.29).

This result was �rst proved in [132]; we give an easy proof (similar to the one of [132]) which
will help us to characterize all graphs that reach this bound.

Proof of Theorem 2.29. Let G be an identi�able graph on n vertices with maximum degree ∆,
and let C ⊆ V (G) be an identifying code of G of cardinality k. We partition V (G) into the four
following sets, as shown in Figure 4.1:

C1 =
{
x ∈ C

∣∣ |N [x] ∩ C| = 1
}
, C2 =

{
x ∈ C

∣∣ |N [x] ∩ C| ≥ 2
}

N1 =
{
v ∈ V \ C

∣∣ |N [v] ∩ C| = 1
}
, and N2 =

{
v ∈ V \ C

∣∣ |N [v] ∩ C| ≥ 2
}
.

It is easy to see that the following (in)equalities hold:

|C1|+ |C2| = k (4.1)

|C1|+ |N1| ≤ k (4.2)

N1

C1

N2

C2C

... ...

...

Figure 4.1: Partition of V (G) in the proof of Theorem 2.29

Let m be the number of edges between C and V (G)\C = N1∪N2. Let us make the following
observations:

• Every vertex of C2 is adjacent to at least one other vertex of C2. Moreover, it is not
possible to have two vertices of C2 forming a connected component of G[C2]; indeed, this
would imply that they are not separated by C. Thus, there are at least 2|C2|

3 edges within

C2. So, m ≤ k ·∆− 2 · 2|C2|
3 = k ·∆− 4|C2|

3 since the maximum degree of G is ∆.

• There are no edges from any vertex of C1 to another vertex of C.
• There are at least 2|N2| edges between C and N2 since every vertex of N2 has at least two
neighbours in the code, and there are exactly |N1| edges between C and N1.

Summarizing, we have k ·∆− 4|C2|
3
≥ m ≥ |N1|+ 2|N2|. Using Inequalities (4.1) and (4.2),

we get:

k∆ ≥4|C2|
3

+ |N1|+ 2|N2| = k − |C1|+ |N1|+ 2|N2|+
|C2|
3

k∆ ≥2(|N1|+ |N2|) +
|C2|
3

= 2(n− k) +
|C2|
3

k(∆ + 2) ≥2n+
|C2|
3
≥ 2n (4.3)

k ≥ 2n

∆ + 2
9

Chapter 4. Identifying codes in graphs of given maximum degree 65

The lower bound of Theorem 2.29 is tight. Graphs which reach it can easily be constructed
with the following construction.

Construction 4.1. Let ∆ be an integer; let H be a ∆-regular graph on k vertices, and let H ′ be
a graph on k∆

2 vertices and of maximum degree ∆− 2. Construct a graph G(H,H ′) with k(∆+2)
2

vertices as follows:

1. Subdivide each edge of H once.

2. Embed H ′ on the set of newly created vertices.

It is clear that the graphs G(H,H ′) obtained from Construction 4.1 are identi�able and have
maximum degree ∆, and that the set of original vertices of H forms an identifying code of size
2|V (G(H,H′))|

∆+2 of G(H,H ′).
For two examples, see Figure 4.2 which depicts G(K5, C10), and Figure 4.3 which depicts

G(P10,K15), where P10 is the Petersen graph.

Figure 4.2: The graph G(K5, C10)

Figure 4.3: The graph G(P10,K15)

We note the graphs of Construction 4.1 have no false twins. If H ′ is (∆−2)-regular, G(H,H ′)
is regular. If H ′ has no edge, G(H,H ′) is bipartite. Moreover, for any ∆ ≥ 3 and for arbitrarily
large values of g and n, there exists a ∆-regular graphs G on n vertices having girth g [79]; we
obtain the following proposition:

Corollary 4.2. For any ∆ ≥ 3 and arbitrarily large values of g and n, there are in�nitely many
connected bipartite graphs G on n vertices having maximum degree ∆, girth g (and hence, no
forced vertex) with γID(G) = 2n

∆+2 . Moreover there are in�nitely many connected ∆-regular graphs

G on n vertices with γID(G) = 2n
∆+2 .

We remark however, that the bound is not tight for planar graphs. Indeed, �rst of all, the
bound γID(G) ≥ |V (G)|+10

7 holds for any identi�able planar graph G by Theorem 2.34 from [185];
it is stronger whenever ∆(G) ≥ 12. Furthermore, it is well-known that any planar graph is
5-degenerate, hence there are no ∆-regular planar graphs for any ∆ ≥ 6 and Construction 4.1
cannot be applied in that case.

66
4.2. Upper bounds depending on the order and the maximum degree - a conjecture and some

constructions

In fact, we can show that each graph reaching the bound of Theorem 2.29 can be constructed
using Construction 4.1; this gives a full characterization of these graphs:

Theorem 4.3. Let G be a graph on n vertices with maximum degree ∆ and γID(G) = 2n
∆+2 .

Then, there exist two graphs H,H ′ such that G = G(H,H ′) as de�ned in Construction 4.1.

Proof. Consider the partition of V (G) illustrated in Figure 4.1, and let us recall Inequality (4.3)
from the proof of Theorem 2.29:

k(∆ + 2) ≥ 2n+
|C2|
3
.

Since we assume k = γID(G) = 2n
∆+2 , we obtain:

2n ≥ 2n+
|C2|
3
.

That is, C2 = ∅. This implies that |C1| = k, and thus N1 = ∅ since |C1|+ |N1| = k. Hence, a
graph reaching the lower bound has an independent set as its code, and every non-code vertex
is adjacent to exactly two code vertices, whereas all code vertices have ∆ neighbours. It is now
clear that G can be obtained using Construction 4.1. Graph H has vertex set V (H) = C and is
obtained by �rst removing all edges between non-code-vertices and then, contracting one of the
two edges {u, c}, {u, c′} for each non-code vertex u (where c, c′ are the two code neighbours of u
in G). Graph H ′ is the graph induced by the set V (G) \ C. 9

4.2 Upper bounds depending on the order and the maximum
degree - a conjecture and some constructions

In this section, we present a conjecture and some constructions of families of graphs which reach
this conjectured bound. We then study the structure and maximum number of false twins and
forced vertices in a graph.

The conjecture was published in [FKKR12]; some of the constructions were mentioned in the
author's master thesis [Fo09], and were published in [FP12] together with some new ones. The
studies of false twins and forced vertices are from [FKKR12, FP12].

4.2.1 A conjecture

We saw in Chapter 2.5.1 and in the previous section that there is a lower bound on γID(G)
depending on the order and the maximum degree of G, showing that the maximum degree has
a strong in�uence on this parameter. When considering upper bounds in terms of n and ∆, we
conjecture that the following bound holds.

Conjecture 4.4. There exists a constant c such that for any nontrivial connected identi�able
graph G of maximum degree ∆, γID(G) ≤ n− n

∆ + c.

It is known that there exist examples of speci�c families of graphs such that γID(G) = n− n
∆

(e.g. the complete bipartite graph K∆,∆, Sierpi«ski graphs [95] and other classes of graphs
that will be described in Chapter 4.2.2). Other classes of graphs with slightly smaller values of
parameter γID are known, including graphs having high girth. For instance, it is shown in [25]
that γID(T h∆−1) = dn − n

∆−1+1/∆e for the complete (∆ − 1)-ary tree T h∆−1 of height h having n
vertices (see Theorem 2.33).

As we saw in Chapter 2.5.1, for all identi�able graphs on n vertices having at least one
edge, the upper bound γID(G) ≤ n − 1 holds (see Theorem 2.27). This bound is tight, as we
have seen in Chapter 3.4, where we proposed a full characterization of these graphs. Hence, for
graphs of very high maximum degree (say ∆ = n − 1), the conjecture holds with c ≤ 1 since
n− 1 = n− n

∆ + 1
n−1 . We note that the graphs reaching the bound γID(G) ≤ n− 1 actually have

maximum degree n− 2 or n− 1, as demonstrated in Chapter 3.

Chapter 4. Identifying codes in graphs of given maximum degree 67

Moreover, for any connected graph G of maximum degree 2 (i.e. when G is either a path
or a cycle), the exact value of γID(G) is known (see Section 2.5.2). In this case, the bound
γID(G) ≤ n

2 + 3
2 = n− n

2 + 3
2 holds and is reached for in�nitely many values of n (more precisely,

this is the case when G is a cycle of odd order n ≥ 7). Hence, the conjecture holds for ∆ = 2
and c = 3

2 . In fact, we expect the constant c to be small. The previous example which shows
c ≥ 3

2 is the worst case we know of.
There is some evidence that proving the conjecture even for the case ∆ = 3 might be chal-

lenging. Indeed, as mentioned in Chapter 2.4.3, the similar notion of identifying open codes (that
is, identifying codes on open neighbourhoods rather than closed neighbourhoods, i.e. vertices do
not dominate or identify themselves) was studied very recently in [113] for cubic graphs. Denot-
ing γOID(G) the minimum size of an identifying open code of a graph G, the authors are able
to prove that in a cubic graph G admitting an identifying open code, γOID(G) ≤ 3n

4 . Moreover,
they conjecture that the only (connected) examples reaching the bound belong to a set of six
graphs, and that otherwise, γOID(G) ≤ 3n

5 , which, if true, would be sharp. This result is proved
by using a strong connection to distinguishing transversals of 3-uniform hypergraphs. It is worth
noting that using the same technique in the case of (classic) identifying codes in cubic graphs
would require to handle distinguishing transversals of 4-uniform hypergraphs, which seems to be
a much more di�cult task (bounds for the size of classic transversals of 4-uniform hypergraphs
were studied recently in [191]).

4.2.2 Extremal constructions

We now present some constructions which yield arbitrarily large graphs of given maximum
degree and having large identifying code number (with respect to Conjecture 4.4).

Construction 4.5. Given any ∆H-regular multigraph H (without loops) on nH vertices, let
G1(H) be the graph on n = nH(∆H + 1) and maximum degree ∆ = ∆H + 1 constructed as
follows:

1. Replace each vertex v of H by a clique K(v) of ∆H + 1 vertices

2. For each vertex v of H, let N(v) = {v1, . . . , v∆H
} and K(v) = {k0(v), . . . , k∆H

(v)}. For
each ki(v) but one (1 ≤ i ≤ ∆H), connect it with an edge in G1(H), to a unique vertex of
K(vi), denoted f (ki(v)).

An example of this construction is given in Figure 4.4, where H is the hypercube of dimen-
sion 3, H3, and the black vertices are those which belong to a minimum identifying code of
G1(H3).

We have the following proposition:

Proposition 4.6. Let H be a ∆-regular multigraph without loops having nH vertices. The graph
G = G1(H) on n = nH(∆H + 1) vertices obtained by applying Construction 4.5 on H has
γID(G) = nH∆ = n− n

∆(G) .

Proof. For each vertex v of H and for each 1 ≤ i ≤ ∆H , note that f (ki(v)) is k0(v)ki(v)-forced.
Therefore, G has ∆HnH = n− n

∆ forced vertices. In fact one can check that these forced vertices

form an identifying code, which completes the proof. 9

The following construction is very similar, but yields regular graphs. It was �rst introduced
in the author's master thesis [Fo09]. We note that the particular cases where the original graph
H is a complete graph Kk were introduced in [137] under the name of regularized Sierpi«ski
graphs S++(2, k − 1).

Construction 4.7. Given any ∆H-regular multigraph H (without loops) on nH vertices, let
G2(H) be the ∆-regular graph on nH∆H vertices (where ∆ = ∆H) constructed as follows:

1. Replace each vertex v of H by a clique K(v) of ∆H vertices.

68 4.2. Upper bounds - a conjecture and some constructions

g

e

h

ba

dc

f

K(b)

K(h)

k0(b)

k1(b)
= f(k3(h))

k2(b)

k3(b)

k0(h)

k2(h)

k1(h)

k3(h)
= f(k1(b))

Figure 4.4: The graphs H3 and G1(H3) with an optimal identifying code (black
vertices).

2. For each vertex v of H, let N(v) = {v1, . . . , v∆H
} and K(v) = {k1(v), . . . , k∆H

(v)}. For
each ki(v) (1 ≤ i ≤ ∆H), connect it with an edge in G2(H), to a unique vertex of K(vi),
denoted f (ki(v)).

An example of this construction is given in Figure 4.5, where H is the complete graph K5,
and the black vertices form a minimum identifying code of G2(K5).

a

b

c

d e

K(a)

K(e)

k1(a)

k2(a)

k3(a)

k4(a)
= f(k1(e))

k2(e)

k3(e)

k4(e)
k1(e) = f(k4(a))

Figure 4.5: The graphs K5 and G2(K5) with an optimal identifying code (black
vertices).

We have the following proposition:

Proposition 4.8. Let H be a ∆-regular multigraph without loops having nH vertices. The
graph G = G2(H) on n = nH∆H vertices obtained by applying Construction 4.7 on H has
γID(G) = nH(∆− 1) = n− n

∆(G) .

Proof. For each vertex v of H, we let A(v) be the set {f (ki(v)) | 1 ≤ i ≤ ∆}.
For each vertex v of H, in order to separate each pair of vertices ki(v), kj(v) (1 ≤ i < j ≤ ∆)

of K(v) in G, either f (ki(v)) or f (kj(v)) must belong to any identifying code. Repeating this
argument for each pair in K(v) shows that at least ∆ − 1 vertices from A(v) are needed in the
code. Since for any two cliques K(u) and K(v), the sets A(u) and A(v) are disjoint, at least
nH(∆− 1) vertices are needed in an identifying code of G.

Chapter 4. Identifying codes in graphs of given maximum degree 69

For the other direction, we build an identifying code of this size by choosing one vertex of
each set A(x), in such a way that for each vertex u originally in H, exactly one vertex of K(u)
is chosen. Then the set of non-chosen vertices will be an identifying code of G. To select this set
of vertices, one can consider the bipartite incidence multigraph B of H: the vertex set of B is
V ∪V ′ (where V and V ′ are copies of V (H)) and there is an edge xx′ in B if x ∈ V , x′ ∈ V ′ and
xx′ ∈ E(H). The multigraph B is k-regular and bipartite, thus by P. Hall's marriage theorem
(Theorem 2.1) it has a perfect matching M . For each vertex x ∈ V , let ρ(x) be the vertex in
V ′ such that xρ(x) ∈ M . Let now v′xM be the vertex of G that belongs to both sets A(x) and
K(ρ(x)) (in G). We let C = V (G) \ {v′xM}x∈H . Exactly one element of each A(x) is not in C, and
for each vertex x, exactly one vertex of K(x) is not in C. This implies that C is an identifying
code and completes the proof. 9

Proposition 4.8 shows that despite the fact that G2(H) has no forced vertices, γID(G2(H)) =
n− n

∆ .
We remark that Constructions 4.5 and 4.7 are close to Sierpi«ski graphs, which were de�ned

in [136]. Recently, it has been shown that Sierpi«ski graphs are also extremal with respect to
Conjecture 4.4 [95], i.e. for any Sierpi«ski graph G on n vertices with maximum degree ∆,
γID(G) = n− n

∆ .
We make the following observation about Constructions 4.5 and 4.7:

Observation 4.9. Given a ∆H-regular multigraph H (without loops) on nH vertices, the graphs
G1(H) and G2(H) constructed using Constructions 4.5 and 4.7, respectively, are line graphs.

Proof. It is easily checked that G1(H) is the line graph of the graph H ′ obtained from H after
subdividing each of its edges once. Similarly, the graph G2(H) is the line graph of the graph
obtained from H ′ by adding a degree 1-neighbour to each vertex of H ′ which also was a vertex
in H. 9

The following construction was introduced in the author's master thesis [Fo09] and yields
regular bipartite graphs.

Construction 4.10. Given an even number 2k and an integer ∆ ≥ 3, we construct an identi�-
able ∆-regular bipartite graph G3(2k, d) on n = 2k∆ vertices as follows.

1. Let {c0, . . . , c2k−1} be a set of 2k vertices and add the edges of the perfect matching
{cic(i+1) mod 2k | i is odd}.

2. For each even i (0 ≤ i ≤ 2k − 2), build a copy K(i) of the complete bipartite graph
K∆−1,∆−1. Join vertex ci to all vertices of one part of the bipartition of K(i), and join
vertex ci+1 to all other vertices of K(i).

An example of this construction is given in Figure 4.6, where 2k = 8, ∆ = 3, and the black
vertices form a minimum identifying code of G3(8, 3).

c0 c1 c2 c3 c4 c5 c6 c7

K(0)

Figure 4.6: The graph G3(8, 3) with an optimal identifying code (black vertices).

70 4.2. Upper bounds - a conjecture and some constructions

Proposition 4.11. Let G = G3(2k,∆) be the graph on n = 2k∆ vertices and maximum degree ∆
obtained by applying Construction 4.10. We have γID(G) = n− n

2∆/3 .

Proof. Consider an identifying code of G. Note that in each copy K(i) of K∆−1,∆−1, at least
2∆ − 4 vertices have to belong to the code in order to separate the vertices being in the same
part of the bipartition of K(i). Now, if exactly 2∆ − 4 vertices of K(i) belong to the code, in
order to separate the two remaining vertices, either ci or ci+1 belongs to the code. Hence for
each odd i, at most three vertices from {ci, ci+1} ∪ V (K(i)) do not belong to a code of G. On
the other hand, taking all vertices ci such that i is even together with ∆ − 2 vertices of each
part of the bipartition of each copy of K∆−1,∆−1 yields an identifying code of this size. Hence
γID(G3(2k,∆)) = k + 2k(∆− 2) = n− n

2∆/3 . 9

4.2.3 On the number and structure of false twins and forced vertices in a

graph

The aim of what follows is to study the structure of false twins and forced vertices in a graph.
This study is related to Conjecture 4.4 since a graph having many false twins or forced vertices
will have a large identifying code number and could provide a counterexample to this conjecture.

4.2.3.1 False twins

The results of this subsection are useful when dealing with identifying codes. Indeed, as pointed
out earlier, for any set of mutually false twins in G, all but one of them belong to any identifying
code of G. The next proposition gives an upper bound on the number of false twins in a graph.

Proposition 4.12. Let G be a graph on n vertices having maximum degree ∆ and no isolated
vertices, then G has at most n(∆−1)

2 pairs of false twins.

Proof. Let us build a graph H on V (G), where two vertices u, v are adjacent in H if they are
false twins in G. Note that since a vertex can have at most ∆− 1 false twins, H has maximum
degree ∆− 1. Therefore it has at most n(∆−1)

2 edges and the claim follows. 9

Note that the bound of Proposition 4.12 is tight since in a complete bipartite graph K∆,∆,

n = 2∆ and there are exactly 2
(

∆
2

)
= n(∆−1)

2 pairs of false twins.
The next proposition (which appeared in [FKKR12]) shows how to build an identifying code

of a graph G with relatively small size when G contains a large number of false twins. We let ≡
denote the false twin relation over V (G), where u ≡ v if u, v are false twins. This relation is an
equivalence relation. We call an equivalence class of ≡ nontrivial if it has at least two elements.

Proposition 4.13. Let G be a nontrivial connected identi�able triangle-free graph on n vertices
and maximum degree ∆ non isomorphic to C4. Let F = {F1, . . . , F|F|} be the set of all nontrivial
equivalence classes over ≡ in G. Then G has an identifying code of size at most n− |F|.

Proof. First, we may suppose that G is not isomorphic to P3 since in that case the lemma holds:
P3 has its minimum identifying code of size 2 and |F| = 1.

For each Fi ∈ F , 1 ≤ i ≤ |F|, let xi be an arbitrary vertex of Fi, and let X = ∪|F|i=1xi. We
claim that if G is not isomorphic to P3 or C4, C = V (G) \X is an identifying code of G. First,
observe that C is a dominating set of G. Now, consider two vertices x, y. We need to show that
they are separated from each other.

If x, y are false twins, the one belonging to the code separates them. Otherwise, since G is
identi�able, there is a vertex z which is able to separate them, say z belongs to N [x], but not to
N [y]. If z belongs to the code, we are done. Otherwise, z ∈ X.

If z is a neighbour of x, consider a false twin z′ of z. If z′ 6= y, z′ belongs to the code and
separates x, y, so we are done. Otherwise, since G is not isomorphic to P3 and z, y are false twins,
one of x or y has another neighbour, say t. If t belongs to the code we are done. Otherwise, if
t is a neighbour of y, since G is not isomorphic to C4, either x or y has another neighbour. We
can repeat the argument but this time, either this neighbour or its false twin separates x, y. If t

Chapter 4. Identifying codes in graphs of given maximum degree 71

is a neighbour of x, t cannot be a false twin of y and therefore either t or its false twin separates
x, y.

Finally, if z = x, x and y are not adjacent. But since they are not false twins, there is
another vertex, say u, with u 6∈ {x, y}, such that u is adjacent to exactly one of x, y. Now, either
u belongs to the code and we are done, or a false twin of u (which also is adjacent to exactly one
of x, y), which completes the proof. 9

4.2.3.2 Forced vertices

In this subsection, we give lower bounds on the ratio of non-forced vertices of G, de�ned as
follows:

De�nition 4.14. Given a graph G on n vertices, we denote by NF (G) the proportion of non-
forced vertices of G, i.e. the ratio x

n , where x is the number of vertices of G that are not forced.

We now de�ne A+
∞ as the in�nite graph with vertex set N× {0, 1} and with edge set

{{(i, b), (j, b)} | i 6= j, b ∈ {0, 1}}∪{{(i, 0), (j, 1)} | i < j}. Note that A+
∞ is an induced subgraph

of the graph A∞ (which we studied in Chapter 3.5, De�nition 3.29). The following lemma,
which is a strengthening of Theorem 2.27, is from N. Bertrand's Master thesis [23]. We give an
independent proof in Appendix A.1 (which appeared in [FGK+11]) as [23] is not accessible.

Lemma 4.15 ([23]). If G is an identi�able graph (in�nite or not) not containing A+
∞ as an

induced subgraph, then for every vertex x of G, there is a vertex y ∈ N [x] such that G − y is
identi�able.

The following proposition is a direct consequence of Lemma 4.15.

Proposition 4.16. Let G be a graph on n vertices and of maximum degree ∆. Then NF (G) ≥
1

∆+1 .

Proof. Observe that a vertex v of G is not forced only if V (G) \ {v} is an identifying code of
G. Hence, by Lemma 4.15, the set S of non-forced vertices is a dominating set of G, and thus
|S| ≥ n

∆+1 . 9

Note that Proposition 4.16 is tight. Indeed, consider the graph Ak on 2k vertices (introdueced
with more details in Chapter 3.4) de�ned as follows: V (Ak) = {x1, . . . , x2k} and E(Ak) =
{xixj , |i − j| ≤ k − 1}. Ak can be seen as the (k − 1)-th power of the path P2k. In the graph
Ak with an additional universal vertex x (i.e. x is adjacent to all vertices of Ak), one can check
that all vertices but x are forced. This graph has n = 2k + 1 vertices, maximum degree 2k and
exactly 1 = n

∆+1 non-forced vertex. Taking all forced vertices gives a minimum identifying code
of this graph.

Observe that graph Ak contains two cliques of k vertices. In fact, we can improve the bound of
Proposition 4.16 for graphs having no large cliques. Let us �rst introduce an auxiliary structure
that will be needed in order to prove this result.

Let G be an identi�able graph. We de�ne a partial order � over the set of vertices of G
such that u � v if N [u] ⊆ N [v]. We construct an oriented graph H(G) on V (G) as a subgraph
of the Hasse diagram of poset (V (G),�).1 The arc set of H(G) is the set of all arcs −→uv where
there exists some vertex x such that N [v] = N [u] ∪ {x}. Then x is uv-forced, and we note
x = f(−→uv). For a vertex v of V (G), we de�ne the set F (v) as the union of v itself and the set of
all predecessors and successors of v in H(G). Observe that H(G) has no directed cycle since it
represents a partial order, and thus predecessors and successors are well-de�ned.

Lemma 4.17. Let G be a graph having no k-clique. Then for each vertex u, |F (u)| ≤ β(k),
where β(k) is a function depending only on k.

Proof. First of all, we prove that the maximum in-degree of H(G) is at most 2k − 3, and its
out-degree is at most k − 2.

1The Hasse diagram of a poset (V (G),�) is an oriented graph on vertex set V (G) in which there is an arc xy
whenever x � y and there is no z such that x � z � y.

72 4.2. Upper bounds - a conjecture and some constructions

Let u be a vertex of G. Suppose u has 2k − 2 in-neighbours in H(G). Since for each in-
neighbour v of u, |N [u]∆N [v]| = 1 in G, each of them is non-adjacent in G to at most one of
the other in-neighbours (in the worst case the in-neighbours of u induce in G a clique of 2k − 2
vertices minus the edges of a perfect matching). Hence they induce a clique of size at least k− 1
in G. Together with vertex u, they form a k-clique in G, a contradiction.

Now suppose u has k − 1 out-neighbours in H(G). Since for each out-neighbour v of u in
H(G), N [u] ⊆ N [v] in G, u and its out-neighbours form a k-clique in G, a contradiction.

Now, consider the subgraph of H(G) induced by F (u). We claim that the longest directed
chain in this subgraph has at most k − 1 vertices. Indeed, all the vertices of such a chain are
pairwise adjacent in G. Since G is assumed not to have any k-cliques, there are at most k − 1
vertices in a directed chain.

Finally, we obtain that F (u) has size at most β(k) =
∑k−2

i=0 (2k − 3)i and the claim of the
lemma follows. 9

We now need to prove a few additional claims regarding the structure of H(G). In the
following claims, we suppose that G is an identi�able graph.

Claim 4.18. Let s be a forced vertex in G with s = f(−→uv) for some vertices u and v. If t is
an in-neighbour of s in H(G), then v = f(

−→
ts). Moreover if v is forced with v = f(−→xy), then

necessarily y = s.

Proof. For the �rst implication, suppose s has an in-neighbour t in H(G). An illustration is
provided in Figure 4.7. Since u 6∼ s, then u 6∼ t. Moreover v 6∼ t since s = f(−→uv). Since s ∼ v
the claim follows. For the other implication, suppose there exist two vertices x, y such that
v = f(−→xy). Hence y ∼ v but x 6∼ v. Therefore u 6∼ x (otherwise v would be adjacent to x too)
and hence u 6∼ y. Now the only vertex adjacent to v but not to u is s, so y = s. 9

u t

s = f(−→uv)v = f(
−→
ts)

Figure 4.7: The situation of Claim 4.18. Arcs belong to H(G). Full thin edges
belong to G only, dashed edges are non-edges in G.

Claim 4.19. Let s be a forced vertex in G with s = f(−→uv) for some vertices u and v. Then s
has at most one in-neighbour in H(G).

Proof. Suppose s has two distinct in-neighbours t and t′ in H(G) (see Figure 4.8 for an illustra-
tion). By Claim 4.18, v is both ts-forced and t′s-forced. But then N [t] = N [s] \ {v} = N [t′].
Then t and t′ are twins, a contradiction since G is identi�able. 9

u t t′

s = f(−→uv)v

Figure 4.8: The situation of Claim 4.19. Arcs belong to H(G). Full thin edges
belong to G only, dashed edges are non-edges in G.

Claim 4.20. Let s be a forced vertex in G with s = f(−→uv), and let t be a forced in-neighbour of
s in H(G) with t = f(−→xy) for some vertices u, v, x, y. Then x = v.

Chapter 4. Identifying codes in graphs of given maximum degree 73

Proof. Since t ∼ y, then s ∼ y too. But since t = f(−→xy), x ∼ s and x 6∼ t. Now by Claim 4.18,
v = f(

−→
ts), that is, v is the unique vertex such that v is adjacent to s, but not to t. Therefore

x = v. 9

We now obtain the following lemma using the previous claims.

Lemma 4.21. Let s be a non-isolated sink in H(G) which is forced in G with s = f(−→uv) for some
vertices u and v. Then either s has a non-forced predecessor t in H(G) such that F (s) ⊆ F (t),
or there exists a non-forced vertex w(s) such that F (s) ⊆ NG[w(s)]. Moreover, if there are `
additional sinks {s1, . . . , s`} which are all non-isolated in H(G) and such that w(s) = w(s1) =
. . . = w(s`), then there exists a set of `+ 1 distinct vertices inducing a clique together with w(s).

Proof. First of all, recall that H(G) has no directed circuits. Suppose s has a non-forced prede-
cessor in H(G) and let t be one such predecessor having the shortest distance to s in H(G). By
Claim 4.19, predecessors of s are either successors or predecessors of t, and there is a directed
path from t to s in H(G). Hence F (s) ⊆ F (t), which proves the �rst part of the statement.

Now suppose all predecessors of s = f(−→uv) are forced. By Claim 4.19, s and its predecessors
form a directed path {t0, . . . , tm, s} in H(G) (for an illustration, see Figure 4.9(a)). Note that
by Claim 4.18, we have v = f(

−−→
tms). By our assumption we know that tm is forced, say tm =

f(−−→xvm) for some vertices x and vm. But now by Claim 4.20, x = v and tm = f(−−→vvm). Now,
repeating these arguments for each other predecessor of s shows that there is a directed path
{u, v, vm, . . . , v0} with tm = f(−−→vvm) and for all i, 0 ≤ i ≤ m − 1, ti = f(−−−→vi+1vi). In particular,
t0 = f(−−→v1v0). Observe also that for all i ≥ 1, vi = f(

−−−→
ti−1ti). By applying Claim 4.20 on vertices

v1, v0 and t0, if v0 is forced then t0 has an in-neighbour in H(G), a contradiction � hence v0 is
non-forced. Moreover note that since v0 ∼ t0, then v0 is adjacent to all successors of t0 in H(G),
that is, to all elements of F (s). Therefore, putting w(s) = v0, we obtain the second part of the
statement.

For the last part, suppose there exists a set of ` additional forced sinks {s1, . . . , s`} which are
non-isolated in H(G) and such that all their predecessors in H(G) are forced with w(si) = v0

for 1 ≤ i ≤ ` (for an illustration, see Figure 4.9(b)). For each such sink si, by the previous
paragraph, the vertices of F (si) induce a directed path {ti0, . . . , timi , si} in H(G). Moreover we
know that there is a vertex xi such that ti0 is xiv0-forced. We claim that the set of vertices
X = {x1, . . . , x`} together with v0 and v1, form a clique in G of `+ 2 vertices.

We �rst claim that for all i, j in {1, . . . , `}, xi 6= tj0. If i = j, this is clear by our assumptions.
Otherwise, suppose by contradiction, that xi = tj0 for some i 6= j in {1, . . . , `}. Then we claim
that xj = ti0. Indeed, by the previous part of the proof, we know that f(−−→xjv0) = tj0 = xi �
hence xj 6∼ xi. But since −−→xiv0 is an arc in H(G), we must have f(−−→xiv0) = xj . Again, we know
that f(−−→xiv0) = ti0, hence xj = ti0. Let t

i
1 denote the successor of ti0 in the directed path from ti0

to si in H(G). We know from the previous part of the proof that f(
−−→
ti0t

i
1) = xi = tj0. However

since ti0 = xj we also know that f(
−−→
ti0v0) = xi. This implies that NG[v0] = NG[ti1], a contradiction

since these two vertices are distinct and G is identi�able.
Now, observe that the vertices of X must all be pairwise adjacent. All vertices of X are

adjacent to v0, and for each xi, N [v0] = N [xi]∪{ti0}, hence xi is adjacent to all neighbours of v0

except ti0. But by the previous paragraph, we know that ti0 6= xj for all j ∈ {1, . . . , `}, hence xi
is adjacent to all xj 6= xi, j ∈ {1, . . . , `}. For the same reason, each xi is adjacent to v1. Hence,
the vertices of X form a clique together with v0 and v1.

Finally, let us show that all the vertices of X are distinct: by contradiction, suppose that
xi = xj for some i 6= j, 1 ≤ i, j ≤ `. Since ti0 is xiv0-forced and tj0 is xjv0-forced, we have
ti0 = tj0. Since si and sj are distinct, this means that si and sj have one predecessor in common.
Hence their common predecessor which is nearest to si and sj , say t, has two out-neighbours.
Let ti (respectively tj) be the out-neighbour of t which is a predecessor of si (respectively sj)
� see Figure 4.9(c) for an illustration. We know that there are two vertices yi, yj such that
yi = f(

−→
tti) and yj = f(

−→
ttj). First note that yi and yj are distinct: otherwise, we would have

N [ti] = N [t]∪{yi} = N [t]∪{yj} = N [tj] and then ti, tj would be twins in G. Observe that since
t 6∼ yi and yi 6= f(

−→
ttj), we have tj 6∼ yi. We know that t is forced, in fact by the �rst part of this

74 4.2. Upper bounds - a conjecture and some constructions

proof, we also know that t = f(−−→yizi) for some vertex zi. Hence zi ∼ t, and since N [t] ⊆ N [tj],
zi ∼ tj . But since tj 6= f(−−→yizi), tj ∼ yi, a contradiction. Hence xi and xj are distinct, which
completes the proof. 9

v0 = w(s)

v1 = f(
−−→
t0t1)

vm = f(
−−−−→
tm−1tm)

v = f(
−−→
tms)

u

t0 = f(−−→v1v0)

t1 = f(−−→v2v1)

tm = f(−−→vvm)

s = f(−→uv)

(a) Vertex s and all its predecessors
in H(G) are forced

v0

v1

x1

t10 = f(−−→x1v0)

t1m1

s1

x`

t`0 = f(−−→x`v0)

t`m`

s`

· · ·

(b) Vertices v0, v1, x1, . . . , x` induce
a clique in G

t = f(−−→yizi)

ti0 = tj0

xi = xj

ti
yi = f(

−→
tti)

zi

si

tj
yj = f(

−→
ttj)

sj

(c) If xi = xj , the dotted edge yitj is both
an edge and a non-edge of G

Figure 4.9: Three situations in the proof of Lemma 4.21. Arcs belong to H(G).
Full thin edges belong to G only, dashed edges are non-edges in G.

We are now ready to prove a bound on NF (G):

Proposition 4.22. Let G be a graph having no k-clique. Then there exists a constant γ(k)
depending only on k, such that NF (G) ≥ 1

γ(k) .

Proof. To prove the result, we use H(G) to construct a set X = {x1, . . . , x`} of non-forced
vertices such that

⋃`
i=1A(xi) = V (G), where A(xi) is a set of at most γ(k) vertices. Then we

have ` ≥ n
γ(k) vertices in X and the claim of the proposition follows.

We now describe a procedure to build set X while considering each non-isolated sink of H(G).
We denote by s the currently considered sink.

Case 1: Sink s is non-forced. Then we set A(s) to be F (s) together with all the vertices
which are forced by a pair u, v of vertices of F (s). Note that by Lemma 4.17, |F (s)| ≤ β(k),
where β(k) only depends on k. Hence, |A(s)| ≤ β(k) +

(
β(k)

2

)
.

Case 2: Sink s is forced. By Lemma 4.21, either s has a non-forced predecessor t such that
F (s) ⊆ F (t), or there exists a non-forced vertex w(s) such that F (s) ⊆ NG[w].

In the �rst case, we choose t as our non-forced vertex, and we set A(t) to be F (t) together
with all the vertices which are forced by a pair u, v of vertices of F (t). Again we have |A(t)| ≤

Chapter 4. Identifying codes in graphs of given maximum degree 75

β(k) +
(
β(k)

2

)
.

In the second case, we choose w = w(s) as our non-forced vertex. Now, let S = {s, s1, . . . , s`}
be the set of forced sinks having no non-forced predecessor and such that w(s) = w(s1) =
. . . w(s`). By Lemma 4.21 we know that there are `+1 distinct vertices inducing a clique together
with w, hence `+2 < k. We set A(w) to be F (w)∪F (s)∪F (s1)∪ . . .∪F (s`) together with all the
vertices which are forced by a pair u, v of vertices of this set. We have |A(w)| ≤ kβ(k) +

(
kβ(k)

2

)
.

We have now covered all the vertices which are not isolated in H(G), since for each non-
isolated sink s of H(G), F (s) is a subset of A(x) for some x ∈ X. Moreover all isolated vertices
of H(G) which are forced, have also been put into some set A(x). Hence only non-forced isolated
vertices of H(G) need to be covered. For each such vertex v, we add v to X and set A(v) = {v}.

Finally, all vertices belong to some set A(x), x ∈ X, and the size of each set A(x) is at most
γ(k) = kβ(k) +

(
kβ(k)

2

)
, which completes the proof. 9

4.3 Using complements of independent sets to approach Conjec-
ture 4.4

In this section, we introduce the idea of building a (large) independent set S in an identi�able
graph G; when set S ful�lls a number of special conditions, we are able to show that the com-
plement of S in G, V (G)\S, is an identifying code. Depending on the size of S, we get an upper
bound on the identifying code number of G.

4.3.1 First bounds

We now provide the following lemma, which will be used to give a �rst upper bound on γID(G)
depending on the order and the maximum degree of G. This bound will be improved later using
other techniques.

Lemma 4.23. Let G be an identi�able graph, and I be a distance-4-independent set containing
no forced vertex and no isolated vertex. Then V (G) \ I is an identifying code of G.

Proof. Clearly C = V (G) \ I is a dominating set of G. Let x, y be a pair of vertices of G. If
they both belong to I, C ∩N [x] 6= C ∩N [y] because of the distance between x and y. Otherwise,
one of them, say x, is in C. If they are not separated by C, then they must be adjacent. Thus,
together they could have only one neighbour in I, call it u. This is a contradiction because u is
not forced. 9

We note that the number 4 is the best possible in the previous lemma (when using a distance-
4-independent set). For example, let G ∼= P4 and assume x and y are the two ends of G. It is
easy to check that V (G) \ {x} and V (G) \ {y} are both identifying codes of G but V (G) \ {x, y}
is not.

Theorem 4.24. Let G be an identi�able graph on n vertices without isolated vertices and with
maximum degree ∆. Then γID(G) ≤ n(1 − ∆−2

∆(∆−1)5−2
) = n − n

Θ(∆5)
. If G has no forced vertex,

γID(G) ≤ n(1− 1
1+∆−∆2+∆3) = n− n

Θ(∆3)
.

Proof. First of all, we note that if I is a maximal distance-6-independent set, then |I| ≥
n(∆−2)

∆(∆−1)5−2
. This is true because |N5[x]| ≤ ∆(∆−1)5−2

∆−2 for every vertex x. Now, let I be a distance-

6-independent set. For each vertex x ∈ I let f(x) be the vertex found using Lemma 4.15 and
f(I) = {f(x) | x ∈ I}. Since I is a distance-6-independent set, f(I) is a distance-4-independent
set of G and |f(I)| = |I|. Now, by Lemma 4.23, we know that C = V (G) \ f(I) is an identifying
code of G. The �rst bound is now obtained by taking any maximal distance-6-independent set
I.

76 4.3. Using complements of independent sets to approach Conjecture 4.4

If G has no forced vertex, we can directly consider a distance-4-independent set; again, a
maximal distance-4-independent set of size at least n

1+∆−∆2+∆3 can be found because |N3[x]| ≤
∆(∆−1)3−2

∆−2 = 1 + ∆−∆2 + ∆3. 9

4.3.2 A re�ned general approach

Unfortunately, the requirement of having a distance-4-independent set in Lemma 4.23 gives
upper bounds of the form n− n

Θ(∆k)
for some k ≥ 3. We re�ne this approach by using classical

(distance-1-) independent sets instead. In order to still obtain an identifying code, we need the
independent set to ful�ll more complex properties. We start with the following proposition:

Proposition 4.25. Let G be an identi�able graph, and let I be an independent set of G such
that:

1. I contains no isolated vertex of G,

2. I contains no pair of false twins of G, and

3. for each pair u, v of adjacent vertices of G, N [u] 	 N [v] 6⊆ I (in particular I contains no
forced vertex),

then, V (G) \ I is an identifying code of G.

Proof. Observe that since I is an independent set and it contains no isolated vertex, V (G) \ I
is clearly a dominating set. Hence, by Observation 1.8, we just need to show that V (G) \ I
separates all pairs of vertices at distance at most 2 from each other. Note that by property
number 3 of I, this is the case for all pairs of adjacent vertices. Let u, v be a pair of vertices
with d(u, v) = 2. If either u or v do not belong to I, we are done. In particular, if u, v are false
twins, by property number 2 of I, this is the case. Otherwise, both u, v belong to I; but then,
none of their neighbours belong to I, and since they are not false twins, they are separated by
one of these neighbours. 9

The idea we will use next in order to apply Proposition 4.25 is to consider the set N of vertices
that are not forced in G, and to build an independent set I ⊆ N of G containing no pair of false
twins. Then, we have to deal with property number 3 of I as required in Proposition 4.25.
In order to do so, we build an auxiliary graph G′ with vertex set I, for which we build an
independent set I ′ ⊆ I, making sure that property number 3 is ful�lled. This idea is applied
in the following lemma. Recall that NF (G) was de�ned in De�nition 4.14 as the ratio of the
number of non-forced vertices of a graph G with respect to the order of G.

Lemma 4.26. Let G be an identi�able graph of order n without isolated vertices and with max-
imum degree ∆ having n · NF (G) non-forced vertices. There exists an independent set I of G

ful�lling the three properties of Proposition 4.25 and having size at least n·NF (G)
2∆(∆2−∆+1)

.

Proof. Let N be the set of non-forced vertices in G: |N | = n ·NF (G). We build an independent
set I0 ⊆ N of G in a greedy way as follows. First, let I0 = ∅ and X = N be the set of candidate
vertices. Pick an arbitrary vertex x from X; add x to I and remove all vertices of N [x] from I.
Remove as well each vertex x′ which is a false twin of x. This process is repeated while X 6= ∅.

The correctness of this greedy algorithm is clear: no two adjacent vertices u, v can belong
to I0 (say u is picked; then, v is removed from the candidate set X as it belongs to N [u]) and
similarly no two false twins belong to I0. Moreover we have |I0| ≥ |N |

2∆ . Indeed, at each step,
at most 2∆ vertices are removed from X: say u is picked in I then we remove at most ∆ + 1
vertices from X for the set N [u], and at most ∆− 1 false twins of u.

Note that I0 is an independent set of G ful�lling the �rst two properties required in Propo-
sition 4.25, but there might be some pairs u, v of adjacent vertices that are not separated by
V (G)\I0: N [u]	N [v] ⊆ I0. Consider the set of all such pairs u, v (note that the same vertex may
participate to several such pairs) and let S be the collection of sets {N [u]	N [v] | N [u]	N [v] ⊆
I0}. We remark that each set of S has at least two elements since we have no forced vertex in

Chapter 4. Identifying codes in graphs of given maximum degree 77

I0. We now want to pick a vertex from each of the sets of S and remove it from I0, in order to
also ful�ll property number 3 (this also preserves the other two properties of I0). To this end,
we build the auxiliary graph G′ with vertex set I0 and where for each set S of S, we create an
arbitrary edge within two vertices of S (recall that |S| ≥ 2). Now, observe that it is su�cient
to build a vertex cover of G′ and remove it from I0 to get an independent set ful�lling all three
required properties. Recalling that any vertex cover is the complement of an independent set, it
is su�cient to build an independent set I ⊆ I0 of G′ (remark that isolated vertices of G′ may
stay in I).

First of all, we note that ∆(G′) ≤ ∆(∆ − 1). Indeed, each vertex x of G′ has at most one
incident edge for each pair u, v such that x ∈ N [u]	N [v]. Assuming x ∼ u but x 6∼ v, we have
at most ∆ choices for u, and then, ∆− 1 choices for v (since we can exclude x from the second
choice). By the same technique as in our earlier discussions, we can build a maximal independent
set I of G′ that has at size at least |I0|

∆(G′)+1 ≥
|I0|

∆(∆−1)+1 .

To summarize, we have |I| ≥ n·NF (G)
2∆(∆2−∆+1)

and I ful�lls all required properties. 9

The following improvement of Theorem 4.24 demonstrates the usefulness of Proposition 4.25
and Lemma 4.26.

Theorem 4.27. Let G be an identi�able graph of order n without isolated vertices and with
maximum degree ∆. Then γID(G) ≤ n− n

2∆4+2∆
. If G has no forced vertices, γID(G) ≤ n− n

2∆3 .

Proof. Let I be an independent set as constructed in Lemma 4.26. By Proposition 4.16, we
have NF (G) ≥ 1

∆+1 . Hence, we get |I| ≥ n
2∆(∆2−∆+1)

· 1
∆+1 ≥ n

2∆4+2∆
. If G has no forced

vertices, NF (G) = 1 and |I| ≥ n
2∆(∆2−∆+1)

≥ n
2∆3 . In both cases, Proposition 4.25 completes

the proof. 9

This approach can be successfully applied to the class of quasi-line graphs, improving the
bound of Theorem 4.27 as follows:

Theorem 4.28. Let G be an identi�able quasi-line graph of order n without isolated vertices
and with maximum degree ∆. Then γID(G) ≤ n − n

2∆3+5∆2+∆−2
. If G has no forced vertices,

γID(G) ≤ n− n
2∆2+3∆−2

.

The bound of Theorem 4.28 will be improved using probabilistic methods in Section 4.4,
hence we do not present its proof in the main body of the thesis, but in Appendix A.2.

4.3.3 An application to triangle-free graphs

In this section, we improve our previous bounds for the case of triangle-free graphs. We use
the same ideas as in the two previous sections, but with more complicated arguments that lead
to much improved bounds. We note that these results appeared in [FKKR12]; however for this
thesis, we have chosen to present them as a more general formulation which we apply to various
subclasses of triangle-free graphs in Subsection 4.3.3.5.

4.3.3.1 Proof ideas

The following proposition is similar to Proposition 4.25, but it is adapted to the case of triangle-
free graphs.

Proposition 4.29. Let G be an identi�able (not necessarily connected) triangle-free graph, and
I, an independent set of G. Then, if the following properties hold, V (G) \ I is an identifying
code of G.

1. I contains no isolated vertex of G.

2. For any pair u, v of vertices of I, N(u) 6= N(v) (i.e. I does not contain any pair of false
twins).

3. For each vertex v of degree 1 in G, some vertex at distance 2 from v does not belong to I.

78 4.3. Using complements of independent sets to approach Conjecture 4.4

4. The graph G[V (G) \ I] has no isolated edges.

Proof. Let C = V (G)\ I. Since I is an independent set and does not contain any isolated vertex,
C is a dominating set. Let us now check the separation condition. Let u, v be an arbitrary pair
of vertices of V (G). We distinguish several cases.

If u and v are adjacent and both have degree at least 2, since they cannot form an isolated
edge in G[C], a neighbour of either one of u, v belongs to C and separates them.

If u, v are adjacent and one of them, say u, has degree 1, since G is identi�able, v has at
least one neighbour. Then, by the third property of I, there is a vertex at distance 2 of u in C,
separating u and v.

If u and v are false twins, they do not both belong to I and hence they are separated by
themselves.

Finally, if u and v are not adjacent and are not false twins, if either u or v belong to C, they
are separated. If both u and v belong to I, all their neighbours belong to C, and since they have
distinct sets of neighbours they are separated. 9

In order to prove our main result, we show how to build (large enough) independent sets in
triangle-free graphs such that the three �rst conditions of Proposition 4.29 hold (see Lemma 4.34).
However, it seems di�cult to also ensure that the last condition holds while keeping the size of I
reasonably large. Therefore, after building I, we compute the set M of isolated edges of G[V \ I]
and partition V (G) into the end-vertices of M (set R) together with their neighbours (set L)
on the one hand, and the remaining vertices, V \ (L ∪ R), on the other hand. We then build a
su�ciently small (L,R)-quasi-identifying code C1, a variation of an identifying code which will be
de�ned later (see De�nition 4.32). This construction is done in Lemmas 4.35 and 4.36. Setting
C2 as the complement of I restricted to V \(L∪R), our �nal code is C1∪C2. We also combine this
method with another technique (Proposition 4.13) which is suitable for the special case where
the graph has a large number of false twins. The whole procedure is sketched in Algorithm 4.10.

Algorithm 4.10 Construction of an identifying code

Input: a nontrivial connected identi�able triangle-free graph G = (V,E)
1: Compute the set X of vertices having at least one false twin
2: if X is �small� then
3: Use Lemma 4.34 to compute an independent set I of G ful�lling the three �rst properties

listed in Proposition 4.29.
4: Compute the set R ⊆ V of vertices such that for each v ∈ R, v has a neighbour u where

both u and v are of degree at least 2, and all the vertices of N(u) ∪N(v) \ {u, v} belong
to I.

5: L← N(R) \R
6: Compute an (L,R)-quasi-identifying code C1 of G using the constructions of Lemmas 4.35

and 4.36.
7: C2 ← (V \ (L ∪R)) \ I
8: C ← C1 ∪ C2

9: else {i.e. X is �big�}
10: C ← an identifying code of G computed using Proposition 4.13.
11: end if

12: return C

This process is detailed in Subsection 4.3.3.4 (Theorem 4.37). All auxiliary results needed
for this proof are developed in the next subsections.

4.3.3.2 Preliminary considerations

In the proof of our main result, we �rst construct an independent set I having some given
properties. Then, we consider the set V (G) \ I as a potential code, and modify it in order
to identify those vertices which form isolated edges in G[V (G) \ I]. The following de�nition
introduces a notion which helps to formalize this situation.

Chapter 4. Identifying codes in graphs of given maximum degree 79

L(M)

R(M)

Figure 4.11: Example of a strong induced matchingM (thick edges) in a triangle-
free graph.

De�nition 4.30. Given a graph G together with an induced matching M of G, we denote by
R(M), the set of end-vertices of the edges ofM and by L(M), the set of neighbours of the vertices
of R(M): L(M) = N(R(M)) \ R(M). M is called a strong induced matching if the following
holds:

• L(M) is an independent set in G.

• Each vertex x of R(M) has degree at least 2 in G (i.e. N(x) ∩ L(M) 6= ∅).

An illustration of a strong induced matching is given in Figure 4.11. Note that in some
graphs, one cannot necessarily �nd a strong induced matching. Indeed, if G is triangle-free, each
edge of such a matching must belong to at least some induced path on four vertices.

Note that in any triangle-free graph G having a strong induced matchingM , G[L(M)∪R(M)]
has no isolated edge (i.e. two adjacent vertices of degree 1). Since in a triangle-free graph, a pair
of twins necessarily forms an isolated edge, the following observation is immediate.

Observation 4.31. Let G be a triangle-free graph having a strong induced matching M . Then
G[L(M) ∪R(M)] is identi�able.

In order to construct small identifying codes of a triangle-free graphG having a strong induced
matchingM , we will construct special codes for the subgraph of G induced by set L(M)∪R(M).
These codes are de�ned as follows.

De�nition 4.32. Let G be a triangle-free identi�able graph having a strong induced matching
M with L = L(M) and R = R(M). Let G′ = G[L ∪ R]. We say that C ⊆ L ∪ R is an
(L,R)-quasi-identifying code of G if:

1. Each vertex of L ∪R is dominated by some vertex of C.

2. For each pair u, v of vertices in L∪R, C ∩NG′ [u] 6= C ∩NG′ [v], unless u and v both belong
to L and NG′(u) = NG′(v).

3. For each edge e of M , at least one of the vertices of e belongs to C.

80 4.3. Using complements of independent sets to approach Conjecture 4.4

Note that because of condition number 2 of De�nition 4.32, an (L,R)-quasi-identifying code of
G is not necessarily an (L∪R)-identifying code of G. Conversely, because of condition number 3,
an (L ∪R)-identifying code of G might not be an (L,R)-quasi-identifying code of G.

The following proposition shows that we can use an (L,R)-quasi-identifying code of G to
construct a valid identifying code of G.

Proposition 4.33. Let G = (V,E) be an identi�able triangle-free graph having a strong induced
matching M , with L = L(M) and R = R(M), and suppose that L does not contain any pair of
false twins in G. Also suppose that there exists an (L,R)-quasi-identifying code C1 of G without
C1-isolated vertices and a (V \ (L ∪ R))-identifying code C2 of G where all the neighbours of
vertices of L within V \ (L ∪R) belong to C2.

2 Then, C1 ∪ C2 is an identifying code of G.

Proof. We show that each pair of vertices of G is separated. Since C2 is a (V \(L∪R))-identifying
code, all pairs of vertices of V \ (L ∪ R) are separated. Since C1 is (L,R)-quasi-identifying and
there are no C1-isolated vertices, each vertex x of L ∪ R is dominated by at least one vertex of
R ∩ C1 (see points number 1 and 3 of De�nition 4.32), which we denote fC1(x). Moreover, by
de�nition of sets L and R, no vertex of V \ (L ∪ R) is dominated by a vertex of R. Therefore,
all pairs of vertices x, y with x ∈ L ∪R and y ∈ V \ (L ∪R) are separated by fC1(x). It remains
to check the pairs of vertices of L ∪ R. By contradiction, suppose there are two vertices u, v of
L ∪R which are not separated. By point number 2 of De�nition 4.32, u and v belong to L and
have the same neighbourhood within L∪R. But since we assumed that they are not false twins
and all their neighbours in V \ (L ∪R) are in C2, u and v are separated by the neighbours they
do not have in common, a contradiction. 9

Next, we provide a lemma which shows how to build a large independent set in the subgraph
of a triangle-free graph induced by the set of vertices that have no false twin and ful�lling
property number 3 in Proposition 4.29.

Lemma 4.34. Let G be an identi�able triangle-free graph on n vertices and maximum degree ∆ ≥
3, such that each subgraph H of G has an independent set of size at least f(∆)|V (H)|. Let Y be
the set of all vertices of G having no false twin. Then G[Y] has an independent set I with the
following properties:

1. For each vertex u of degree 1 in G, there exists a vertex of G at distance 2 of u which does
not belong to I.

2. |I| ≥ min
{

1
3 , f(∆)

}
|Y |

Proof. Let I1 ⊆ Y be the set of vertices of Y having degree 1 in G. Note that since G is
identi�able, it has no isolated edges and therefore I1 is an independent set in G (and G[Y]).
Moreover since Y has no vertices having a false twin, all vertices of I1 are at distance at least 3
from each other. Let T1 be the set of vertices constructed as follows. All the vertices of I1 belong
to T1. For each element s of I1, its unique neighbour in G belongs to T1, and some arbitrary
neighbour at distance 2 of s belongs to T1. Since all the vertices of I1 are at distance at least 3
from each other, for each vertex s of I1 there is a vertex at distance 2 of s belonging to T1 \ I1.
We now set Y1 = T1 ∩Y . Note that we have |I1| ≥ |T1|

3 ≥
|Y1|

3 since for each vertex of I1, at most
three vertices of G have been inserted into T1.

Now, let Y2 = Y \ Y1. By the previous construction, Y2 neither contains a vertex of degree 1
in G, nor a neighbour of such a vertex. By our assumptions, G[Y2] has an independent set I2 of
size at least f(∆)|Y2|.

Taking I = I1∪I2, we get an independent set of G[Y] ful�lling the �rst property of the claim.
Moreover, Y1 and Y2 form a partition of Y , I1 ⊆ Y1 and I2 ⊆ Y2. Hence, we have:

|I| ≥ |Y1|
3 + f(∆)|Y2| ≥ min

{
1
3 , f(∆)

}
|Y |. 9

2Note that if a (V \ (L ∪ R))-identifying code C exists (i.e. G[V \ (L ∪ R)] is identi�able), then adding all
neighbours of vertices of L to C yields an identifying code. In fact, any superset of an identifying code is still an
identifying code.

Chapter 4. Identifying codes in graphs of given maximum degree 81

4.3.3.3 Quasi-identifying the vertices around a strong induced matching

This subsection is devoted to the construction of small enough quasi-identifying codes.
Recall that in order to prove our main result, given a nontrivial identi�able connected triangle-

free graph G, we will construct an independent set I and consider the (possibly empty) strong
induced matching M such that R(M) forms the set of isolated edges of V (G) \ I. In order to
ensure that there are no isolated edges uv in G[V (G) \ I], it would su�ce to remove an arbitrary
neighbour of either u or v from I. However, this could lead to a very large identifying code.
Indeed, consider the example of a complete graph Kn where each edge is subdivided twice,
K∗n. The original vertices of Kn form a (maximal) independent set I and each original edge
of Kn corresponds to an isolated edge in the subgraph of K∗n induced by the complement of I,
K∗n[V (K∗n)\I]. Now, inK∗n, getting rid of all isolated edges ofK∗n[V (K∗n)\I] by removing vertices
from I requires a vertex cover of Kn, that is, n−1 vertices. This would yield an identifying code
of size |V (K∗n)| − 1, which is not interesting.

Hence, in order to overcome this problem, we show in this subsection how to build an
(L(M), R(M))-quasi-identifying code of bounded size. We �rst deal with the special case where
all vertices of R(M) have degree exactly 2 (note that by De�nition 4.30 they must have degree
at least 2).

Lemma 4.35. Let G be an identi�able (not necessarily connected) triangle-free graph having a
strong induced matching M where L = L(M), R = R(M), and all vertices of R have degree
exactly 2. Then, there is an (L,R)-quasi-identifying code C of G having the following properties:

1. |C| ≤ |L|+ |R|
2 .

2. No vertex of R is C-isolated.

3. At least half of the vertices of L belong to C.

Proof. In order to simplify its construction, let us �rst de�ne the multigraph GL,R = (L,E) with
vertex set L and in which there is an edge between two vertices l1, l2 of L if and only if there
exist two vertices r1, r2 of R, such that l1, r1, r2, l2 is a 3-path in G. In other words, we contract
every path of length 3 of G[L ∪ R] having both endpoints in L, into one edge. There can be
multiple edges in GL,R (but no loops), since several disjoint 3-paths may join l1 to l2.

From GL,R we will build an oriented multigraph
−→
GL,R. Given an orientation of

−→
GL,R, we

de�ne the subset I(
−→
GL,R) of vertices of L ∪R in the following way: all the vertices of L belong

to I(
−→
GL,R), and for each arc

−→
l1l2 of

−→
GL,R corresponding to the path l1r1r2l2 in G, r2 belongs to

I(
−→
GL,R). Note that |I(

−→
GL,R)| = |L|+ |R|2 . An illustration is given in Figure 4.12, where the gray

vertices belong to I(
−→
GL,R). Our aim is to construct an orientation of

−→
GL,R for which I(

−→
GL,R)

is the desired (L,R)-quasi-identifying code of G.

l0

l1

l2

r2

r1

r3

r4

r5

r6

l0

l1

l2

Figure 4.12: Correspondence between a special subset of L ∪ R (gray vertices)

and
−→
GL,R.

We start by orienting the arcs of
−→
GL,R in an arbitrary way. Note that I(

−→
GL,R) ful�lls all

three required properties of the statement of the lemma. Hence, if I(
−→
GL,R) is an (L,R)-quasi-

identifying code of G, we are done. So, suppose this is not the case. Note that I(
−→
GL,R) ful�lls

82 4.3. Using complements of independent sets to approach Conjecture 4.4

conditions number 1 and 3 of De�nition 4.32. Hence, there are pairs of vertices of L ∪ R which
are not separated by I(

−→
GL,R). The only case where a pair l, r is not separated by I(

−→
GL,R), is

when l ∈ L, r ∈ R, and both belong to I(
−→
GL,R), but they are only dominated by each other and

themselves. This is equivalent to the case where l is of in-degree 1 in
−→
GL,R (see Figure 4.13 for

an illustration). In this case, in order to �x this problem, we modify the orientation of
−→
GL,R as

follows.

l

l2

r

r2

r3

r4

...

l

l2

Figure 4.13: Vertices l and r are not separated by the set of gray vertices.

At �rst, consider a connected component
−→
G1 of

−→
GL,R, and construct an arbitrary spanning

tree
−→
T 1 of

−→
G1, rooted in some vertex l. Now, go through all vertices of

−→
T 1, level by level in a

bottom-up order from the leaves up to the root. Whenever the in-degree of the current vertex,
v, is equal to 1, swap the orientation of the arc joining v to its parent in

−→
T 1. Doing so, the

in-degree of v in
−→
G1 becomes distinct from 1, and the in-degree of its parent is either incremented

or decremented by 1. Note that except for the root l, all vertices of
−→
G1 have now an in-degree

di�erent from 1. This process is repeated for all connected components of
−→
GL,R.

Let C = I(
−→
GL,R) be the new set corresponding to the new orientation. If C is an (L,R)-

quasi-identifying code of G, we are done. Otherwise, as observed earlier, it means that some
roots of the spanning trees we built, have in-degree 1 in

−→
GL,R. Let l be such a root with in-

degree 1. Observe that l has a unique neighbour in C ∩ R, say r. Let r2 be the neighbour of r
in R. It is su�cient to take out l from C and to replace it by r2 in order to separate l from r in
G[L ∪ R] (see Figure 4.14 for an illustration), without changing the cardinality of C. Moreover,
all neighbours of l are still separated from the other vertices because they are all in R \ C and
therefore have a neighbour in R∩ C, which itself has at least one neighbour in L∩ C. Hence C is
now an (L,R)-quasi-identifying code of G. Since the process did not change the cardinality of
C, we get property number 1 of the claim of the lemma.

l

l2

r

r2

r3

r4

...

l

l2

r

r2

r3

r4

...

Figure 4.14: Local modi�cation of the constructed code (gray vertices).

Notice that there are at most |L|2 connected components in G[L ∪ R] since each of them
contains at least two vertices of L. Thus property number 3 of the claim of the lemma follows.

Property number 2 is ful�lled by the construction of C since in each pair of adjacent vertices
of R, either it has a code vertex in L as a neighbour if there was no modi�cation done, or in R
if a switch of two elements of L and R was necessary. Moreover, for each such pair, at least one
of its elements belongs to the code. This shows that C is an (L,R)-quasi-identifying code and
completes the proof. 9

Chapter 4. Identifying codes in graphs of given maximum degree 83

L1

L2

R1

R2

Figure 4.15: Illustration of the sets L1, L2, R1, and R2.

We now deal with the general case, where the vertices of R(M) have degree at least 2 as
required in De�nition 4.30.

Lemma 4.36. Let G be an identi�able (not necessarily connected) triangle-free graph having a
strong induced matching M , with L = L(M) and R = R(M). There exists a set L′ of vertices of

L ∪R such that |L′| ≥ |L|3 , and C = (L ∪R) \ L′ is an (L,R)-quasi-identifying code of G having

no C-isolated vertices. If δ(G) ≥ 3, we have |L′| ≥ |L|2 .

Proof. Let us �rst divide sets L and R into the following subsets: let R1 ⊆ R be such that r ∈ R1

if both r and its unique neighbour in R are of degree 2. Let L1 ⊆ L be the set of all neighbours
of vertices of R1, let R2 = R \R1, and let L2 = L \ L1 (see Figure 4.15 for an illustration).

We can use Lemma 4.35 to construct an (L1, R1)-quasi-identifying code C1 of G such that the
three properties described in the statement of Lemma 4.35 are ful�lled. Let C1 be such a code,
in particular we have |C1| ≤ |L1| + |R1|

2 . Let us now describe the construction of two distinct
(L,R)-quasi-identifying codes Ca and Cb.

• Construction of code Ca.
We construct Ca such that |Ca| ≤ |L1|+ |R1|

2 + |L2|+ |R2|
2 + min

{
|L1|

2 , |R2|
2

}
, as follows.

1. Put C1 into Ca.
2. Put L2 into Ca.
3. For each pair r, r′ of adjacent vertices of R2, let r∗ be one of them having at least two

neighbours in L (by de�nition of R2 either r or r′ has this property). Put r∗ into Ca.
4. For each pair r, r′ of adjacent vertices of R2, let r∗ be the one which was put into Ca

in the previous step. Check if r∗ has less than two neighbours within Ca ∩ L (this
may happen if some of its neighbours are in L1, and they do not belong to C1). If
this is the case, pick an additional neighbour of r∗ � which exists since r has at least

84 4.3. Using complements of independent sets to approach Conjecture 4.4

two neighbours in L � and put it into Ca. Note that this is done at most |R2|
2 times.

Moreover, at most |L1|
2 new vertices from L1 are put into Ca in such a way since by

property number 3 of Lemma 4.35, there are at most |L1|
2 vertices of L1 not in C1.

5. Finally, consider each Ca-isolated vertex l of L, take it out of Ca and put an arbitrary
neighbour of l into Ca (this operation does not a�ect the size of Ca).

• Construction of code Cb.
We construct Cb such that |Cb| ≤ |L1|+ |R1|

2 + 3 |R2|
2 , as follows.

1. Put C1 into Cb.
2. Put R2 into Cb.
3. For each pair r, r′ of adjacent vertices of R2, one arbitrary neighbour in L of either r

or r′ is put into Cb.
4. Finally, in the same way as for the construction of Ca, we get rid of each Cb-isolated

vertex l of L by taking l out of Cb and putting an arbitrary neighbour of l into Cb
instead.

We omit the proof of the fact that Ca and Cb are (L,R)-quasi-identifying codes without
Ca-isolated or Cb-isolated vertices. This proof can be found in Claim A.4 (Appendix A.3).

Let us now determine a lower bound on the cardinality of (L ∪R) \ Cx, for x ∈ {a, b}.
Taking into account that |L1| ≤ |R1|, we obtain:

|(L ∪R) \ Ca| ≥ |L1|+ |L2|+ |R1|+ |R2| − |Ca|

≥ |R1|
2

+
|R2|

2
−min

{ |L1|
2
,
|R2|

2

}

Thus, both following equations hold:

|(L ∪R) \ Ca| ≥
|R1|

2
+
|R2|

2
− |L1|

2
≥ |R2|

2
(4.4)

|(L ∪R) \ Ca| ≥
|R1|

2
+
|R2|

2
− |R2|

2
=
|R1|

2
≥ |L1|

2
(4.5)

Similarly,

|(L ∪R) \ Cb| ≥ |L1|+ |L2|+ |R1|+ |R2| − |Cb|

≥ |L2|+
|R1|

2
− |R2|

2

≥ |L2|+
|L1|

2
− |R2|

2

= |L| − |L1|
2
− |R2|

2

(4.6)

Hence intuitively, the previous equations show that our two codes �t to two di�erent situa-
tions: Ca is useful when either |L1| or |R2| is large enough compared to |L|, whereas Cb is useful
when |L1| + |R2| is small enough compared to |L|. Let C ∈ {Ca, Cb} be the code having the
minimum cardinality. We distinguish two cases.

Case a. δ(G) ≤ 2.
Using inequalities (4.4), (4.5) and (4.6) and denoting b = max{|L1|,|R2|}

|L| we get:

Chapter 4. Identifying codes in graphs of given maximum degree 85

|(L ∪R) \ C| ≥ max

{ |L1|
2
,
|R2|

2
, |L| − |L1|

2
− |R2|

2

}
=
|L|
2
·max

{ |L1|
|L| ,

|R2|
|L| , 2−

|L1|+ |R2|
|L|

}
≥ |L|

2
·max

{
max {|L1|, |R2|}

|L| , 2− 2 ·max {|L1|, |R2|}
|L|

}
=
|L|
2
·max {b, 2− 2b}

≥ |L|
2
·min
b≥0
{max {b, 2− 2b}} .

Note that min
b≥0
{max {b, 2− 2b}} = 2

3 . Hence, we get:
3

|(L ∪R) \ C| ≥ |L|
2
· 2

3
=
|L|
3
.

Case b. δ(G) ≥ 3.
In that case, we have L1 = R1 = ∅. Similar to Case a, setting b = |R2|

2|L| , we get:

|(L ∪R) \ C| ≥ max

{ |R2|
2
, |L| − |R2|

2

}
= |L| ·max

{ |R2|
2|L| , 1−

|R2|
2|L|

}
= |L| ·max {b, 1− b}
≥ |L| ·min

b≥0
{max {b, 1− b}} .

Since min
b≥0
{max {b, 1− b}} = 1

2 , we obtain:

|(L ∪R) \ C| ≥ |L|
2
.

In both cases, putting L′ = (L ∪R) \ C, we are done. 9

4.3.3.4 The upper bound

We are now ready to prove the main theorem of this section. The proof has been sketched in
Algorithm 4.10, we now provide all the details.

Theorem 4.37. Let G be a connected identi�able triangle-free graph on n vertices with maximum
degree ∆ ≥ 3 such that each subgraph H of G has an independent set of size at least f(∆)|V (H)|.
Let f ′(∆) = min

{
1
3 , f(∆)

}
. Then γID(G) ≤ n− n

∆+ 3
f ′(∆)

. If G has no false twins, then γID(G) ≤

n− n·f ′(∆)
3 .

If δ(G) ≥ 2, γID(G) ≤ n− n
∆+ 3

f(∆)

; if moreover, G has no false twins, then γID(G) ≤ n− n·f(∆)
3 .

If δ(G) ≥ 3, γID(G) ≤ n− n
∆+ 2

f(∆)

; if moreover, G has no false twins, then γID(G) ≤ n− n·f(∆)
2 .

Proof. For the proof, we assume that δ(G) is arbitrary. The bounds for δ(G) ≥ 2 and δ(G) ≥ 3
can be obtained similarly.4

3We note that equality in the inequality is achieved when |L1| = |R1| = |R2| = 2|L2|.
4When δ(G) ≥ 2, since G has no degree 1-vertices, we do not need to use Lemma 4.34 and hence we can

directly use f(∆) instead of f ′(∆). When δ(G) ≥ 3, we can use the bound |L′| ≥ |L|
2

instead of |L′| ≥ |L|
3
, as

stated in Lemma 4.36; then, the threshold between Case a and Case b is replaced by |Y | ≥ 2n
∆f(∆)+2

.

86 4.3. Using complements of independent sets to approach Conjecture 4.4

u v

... ...

Figure 4.16: Vertices u, v with (N(u) ∪N(v)) \ {u, v} ⊆ I (the vertices of I are
gray).

Let F = {F1, . . . , F|F|} be the set of all nontrivial equivalence classes over the false twin

relation ≡ over V (G). Let X = ∪|F|i=1Fi and Y = V (G) \X. We distinguish two cases.

Case a. |Y | ≥ 3n
∆f ′(∆)+3 .

In this case, let I be an independent set of G[Y] given by Lemma 4.34. we have:

|I| ≥ min

{
1

3
, f(∆)

}
|Y | = f ′(∆)|Y |.

Consider all pairs u, v of vertices of G such that u and v are adjacent, both u and v have degree at
least 2, and all the vertices of N(u)∪N(v)\{u, v} belong to I (see Figure 4.16 for an illustration).
Since all neighbours of u and v (except u and v themselves) are in I, these neighbours form an
independent set. Let M be the (possibly empty) set of all edges uv such that u and v form such
a pair. By the previous remark, M is a strong induced matching of G. Let us denote L = L(M)
and R = R(M). Note that we have L(M) ⊆ I.

Let us now partition V (G) into two subsets of vertices: L ∪ R on the one hand, and
V (G) \ (L ∪ R) on the other hand. Such a partition is illustrated in Figure 4.17. Note that
G[L ∪ R] is identi�able by Observation 4.31. Let us show that G[V (G) \ (L ∪ R)] is also iden-
ti�able. By contradiction, suppose it is not the case and let u, v be a pair of vertices such that
NG[V (G)\(L∪R)][u] = NG[V (G)\(L∪R)][v]. Vertices u and v are therefore adjacent, and since G is
triangle-free, neither u nor v has other neighbours within G[V (G) \ (L ∪ R)]. Since G is iden-
ti�able, at least one of them has a neighbour in L. Suppose they both have a neighbour in L.
Then by construction of I, u and v both do not belong to I. But then u and v should belong to
R, a contradiction. Thus, one of them, say u, has degree 1 in G, and all neighbours of v belong
to L ⊆ I. But by the �rst property of I in Lemma 4.34, at least one vertex at distance 2 of u
does not belong to I, a contradiction.

We will now build two subsets C1 ⊆ L ∪R and C2 ⊆ V (G) \ (L ∪R) such that C = C1 ∪ C2 is
an identifying code of G.

• Building C1 ⊆ L ∪R.
If L∪R = ∅ we take C1 = ∅. Otherwise, we build C1 using Lemma 4.36: applying it to G and
M , we know that there exists an (L,R)-quasi-identifying code C1 of G without C1-isolated
vertices. From Lemma 4.36 we also know that |L′| ≥ |L|3 , where L′ = (L ∪R) \ C1.

• Building C2 ⊆ V (G) \ (L ∪R).
Again if V (G)\(L∪R) = ∅ we take C2 = ∅. Otherwise, we take C2 to be the complement of
I in V (G) \ (L∪R): C2 = (V (G) \ (L ∪R)) \ I. Let us show that C2 is a

(
V (G) \ (L∪R)

)
-

identifying code of G.

First, recall that G′ = G[V (G) \ (L ∪R)] is identi�able. Note that I does not contain any
vertex v which is isolated in G′. Indeed, G does not contain any isolated vertex, hence
if v is isolated in G′, v has a neighbour in L. But L ⊆ I, a contradiction since I is an
independent set. We also claim that for each vertex v of degree 1 in G′, there is a vertex
at distance 2 of v in G′ not belonging to I. Let w be the unique neighbour of v in G′.
If v is also of degree 1 in G, since G′ has no pair of twins, by the �rst property of I in
Lemma 4.34, w must have a neighbour x not in I. Vertex x cannot belong to L, hence
it belongs to G′ and we are done. Now, if v is not of degree 1 in G, all its neighbours in

Chapter 4. Identifying codes in graphs of given maximum degree 87

L RV (G) \ (L ∪R)

G

Figure 4.17: Partition of V (G) using the strong induced mathcing M (thick
edges).

G other than w belong to L. But since G′ is identi�able, w has at least one neighbour
other than v, belonging to G′ but not to I, since otherwise v and w would belong to set
R. Finally, by construction of G′, there are no isolated edges in G[V (G′) \ I].

Under these conditions we can apply Proposition 4.29 on G′ and on set I restricted to
V (G′), which shows that C2 is a

(
V (G) \ (L ∪R)

)
-identifying code of G.

We now have an (L,R)-quasi-identifying code C1 ofG without C1-isolated vertices, and showed
that C2 is a (V (G) \ (L ∪ R))-identifying code of G. Moreover, I does not contain any pair of
false twins. Furthermore, since C2 is the complement of I in G[V (G) \ (L∪R)], all neighbours of
L in G[V (G) \ (L ∪R)] belong to C2. Therefore, we can apply Proposition 4.33 and C = C1 ∪ C2

is an identifying code of G.
Let us now upper-bound the size of C. To this end, we lower-bound the size of its complement.

From the construction of C1 and C2, we have V (G) \ C = (I \ L) ∪ L′.
Since L ⊆ I and |L′| ≥ |L|3 , we have |(I \ L) ∪ L′| ≥ |I|3 ≥

f ′(∆)|Y |
3 .

We now distinguish two sub-cases. If Y = V (G) (i.e. G has no false twins), we get:

|V (G) \ C| ≥ n · f ′(∆)

3
,

and hence,

C ≤ n− n · f ′(∆)

3
.

Otherwise, by the assumption of the case distinction, we have |Y | ≥ 3n
∆f ′(∆)+3 . Hence:

|V (G) \ C| ≥ f ′(∆)|Y |
3

≥ f ′(∆)

3

3n

∆f ′(∆) + 3

=
n

∆ + 3
f ′(∆)

.

88 4.3. Using complements of independent sets to approach Conjecture 4.4

Hence, |C| ≤ n− n
∆+ 3

f ′(∆)

.

Case b. |Y | ≤ 3n
∆f ′(∆)+3 .

Then, |X| = |V (G) \ Y | ≥ n − 3n
∆f ′(∆)+3 = n ∆f ′(∆)

∆f ′(∆)+3 . Since each set of F has size at most ∆,
we have:

|F| ≥ |X|
∆

≥ f ′(∆)

∆f ′(∆) + 3
n

=
n

∆ + 3
f ′(∆)

.

Since ∆ ≥ 3, G is not isomorphic to C4 and we can apply Proposition 4.13: G has an identifying
code of size at most n− |F| ≤ n− n

∆+ 3
f ′(∆)

. 9

4.3.3.5 Applying Theorem 4.37

A general bound

In order to use Theorem 4.37, we need to build (large enough) independent sets in triangle-free
graphs. We �rst recall the following result of J. Shearer [180].

Theorem 4.38 ([180]). Let G be a triangle-free graph on n vertices and average degree d. Then

G has an independent set of size at least d(ln d−1)+1

(d−1)2 n.

The following corollary of Theorem 4.38 is an approximate bound which is easier to deal with
and which is tight enough for our purposes. It follows from the facts that d(G) ≤ ∆(G) and that
when x > 1, the function x(lnx−1)+1

(x−1)2 is decreasing. Moreover in that case, x(lnx−1)+1
(x−1)2 ≥ lnx−1

x

and for x ≥ 3, lnx−1
x > 0.

Corollary 4.39. Let G be a triangle-free graph on n vertices and maximum degree ∆ ≥ 3. Then
G has an independent set of size at least ln ∆−1

∆ n.

We get the following corollaries of Theorem 4.37:

Corollary 4.40. Let G be a connected identi�able triangle-free graph on n vertices and maximum
degree ∆ ≥ 3. Then γID(G) ≤ n− n

∆+ 3∆
ln ∆−1

= n− n
∆(1+o∆(1)) . If G has no false twins, γID(G) ≤

n− n
3∆

ln ∆−1

= n− n
o(∆) .

Corollary 4.41. Let G be a connected identi�able triangle-free graph on n vertices, and maxi-
mum degree ∆ ≥ 3, and minimum degree at least 3. Then γID(G) ≤ n− n

∆+ 2∆
ln ∆−1

. If G has no

false twins, γID(G) ≤ n− n
2∆

ln ∆−1

.

We remark that due to the bound γID(G) ≤ n − n
o(∆) when G has no false twins, any class

of connected triangle-free graphs of maximum degree ∆ having its minimum identifying code
of size at least n − n

Θ(∆) should contain false twins. Note that this is the case of the complete

(∆ − 1)-ary tree of height h, T h∆−1, as already mentioned in Chapter 2 (Theorem 2.33), whose
leaves all are false twins, and also of the graphs of Construction 4.10.

Graphs of bounded chromatic number

It is an easy observation that any k-colourable graph has an independent set of size at least
n
k , and any subgraph of a k-colourable graph is k-colourable. For example, bipartite graphs are
2-colourable, k-degenerate graphs are (k + 1)-colourable [29, Exercise 14.1.5], graphs having no
K`-minor are O(`

√
ln(`))-colourable [138] (it is famously conjectured by H. Hadwiger that they

Chapter 4. Identifying codes in graphs of given maximum degree 89

are (`− 1)-colourable [101]), and graphs of genus at most g are
(⌈

7+
√

1+48g
2

⌉)
-colourable [112].5

In particular, planar triangle-free graphs are 3-colourable by H. Grötzsch's theorem [99].
We get the following corollary:

Corollary 4.42. Let G be a nontrivial connected identi�able triangle-free graph on n vertices
with maximum degree ∆ and chromatic number χ(G). Then γID(G) ≤ n− n

∆+3 max{3,χ(G)} , and

if G has no false twins, γID(G) ≤ n− n
3 max{3,χ(G)} . In particular:

• If G is bipartite or planar, γID(G) ≤ n− n
∆+9 ; if moreover, G has no false twins, γID(G) ≤

8n
9 .

• If G is k-degenerate, γID(G) ≤ n− n
∆+3(k+1) .

• If G has no K`-minor, γID(G) ≤ n− n

∆+O(`
√

ln(`))
.

• If G has genus at most g, γID(G) ≤ n− n

∆+3
⌈

7+
√

1+48g
2

⌉ .
We can also strengthen the bounds when δ(G) ≥ 2 and δ(G) ≥ 3 using the corresponding

cases in Theorem 4.37:

Corollary 4.43. Let G be a nontrivial connected identi�able triangle-free graph on n vertices
with maximum degree ∆ and chromatic number χ(G). If δ(G) ≥ 2, γID(G) ≤ n− n

∆+3χ(G) , and

if moreover, G has no false twins, γID(G) ≤ n− n
3χ(G) . If δ(G) ≥ 3, γID(G) ≤ n− n

∆+2χ(G) , and

if moreover, G has no false twins, γID(G) ≤ n− n
2χ(G) . In particular:

• If G is bipartite and δ(G) ≥ 2, γID(G) ≤ n − n
∆+6 ; if moreover, G has no false twins,

γID(G) ≤ 5n
6 .

• If G is bipartite and δ(G) ≥ 3, γID(G) ≤ n − n
∆+4 ; if moreover, G has no false twins,

γID(G) ≤ 3n
4 .

• If G is planar and δ(G) ≥ 3, γID(G) ≤ n − n
∆+6 ; if moreover, G has no false twins,

γID(G) ≤ 5n
6 .

Graphs of small maximum degree

We can improve our bounds for graphs having small maximum degree.

Theorem 4.44. Let G be a nontrivial connected identi�able triangle-free graph on n vertices
with maximum degree ∆ ≥ 3 such that each subgraph H of G has an independent set of size at
least f(∆)|V (H)|. Then γID(G) ≤ n− n

max
{

2∆,9, 3
f(∆)

} .
If G has no false twins, γID(G) ≤ n− n

max
{

∆+1,9, 3
f(∆)

} .
If G has minimum degree at least 3, γID(G) ≤ n − n

max
{

2∆, 2
f(∆)

} ; if moreover G has no false

twins, γID(G) ≤ n− n

max
{

∆+1, 2
f(∆)

} .
The proof of this theorem can be found in Appendix A.4. It uses a similar technique than

the of the proof of Theorem 4.37, except that there is no case distinction on the number of
vertices having a false twin, and that an independent set of G is computed using a speci�c
greedy algorithm.

We can apply Theorem 4.44 using the lower bound f(∆) ≥ ln ∆−1
∆ of Corollary 4.39. It is also

known (from Brook's theorem [33]) that when ∆(G) ≥ 3, any connected graph G which is not
isomorphic to a complete graph is ∆-colourable, implying that f(∆) ≥ 1

∆ (this holds, of course,
for triangle-free graphs). This bound is in fact stronger than the previous one for ∆ < e2 < 8.

5We note that the latter three classes can in fact be summarized by the class of K`-minor-free graphs (for some
`) since k-degenerate graphs are K

O(k
√

ln(k))
-minor-free [190] and graphs of genus at most g are Kf(g)-minor-free

for some function f [175].

90 4.4. Using the probabilistic method to tackle Conjecture 4.4

Corollary 4.45. Let G be a nontrivial connected identi�able triangle-free graph on n vertices
with maximum degree ∆ ≥ 3. Then γID(G) ≤ n− n

max
{

2∆,9,min{3∆, 3∆
ln(∆)−1

}
} .

If G has no false twins, γID(G) ≤ n− n

max
{

∆+1,9,min{3∆, 3∆
ln(∆)−1

}
} .

If G has minimum degree at least 3, γID(G) ≤ n− n

max
{

2∆,min{2∆, 2∆
ln(∆)−1

}
} ; if moreover G has no

false twins, γID(G) ≤ n− n

max
{

∆+1,min{2∆, 2∆
ln(∆)−1

}
} .

We point out that the bounds of Corollary 4.45 are indeed stronger than the ones of Corol-
lary 4.41 for relatively small values of the maximum degree. For example, for ∆ < e4 < 55,
n− n

max
{

2∆,9,min{3∆, 3∆
ln(∆)−1

}
} is smaller than n− n

∆+ 3∆
ln(∆)−1

.

We note that subcubic graphs seem already interesting due to the work in [113], where
identifying open codes in subcubic graphs are studied (as mentioned earlier, the authors prove
that an identifying open code in a not necessarily connected subcubic graph has size at most
3n
4). Recall that in this speci�c case, the bound conjectured in Conjecture 4.4 is γID(G) ≤ 2n

3 + c
for some constant c. The bounds of Corollary 4.45 for this case are as follows (we do not get any
improvement when the graph has no false twins):

Corollary 4.46. Let G be a nontrivial connected identi�able subcubic triangle-free graph on n
vertices. Then γID(G) ≤ 8n

9 . If G is cubic, γID(G) ≤ 5n
6 .

4.4 Using the probabilistic method to tackle Conjecture 4.4

In this section, we use the probabilistic method to show improved upper bounds on the identifying
code number depending on the order and the maximum degree of the graph. We �rst introduce
the probabilistic tools that we will need.

4.4.1 Probabilistic tools

We �rst recall a well-known probabilistic tool: the Lovász Local Lemma, introduced in [77].
We use its weighted version, a particularization of the general version where each event has an
assigned weight. The proof can be found in [155].

Lemma 4.47 (Weighted Local Lemma [155]). Let E = {E1, . . . , EM} be a set of (typically �bad�)
events such that each Ei is mutually independent of E \ (Di ∪ {Ei}) where Di ⊆ E. Suppose that
there exist some integer weights t1, . . . , tM ≥ 1 and a real p ≤ 1

4 such that for each 1 ≤ i ≤M :

• Pr(Ei) ≤ pti , and

• ∑Ej∈Di(2p)
tj ≤ ti

2

Then Pr(
⋂M
i=1Ei) ≥

∏M
i=1(1− (2p)ti) > 0.

Note that in Lemma 4.47, since p ≤ 1
4 and (1− x) ≥ e−(2 ln 2)x in x ∈ [0, 1/2], we have:

Pr(
⋂M
i=1Ei) ≥ exp

{
−(2 ln 2)

∑M
i=1(2p)ti

}
. (4.7)

We also use the following version of the well-known Cherno� bound, which is a reformulation
of Theorem A.1.13 in [2].

Theorem 4.48 (Cherno� bound [2]). Let X be a random variable of n independent trials of

probability p, and let a > 0 be a real number. Then Pr(X − np ≤ −a) ≤ e−
a2

2np .

4.4.2 The upper bound

In this section, we improve the upper bounds on the identifying code number by using the
Weighted Local Lemma, stated in Lemma 4.47.

Chapter 4. Identifying codes in graphs of given maximum degree 91

Theorem 4.49. Let G be an identi�able graph G on n vertices having maximum degree ∆ ≥ 3.

Then γID(G) ≤ n− nNF (G)2

103∆ .

Proof. Let F be the set of forced vertices of G, and V ′ = V (G) \ F . Note that |V ′| = nNF (G).
By the de�nition of a forced vertex, any identifying code must contain all vertices of F .

In this proof, we �rst build a set S in a random manner by choosing vertices from V ′. Then
we exhibit some �bad� con�gurations � if none of those occurs, the set C = F ∪ (V ′ \ S) is an
identifying code of G. Using the Weighted Local Lemma, we compute a lower bound on the
(non-zero) probability that none of these bad events occurs. Finally, we use the Cherno� bound
to show that with non-zero probability, the size of S is also large enough for our purposes. This
shows that such a �good� large set S exists, and it can be used to build an identifying code that
has a su�ciently small size.

Let p = p(∆) be a probability which will be determined later. We build the set S ⊆ V ′ such
that each vertex of V ′ independently belongs to S with probability p. Therefore the random
variable |S| follows a binomial distribution Bin(nNF (G),p) and has expected value E(|S|) =
pnNF (G).

Let us now de�ne the set E of �bad� events. These are of four types. An illustration of these
events is given in Figure 4.18.

• Type Aj (2 ≤ j ≤ ∆ + 1): for each vertex u ∈ V ′, let Aju be the event that |N [u] = j|
and N [u] ⊆ S.

• Type Bj (2 ≤ j ≤ 2∆− 2): for each pair {u, v} of adjacent vertices, let Bj
u,v be the event

that |(N [u]	N [v])| = j and (N [u]	N [v]) ⊆ S.

• Type Cj (3 ≤ j ≤ 2∆): for each pair {u, v} of vertices in V ′ at distance two from each
other, let Cju,v be the event that |(N [u]	N [v])| = j and (N [u]	N [v]) ⊆ S.

• Type D: for each pair {u, v} of false twins in V ′, let Du,v be the event that (N [u]	N [v]) =
{u, v} ⊆ S.

For the sake of simplicity, we refer to the events of type Aj , Bj and Cj as events of type A,
B and C respectively whenever the size of the symmetric di�erence is not relevant.

Events of type B1
u,v are not de�ned since then |N [u]	N [v]| = 1 and F belongs to the code,

so they never happen. Observe that the events Cju,v and Du,v are just de�ned over the pairs of
vertices in V ′ because if either u or v belongs to F , the event does not happen.

If no event of type A occurs, V (G)\S is a dominating set of G. If no event of type B occurs,
all pairs of adjacent vertices are separated by V (G) \ S. If no event of type C or D occurs, all
pairs of vertices at distance 2 from each other are separated. Thus by Observation 1.8, if no
event of type A, B, C or D occurs, then V (G) \ S is also a separating set of G, and therefore it
is an identifying code of G.

Let V (Ei) denote the set of vertices that must belong to set S so that Ei holds (see Figure 4.18,
where the sets V (Ei) are the ones inside the dashed circles). We will say that a vertex v ∈ V (G)
participates to Ei, if v ∈ V (Ei). We de�ne the weight ti of each event Ei ∈ E as |V (Ei)|. For
j ≥ 2 and for T ∈ {Aj , Bj , Cj , D}, let tT be the weight of an event of type T (for an event
Ei ∈ E of type T , ti = tT). We have:

tAj = j tBj = j tCj = j tD = 2.

Some vertex x can participate to at most ∆ + 1 events of type A since if it participates to
some event Aju, then u ∈ N [x]. Vertex x can participate to at most ∆(∆− 1) events of type B:
supposing x ∈ V (Bj

u,v) and u is adjacent to x, there are at most ∆ ways to choose u, and at most
∆−1 ways to choose v among N(u)\{x}. Observe that if x = u or x = v, then x /∈ V (Bu,v) (see
Figure 4.18(b)). Similarly x can participate to at most ∆2(∆ − 1) events of type C: for some
event Cju,v, there are at most ∆(∆− 1) possibilities if x = u or x = v and at most ∆(∆− 1)2 if
u or v is a neighbour of x. Finally, x can participate to at most ∆ − 1 events ∆u,v since x can
have at most ∆− 1 false twins. For each type T of events (T ∈ {Aj , Bj , Cj , D}) and any vertex

92 4.4. Using the probabilistic method to tackle Conjecture 4.4

u

...

(a) Event Aju

u v

...

... ...

(b) Event Bju,v

u v

...... ...
(c) Event Cju,v

u v

...

(d) Event Du,v

Figure 4.18: The �bad� events. The vertices in dashed circles belong to set S.

v ∈ V (G), let us de�ne g(v, T) to be the number of events Ei of type T such that v ∈ V (Ei).
Hence:

∆+1∑
j=2

g(v,Aj) ≤ d+ 1

2∆−2∑
j=2

g(v,Bj) ≤ ∆(∆− 1)

2∆∑
j=3

g(v, Cj) ≤ ∆2(∆− 1) g(v,D) ≤ ∆− 1

(4.8)

Let us call Eic the event that no event of E occurs. Using the Weighted Local Lemma,
we want to show that Pr(Eic) > 0. Given two events Ei and Ej of E , we note i ∼ j if
V (Ei)∩ V (Ej) = ∅. Observe that for any event Ei and any set T ⊆ {j : i 6∼ j}, we have Pr(Ei |
∩j∈TEj) = Pr(Ei), since the vertices are included in S with independent probabilities. This
means that Ei is mutually independent from the set of all events Ej for which V (Ei)∩V (Ej) = ∅.

In order to apply the Weighted Local Lemma (Lemma 4.47), the following conditions must
hold for each event Ei ∈ E :

∑
i∼j

(2p)tj ≤ ti
2

The latter conditions are implied by the following ones (for each event Ei ∈ E):

∆+1∑
j=2

∑
v∈V (Ei)

g(v,Aj)(2p)tAj +

2∆−2∑
j=2

∑
v∈V (Ei)

g(v,Bj)(2p)tBj+

2∆∑
j=3

∑
v∈V (Ei)

g(v, Cj)(2p)tCj +
∑

v∈V (Ei)

g(v,D)(2p)tD ≤ ti
2

Which are implied by:

Chapter 4. Identifying codes in graphs of given maximum degree 93

ti · max
v∈V (Ei)


∆+1∑
j=2

g(v,Aj)(2p)tAj

+ ti · max
v∈V (Ei)


2∆−2∑
j=2

g(v,Bj)(2p)tBj

+

ti · max
v∈V (Ei)


2∆∑
j=3

g(v, Cj)(2p)tCj

+ ti · max
v∈V (Ei)

{
g(v,D)(2p)tD

}
≤ ti

2

Using the bounds of Inequalities (4.8) and noting that for p ≤ 1/4 and any j, (2p)tAj ≤ (2p)2,
(2p)tBj ≤ (2p)2 and (2p)tCj ≤ (2p)3, for any event Ei this equation is implied by:

(∆+1)(2p)2+∆(∆−1)(2p)2+∆2(∆−1)(2p)3+(∆−1)(2p)2 = 4∆2p2+8∆3p3+4∆p2−8∆2p3 ≤ 1

2
(4.9)

Hence, we �x p = 1
k∆ where k is a constant to be determined later. Equation (4.9) holds for

k ≥ 3.68 for all ∆ ≥ 3. In fact, in the following steps of the proof, we will assume that k ≥ 30,
and so Equation (4.9) will be satis�ed for any ∆ ≥ 3. Since p ≤ 1

4 and Pr(Ei) ≤ pti by the
de�nition of ti and the choice of S, the Weighted Local Lemma can be applied.

Let MT be the number of events of type T , where T ∈
{
Aj , Bj , Cj , D

}
. By Lemma 4.47 we

have:

Pr(Eic) ≥
∆+1∏
j=2

M
Aj∏

i=1

(1− (2p)tAj)
2∆−2∏
j=2

M
Bj∏

i=1

(1− (2p)tBj)
2∆∏
j=3

M
Cj∏

i=1

(1− (2p)tCj)

MD∏
i=1

(1− (2p)tD).

Note that
∑∆+1

j=2 MAj = nNF (G) since by de�nition there exists exactly one event Aju for

each vertex of u ∈ V ′. Moreover,
∑2∆−2

j=2 MBj ≤ n∆
2 since there is exactly one event type Bj

u,v for

each edge uv ∈ E(G) and at most n∆
2 edges in G. We also have that

∑2∆
j=3MCj is at most the

number of pairs of vertices in V ′ at distance 2 from each other. This is also at most the number of
paths of length 2 with both endpoints in V ′, which is upper-bounded by nNF (G)∆(∆−1)

2 . Finally,
MD is the number of pairs of false twins in V ′, which is at most nNF (G)∆−1

2 by Proposition 4.12.
Hence, we have:

Pr(Eic) ≥ (1− (2p)2)nNF (G)(1− (2p)2)
n∆
2 (1− (2p)3)

nNF (G)∆(∆−1)
2 (1− (2p)2)

nNF (G)(∆−1)
2 .

Using Lemma 4.47 (more precisely, we use Equation (4.7)) and the fact that p = 1
k∆ , we

obtain:

Pr(Eic) ≥ exp

{
−(2 ln 2)(2p)2

(
NF (G) +

∆

2
+
NF (G)∆(∆− 1)2p

2
+
NF (G)(∆− 1)

2

)
n

}
≥ exp

{
−4 ln 2

k2∆

(
2NF (G)

∆
+ 1 +

2NF (G)

k
+NF (G)

)
n

}
Since NF (G) ≤ 1 and it is assumed that k ≥ 30, one can check that for any ∆ ≥ 3:6

Pr(Eic) ≥ exp

{
−164 ln 2

15k2∆
n

}
.

TheWeighted Local Lemma shows that S has the desired properties with probability Pr(Eic) >
0, implying that such a set exists. Note that we have no guarantee on the size of S. In fact, if

6Note that this bound could be strengthened by assuming ∆ to be large enough. Indeed, here the term 2NF (G)
∆

can be as high as 2
3
when ∆ = 3 and NF (G) = 1, but can be chosen to be as low as desired by assuming ∆ to be

larger. However we aim at giving a bound for any ∆ ≥ 3, hence we use the weaker bound presented here.

94 4.4. Using the probabilistic method to tackle Conjecture 4.4

S = ∅ then V (G) \ S = V (G) is always an identifying code. Therefore we need to estimate the
probability that |S| is far below its expected size. In order to do this, we use the Cherno� bound
of Theorem 4.48 by putting a = nNF (G)

c∆ where c is a constant to be determined. Let Ebig be

the event that |S| − np > −nNF (G)
c∆ . We obtain:

Pr(Ebig) ≤ exp

−
(
nNF (G)
c∆

)2

2pnNF (G)


= exp

{
−kNF (G)

2c2∆
n

}
Now we have:

Pr(Eic and Ebig) = 1− Pr(Eic or Ebig)

≥ 1− Pr(Eic)− Pr(Ebig)

= 1− (1− Pr(Eic))− Pr(Ebig)

= Pr(Eic)− Pr(Ebig)

≥ exp

{
−164 ln 2

15k2∆
n

}
− exp

{
−kNF (G)

2c2∆
n

}
Thus, Pr(Eic and Ebig) > 0 if c < k3/2NF (G)1/2√

328 ln 2
15

. We (arbitrarily) set c = k3/2NF (G)1/2
√

22 ln 2
in

order to ful�ll this condition.
Now we have to check that Ebig implies that S is still large enough.

|S| ≥ E(|S|)− nNF (G)

c∆

=
nNF (G)

k∆
− nNF (G)

c∆

=

(
1

k
−

√
22 ln 2

k3/2NF (G)1/2

)
nNF (G)

∆
(4.10)

Since |S| must be positive, from Equation (4.10) we need k3/2NF (G)1/2 >
√

22 ln 2 k, which
leads to k = a0

NF (G) for a0 > 22 ln 2. Using all our previous assumptions, by derivating the

expression of |S|, one can check that |S| is maximized when a0 = 99 ln 2
2 . Hence we set k = 99 ln 2

2NF (G) .
Remark that under this condition and since NF (G) ≤ 1, we have k ≥ 34 and our assumption

following Equation (4.9) that k ≥ 30, is ful�lled.
Now, with a0 = 99 ln 2

2 , we can see that:

|S| ≥
(

1

k
− 1

c

)
nNF (G)

∆
=
a

1/2
0 −

√
22 ln 2

a
3/2
0

NF (G)2

∆
n =

2

297 ln 2

NF (G)2

∆
n ≥ NF (G)2

103∆
n.

Hence �nally the identifying code C = V \ S has size

|C| ≤ n− nNF (G)2

103∆ . 9

4.4.3 Corollaries of the bound

Note that for regular graphs, NF (G) = 1 because a forced vertex implies the existence of two
vertices with distinct degrees. We obtain the following result:

Corollary 4.50 (Graphs with constant proportion of non-forced vertices). Let G be an identi-
�able graph on n vertices having maximum degree ∆ and NF (G) = 1

α for some constant α ≥ 1.
Then γID(G) ≤ n− n

103α2∆
. In particular if G is ∆-regular, γID(G) ≤ n− n

103∆ .

Chapter 4. Identifying codes in graphs of given maximum degree 95

Using the bound NF (G) ≥ 1
∆+1 of Propositions 4.16 from Chapter 4.2.3, we obtain the

following corollary:

Corollary 4.51 (General case). Let G be an identi�able graph on n vertices having maximum
degree ∆. Then γID(G) ≤ n− n

103∆(∆+1)2 = n− n
Θ(∆3)

.

Using the bound NF (G) ≥ 1
γ(k) for each graph G with clique number at most k from

Proposition 4.22 (Chapter 4.2.3), we get the following extension of Corollary 4.50, where c(k) ≤
103γ(k)2:

Corollary 4.52 (Graphs with bounded clique number). Let G be an identi�able graph on n
vertices having maximum degree ∆ and clique number smaller than k. Then γID(G) ≤ n− n

c(k)∆

for some constant c(k) depending only on k. In particular this applies to triangle-free graphs,
planar graphs, or more generally, graphs of bounded genus.

We remark here that the previous corollaries support Conjecture 4.4. They also lead us to
think that the di�culty of the problem lies in forced vertices.

4.5 Conclusion

In this chaper, we have shown that the maximum degree has a strong in�uence on the identifying
code number, both for lower bounds and for upper bounds on this parameter.

We have given the �rst characterization of all graphs G reaching the lower bound γID(G) ≥
2|V (G)|
∆(G)+2 of Theorem 2.29. However, we wonder what are the computational properties of the
recognition problem for this class:

Question 4.53. What is the computational complexity of deciding whether for a given graph G,
the bound γID(G) = 2|V (G)|

∆(G)+2 holds? Equivalently, what is the complexity of deciding whether G
can be obtained from Construction 4.1?

We note that the similar question for test covers with tests of bounded sizes has recently
been shown NP-complete in [39]. This makes our question even more interesting.

We have conjectured in Conjecture 4.4 that the bound γID(G) ≤ n − n
∆ + c holds and have

given several bounds that approximate this conjecture for di�erent graph classes. The best result
known so far that is valid for all graphs is the bound γID(G) ≤ n − n

Θ(∆3)
from Corollary 4.51,

that we proved using the probabilistic method. We point out that the bound provided by our
technique is tight (up to the multiplicative constant factor) whenever the graph has only few
(or no) forced vertices (this includes the case of regular graphs). Hence, we do not expect an
improvement in the probabilistic parts of the proof, but maybe one direction of research is to
better understand the structure of forced vertices. This seems to be the di�cult case in this
approach.

The question raised through Conjecture 4.4 remains widely open. A big step forward would
be to prove the following relaxation of Conjecture 4.4:

Question 4.54. Is it true that for any identi�able graph G on n vertices, γID(G) ≤ n− n
Θ(∆(G))?

For now, this question is answered in the a�rmative for graphs with few forced vertices
(Corollary 4.51), which includes regular graphs and graphs with bounded clique number, see
Corollaries 4.50 and 4.52. Even stronger bounds are given for all triangle-free graphs (Corol-
lary 4.40), and speci�cally for triangle-free graphs that have bounded chromatic number or no
false twins (which includes bipartite graphs and planar triangle-free graphs), see Corollaries 4.40
and 4.42.

It would also be of interest to investigate whether the following special cases of Conjecture 4.4
hold. These cases might be easier than the general case because of their strong structural
properties:

Question 4.55. Does Conjecture 4.4 (or Question 4.54) hold for subcubic graphs? Does it hold
for e.g. trees, planar graphs, line graphs?

96 4.5. Conclusion

It would also be interesting to exhibit further constructions of graphs reaching the bound of
Conjecture 4.4 than the ones we gave in Subsection 4.2.2.

Question 4.56. Can the graphs G with maximum degree ∆ such that γID(G) = n− n
∆ + c (for

some small constant c) be fully described?

We have given the bound NF (G) ≥ 1
∆(G)+1 for the ratio of non-forced vertices in a graph G

in Proposition 4.16. We showed that, given a value of ∆(G), it is tight for one special graph.
However, we do not know whether there exist arbitrarily large connected graphs for which this
bound is tight. If so, Conjecture 4.4 would be wrong as such graphsG would have their identifying
code number of size at least |V (G)| − |V (G)|

∆(G)+1 . A similar fact would hold for any bound smaller

than 1
∆(G) − c

|V (G)| for every constant c.

Question 4.57. Do there exist an in�nite family of connected graphs such that the bound
NF (G) < 1

∆(G) − c
|V (G)| holds for every constant c and every graph G of this family?

Since we gave bounds for triangle-free graphs (that is, graphs of girth at least 4) in Subsec-
tion 4.3.3, it is natural to ask whether (much) stronger bounds on parameter γID hold for graphs
of larger girth. However, the answer to this question is negative because of the complete (∆−1)-
ary tree of height h and on n vertices T h∆−1, which was already mentioned in Theorem 2.33.
This graph has in�nite girth and γID(T h∆−1) = dn− n

∆−1+1/∆e [25]. However, with an additional
condition on the minimum degree of the graph, the question can be answered positively; we
study this question in Section 5.1.

We �nally make a remark regarding Theorem 2.28 from [96], which states that in any non-
trivial in�nite identi�able graph G whose vertices are all of �nite degree, there exists a vertex x
such that V (G) \ {x} is an identifying code of G. Using Lemma 4.15 and similar to the proof of
Theorem 4.24, we can strengthen their result as follows:

Corollary 4.58. Let G be an in�nite identi�able graph whose vertices all have �nite non-zero
degree. Then there exists an in�nite set of vertices I ⊆ V (G), such that V (G)\I is an identifying
code of G.

Chapter 5. Identifying codes in speci�c graph classes 97

Chapter 5

Identifying codes in speci�c graph classes

This chapter is devoted to the properties of identifying codes of graphs belonging to certain
speci�c graph classes.

5.1 Graphs of given minimum degree and girth at least 5 98

5.2 Interval graphs . 104

5.3 Line graphs . 106

5.4 Conclusion . 115

In Section 5.1, we study graphs with given minimum degree (at least 2) and girth 5. We show
that such graphs admit relatively small identifying codes (in contrast to graphs with minimum
degree 1 or girth less than 5). In particular, we use a constructive technique based on a DFS-tree
in Subsection 5.1.1 to show that when their minimum degree is at least 2, graphs on n vertices and
with girth 5 have an identifying code of size at most 7n

8 (Theorem 5.1). In Subsection 5.1.2, we
show that one can use a 2-dominating set (a notion that will be de�ned at that point) to construct
an identifying code of a graph of girth 5 (Lemma 5.2). We then prove using the probabilistic
method (more precisely, the Alteration Method) that these graphs, when having given minimum
degree δ and n vertices, admit a 2-dominating set with its size of the order ln δ+ln ln δ+Oδ(1)

δ n. This

implies that for any such graph G, γID(G) ≤ (1 + oδ(1))3 ln δ
2δ n and γID(G) ≤ ln δ+ln ln δ+Oδ(1)

δ n
when the average degree is not too large compared to the minimum degree of G (Theorem 5.3).
We then use the latter result to determine the identifying code number of a random regular graph
(with high probability). Indeed, we show that the distribution of the value of this parameter
is asymptotically concentrated around one precise value (Theorems 5.4 and 5.5), leading to the
bounds of Corollary 5.7: ln d−2 ln ln d

d n ≤ γID(G) ≤ ln d+ln ln d+Od(1)
d n holds w.h.p. for a random

d-regular graph G.
In Section 5.2, we investigate interval graphs. We show that for any identi�able interval

graph, the bound γID(G) ≥ Ω
(√
|V (G)|

)
holds (Theorem 5.8 and Corollary 5.9). We then

prove a few interesting propositions for identifying codes in identi�able unit interval graphs,
leading to the bound γID(G) ≥ |V (G)|+1

2 when G belongs to this class (Theorem 5.11). Some of
these propositions are of independent interest and will be used in Section 8.1.

Finally, in Section 5.3, we turn our attention to the class of line graphs. To this end, we
use the notion of an edge-identifying code (it is much easier to deal with this concept than with
the equivalent one of identifying codes in line graphs). This notion has not been introduced
previously. We begin with giving useful preliminary lemmas about edge-identifying codes in
Subsection 5.3.1 (Lemmas 5.14, 5.15 and 5.16), where we also determine the edge-identifying
code number of complete graphs (Theorem 5.17). In Subsection 5.3.2, we prove the lower bound
γEID(G) ≥ |V (G)|

2 on the edge-identifying code number of any graph G, which implies a bound

of the form γID(G) ≥ Ω
(√
|V (G)|

)
for any identi�able line graph G (Theorem 5.19 and Corol-

lary 5.20). We use this lower bound to determine the edge-identifying code number of hypercubes
(Theorem 5.22), before re�ning this bound in Theorems 5.23 and 5.24, where we give an upper

bound of roughly
(4

3
k

2

)
on the size of a graph having an edge-identifying code of size k. We

98 5.1. Graphs of given minimum degree and girth at least 5

then provide general upper bounds on the edge-identifying code number of a graph in Subsec-
tion 5.3.3. Our main result there is to show that the edges of a minimal edge-identifying code
induce a 2-degenerate graph (Theorem 5.27). This leads to the corollary that except for the
graphs K4 and K−4 , γEID(G) ≤ 2|V (G)| − 5 (Corollary 5.28). We conclude by another corollary
showing that when a graph has average degree at least 5, Conjecture 4.4 holds for its line graph
(Corollary 5.29).

The result of Subsection 5.1.1 is a revised version of a result that appeared in the author's
master thesis [Fo09]. The results from Subsection 5.1.2 are joint work with G. Perarnau and ap-
peared in [FP12]. The results from Section 5.2 are from [FKM+12] (joint work with A. Kosowski,
G. Mertzios, R. Naserasr, A. Parreau and P. Valicov) and those from Section 5.3 appeared
in [FGN+12] (joint work with S. Gravier, R. Naserasr, A. Parreau and P. Valicov).

5.1 Graphs of given minimum degree and girth at least 5

We now investigate the identifying code number of graphs having no small cycles (i.e. no triangles
and no 4-cycles), and also have minimum degree 2 or more. We show that these graphs have
small identifying codes (compared to those graphs where at least one of these two conditions
does not hold).

5.1.1 Minimum degree 2 and girth at least 5

We now consider identi�able graphs of girth at least 5 and of minimum degree at least 2. Let us
�rst recall the notion of a DFS tree, that will be needed in this section.

A DFS tree of a connected graph G is a rooted spanning tree T of G constructed using
Depth-First Search, i.e. using the following recursive procedure. Vertices of G can be marked or
unmarked. Given a marked vertex v of G and the partially built tree T , the procedure goes as
follows. If v has only marked neighbours in G, start the procedure at the parent of v (if v is the
root of T , stop the whole process). Otherwise, select an arbitrary unmarked neighbour w of v,
add it to T as a child of v, mark it, and recursively start the procedure at w. The tree T is built
by selecting a vertex r as the root, marking it, and launching the procedure at r.

We are now ready to show the following upper bound for the minimum cardinality of an
identifying code of such a graph:

Theorem 5.1. Let G be an identi�able graph on n vertices, with minimum degree at least 2 and
girth at least 5. Then γID(G) ≤ 7n

8 .

Proof. We will assume that G is connected, but since the identifying code number of a dis-
connected graph is the sum of the identifying code numbers of the subgraphs induced by its
connected components, this is enough to prove the bound.

Let T be a DFS tree of G rooted at some arbitrary vertex r. We denote the level of a vertex
v (i.e., its distance to r) by level(v). As any DFS-tree of G, T has the property that for any edge
uv of G, either uv belongs to T , u is an ancestor of v in T , or v is an ancestor of u in T . Since
G has girth at least 5, this implies that a vertex v with level i is not adjacent to any vertex with
level i− 3, i− 2, i, i+ 2 or i+ 3.

Also note that since G has girth at least 5 and minimum degree 2, the level of a leaf v of T is
at least 4: indeed, v has necessarily a neighbour other than its parent but can only be adjacent
to its ancestors at levels at most level(v)− 4.

Let us now partition the vertices of G into four sets V0, V1, V2 and V3 de�ned as follows: for
i ∈ {0, 1, 2, 3}, Vi = {v ∈ V (G) | level(v) = i mod 4 in T}. Let Vm (m ∈ {0, 1, 2, 3}) be such
a set with |Vm| ≥ n

4 (by the pigeonhole principle, such a set necessarily exists, since otherwise
there would be fewer than n vertices in G). Let C0 = V (G) \ Vm. An illustration is given in
Figure 5.1 with m = 1. Black vertices belong to C0.

We now construct a set C from C0 as follows:

Chapter 5. Identifying codes in speci�c graph classes 99

level 0

level 1

level 2

level 3

level 4

level 5

level 6

Figure 5.1: Example of a spanning tree of G and the set C0 = V (G) \ V1 (black
vertices).

1. For any set L ⊆ Vm of leaves of T having the same parent p in T and with N [l]∩C0 = {p},
we add an arbitrary ancestor1 (other than p) of |L| − 1 of the leaves of L, to C0. See
Figure 5.2 for an illustration.

2. For any leaf u of T having v as its parent and N [u]∩C = N [v]∩C = {u, v}, remove u from
C and add the parent of v in T to C. See Figure 5.3 for an illustration.

3. If the root r has a child u in T with N [r] ∩ C = N [u] ∩ C (this implies m = 2), add an
arbitrary child of u in T to C.

4. If there is some leaf u of T such that N [r] ∩ C = N [u] ∩ C (this implies m = 1), add an
arbitrary child of r to C.

u v

level m mod 4

level m+ 1 mod 4

level m+ 2 mod 4

level m+ 3 mod 4

level m mod 4

level m+ 1 mod 4

level m+ 2 mod 4

level m+ 3 mod 4

level m mod 4
u v

Figure 5.2: Step 1: two leaves u and v which are not separated by C0 (black
vertices).

We claim that the resulting set C is an identifying code of G. First of all, observe that by
the construction, for any two neighbours in T that are at consecutive levels, at least one of them

1We note that such an ancestor necessarily exists since each vertex of G has degree at least 2 and a leaf of T
can only be adjacent to some of its ancestors.

100 5.1. Graphs of given minimum degree and girth at least 5

v

u

level m mod 4

level m+ 1 mod 4

level m+ 2 mod 4

level m+ 3 mod 4

level m mod 4

level m+ 1 mod 4

level m+ 2 mod 4

v

u

Figure 5.3: Step 2: a leaf u and its parent v are not separated by C0 (black
vertices).

belongs to C. Hence, each vertex which is not in C has a neighbour in C from a di�erent level in
T , and C is a dominating set of G.

Note that C has the property that any vertex at level i which is neither the root of T , nor
a leaf of T , is dominated by at least two vertices of C from two di�erent levels among levels
i − 1, i, i + 1. As a consequence, since G has girth at least 5, two such vertices that are not
adjacent have at most one common neighbour, and hence they are separated by C. Furthermore,
two adjacent vertices u, v (with level(u) < level(v)) that are both neither the root nor a leaf of
T , are also separated by some vertex of C. Indeed, as noted just above, both u, v are dominated
by at least two vertices in C; moreover, since G has girth at least 5, they do not share any
neighbour. Finally, it is easily observed that by the construction, if they both belong to C and
are both dominated by {u, v}, either the parent of u or a child of v belongs to C and separates
them.

It remains to check the separation condition for the root and the leaves of T . Assume �rst that
the root r is not separated from some other vertex u. If u is a child of r, by step number 3 of the
construction, u and r are separated, and we are done. If u is a leaf, again by step number 4, we
are done. Finally, if u is some other vertex at level i, then, as mentioned earlier, u is dominated
by two vertices from two di�erent levels among levels i− 1, i, i+ 1. But r cannot be adjacant to
both of them (otherwise we would have a triangle in G), a contradiction.

Now, assume that a leaf l is not separated from some other vertex u. The case where u is
the root has been considered in the last paragraph. Assume that u is another leaf of T . Then,
both u, l belong to V (G) \ C as otherwise, they would be separated by the one belonging to the
code (two leaves of T cannot be adjacent in G). But then, by construcion, both their respective
parents belong to C. Hence, u, l have the same parent p. But then, in step number 1 of the
construction, we have added an ancestor a of at least one of them (say u) to C. But this ancestor
cannot be adjacent to l as otherwise, we have a 4-cycle a, l, p, u. Hence a separates u, l and we
are done. Finally, assume that u is a vertex that is neither a root or a leaf. As earlier, if u is
not the parent of l, since u is dominated by two vertices from two di�erent levels among levels
i − 1, i, i + 1, vertices u, l are separated by one of these vertices, and we are done. If u is the
parent of l, by step number 2 of the construction, they are separated, and we are done.

It now remains to prove the bound. Note that |C0| ≤ 3n
4 . When modifying C0, we added

some vertices in step 1 of the construction. In that step, for each set L of sibling leaves from
Vm, we added |L| − 1 vertices to the code. The total number of vertices added to the code is at
most the number of such leaves minus one. Together, the number of such leaves and the added
vertices account for at most n

4 vertices (since they all belong to Vm). Hence, we have added at
most n

8 −1 vertices to the code in that step. In step 2, we have not increased the size of the code.
Finally, in steps 3 and 4, we have added at most one vertex to the code; however, both steps are
disjoint since they imply m = 2 and m = 1, respectively. So, in summary, |C| ≤ 7n

8 . 9

Chapter 5. Identifying codes in speci�c graph classes 101

5.1.2 Larger minimum degree and girth at least 5

This section is devoted to the study of graphs that have girth at least 5; the proofs use the
probabilistic method (in particular, the classic �Alteration Method�). We will apply these results
to random regular graphs in Section 5.1.3.

We start by de�ning an auxiliary notion that will be used in this section. A subset D ⊆ V (G)
is called a 2-dominating set if for each vertex v of V (G) \ D, |N(v) ∩ D| ≥ 2 [84]. The next
lemma shows that we can use a 2-dominating set to construct an identifying code.

Lemma 5.2. Let G be an identi�able graph on n vertices having girth at least 5. Let D be a
2-dominating set of G. If the subgraph induced by D, G[D], has no isolated edge, then D is an
identifying code of G.

Proof. First observe that D is dominating since it is 2-dominating. Let us check that D is also
separating.

Note that all the vertices that do not belong to D are separated because they are dominated
at least twice each and g(G) > 4.

Similarly, a vertex x ∈ D and a vertex y ∈ V (G) \ D are separated since y has two vertices
which dominate it, but they cannot both dominate x (otherwise there would be a triangle or a
4-cycle in G).

Finally, consider two vertices of D. If they are not adjacent they are separated by themselves.
Otherwise, by the assumption that G[D] has no isolated edge and that G has no triangles, we
know that at least one of them has a neighbour in D, which separates them since it is not a
neighbour of the other. 9

The following theorem makes use of Lemma 5.2. The idea of the proof is inspired by a classic
proof of a result on dominating sets which can be found in [2, Theorem 1.2.2].

Theorem 5.3. Let G be a graph on n vertices with minimum degree δ and girth at least 5.

Then γID(G) ≤ 3(ln δ+ln ln δ+1+ ln ln δ
ln δ

+ 1
ln δ)

2δ = (1 + oδ(1))3 ln δ
2δ n. Moreover if G has average degree

d = Oδ(δ(ln δ)
2) (in particular, when G is regular) then γID(G) ≤ ln δ+ln ln δ+Oδ(1)

δ n.

Proof. Let S ⊆ V (G) be a random subset of vertices, where each vertex v ∈ V (G) is added to
S uniformly at random with probability p (where p will be determined later). For every vertex
v ∈ V (G), we de�ne the random variable Xv as follows:

Xv =

{
0 if |N [v] ∩ S| ≥ 2
1 otherwise

Let T = {v | Xv = 1}. This set contains, in particular, the subset of vertices which are
not 2-dominated by S. Note that |T | =

∑
Xv. Let us estimate the size of T . Observing that

|N [v] ∩ S| ∼ Bin(deg(v) + 1, p) and deg(v) ≥ δ, we obtain:

E(|T |) =
∑

v∈V (G)

E(Xv)

≤ n
(

(1− p)δ+1 + (δ + 1)p(1− p)δ
)

= n(1− p)δ((1− p) + (δ + 1)p)

≤ n(1 + δp)e−δp.

where we have used the fact that 1−x ≤ e−x. Now, note that the set D = S∪T is a 2-dominating
set of G. We have |D| ≤ |S|+ |T |. Hence

E(|D|) ≤ E(|S|) + E(|T |)
≤ np+ n(1 + δp)e−δp (5.1)

102 5.1. Graphs of given minimum degree and girth at least 5

Let us set p = ln δ+ln ln δ
δ . Plugging this into Equation (5.1), we obtain:

E(|D|) ≤ ln δ + ln ln δ

δ
n+

1 + ln δ + ln ln δ

δ ln δ
n

=
ln δ + ln ln δ + 1 + ln ln δ

ln δ + 1
ln δ

δ

=
ln δ + ln ln δ +Oδ(1)

δ
n.

This shows that there exists at least one 2-dominating set D having this size.

Case 1: (general case) Note that we can use Lemma 5.2 by considering all pairs u, v of vertices
of D forming an isolated edge in G[D], and add an arbitrary neighbour of either one of them to
D. Observe that such a vertex exists, otherwise u and v would be twins in G. Since there are at
most |D|2 such pairs, we obtain a 2-dominating set of size at most |D| + |D|

2 = (1 + oδ(1))3 ln δ
2δ n

having the desired property. Now applying Lemma 5.2 completes Case 1.

Case 2: (sparse case) Whenever d = Oδ(δ(ln δ)
2), we can get a better bound by estimating

the number of isolated edges of G[D]. For convenience, we de�ne the random variables Yuv for
each edge uv of G, as follows:

Yuv =

{
1 if N [u]	N [v] ⊆ V (G) \ S, and
0 otherwise.

An isolated edge in G[D] might have been created in several ways. First, at the initial
construction step of S: if both u, v belong to S, but none of their other neighbours do which
happens with probability at most p2(1 − p)2δ−2. A second possibility is in the step where we
add the vertices of T to our solution. This could happen if both u, v were not dominated at all
by S, which occurs with probability at most (1 − p)2δ, or if exactly one of u, v was part of S
and none of their neighbours were, which has probability at most 2p(1− p)2δ−1. Thus, the total
probability of having an isolated edge in G[D] is bounded from above as follows.

Pr(Yuv = 1) ≤ p2(1− p)2δ−2 + (1− p)2δ + 2p(1− p)2δ−1 = (1− p)2δ−2.

Using the previous observation together with the facts that p = ln δ+ln ln δ
δ and 1 − x ≤ e−x,

let us calculate the expected value of Y =
∑

uv∈E(G) Yuv.

E(Y) =
∑

uv∈E(G)

E(Yuv) ≤
nd

2
(1− p)2δ−2 ≤ nd

2
e−(2δ−2)p =

nde−2(ln δ+ln ln δ)

2
=

nd

2δ2(ln δ)2
.

We construct U by picking an arbitrary neighbour of either u or v for each edge uv such that
Yuv = 1. We have |U | ≤ Y . The �nal set C = S ∪ T ∪ U is an identifying code. Now we have:

E(|C|) ≤ E(|S|) + E(|T |) + E(|U |) ≤ ln δ + ln ln δ +Oδ(1)

δ
n+

d

2δ2(ln δ)2
n.

Using that d = Oδ(δ(ln δ)
2),

E(|C|) ≤ ln δ + ln ln δ +Oδ(1)

δ
n (5.2)

Then there exists some choice of S such that |C| has the desired size, which completes the
proof. 9

In fact, it is shown in the next section (Corollary 5.7) that Theorem 5.3 is asymptotically
tight.

Moreover, note that Theorem 5.3 cannot be extended much in the sense that if we drop
the condition on girth 5, we know arbitrarily large ∆-regular triangle-free graphs having large

Chapter 5. Identifying codes in speci�c graph classes 103

minimum identifying codes. For instance, Construction 4.10 of Chapter 4.2.2 provides a graph G
on n vertices which satis�es γID(G) = n− n

2∆/3 . Similarly, we cannot drop the minimum degree

condition. Indeed, we saw in Theorem 2.33 that the (∆− 1)-ary complete tree T h∆−1 of height h,
which has maximum degree ∆, minimum degree 1 and in�nite girth, also has a large identifying
code number (i.e. γID(T h∆−1) = n− n

∆−1+1/∆ , see Theorem 2.33).

5.1.3 An application to identifying codes of random regular graphs

From the study of regular graphs arises the question of the value of the identifying code number
for most regular graphs. We know some lower and upper bounds for this parameter, but is it
concentrated around some value? A good way to study this question is to look at random regular
graphs. We refer to Chapter 2.2.3 for its de�nition.

Our bounds hold with high probability; in fact, they also include asymptotic terms in d,
which means they are meaningful for su�ciently large d.

Theorem 5.4. If G ∈ G(n, d) for some d ≥ 3, γID(G) ≤ ln d+ln ln d+Od(1)
d n w.h.p.

Proof. First of all we have to show that almost all random regular graphs are identi�able.
Observe that the number of perfect matchings of K2m is (2m−1)!! = (2m−1)(2m−3)(2m−

5) . . . 1. Fix a vertex u of G and let N(u) = {v1, . . . , vd}. We bound from above the probability
that u and v1 are twins, i.e. N [u] = N [v1]. The number of perfect matchings of Knd such that in
the resulting graph G of G(n, d), v1 and v2 are adjacent, is at most (d− 1)(d− 1)(nd− 2d− 3)!!.
Indeed, there must be an edge between v1 and v2, which gives (d− 1)(d− 1) possibilities. Since
u has d neighbours, the number of possibilities for the remaining graph is the number of perfect
matchings of Knd−2d−2.

Analogously the number of perfect matchings with v2, v3 ∈ N(v1) is at most (d − 1)(d −
1)(d− 2)(d− 1)(nd− 2d− 5)!!. Thus we have:

Pr(N [u] = N [v1]) ≤ Pr(N [u] ⊆ N [v1])

=
(d− 1)(d− 1)(d− 2)(d− 1) . . . 2(d− 1)1(d− 1)(nd− 4d+ 1)!!

(nd− 2d− 1)!!

≤ dd−1(d− 1)!

(nd− 2d− 1) . . . (nd− 4d+ 3)

≤
(
d

n

)d−1

for n large enough.

As we have at most nd
2 possible pairs of twins (one for each edge), by the union bound and

since d ≥ 3, for su�ciently large n we obtain:

Pr(G has twins) ≤ nd

2

(
d

n

)d−1

.

which tends to 0 as n tends to in�nity.
Therefore, random regular graphs are identi�able w.h.p.
By (5.2), for any G ∈ G(n, d), we have a set C with |C| ≤ ln d+ln ln d+Od(1)

d n that separates any
pair of vertices except from the ones where both vertices belong to a triangle or a 4-cycle. We
have to add some vertices to C in order to separate the vertices of these small cycles.

Classical results on random regular graphs (independently, [27, Corollary 2.19] and [199])
state that the random variables that count the number of cycles of length k, Xk, tend in distri-
bution to independent Poisson variables with parameter λk = 1

2k (d− 1)k.
Observe that:

E(X3) =
(d− 1)3

6
E(X4) =

(d− 1)4

8
,

i.e. a constant number of triangles and 4-cycles are expected.
Using Markov's inequality we can bound the probability of having too many small cycles:

104 5.2. Interval graphs

Pr(X3 > t) ≤ (d− 1)3

6t
Pr(X4 > t) ≤ (d− 1)4

8t
.

Setting t = ϑ(n), where ϑ(n)→∞, the previous probabilities are o(1). Then w.h.p., we have
at most ϑ(n) cycles of length 3 and ϑ(n) cycles of length 4.

Let T = {u1, u2, u3} be a triangle in G. As d ≥ 3 there exists at least one vertex vi outside the
triangle (moreover, we showed that the graph has no twins w.h.p.). Since our graph is identi�able,
for each ordered pair (ui, uj) there exists some vertex vij , such that vij ∈ N(ui)\N(uj). Observe
that we can add v12, v23 and v31 to C and then any pair of vertices from T will be separated.

If T = {u1, u2, u3, u4} induces a K4, each pair of vertices of T is contained in some triangle
and is separated by the last step. If T induces a 4-cycle, adding T to C separates all the elements
in T . Otherwise, T induces two triangles and adding T to C separates the two vertices which
have not been separated in the last step.

After these two steps, we have added at most 7ϑ(n) vertices to C. Hence, for any G ∈ G(n, d)
w.h.p. we obtain:

γID(G) ≤ ln d+ ln ln d+Od(1)

d
n+ 7ϑ(n) =

ln d+ ln ln d+Od(1)

d
n.

Observe that the Od(1)
d n term contains the 7ϑ(n) term. 9

Theorem 5.4 shows that despite the fact that for any d, we know in�nitely many d-regular
graphs having a very large identifying code number (e.g. n− n

d for the graphs of Construction 4.7
of Section 4.2.2), almost all d-regular graphs have a very small identifying code.

Moreover, γID(G) is concentrated, as the following theorem and its corollary show. In fact
the following result might be already known, since a similar result is stated for independent
dominating sets in [106]. However, we could not �nd it in the literature and decided to give a
proof in Appendix A.5 for the sake of completeness.

Theorem 5.5. Let G ∈ G(n, d), then w.h.p. all the dominating sets of G have size at least
ln d−2 ln ln d

d n.

Since any identifying code is also a dominating set, we obtain the following immediate corol-
lary.

Corollary 5.6. Let G ∈ G(n, d), then w.h.p. γID(G) ≥ ln d−2 ln ln d
d n.

Plugging together Theorems 5.4 and 5.5, we obtain the following result.

Corollary 5.7. Let G ∈ G(n, d), then w.h.p.

ln d− 2 ln ln d

d
n ≤ γID(G) ≤ ln d+ ln ln d+Od(1)

d
n.

5.2 Interval graphs

We saw in Section 3.4, that there are in�nitely many unit interval graphs G with identifying
code number |V (G)| − 1 (i.e. the graphs Ak of our classi�cation, see Corollary 3.28). However,
it can be shown that the lower bound γID(G) ≥ dlog2(|V (G)|+ 1)e is far from being tight for the
class of interval graphs.

Theorem 5.8. Let G be an identi�able interval graph having an identifying code of size k.Then
|V (G)| ≤ k(k+1)

2 .

Proof. Let C = {c1, . . . , ck} be an identifying code of G with size k, where the intervals c1, . . . , ck
are ordered increasingly by their right endpoint (let us denote by ri, the endpoint of code interval
ci). Using this order, we de�ne a partition E1, . . . , Ek of V (G) as follows. Let E1 be the set of
intervals that start strictly before r1. For any i with 2 ≤ i ≤ k − 1, let Ei be the set of intervals
whose left endpoint lies within [ri−1, ri[, and LET Ek be the set of intervals whose left endpoint
is at least rk−1. Now, observe any interval I of Ei with 1 ≤ i ≤ k can only intersect one of the

Chapter 5. Identifying codes in speci�c graph classes 105

k − i + 1 sets of consecutive code intervals ci, . . . , ck. Hence, Ei can contain at most k − i + 1
intervals. Hence, in total G has at most

∑k
i=1(k − i+ 1) ≤ k(k+1)

2 . 9

Moreover, the bound of Theorem 5.8 is tight: consider the interval graph formed by the
intersection of the following family of intervals: {]i, j[| 1 ≤ i < j ≤ k + 1, i, j ∈ N}, where
the subfamily {]i, i + 1[| 1 ≤ i ≤ k} forms an identifying code of size k. We get the following
corollary:

Corollary 5.9. Let G be an identi�able interval graph on n vertices. We have γID(G) ≥√
2n+ 1

4 − 1
2 , and this bound is tight.

Proof. The inequality is easy to obtain from the bound of Theorem 5.8, using the fact that
k(k + 1) = (k + 1

2)2 − 1
4 . 9

When considering unit interval graphs, we can much improve the bound of Corollary 5.9. For
this we �rst give the following propositions, which are interesting for their own sake. We recall
that in a unit interval graph, since all intervals have unit length, there is a natural ordering of
the vertices (according to the starting points of their corresponding intervals). We say that two
vertices are consecutive if they are consecutive in this ordering. For a unit interval graph on n
vertices, we denote its vertex set {v1, . . . , vn}, where the index of a vertex denotes its rank in
the ordering.

In the next proposition, we concentrate on the separation of pairs of consecutive vertices.

Proposition 5.10. Let G be an identi�able unit interval graph. Let C be an identifying code of
G. Then each vertex vk ∈ C separates at most two pairs of consecutive vertices, one on the left
of vk, and one on the right of vk.

Proof. Let vk ∈ C. Assume that vk separates two pairs on the right of vk: vi, vi+1 and vj , vj+1,
with k < i < j. Then we must have vk ∼ vi and vk ∼ vj , but vk 6∼ vi and vk 6∼ vj . But then
we have k < i < j < i+ 1, a contradiction since vi, vi+1 are consecutive. A symmetric argument
holds for the left of vk. 9

In an identifying code, each of the |V (G)|−1 pairs of consecutive vertices must be separated.
This together with Proposition 5.10 leads to the following lower bound:

Theorem 5.11. Let G be an identi�able unit interval graph on n vertices. We have γID(G) ≥
n+1

2 .

Proof. Let C be an identifying code of G. By Proposition 5.10, we know that each vertex of C
can only separate at most two of the pairs of consecutive vertices in G. Moreover, note that
v1 and vn must also be dominated. However, any vertex dominating v1 (vn, respectively) can
only separate one pair of consecutive vertices, on its right (on its left, respectively). Hence, we
consider n − 1 pairs of consecutive vertices to be separated, and two vertices (v1 and vn) to be
dominated. If G has no universal vertex, each vertex of G can separate or dominate at most
two of these n+ 1 entities, hence |C| ≥ n+1

2 . If G has a universal vertex, each vertex is adjacent
to either v1 or vn; hence, each vertex can separate at most one pair of consecutive vertices, and
|C| ≥ n− 1 ≥ n+1

2 . 9

Note that the bound of Theorem 5.11 is tight for paths (see Theorem 2.30), which are unit
interval graphs.

In the proofs of Proposition 5.10 and Theorem 5.11, we used the fact that an identifying
code has to separate all pairs of consecutive vertices. The next proposition shows that, together
with the domination condition, this is in fact su�cient. This result will be used in Section 8.1
when discussing the computational complexity of Identifying Code restricted to unit interval
graphs.

Proposition 5.12. Let G be an identi�able unit interval graph. Then, a subset C of V (G) is an
identifying code of G if and only if it is a dominating set that separates all pairs of consecutive
vertices.

106 5.3. Line graphs

Proof. The necessary side is trivial since an identifying code separates all pairs, and hence it also
separates pairs of consecutive vertices. For the su�cient side, assume that C is a dominating set
that separates all pairs of consecutive vertices that are at distance at most 2 from each other. By
Observation 1.8, we just need to check that also pairs of non-consecutive vertices are separated.
Let vi, vj (i < j) be such a pair. We know that vi, vi+1 are separated by some vertex vk ∈ C. If
k ≤ i, vk ∼ vi but vk 6∼ vi+1, hence vk 6∼ vj and vi, vj are separated. Otherwise, vk ≥ vi+1. If vk
dominates vj , we are done. Otherwise, vj is at distance at least 3 of vi, so we are done. 9

5.3 Line graphs

In this section, we study identifying codes in line graphs. To do so, we will use the equivalent
notion of an edge-identifying code, where we wish to identify edges of a graph using other edges.
This approach is similar to the one of studying e.g. the notion of edge-colourings, which are
equivalent to vertex-colourings of line graphs. As for edge-colourings, edge-identifying codes
are much more natural to handle than the similar concept for vertices in line graphs, and as
demonstrated in this chapter, this fact helps us proving nice results.

Given a graph G and an edge e of G, we de�ne N [e] to be the set of edges adjacent to e
together with e itself. An edge-identifying code of a graph G is a subset CE of edges such that
for each edge e the set N [e] ∩ CE is nonempty and uniquely determines e. More formally:

De�nition 5.13. Given a graph G, a subset CE of E(G) is an edge-identifying code of G if CE
is both:

• an edge-dominating set of G, i.e. for each edge e ∈ E(G), N [e] ∩ CE 6= ∅, and

• an edge-separating code of G, i.e. for each pair e, f ∈ E(G) (e 6= f), N [e]∩CE 6= N [f]∩CE.
We will say that an edge e separates edges f and g if either e belongs to N [f] but not to N [g],

or vice-versa. When considering edge-identifying codes we will assume the edge set of the graph
is nonempty. The line graph L(G) of a graph G is the graph with vertex set E(G), where two
vertices of L(G) are adjacent if the corresponding edges are adjacent in G. It is easily observed
that the notion of edge-identifying code of G is equivalent to the notion of (vertex-)identifying
code of the line graph of G. Thus a graph G admits an edge-identifying code if and only if L(G)
is identi�able. A pair of twins in L(G) can correspond in G to a pair of:
1. parallel edges;
2. adjacent edges whose non-common ends are of degree 1;
3. adjacent edges whose non common ends are of degree 2 but which are adjacent.
As in almost the whole of this thesis, we will consider simple graphs only, therefore avoiding the
�rst case. A pair of edges as in the second or third case is called pendant (see Figure 5.4) and thus
a graph is edge-identi�able if and only if it is pendant-free. The smallest size of an edge-identifying
code of an edge-identi�able graph G is denoted by γEID(G) and is called edge-identifying code
number of G.

G G

Figure 5.4: Two possibilities for a pair of pendant edges (thick edges) in G.

We notice that �ve edges of a perfect matching of the Petersen graph P10, form an edge-
identifying code of this graph (see Figure 5.5). The lower bound of Theorem 2.24 proves that

Chapter 5. Identifying codes in speci�c graph classes 107

γEID(P10) ≥ 4. Later, by improving this bound for line graphs, we will see that in fact γEID(P10) =
5 (see Theorem 5.19 and Theorem 5.24).

Figure 5.5: An edge-identifying code of the Petersen graph (thick edges).

5.3.1 First results

In this section we �rst give some easy tools which help for �nding minimum-size edge-identifying
codes of graphs. We then apply these tools to determine the exact values of γEID for some basic
families of graphs.

Lemma 5.14. Let G be a simple graph with girth at least 5. Let CE be an edge cover of G
such that the graph (V (G), CE) is edge-identi�able. Then CE is an edge-identifying code of G. In
particular, if G has a perfect matching M , M is an edge-identifying code of G.

Proof. The code CE is an edge-dominating set of G because it covers all the vertices of G. To
complete the proof, we need to prove that CE is also an edge-separating code. Let e1, e2 be two
edges of G. If e1, e2 ∈ CE , then CE ∩N [e1] 6= CE ∩N [e2] because (V (G), CE) is edge-identi�able.
Otherwise, we can assume that e2 /∈ CE . If e1 ∈ CE and CE ∩N [e1] = CE ∩N [e2], then e2 must
be adjacent to e1. Let u be their common vertex and e2 = uv. Since CE is an edge cover, there
is an edge e3 ∈ CE which is incident to v. However, e3 cannot be adjacent to e1 because G is
triangle-free. Therefore e3 separates e1 and e2. Finally, we assume neither of e1 and e2 is in CE .
Then there are two edges of CE , say e3 and e4, adjacent to the two ends of e1. But since G has
neither C3 nor C4 as a subgraph, e3 and e4 cannot both be adjacent to e2 and, therefore, e1 and
e2 are separated. 9

We note that in the previous proof the absence of C4 is only used when the endpoints of
e1, e2, e3, e4 could induce a C4 which would not be adjacent to any other edge of CE . Thus, we
have the following stronger statement:

Lemma 5.15. Let G be a triangle-free graph. Let CE be a subset of edges of G that covers
vertices of G, such that CE is edge-identi�able. If for no pair xy, uv of isolated edges in CE, the
set {x, y, u, v} induces a C4 in G, then CE is an edge-identifying code of G.

We will also need the following lemma about edge-identi�able trees.

Lemma 5.16. If T is an edge-identi�able tree on more than two vertices, then T has two vertices
of degree 1, each adjacent to a vertex of degree 2.

Proof. Take a longest path in T , then it is easy to verify that both ends of this path satisfy the
condition of the lemma. 9

We are now ready to determine the value of γEID of some families of graphs.

Theorem 5.17. We have γEID(Kn) =

{
5, if n = 4 or 5

n− 1, if n ≥ 6
. Furthermore, let CE be an edge-

identifying code of Kn of size n− 1 (n ≥ 6) and let G1, G2, . . . , Gk be the connected components

108 5.3. Line graphs

of (V (Kn), CE). Then exactly one component, say Gi, is isomorphic to K1 and every other
component Gj (j 6= i) is isomorphic to a cycle of length at least 5.

The proof of Theorem 5.17 can be found in Appendix A.6.
We remark that the line graph of the complete bipartite graph Kn,n is isomorphic to the

cartesian product Kn�Kn (i.e. the graph with vertex set V (Kn)× V (Kn) and where (u1, u2) ∼
(v1, v2) if u1 = v1 or u2 = v2), whose identifying code number was determined in [98].2

Theorem 5.18 ([98]). γEID(Kn,n) =
⌊

3n
2

⌋
for n ≥ 3.

5.3.2 Lower Bounds

In this section, we give lower bounds on parameter γEID (and consequently on parameter γID for
line graphs) that improve the classic lower bound.

5.3.2.1 A �rst lower bound

Theorem 5.19. Let G be a connected edge-identi�able graph. We have γEID(G) ≥ |V (G)|
2 .

Proof. Let CE be an edge-identifying code of G. Let G′ be the subgraph induced by CE and
let G1, . . . , Gs be the connected components of G′. Let ni be the order of Gi and ki be its size
(thus

∑s
i=1 ki = |CE |). Let X = V (G) \ V (G′) and n′i be the number of vertices in X that are

joined to a vertex of Gi in G. We show that n′i + ni ≤ 2ki. If ki = 1, then clearly n′i = 0 and
n′i + ni = 2 = 2ki. If Gi is a tree, then ni = ki + 1 and, by Lemma 5.16, Gi must have two
vertices of degree 2 each having a vertex of degree 1 as a neighbour. Then no vertex of X can be
adjacent to one of these two vertices in G. Moreover, each other vertex of Gi can be adjacent to
at most one vertex in X. So n′i ≤ ki − 1, and �nally ni + n′i ≤ 2ki. If Gi is not at tree, we have
ni ≤ ki and n′i ≤ ni and, therefore, n′i + ni ≤ 2ki. Finally, since G is connected, each vertex in
X is connected to at least one Gi. Hence by counting the number vertices of G we have:

|V (G)| ≤∑s
i=1(ni + n′i) ≤ 2

∑s
i=1 ki ≤ 2|CE |. 9

Recall from Theorem 2.24 that γID(G) is bounded below by dlog2(|V (G)|+1)e. As mentioned
before, this bound is tight, and one of the main constructions achieving the bound is done as
follows. Let C be a set of c isolated vertices. We build a graph G of order 2c−1 such that C is an
identifying code of G: for every subset X of C with |X| ≥ 2, we associate a new vertex which is
joined to all vertices in X and only to those vertices. It is easily seen that C is an identifying code
of this graph. However, the graph built in this way is far from being a line graph as it contains
K1,c as an induced subgraph (recall from Theorem 2.2 that line graphs are induced claw-free).

In fact, this lower bound turns out to be far from being tight for the class of line graphs,
since we get as a corollary of Theorem 5.19, a lower bound of the order Ω (

√
n):

Corollary 5.20. Let G be an identi�able line graph on n vertices. Then γID(G) >
√

2n
2 .

Proof. Let G = L(H) be an identi�able line graph on n vertices. We have n = |E(H)| ≤(|V (H)|
2

)
= |V (H)|2

2 − |V (H)|
2 < |V (H)|2

2 , hence |V (H)| >
√

2n. Applying the bound of Theorem 5.19
to H, we get:

γID(G) = γEID(H) ≥ |V (H)|
2 >

√
2n
2 . 9

We note that the bound of Corollary 5.20 is not tight (but the order of magnitude is); in

fact, the constant
√

2
2 in the bound will be improved later (see Corollary 5.25).

2We note that this fact was overseen when we wrote [FGN+12], in which an independent proof of this result
can be found.

Chapter 5. Identifying codes in speci�c graph classes 109

5.3.2.2 Applying the lower bound to hypercubes

In this subsection, we apply Theorem 5.19 to the class of hypercubes. But �rst, Theorem 5.19
together with Lemma 5.15 leads to the following result:

Corollary 5.21. Let G be a triangle-free edge-identi�able graph. Suppose G has a perfect match-
ingM with the property that for any pair xy, uv of edges inM , the set {x, y, u, v} does not induce
a C4. Then M is an optimal edge-identifying code and γEID(G) = |V (G)|

2 .

We note that in particular, if the girth of a graph G is at least 5 and G admits a perfect
matchingM , thenM is a minimum-size identifying code of G. For example, the edge-identifying
code of the Petersen graph given in Figure 5.5 is optimal.

As mentioned in the introduction, the problem of determining the identifying code number of
hypercubes has proved to be a challenging one from both theoretical and computational points
of view. In contrast, we show here that �nding the edge-identifying code number of a hypercube
is not so di�cult.

Theorem 5.22. For d ≥ 4, we have γEID(Hd) = 2d−1.

Proof. By Theorem 5.19, we have γEID(Hd) ≥ 2d−1. We will construct by induction a perfect
matching Md of Hd such that no pair of edges induces a C4, for d ≥ 4. By Lemma 5.15, Md will
be an edge-identifying code of Hd, proving the result. Two such matchings of H4, which are also
disjoint, are presented in Figure 5.6. The matching M5 can now be built using each of these two
matchings of H4 � one matching per copy of H4 in H5. It is easily veri�ed that M5 has the
required property. Furthermore, M5 has the extra property that for each edge uv of M5, u and
v do not di�er on the �rst coordinate (we build H5 from H4 by adding a new coordinate on the
left, hence the �rst coordinate is the new one). We now build the matching Md of Hd (d ≥ 6)
from Md−1 in such a way that no two edges of Md belong to a 4-cycle in Hd and that for each
edge uv of Md, u and v do not di�er on the �rst coordinate. To do this, let H′1 be the copy of
Hd−1 in Hd induced by the set of vertices whose �rst coordinate is 0. Similarly, let H′2 be the
copy of Hd−1 in Hd induced by the other vertices. Let M′1 be a copy of Md−1 in H′1 and let
M′2 be a matching in H′2 obtained fromM′1 by the following transformation: for e = uv ∈M′1,
de�ne ψ(e) = σ(u)σ(v) where σ(x) = x + (1, 0, 0, . . . , 0). It is now easy to check that the new
matching Md =M′1 ∪M′2 has both properties we need. 9

Figure 5.6: Two disjoint edge-identifying codes of H4 (thick and dashed edges).

We note that the formula of Proposition 5.22 does not hold for d = 2 and d = 3. For d = 2
the hypercube H2 is isomorphic to C4 and thus γEID(H2) = 3. For d = 3, we note that an
identifying code of size 4, if it exists, must be a matching with no pair of edges belonging to
a 4-cycle. But this is not possible. An edge-identifying code of size 5 is shown in Figure 5.7,
therefore γEID(H3) = 5.

110 5.3. Line graphs

Figure 5.7: An optimal edge-identifying code of H3.

5.3.2.3 Re�ning the lower bound

In this section, we improve the lower bound of Corollary 5.20 by showing that the constant
√

2
2

is not tight (see Corollary 5.25).
To do so, we upper-bound the number of edges in a graph G having an edge-identifying code

CE of size k. To avoid trivialities such as having isolated vertices we may assume G is connected.
We note that this does not mean that the subgraph induced by CE is also connected, in fact
we observe almost the contrary, i.e. in most cases, an edge-identifying code of a minimum size
will induce a disconnected subgraph of G. We �rst prove a lower bound for the case when an
edge-identifying code induces a connected subgraph.

Theorem 5.23. If an edge-identifying code CE of a nontrivial graph G induces a connected
subgraph of G which is not isomorphic to K2, then G has at most

(|CE |+2
2

)
−4 edges. Furthermore,

equality can only hold if CE induces a path.

Proof. Let G′ be the subgraph induced by CE . Since we assumed G′ is connected, and since G′ is
edge-identi�able, it cannot have three vertices. Since we assumed G′ � K2, we conclude that G′

has at least four vertices. For each vertex x of G′, let CxE be the set of all edges incident to x in G′.
Let e = uv be an edge of G, then one or both of u and v must be in V (G′). Therefore, depending
on which of these vertices belong to CE , e is uniquely determined by either CuE (if u ∈ V (G′) and
v /∈ V (G′)), or CvE (if u /∈ V (G′) and v ∈ V (G′)), or CuE ∪ CvE (if both u, v ∈ V (G′)). The total

number of sets of this form can be at most |V (G′)|+
(|V (G′)|

2

)
=
(|V (G′)|+1

2

)
, thus if |V (G′)| ≤ |CE |

we are done. Otherwise, since G′ is connected, |V (G′)| = |CE |+ 1 and G′ is an edge-identi�able
tree on at least 4 vertices. If v is a vertex of degree 1 adjacent to u, then we have CvE = {uv} but
uv ∈ CuE and, therefore, CuE = CuE∪CvE . On the other hand, by Lemma 5.16, there are two vertices
of degree 2 that have neighbours of degree 1. Let u be such a vertex, let v be its neighbour of
degree 1 and x be its other neighbour. Then CvE = {uv} and CuE = {uv, ux} and, therefore,
CuE ∪ CxE = CvE ∪ CxE . Thus the total number of distinct sets of the form CyE or CyE ∪ CzE is at most(|CE |+2

2

)
− 4. But if equality holds there can only be two vertices of degree 1 in G′ and hence CE

is a path. 9

We note that if this bound is tight, then G′ is a path. Furthermore, for each path Pk+1 one
can build many graphs which have Pk+1 as an edge-identifying code and have

(
k+2

2

)
− 4 edges.

The set of all these graphs will be denoted by Jk. An example of such a graph is obtained
from Kk+2 by removing a certain set of four edges as shown in Figure 5.8. Note that every other
member of Jk is obtained from the previous example by splitting the vertex that does not belong
to Pk+1 (but without adding any new edge).

Next, we consider the case when the subgraph induced by CE is not necessarily connected.

Theorem 5.24. Let G be an edge-identi�able graph and let CE be an edge-identifying code of G
with |CE | = k. Then we have:

|E(G)| ≤


(4

3
k

2

)
, if k ≡ 0 mod 3,(4

3
(k−1)+1

2

)
+ 1, if k ≡ 1 mod 3,(4

3
(k−2)+2

2

)
+ 2, if k ≡ 2 mod 3.

Chapter 5. Identifying codes in speci�c graph classes 111

a (k + 1)-clique with
two edges removed· · ·

Figure 5.8: An extremal graph of Jk with its connected edge-identifying code.

Proof. Let G be a graph with maximum number of edges among all graphs with γEID(G) = k.
It can be easily checked that for k = 1, 2 or 3, the maximum number of edges of G is 1, 3 or 6
respectively. For k ≥ 4, we prove a slightly stronger statement: given an edge-identifying code
CE of G of size k, all but at most two of the connected components of the subgraph induced by
CE must be isomorphic to P4. When there is only one component not isomorphic to P4, it must
be isomorphic to a P2, a P5 or a P6. If there are two such components, then they can be two
copies of P2, a P2 with a P5, or just two copies of P5. This depends on the value of k mod 3.

To prove our claim let G be a graph as de�ned above, let CE be an edge-identifying code of
size k of G and let G′ be the subgraph induced by CE . For each vertex u ∈ V (G) \ V (G′), we
can assume that u has degree 1: if u has degree d > 1, with neighbours v1, . . . , vd necessarily in
V (G′), then replace u by d vertices of degree 1: u1, . . . , ud, connecting ui to vi. Then the number
of edges does not change, and the code CE remains an edge-identifying code of size k, thus it
su�ces to prove our claim for this new graph. Let G′1, G

′
2, . . . , G

′
r be the connected components

of G′ with |V (G′i)| = n′i. For each i ∈ {1, . . . , r}, let Gi be the graph induced by the vertices of
G′i and the vertices connected to G′i only. To each vertex x of G′ we assign the set CxE of edges
in G′ incident to x.

We �rst note that no G′i can be of order 3, because there is no connected edge-identi�able
graph on three vertices. If u and v are vertices from two disjoint components of G′ with each
component being of order at least 4, then the pair u, v is uniquely determined by CuE ∪ CvE , thus
by maximality of G, uv is an edge of G. If a component of G′ is isomorphic to K2, assuming u
and u′ are vertices of this component, then for any other vertex v of G′ exactly one of uv or u′v
is an edge of G.

We now claim that each G′i with n
′
i ≥ 4 is a path. By contradiction, if a G′i is not a path, we

replace Gi by a member Jn′i−1 of Jn′i−1 with Pn′i being its edge-identifying code. Then we join
each vertex of Pn′i to each vertex of each G′j (with j 6= i and n′j ≥ 4) and to exactly one vertex
of each Gj with n′j = 2. We note that the new graph still admits an edge-identifying code of
size k. However, it has more edges than G. Indeed, while the number of edges connecting G′i
and the G′j 's (j 6= i) is not decreased, the number of edges in Gi is increased when we replace
Gi by Jn′i−1. This can be seen by applying Theorem 5.23 on Gi.

We now show that none of the G′i's can have more than six vertices. By contradiction,
suppose G′1 is a component with n′1 ≥ 7 vertices (thus n′1 − 1 edges). We build a new graph G∗1
from G as follows. We take disjoint copies of J3 ∈ J3 and Jn′1−4 ∈ Jn′1−4 with P4 and Pn′1−3

being, respectively, their edge-identifying codes. We now let V (G∗1) = V (J3)∪V (Jn′1−4)∪(V (G)\
V (G1)). The edges of J3, Jn′1−4 and G − G1 are also edges of G∗1. We then add edges between
these three parts as follows. We join every vertex of P4 to each vertex of Pn′1−3. For i = 2, 3, . . . , r
if n′i ≥ 4, join every vertex of G′i to each vertex of P4 ∪ Pn′1−3. If n

′
i = 2, we choose exactly one

vertex of G′i and join it to each vertex of P4 ∪Pn′1−3. The construction of G∗1 ensures that it still
admits an edge-identifying code of size k, but it has more edges than G. In fact, the number
of edges is increased in two ways. First, because P4 ∪ Pn′1−3 has one more vertex than G′1, the
number of edges connecting P4∪Pn′1−3 to G−G1 has increased (unless r = 1). More importantly,

the number of edges induced by J3 ∪ Jn′1−4 is 6 +
(n′1−2

2

)
− 4 + 4 × (n′1 − 3) =

n′1
2

2 +
3n′1
2 − 7

112 5.3. Line graphs

which is strictly more than |E(G′1)| = n′1
2

2 +
n′1
2 − 4 for n′1 ≥ 3. Since n′1 ≥ 7, this contradicts the

maximality of G.
With a similar method, the following transformations strictly increase the number of edges

while the new graph still admits an edge-identifying code of size k:

1. Two components of G′ each on six vertices transform into two graphs of J3 and a graph of
J4.

2. One component of G′ on six vertices and another component on �ve vertices transform into
three graphs of J3.

3. One component of G′ on six vertices and one on two vertices transform into two graphs of
J3.

4. Three components of G′ each on �ve vertices transform into four graphs of J3.

5. Two components of G′ on �ve vertices and one on two vertices transform into three graphs
of J3.

6. A component of G′ on �ve vertices and two on two vertices transform into two graphs of
J4.

7. Three components of G′ each isomorphic to P2 transform into a graph of J3.

For the proof of case 7, we observe that the number of edges identi�ed by the three P2's
would be the same as the number of edges identi�ed by the P4. However, since k ≥ 4, there
must be some other component in G′. Moreover, the number of vertices of the three P2's, which
are joined to the vertices of the other components of G′, is three, whereas the number of these
vertices of the P4, is four. Hence the maximality of G is contradicted.

We note that cases 1, 2 and 3 imply that if a component of G′ is isomorphic to P6, every other
component is isomorphic to P4. Then cases 4, 5 and 6 imply that if a component is isomorphic to
P5, then at most one other component is not isomorphic to P4 and such component is necessarily
either a P2 or a P5. Finally, case 7 shows that there can be at most two components both
isomorphic to P2.

We conclude that each of the components of G′ is isomorphic to P4 except for possibly two
of them. These exceptions are dependent on the value of k mod 3 as we described. The formulas
of the theorem can be derived using these structural properties of G. For instance, in the case
k ≡ 0 mod 3, each component of G′ is isomorphic to P4. There are k

3 such components. For
each component G′i, there are six edges in the graph Gi. That gives 2k edges. The other edges
of G are edges between two components of G′. By maximality of G, between two components of

G′, there are exactly 16 edges. There are
(k

3
2

)
pairs of components of G′. Hence, the number of

edges in G is:

2k + 16

(k
3

2

)
=

(4
3k

2

)
.

The other cases can be proved with the same method. 9

We note that this bound is tight and the examples were in fact built inside the proof. More
precisely, for k ≡ 0 mod 3 we take k

3 disjoint copies of elements of J3 each having a P4 as an
edge-identifying code. We then add an edge between each pair of vertices coming from two
distinct such P4's. We note that the union of these P4's is a minimum edge-identifying code of
the graph. If k 6≡ 0 mod 3, then we build a similar construction. This time we use elements from
J3 with at most two exceptions that are elements of J4 or J5.

The above theorem can be restated in the language of line graphs as follows.

Corollary 5.25. Let G be an identi�able line graph on n ≥ 4 vertices. Then we have γID(G) ≥
3
√

2
4

√
n, and this bound is tight.

Chapter 5. Identifying codes in speci�c graph classes 113

Proof. Suppose G is the line graph of an edge-identi�able graph H (L(H) = G). Let k =
γID(G) = γEID(H), and let n be the number of vertices of G (n = |E(H)|). Then, after solving
the quadratic inequalities of Theorem 5.24 for k, we have:

k ≥3

8
+

3
√

8n+ 1

8
, for k ≡ 0 mod 3

k ≥5

8
+

3
√

8n− 7

8
, for k ≡ 1 mod 3

k ≥3

8
+

3
√

8n− 15

8
, for k ≡ 2 mod 3

It is then easy to check that the right-hand side of each of the three inequalities is at least as
3
√

2
4

√
n for n ≥ 3. The tightness follows from the discussion of the previous paragraph. 9

5.3.3 Upper bounds

In this section, we present upper bounds for parameter γID in line graphs.

5.3.3.1 Line graphs with identifying code number their order minus one

We saw that a general bound, only in terms of the order of a graph, is provided by Theorem 2.27.
Furthermore, the class of all graphs with γID(G) = |V (G)|− 1 is classi�ed in Chapter 3, and this
class is in�nite. It is easy to check that only six of these graphs are line graphs. Thus we have
the following corollary:

Corollary 5.26. If G is an identi�able line graph with G /∈ {P3, P4, C4, P4 ./ K1, C4 ./
K1,L(K4)}, then we have γID(G) ≤ |V (G)| − 2.

Since γEID(K2,n) = 2n− 2, γID(L(K2,n)) = |V (L(K2,n))| − 2, the bound of Corollary 5.26 is
tight for an in�nite family of graphs.

5.3.3.2 A minimal edge-identifying code induces a 2-degenerate graph

We recall that a graph on n vertices is 2-degenerate if its vertices can be ordered v1, v2, . . . , vn such
that each vertex vi is joined to at most two vertices in {v1, v2, . . . , vi−1}. Our main idea for prov-
ing upper bounds is to show that given an edge-identi�able graph G, any (inclusionwise) minimal
edge-identifying code CE induces a 2-degenerate subgraph of G and hence |CE | ≤ 2|V (G)| − 3.
Our proofs are constructive and one could build such small edge-identifying codes.

Theorem 5.27. Let G be an edge-identi�able graph and let CE be a minimal edge-identifying
code of G. Then G′, the subgraph induced by CE, is 2-degenerate, and hence |CE | ≤ 2|V (G)| − 3.

Proof. Let uv be an edge of G′ with dG′(u), dG′(v) ≥ 3. By minimality of CE the subset C′ =
CE − uv of E(G) is not an edge-identifying code of G. By the choice of uv, C′ is still an edge-
dominating set, thus there must be two edges, e1 and e2, that are not separated by C′. Hence
one of them, say e1, is incident either to u or to v (possibly to both) and the other one (e2) is
incident to neither one.

We consider two cases: either e1 = uv or e1 is incident to only one of u and v. In the �rst
case, e2 is adjacent to every edge of C′ which uv is adjacent to. Since for each vertex of uv there
are at least two edges in C′ incident to this vertex, the subgraph induced by u, v and the vertices
of e2 must be isomorphic to K4 and there should be no other edge of C′ incident to any vertex
of this K4 (see Figure 5.9(a)).

In the other case, suppose e1 is adjacent to uv at u. Let x and y be two neighbours of u in G′

other than v. Then it follows that e2 = xy and, therefore, dG′(u) = 3. Let z be the other end of
e1. We consider two sub-cases: either z /∈ {x, y}, or, without loss of generality, z = x. Suppose
z /∈ {x, y}. Recall that uv is the only edge separating e1 and e2, but e1 must be separated
from ux. Thus zy ∈ CE . Similarly, e1 must be separated from uy, so zx ∈ CE . Furthermore,

114 5.3. Line graphs

dG′(x) = dG′(y) = dG′(z) = 2 and {x, y, z, u} induces a C4 in G′ (see Figure 5.9(b)). Now
suppose e1 = ux, since uv is the only edge separating e1 and e2, then uy and possibly xy are the
only edges in G′ incident to y, so dG′(y) ≤ 2 and dG′(u) = 3 (see Figures 5.9(c) and 5.9(d)).

u v

e2

e1

(a)

u

x
y z

v

··
·

e2

e1

(b)

u

y z = x

v

··
·

e2

e1

(c)

u

y z = x

v

··
·

e2

e1

(d)

Figure 5.9: Case distinctions in the proof of Theorem 5.27. Black vertices have
�xed degree in G′. Thick edges belong to CE .

To summarize, we proved that given an edge uv, in a minimal edge-identifying code CE , we
have one of the following cases.

• One of u or v is of degree at most 2 in G′.

• Edge uv is an edge of a connected component of G′ isomorphic to K−4 (that is K4 with an
edge removed), see Figure 5.9(a).

• dG′(u) = 3 (considering the symmetry between u and v) in which case either u is incident
to a C4 whose other vertices are of degree 2 in G′ (Figure 5.9(b)), or to a vertex of degree
1 in G′ (Figure 5.9(c)) or to a triangle with one vertex y of degree 2 in G′ and y is not
adjacent to v (Figure 5.9(d)).

In either case, there exists a vertex x of degree at most 2 in G′ such that when x is removed,
at least one of the vertices u, v has degree at most 2 in the remaining subgraph of G′. In this way
we can de�ne an order of elimination of the vertices of G′ showing that G′ is 2-degenerate. 9

By further analysis of our proof we can in fact prove the following corollary, whose proof
is given in Appendix A.7. The idea of the proof is to distinguish the possible cases using the
previous proof and the fact that the code has to induce a 2-degenerated graph.

Corollary 5.28. If G is an edge-identi�able graph on n vertices not isomorphic to K4 or K−4 ,
then γEID(G) ≤ 2n− 5.

We note that γEID(K2,n) = 2n − 2 = 2|V (K2,n)| − 6 thus this bound cannot be improved
much.

5.3.3.3 An application to Conjecture 4.4 in line graphs

Theorem 5.27 states that an edge-identifying code induces a sparse graph. This implies that if
an edge-identi�able graph is dense enough, Conjecture 4.4 holds for its line graph:

Corollary 5.29. If G is an edge-identi�able graph on n vertices and with average degree d̄(G) ≥
5, then we have γID(L(G)) ≤ n− n

∆(L(G)) .

Proof. Let u be a vertex of degree d(u) ≥ d̄(G) ≥ 5. Since G is edge-identi�able there is at
least one neighbour v of u that is of degree at least 2. Thus there is an edge uv in G with
d(u) + d(v) ≥ d̄(G) + 2 and, therefore, ∆(L(G)) ≥ d̄(G). Hence, considering Corollary 5.28, it is
enough to show that 2|V (G)| − 5 ≤ |E(G)| − |E(G)|

d̄(G)
.

To this end, since d̄(G) ≥ 5, we have 4|V (G)| ≤ (d̄(G)− 1)|V (G)|, therefore,
4|V (G)| − 10 ≤ (d̄(G)− 1)|V (G)|.

Multiplying both sides by d̄(G)
2 , we have:

(2|V (G)| − 5)d̄(G) ≤ (d̄(G)− 1) d̄(G)
2 |V (G)| = (d̄(G)− 1)|E(G)|. 9

Chapter 5. Identifying codes in speci�c graph classes 115

5.4 Conclusion

In this chapter, we have turned our attention to graph classes for which no previous result
regarding identifying codes were known. We have shown that interesting and nontrivial lower
and upper bounds on the identifying code number of members of these classes hold.

Let us make a few observations regarding the results about graphs of given minimum degree
and girth at least 5. It is known that a bound similar to the one of Theorem 5.3 holds for the
domination number of a graph (of arbitrary girth) with given minimum degree:

Theorem 5.30 ([2, Theorem 1.2.2]). Let G be a graph on n vertices with minimum degree δ.

Then γ(G) ≤ n(1+ln(δ+1))
δ+1 .

The bounds of Theorem 5.3 are not relevant for small values of the minimum degree δ. Indeed,
one bound includes an asymptotic term in δ (hence it is meaningful only for large values of δ),

whereas for the other bound, γID(G) ≤ 3(ln δ+ln ln δ+1+ ln ln δ
ln δ

+ 1
ln δ)

2δ , its value is strictly less than n
only when δ ≥ 7. However, we recall that for large values of δ, the bounds are tight as discussed
in the end of Subsection 5.1.3.

This raises some questions for small values of the minimum degree. We note the existence of
the following related upper bounds on the domination number from the literature:

Theorem 5.31 ([109, Theorem 2.1]). Let G be a graph on n vertices with minimum degree at
least 1. Then γ(G) ≤ n

2 . This bound is tight for in�nitely many graphs.

Theorem 5.32 ([149]). Let G be a connected graph on n vertices with minimum degree 2. If
G does not belong to a set of seven exceptional graphs, then γ(G) ≤ 2n

5 . This bound is tight for
in�nitely many graphs.

Theorem 5.33 ([172]). Let G be a graph on n vertices with minimum degree 3. Then γ(G) ≤ 3n
8 .

This bound is tight for in�nitely many graphs.

As discussed in Chapter 4.2, we cannot hope for similar bounds on parameter γID without
restrictions on the girth; however, they are to be related to our bound from Theorem 5.1,
γID(G) ≤ 7n

8 , which holds when G has minimum degree 2 and girth at least 5. We do not
think that this bound is tight. The examples of graphs of girth 5 and minimum degree 2 having
(up to our knowledge) largest identifying code number are the cycles Cn (which have identifying
code roughly n

2 , see Theorem 2.31). This leads to the following question:

Question 5.34. What are tight bounds on γID(G) for graphs G of given (small) minimum degree
δ ≥ 2 and girth at least 5?

Moreover, we have not investigated lower bounds on parameter γID for graphs of girth at
least 5 and given minimum degree. This question deserves attention.

Question 5.35. What are (tight) lower bounds on γID(G) for graphs G of given minimum degree
and girth at least 5?

We showed that a lower bound of the form γID(G) ≥ Ω
(√
|V (G)|

)
holds when G belongs ei-

ther to the class of interval graphs (see Theorem 5.8) or to the one of line graphs (Corollary 5.20).
Can these results be uni�ed or generalized?

Question 5.36. Are there superclasses of line graphs and/or interval graphs for which any of

its members G satis�es γID(G) ≥ Ω
(√
|V (G)|

)
?

In particular, for the case of line graphs, L. W. Beineke characterized line graphs in terms
of a list B of nine forbidden induced subgraphs [18] (see Theorem 2.2). It is natural to ask for
which minimal list of forbidden induced subgraphs a similar bound would still hold:

Question 5.37. For which minimal subsets SB of B does a bound of the form γID(G) ≥
Ω
(√
|V (G)|

)
hold for any SB-free graph G?

However, we remark that a bound of the form γID(G) ≥ Ω
(√
|V (G)|

)
does not hold for the

116 5.4. Conclusion

class of co-bipartite graphs (i.e. complements of bipartite graphs). Examples can be built as
follows: let A be a set of size k and let B be the set of nonempty subsets of A. Let G be the
graph built on A ∪ B, where A and B each induce a clique, and a vertex a of A is joined to a
vertex b of B if a ∈ b. This graph is claw-free and it is easy to �nd an identifying code of size at
most 2k = Θ (ln(|V (G)|)) in G (take the set A together with all vertices of B corresponding to
a singleton of A).

This construction is interesting since the class of co-bipartite graphs forms a subclass of

quasi-line graphs, therefore an upper bound of the form Ω
(√
|V (G)|

)
cannot hold for quasi-line

graphs:

Proposition 5.38. There is an in�nite family of identi�able co-bipartite graphs (and therefore
quasi-line graph and induced claw-free graphs) such that each graph G of this family has γID(G) =
Θ (ln |V (G)|).

To be even more precise, one can check that �ve graphs in Beineke's list are not co-bipartite:
B1 = K1,3, B4, B5, B7, and B9 = W5 from Figure 2.15. Therefore, since co-bipartiteness is
closed by taking induced subgraphs, any subset of these �ve graphs cannot be an answer to
Question 5.37:

Proposition 5.39. Let SB be a subset of B. If a bound of the form γID(G) ≥ Ω
(√
|V (G)|

)
for

each SB-free graph G holds, then SB contains at least one of B2, B3 = K−5 , B6, B8 = P 2
6 .

Furthermore, we note that similar questions can be studied for other classes of graphs, such
as the ones indicated in Tables 1.4 and 1.5:

Question 5.40. What are tight lower bounds on parameetr γID for given graph classes such as
permutation graphs, (un)directed path graphs, (outer)planar, series-parallel graphs, respectively?

Finally, let us discuss Corollary 5.29, which shows that Conjecture 4.4 holds for line graphs
of graphs with average degree at least 5 (i.e. line graphs of �dense enough� graphs). We note
that Conjecture 4.4 is particularly interesting for the class of line graphs, as most known fam-
ilies of graphs that reach the bound proposed by the conjecture are indeed line graphs (see
Observation 4.9). This result lets us raise the following question that can be investigated:

Question 5.41. Does Conjecture 4.4 hold for line graphs of sparser graphs? For example, does
it hold for line graphs of trees?

Part II

Algorithmic aspects

Chapter 6. Graph classes for which Min Id Code is log-APX-complete 119

Chapter 6

Graph classes for which Min Id Code is
log-APX-complete

We now turn our attention to algorithmic properties of the identifying code problem. In this
chapter, we prove thatMin Id Code is log-APX-hard, even for several restricted classes of graphs.
It was already known that Min Id Code is log-APX-hard (see Theorem 2.50 from [21, 143, 187]
independently), but no particular restriction on the graph class was given. Previously known
reductions were from Min Set Cover [21, 143] and from Min Dom Set [187], but these
reductions are quite intricate. Our reductions all use similar ideas (except for the one for DSP
graphs), having Min Discrim Code as a starting point. The proximity between Min Discrim

Code and Min Id Code allows us to design easier reductions, and to further restrict the class
of graphs for which Min Id Code is log-APX-hard.

6.1 Some useful constructions . 119

6.2 Min Id Code for bipartite graphs . 120

6.3 Min Id Code for split graphs . 122

6.4 Min Id Code for DSP graphs . 124

6.5 Min Id Code for co-bipartite graphs 125

6.6 Conclusion . 128

We �rst de�ne two generic constructions in Section 6.1 that will be used in several reductions
from this chapter.

In Section 6.2, we give an AP-reduction from Min Discrim Code to Min Id Code for
bipartite graphs, thereby proving thatMin Id Code is log-APX-hard in this class (Corollary 6.5).

In Section 6.3, we give another AP-reduction fromMin Discrim Code toMin Id Code for
split graphs, which implies that this problem is log-APX-hard for this class as well (Corollary 6.8).

In Section 6.4, we give an easy AP-reduction from Min Id Code to Min Id Code itself in
DSP graphs (recall that a graph is DSP if it has a shortest path whose vertices form a dominating
set). This implies that Min Id Code is log-APX-hard for DSP graphs (Corollary 6.11). This is
in contrast with the complexity of Min Dom Set, which (unlike for bipartite or split graphs) is
polynomial-time solvable for DSP graphs [139].

Finally, we extend the result for DSP graphs to the class of co-bipartite graphs (which form
a subclass of DSP graphs) by providing an AP-reduction from Min Discrim Code to Min Id

Code restricted to this class in Section 6.5. This implies that Min Id Code is log-APX-hard
for co-bipartite graphs as well (Corollary 6.14).

The results of this chapter are solely my own work; they are new and have not appeared
anywhere else than in this thesis.

6.1 Some useful constructions

We now describe two constructions, which will be helpful in many reductions of Chapter 6 in
order to make sure that the vertices of some set A are correctly identi�ed using the vertices of
another set L.

120 6.2. Min Id Code for bipartite graphs

Construction 6.1 (bipartite logarithmic identi�cation of A over (A,L)). Given two sets of
vertices A and L with |L| ≥ dlog2(|A| + 1)e, the bipartite logarithmic identi�cation of A over
(A,L), denoted LOG(A,L), is the graph of vertex set A ∪ L and where each vertex of A has a
distinct nonempty subset of L as its neighbourhood.

The next construction is similar, but makes sure that each vertex of A has at least two
neighbours in L.
Construction 6.2 (non-singleton bipartite logarithmic identi�cation of A over (A,L)). Given
two sets of vertices A and L with |A| ≤ 2|L| − |L| − 1,1 the non-single bipartite logarithmic
identi�cation of A over (A,L), denoted LOG∗(A,L), is the graph of vertex set A∪L and where
each vertex of A has a distinct subset of L of size at least 2 as its neighbourhood.

6.2 Min Id Code for bipartite graphs

Reduction 6.3 (Min Discrim Code→Min Id Code for bipartite graphs). Given an instance
(I,A) of Min Discrim Code, we construct in polynomial time the following bipartite graph
G(I,A) on |I|+ |A|+ 9dlog2(|A|+ 1)e+ 3 vertices, with vertex set:

V (G(I,A)) = I ∪ A ∪ {x, y, z} ∪ {aj , bj , cj , dj , ej , fj , gj , hj , ij | 1 ≤ j ≤ dlog2(|A|+ 1)e},

and edge set:

E (G(I,A)) = {x, y} ∪ {y, z} ∪ {{z, I} | I ∈ I}
∪ E (B(I,A))

∪ E (LOG(A, {aj | 1 ≤ j ≤ dlog2(|A|+ 1)e}))
∪ {{aj , bj}, {bj , cj}, {aj , dj}, {dj , gj} | 1 ≤ j ≤ dlog2(|A|+ 1)e}
∪ {{dj , ej}, {ej , fj}, {gj , hj}, {hj , ij} | 1 ≤ j ≤ dlog2(|A|+ 1)e} .

where B(I,A) denotes the bipartite incidence graph of (I,A) and E (LOG(A,L)) denotes the
bipartite logarithmic identi�cation of A over (A,L) (see Construction 6.1).

The construction is illustrated in Figure 6.1.

a`

a1

. .
.

b`

c`

d`

g`
h` i`e`

f`

b1

c1

d1

g1
h1 i1e1

f1
x y z

I A

Figure 6.1: Reduction from Min Discrim Code to Min Id Code (with ` =
dlog2(|A|+ 1)e).

Theorem 6.4. Let (I,A) be an instance of Min Discrim Code, and G(I,A), the bipartite
graph constructed using Reduction 6.3. Then, (I,A) has a discriminating code of size at most k
if and only if G(I,A) has an identifying code of size at most k + 6dlog2(|A|+ 1)e+ 2, and one
can construct one using the other in polynomial time.

1There are exactly 2|L| − |L| − 1 distinct subsets of L with size at least 2.

Chapter 6. Graph classes for which Min Id Code is log-APX-complete 121

Proof. Su�cient side (⇒) Let D ⊆ A be a discriminating code of (I,A), |D| = k. We de�ne
C(D) as follows:

C(D) = D ∪ {x, z} ∪ {aj , cj , dj , fj , gj , ij | 1 ≤ j ≤ dlog2(|A|+ 1)e}.

One can easily check that C(D) has size k+ 6dlog2(|A|+ 1)e+ 2, and is clearly a dominating
set. To see that it is an identifying code of G(I,A), observe that vertex z separates all vertices
of I from all vertices which are not in I ∪ {z}. Vertex z itself is the only vertex dominated only
by z (each vertex of I being dominating by some vertex of D); y is dominated by both x, y and
x, only by itself. Since D a discriminating code of (I,A), all vertices of I are dominated by
a distinct subset of D. Furthermore, due to the bipartite logarithmic identi�cation of A over
(A, {aj | 1 ≤ j ≤ dlog2(|A| + 1)e}) (and since each vertex aj belongs to the code), all vertices
of A are dominated by a unique subset of {aj | 1 ≤ j ≤ dlog2(|A| + 1)e}. Finally, it is easy to
check that all vertices of type aj , bj , cj , dj , ej , fj , gj , hh, ij are correctly separated.

Necessary side (⇐) Let C be an identifying code of G(I,A), |C| = k+ 6dlog2(|A|+ 1)e+ 2.
We �rst �normalize� C by constructing an identifying code C∗ of G(I,A), |C∗| ≤ |C|, such that
the two following properties hold:

|C∗ ∩ {V (G(I,A)) \ {I ∪ A}}| = 6dlog2(|A|+ 1)e+ 2 (6.1)

|C∗ ∩ I| = ∅. (6.2)

To get Condition (6.1), we replace |C ∩ {V (G(I,A)) \ {I ∪ A}}| by {x, z} ∪ {aj , cj , dj ,
fj , gj , ij | 1 ≤ j ≤ dlog2(|A| + 1)e} to get code C′ (whose structure is similar to the one of
the code constructed in the (⇒) part of the proof). Observe that |C′| ≤ |C|. Indeed, we already
had |C∩{V (G(I,A))\{I∪A}}| ≥ 6dlog2(|A|+1)e+2. To see this, note that vertex z is forced by
{x, y}, and |C ∩{x, y}| ≥ 1 since C must dominate x. Similarly, for any j ∈ {1, . . . , log2(|A|+1)},
vertices aj , dj , gj are forced by {bj , cj}, {ej , fj} and {hj , ij}, respectively, and |C ∩ {bj , cj}| ≥ 1,
|C ∩ {ej , fj}| ≥ 1 and |C ∩ {hj , ij}| ≥ 1, since C must dominate cj , fj and ij , respectively.

To ful�ll Condition (6.2), we replace each vertex I ∈ I ∩C′ by some vertex in A. If C′ \{I} is
an identifying code, we may just remove I from the code. Otherwise, note that I is not needed
for domination since all vertices of I are dominated by z and all vertices of A are dominated
by some vertex in {aj | 1 ≤ j ≤ dlog2(|A| + 1)e}. Hence, I separates I itself from some other
vertex I ′ in I (indeed, one can check that all other types of pairs which could be separated by
I are actually already separated by some vertex of C′ ∩ (V (G(I,A)) \ I). But then, the pair
{I, I ′} is unique (suppose I separates I itself from two distinct vertices I ′ and I ′′ of I, then I ′
and I ′′ would not be separated by C′, a contradiction). Since (I,A) is identi�able, there must
be some vertex A of A separating I from some I ′. Hence we replace I by A. Doing this for every
I ∈ C′ ∩ I, we get code C∗, and |C∗| ≤ |C′| ≤ |C|.

Using the previous observations and by similar arguments as in in the (⇒) part of the proof,
one can easily check that after these two modi�cations performed on code C, the obtained code
C∗ is still an identifying code.

By Condition (6.2), we have |C∗ ∩ A| ≤ |C| − 6dlog2(|A|+ 1)e+ 2 = k.
To �nish the proof, we claim that C∗ ∩ A is a discriminating code of (I,A). This is easy to

observe, as all pairs {I, I ′} of I are separated by C∗. By Condition (6.1), they must be separated
by some vertex of A (note that z is adjacent to all vertices of I). Hence C∗∩A is a discriminating
code of (I,A). 9

Theorem 6.4 proves that Identifying Code restricted to bipartite graphs is NP-hard. In
fact, Reduction 6.3 also preserves approximation ratios up to a constant factor, as shown by the
following corollary.

Corollary 6.5. Reduction 6.3 is an AP-reduction with parameter α = 8 and Min Id Code

restricted to bipartite graphs is log-APX-complete.

Proof. We will use Theorem 6.4 to show that any c-approximation algorithm A forMin Id Code

for bipartite graphs can be transformed into a 7c-approximation algorithm for Min Discrim

122 6.3. Min Id Code for split graphs

Code, and 7c ≤ 1 + c(8− 1); therefore, by De�nition 2.8, we have an AP-reduction with α = 8.
Since Min Discrim Code is log-APX-complete [71] and by Theorem 2.50, Min Id Code is in
log-APX, we get the claim.

Let (I,A) be an instance of Min Discrim Code with optimal value OPT, and let G(I,A)
be the bipartite graph constructed using Reduction 6.3. By Theorem 6.4, we have:

γID(G(I,A)) ≤ OPT + 6dlog2(|A|+ 1)e+ 2. (6.3)

Let C be an identifying code of G(I,A) computed by A . We have:

|C| ≤ cγID(G(I,A)). (6.4)

By Theorem 6.4, we can compute in polynomial time a discriminating code D of (I,A). Using
Inequalities 6.3 and 6.4 together with the fact that dlog2(|A|)e ≤ OPT ≤ |D| (Theorems 2.19
and 2.20), we get:2

|D| ≤ |C| − 6dlog2(|A|+ 1)e − 2

≤ cγID(G(I,A))− 6dlog2(|A|+ 1)e − 2

≤ c(OPT + 6dlog2(|A|+ 1)e+ 2)− 6dlog2(|A|+ 1)e − 2

≤ cOPT + (c− 1)(6dlog2(|A|+ 1)e+ 2)

≤ cOPT + (c− 1)(6dlog2(|A|)e+ 8)

≤ cOPT + (c− 1)(6OPT + 8)

≤ (7c− 6)OPT + 8

≤ 7cOPT. 9

6.3 Min Id Code for split graphs

In this section, we use a reduction from Min Discrim Code to Min Id Code for split graphs
similar to Reduction 6.3.

Reduction 6.6 (Min Discrim Code → Min Id Code for split graphs). Given an instance
(I,A) of Min Discrim Code, we construct in polynomial time the following split graph Sp(I,A)
on |I|+ |A|+ 6dlog2(|A|+ 1)e+ 1 vertices, with vertex set V (Sp(I,A)) = K ∪ S (K is a clique
and S, an independent set). More speci�cally:

K = I ∪ {u} ∪ {kj | 1 ≤ j ≤ 2dlog2(|A|+ 1)e}
S = A ∪ {v} ∪ {sj , tj | 1 ≤ j ≤ 2dlog2(|A|+ 1)e}.

Sp(I,A) has edge set:

E (Sp(I,A)) = {u, v}
∪ E (B(I,A))

∪ E (LOG∗(A, {kj | 1 ≤ j ≤ 2dlog2(|A|+ 1)e}))
∪ {{kj , sj}, {kj , tj} | 1 ≤ j ≤ dlog2(|A|+ 1)e}
∪ {a, b | a, b ∈ K, a 6= b},

where B(I,A) denotes the bipartite incidence graph of (I,A) and E (LOG∗(A,L)) denotes the
non-singleton bipartite logarithmic identi�cation of A over (A,L) (see Construction 6.2).

The construction is illustrated in Figure 6.2.

2For the last line inequality, we assume here that OPT ≥ 2.

Chapter 6. Graph classes for which Min Id Code is log-APX-complete 123

k`

k1

..
.

s`

t`

s1

t1

..
.

u v

K S

I A

Figure 6.2: Reduction from Min Discrim Code to Min Id Code (with ` =
2dlog2(|A|+ 1)e).

Theorem 6.7. Let (I,A) be an instance of Min Discrim Code, and Sp(I,A), the split graph
constructed using Reduction 6.6. Then, (I,A) has a discriminating code of size at most k if and
only if Sp(I,A) has an identifying code of size at most k + 4dlog2(|A| + 1)e + 1, and one can
construct one using the other in polynomial time.

Proof. Su�cient side (⇒) Let D ⊆ A be a discriminating code of (I,A), |D| = k. We de�ne
C(D) as follows:

C(D) = D ∪ {u} ∪ {kj , tj | 1 ≤ j ≤ 2dlog2(|A|+ 1)e}.
One can easily check that C(D) has size k + 2dlog2(|A| + 1)e + 1 and is a dominating set

of Sp(I,A). To see that it is also an identifying code of Sp(I,A), observe that each vertex
of K is separated from each vertex of S by u. Moreover vertex u is the only vertex that is
dominated only by the vertices of C(D) from K. All pairs of vertices of K are separated: each
vertex ki is separated from each other vertex of K by its private neighbour ti, and since D is a
discriminating code of (I,A), each vertex of I is dominated by a distinct and nonempty set of
vertices of D. Finally, all pairs of vertices of S are separated: due to the non-singleton bipartite
logarithmic identi�cation of A, each vertex of A is dominated by a distinct subset of vertices of
{kj | 1 ≤ j ≤ 2dlog2(|A|+ 1)e} that has size at least 2. Finally, each vertex si is the only vertex
dominated only by ki, and each vertex ti is the only vertex of S dominated by itself.

Necessary side (⇐) Let C be an identifying code of Sp(I,A) with |C| = k + 4dlog2(|A|+
1)e + 1. We �rst �normalize� C by constructing an identifying code C∗ of Sp(I,A), |C∗| ≤ |C|,
such that the two following properties hold:

|C∗ ∩ (V (Sp(I,A)) \ (I ∪ A))| = 4dlog2(|A|+ 1)e+ 1 (6.5)

|C∗ ∩ I| = ∅. (6.6)

To get Condition (6.5), we replace |C ∩ {V (Sp(I,A)) \ {I ∪ A}}| by {u} ∪ {kj , tj | 1 ≤ j ≤
2dlog2(|A| + 1)e} to get code C′ (whose structure is similar to the one of the code constructed
in the (⇒) part of the proof). Observe that |C′| ≤ |C|. Indeed, we had |C ∩ {V (Sp(I,A)) \

124 6.4. Min Id Code for DSP graphs

{I ∪ A}}| ≥ 4dlog2(|A| + 1)e + 1. To see this, note that for any j ∈ {1, . . . , 2dlog2(|A| + 1)e},
|C ∩ {kj , sj , tj}| ≥ 2. Indeed, sj , tj are false twins and must be separated by C. Hence, one of
them, say sj , belongs to C. Bu tj must be dominated, hence one of kj and tj belongs to C.
Finally, v must be dominated, hence |C ∩ {u, v}| ≥ 1.

To ful�ll Condition (6.6), we note that each vertex I ∈ I ∩ C′ can simply be removed from
the code. Assume for the sake of contradiction, that C′ \ {I} is not an identifying code. Note
that I cannot be needed for domination since all vertices of I are dominated (e.g. by u) and
all vertices of A are dominated by some vertex in {kj | 1 ≤ j ≤ 2dlog2(|A| + 1)e}. Hence, I is
needed for separation. Since K is a clique and contains already many vertices of C′ (i.e. u and
all vertices of {kj | 1 ≤ j ≤ 2dlog2(|A|+ 1)e}), I may only separate two vertices of S (no vertex
of S is adjacent to all the vertices of C′∩K, hence all vertices of S are separated from all vertices
of K). Actually, these two vertices have to both belong to A since no other vertex from S can be
adjacent to I. But all pairs in A are separated by some vertex in {kj | 1 ≤ j ≤ 2dlog2(|A|+1)e},
a contradiction. Removing every I ∈ C′ ∩ I in this way, we get code C∗, and |C∗| ≤ |C′| ≤ |C|.

Using the previous observations and by similar arguments as in in the (⇒) part of the proof,
one can easily check that after these two modi�cations performed on code C, the obtained code
C∗ is still an identifying code.

By Condition (6.6), we have |C∗ ∩ A| ≤ |C| − 4dlog2(|A|+ 1)e+ 1 = k.
To �nish the proof, we claim that C∗ ∩ A is a discriminating code of (I,A). This is easy to

observe, as all pairs {I, I ′} of I are dominated and separated by C∗. By Condition (6.5), they
must be separated by some vertex of A. Hence C∗ ∩ A is a discriminating code of (I,A). 9

Theorem 6.7 proves that Identifying Code restricted to split graphs is NP-hard. In fact,
Reduction 6.6 also preserves approximation ratios up to a constant factor, as shown by the
following corollary.

Corollary 6.8. Reduction 6.6 is an AP-reduction with parameter α = 6 and Min Id Code

restricted to split graphs is log-APX-complete.

Proof. The proof is the same as the proof of Corollary 6.5, therefore we omit the details. We use
Theorem 6.7 to show that any c-approximation algorithm for Min Id Code for split graphs can
be transformed into a 5c-approximation algorithm for Min Discrim Code, which is log-APX-
complete (and since 5c ≤ 1 + c(6− 1), in De�nition 2.8 we have α = 6). Since by Theorem 2.50,
Min Id Code is in log-APX, this proves the claims.

Given an instance (I,A) of Min Discrim Code with optimal value OPT, let Sp(I,A) be
the split graph constructed using Reduction 6.6. By Theorem 6.7, we have:

γID(Sp(I,A)) ≤ OPT + 4dlog2(|A|+ 1)e+ 1.

By using this fact and Theorem 6.7 in the same way as in the proof of Corollary 6.5, we
obtain the theorem. 9

6.4 Min Id Code for DSP graphs

In this section, we use a simple reduction from Min Id Code itself to Min Id Code for DSP
graphs.

Reduction 6.9 (Min Id Code → Min Id Code for DSP graphs). Given an identi�able graph
G on n vertices, we construct in polynomial time the graph GDSP on n+ 2 vertices, with vertex
set V (GDSP) = V (G) ∪ {u, v} and edge set E (GDSP) = E(G) ∪ {u, x | x 6= u}. GDSP is
obviously a DSP graph, since it has a universal vertex, u.

The construction is illustrated in Figure 6.3.

Theorem 6.10. Let G be an identi�able graph on n vertices and GDSP , the DSP graph con-
structed using Reduction 6.9. Then, G has an identifying code of size at most k if and only if
GDSP has an identifying code of size at most k + 1, and one can construct one using the other
in polynomial time.

Chapter 6. Graph classes for which Min Id Code is log-APX-complete 125

G

u

v

Figure 6.3: Reduction from Min Id Code to Min Id Code for DSP graphs.

Proof. Su�cient side (⇒) Let C be an identifying code of G. It is easy to check that C ∪ {v}
is an identifying code of GDSP : all vertices within V (G) are identi�ed by C as they were in
G; vertex v is dominated only by itself; vertex u is the only vertex dominated by the whole of
C ∪ {v}.

Necessary side (⇐) Let CDSP be an identifying code of GDSP . Observe that |CDSP ∩
{u, v}| ≥ 1 since v must be dominated. Hence if CDSP \{u, v} is an identifying code of G, we are
done. Let us assume the contrary. Note that necessarily u ∈ CDSP since v does not dominate any
vertex of V (GDSP) \ {u, v}. But u is a universal vertex, hence u does not separate any pair of
vertices of V (GDSP) \ {u, v}. Therefore, CDSP \ {u} is a separating code, but does not dominate
some vertex x ∈ V (GDSP) \ {u, v}: we have N [x] ∩ CDSP = {u}. This implies that v ∈ CDSP
(otherwise x and v are not separated by CDSP). But then (CDSP \ {u, v})∪{x} is an identifying
code of G of size |CDSP | − 1. This completes the proof. 9

Theorem 6.10 proves that Identifying Code restricted to DSP graphs is NP-hard, but
Reduction 6.9 also trivially preserves approximation ratios up to a constant factor, leading to
the following corollary.

Corollary 6.11. Min Id Code restricted to DSP graphs is log-APX-complete.

6.5 Min Id Code for co-bipartite graphs

We now prove that Min Id Code is log-APX-complete even for co-bipartite graphs, that is,
graphs whose vertex set can be partitioned into two cliques. Note that this class of graphs
(when assumed to be connected) is a subclass of DSP graphs since any pair of adjacent vertices
belonging each to a distinct one among the two cliques, forms a dominating shortest path.

Reduction 6.12 (Min Discrim Code→Min Id Code for co-bipartite graphs). Given an in-
stance (I,A) of Min Discrim Code, we construct in polynomial time the following co-bipartite
graph G(I,A) on |I|+ |A|+ 6dlog2(|A|+ 1)e vertices, with vertex set V (G(I,A)) = K1 ∪K2,
where K1 and K2 are two cliques over the following sets of vertices:

K1 = I ∪ {aj , bj , cj | 1 ≤ j ≤ dlog2(|A|+ 1)e}
K2 = A ∪ {dj , ej , fj | 1 ≤ j ≤ dlog2(|A|+ 1)e}.

G(I,A) has edge set:

E (G(I,A)) = E (B(I,A))

∪ E (LOG(A, {aj | 1 ≤ j ≤ dlog2(|A|+ 1)e}))
∪ {{aj , dj}, {bj , dj}, {bj , ej}, {bj , fj}, {cj , fj} | 1 ≤ j ≤ dlog2(|A|+ 1)e}
∪ {x, y | x, y ∈ K1} ∪ {x, y | x, y ∈ K2}.

where B(I,A) denotes the bipartite incidence graph of (I,A) and E (LOG(A,L)) denotes the
bipartite logarithmic identi�cation of A over (A,L) (see Construction 6.1).

126 6.5. Min Id Code for co-bipartite graphs

The construction is illustrated in Figure 6.4.

a1

b1

c1

. .
.

d1

e1

f1

. .
.

K1 K2

I A

Figure 6.4: Reduction from Min Discrim Code to Min Id Code (with ` =
dlog2(|A|+ 1)e).

Theorem 6.13. Let (I,A) be an instance of Min Discrim Code, and G(I,A), the bipartite
graph constructed using Reduction 6.12. Then, (I,A) has a discriminating code of size at most k
if and only if G(I,A) has an identifying code of size at most k + 5dlog2(|A|+ 1)e − 2, and one
can construct one using the other in polynomial time.

Proof. We �rst assume that a1 is the vertex adjacent to all vertices of A as given by the con-
struction of E (LOG(A,L)).

Su�cient side (⇒) Let D ⊆ A be a discriminating code of (I,A), |D| = k. Without loss
of generality, we assume that a1 is adjacent to some vertex of D. We de�ne C(D) as follows:

C(D) = D ∪ {aj , bj , cj , dj , fj | 1 ≤ j ≤ dlog2(|A|+ 1)e} \ {b1, f1}.

One can easily check that C(D) has size k + 5dlog2(|A| + 1)e − 2 and is a dominating set
of G(I,A). Let us show that it is also an identifying code of G(I,A). First of all, due to the
bipartite logarithmic identi�cation of A over (A, {aj | 1 ≤ j ≤ dlog2(|A|+ 1)e}), each vertex of
A is dominated by a distinct subset of vertices of {aj | 1 ≤ j ≤ dlog2(|A|+ 1)e}; note that any
other vertex (except e1, which however is not dominated by any vertex ai) is dominated by some
vertex bi. Hence each vertex of A is separated from all other vertices. Next, each vertex of I is
dominated by a distinct nonempty subset of D since D is a discriminating code of (I,A). Within
V (G) \ (A ∪ I), only vertices of the form ai may be dominated by vertices of D; however each
vertex ai is separated from any vertex of I by di. It remains to check that vertices of the form
ai, bi, ci, di, ei, fi are separated from each other. For any i, j (possibly i = j), any vertex among
{ai, bi, ci} is separated from any vertex of {dj , ej , fj} by the set {ak | 1 ≤ k ≤ dlog2(|A|+ 1)e}.
Similarly, for i 6= j, any vertex of {ai, bi, ci} is separated from any vertex of {aj , bj , cj} by either
di, dj , fi or fj (noticing that each vertex ci except c1 is dominated by fi). Again, for i 6= j,
di, ei, fi are separated from dj , ej , fj by at least one of ci, cj (noticing that each vertex among
{di, ei, fi} is dominated by bi, except when i = 1). For any i, it remains to check the separation
of any pair within {ai, bi, ci} and within {ai, bi, ci}. If i 6= 1, observe that ai is dominated by

Chapter 6. Graph classes for which Min Id Code is log-APX-complete 127

di, bi is dominated by both di, fi, and ci is dominated by fi. Furtermore, a1, b1 and a1, c1 are
separated by some vertex of D that is adjacent to a1 (we assumed that it exists); b1, c1 are
separated by d1. Finally for any i, di is separated from both ei, fi by ai; ei and fi are separated
by ci.

Necessary side (⇐) Let C be an identifying code of G(I,A), |C| = k+ 5dlog2(|A|+ 1)e−2.
We �rst �normalize� C by constructing an identifying code C∗ of G(I,A), |C∗| ≤ |C|, such that
the two following properties hold:

|C∗ ∩ {V (G(I,A)) \ {I ∪ A}}| = 5dlog2(|A|+ 1)e − 2 (6.7)

|C∗ ∩ I| = ∅. (6.8)

To get Condition (6.7), we �rst replace |C ∩{V (G(I,A))\{I ∪A}}| by {aj , bj , cj , dj , fj | 1 ≤
j ≤ dlog2(|A| + 1)e} \ {b1, f1} to get code C′ (whose structure is similar to the one of the
code constructed in the (⇒) part of the proof). Observe that |C′| ≤ |C|. Indeed, we had |C ∩
{V (G(I,A))\{I∪A}}| ≥ 5dlog2(|A|+1)e−2. To see this, note that for any j ∈ {1, . . . , log2(|A|+
1)}, vertices aj , cj are forced by {dj , ej} and {ej , fj}, respectively, and |C ∩ {dj , ej}| ≥ 1 since
C must separate bj from cj . Finally, consider the two sets F = {fj | j ∈ {1, . . . , log2(|A|+ 1)}}
and B = {bj | j ∈ {1, . . . , log2(|A| + 1)}}. Finally, observe that at least |F | − 1 vertices of F
(|B| − 1 vertices and of B, respectively) do not need to belong to C. Indeed, for any pair ci, cj
of vertices with i 6= j and 1 ≤ i, j ≤ dlog2(|A|+ 1)e (ei, ej , respectively), either fi or fj (bi or bj ,
respectively) must belong to C.

To ful�ll Condition (6.8), we replace each vertex I ∈ I ∩C′ by some vertex in A. If C′ \{I} is
an identifying code, we may just remove I from the code. Otherwise, note that I is not needed
for domination since all vertices of K1∪A are dominated by a1. Hence, I separates I itself from
some other vertex I ′ in I (indeed, one can check that all other types of pairs which could be
separated by I are actually already separated by some vertex of C′∩ (V (G(I,A))\I). But then,
the pair {I, I ′} is unique (suppose I separates I itself from two distinct vertices I ′ and I ′′ of I,
then I ′ and I ′′ would not be separated by C′, a contradiction). Since (I,A) is identi�able, there
must be some vertex A of A separating I from some I ′. Hence we replace I by A. Doing this
for every I ∈ C′ ∩ I, we get code C∗, and |C∗| ≤ |C′| ≤ |C|.

Using the previous observations and by similar arguments as in in the (⇒) part of the proof,
one can easily check that after these two modi�cations performed on code C, the obtained code
C∗ is still an identifying code.

By Condition (6.8), we have |C∗∩A| ≤ |C|−5dlog2(|A|+ 1)e+ 2 = k. To complete the proof,
we claim that C∗ ∩ A is a discriminating code of (I,A). This is easy to observe, as all pairs
{I, I ′} of I are separated by C∗. By Condition (6.7), they must be separated by some vertex of
A. Hence C∗ ∩ A is a discriminating code of (I,A). 9

Theorem 6.13 proves that Identifying Code restricted to co-bipartite graphs is NP-hard.
In fact, Reduction 6.12 also preserves approximation ratios up to a constant factor, as shown by
the following corollary.

Corollary 6.14. Reduction 6.12 is an AP-reduction with parameter α = 7 and Min Id Code

restricted to co-bipartite graphs (and therefore to quasi-line graphs and to AT-free graphs) is
log-APX-complete.

Proof. The proof is the same as the proofs of Corollaries 6.5 and 6.8, therefore we omit the
details. We use Theorem 6.13 to show that any c-approximation algorithm for Min Id Code

for co-bipartite graphs can be transformed into a 6c-approximation algorithm for Min Discrim

Code (and since 3c ≤ 1 + c(4− 1), in De�nition 2.8 we have α = 7), which is log-APX-complete.
This proves the claims.

Given an instance (I,A) of Min Discrim Code with optimal value OPT, let G(I,A) be
the co-bipartite graph constructed using Reduction 6.12. By Theorem 6.13, we have:

128 6.6. Conclusion

γID(G(I,A)) ≤ OPT + 5dlog2(|A|+ 1)e − 2.

By using this fact and Theorem 6.13 in the same way as in the proof of Corollary 6.5, we
obtain the theorem. 9

6.6 Conclusion

In this chapter, we gave new reductions proving that Min Id Code is log-APX-complete for
bipartite graphs, split graphs, and co-bipartite graphs. These reductions are easier to understand
than the previously known ones. The last case is particularly interesting since Min Dom Set

is easily solvable for co-bipartite graphs (any connected co-bipartite graph has a dominating set
of size at most 2), and remains polynomial-time solvable even for the class of DSP graphs [139]
(this class also includes asteroidal-triple free graphs).

We conclude by an observation regarding induced K1,`-free graphs. It is known that Min

Dom Set is (` − 1)-approximable in induced K1,`-free graphs [54].3 It is easily observed that
any co-bipartite graph is a quasi-line graph, since its whole vertex set can be partitioned into
two cliques. Hence Corollary 6.14 shows that a similar result as the one for Min Dom Set in
induced K1,`-free graphs does not hold for Min Id Code.

3Indeed, let I be any maximal independent set of an induced K1,`-free graph G. We have α(G)
`−1
≤ γ(G) ≤ |I| ≤

α(G), where α(G) and γ(G) denote the sizes of a maximum independent set and a minimum dominating set,
respectively. The two last inequalities are straightforward. To see the �rst inequality, let us repeat the argument
of [54]: consider an arbitrary independent set I and an arbitrary dominating set D of G, and let Z = I ∩ D.
Since any vertex of I \ Z has a neighbour in D, but any vertex of D has at most `− 1 neighbours in I, we have
|I \ Z| ≤ (` − 1)|D \ Z| and it follows that |I| = |I \ Z| + |Z| ≤ (` − 1)|D \ Z| + |Z| ≤ (` − 1)|D|. In particular,
this holds for a maximum independent set and a minimum dominating set.

Chapter 7. Graph classes for which Min Id Code is APX-hard or NP-hard 129

Chapter 7

Graph classes for which Min Id Code is
APX-hard or Identifying Code is NP-
complete

In this chapter, we prove that Min Id Code is APX-complete in several graph classes by
constructing L-reductions to this problem. We also obtain some corollaries and one independent
theorem about the decision problem Identifying Code along the way.

7.1 Min Id Code for bipartite graphs of small maximum degree and
Identifying Code for planar bipartite graphs and for chordal bi-
partite graphs . 130

7.2 Min Id Code for split graphs of bounded maximum CS-degree . . 133

7.3 Min Id Code for line graphs . 138

7.4 Identifying Code for interval graphs is NP-complete 143

7.5 Conclusion . 148

In Section 7.1, we extend Theorem A.14 to bipartite graphs of maximum degree 4 by giving
an L-reduction from Min Vertex Cover for subcubic graphs (Theorem 7.8). As a side result,
we obtain that Identifying Code is NP-complete for planar bipartite graphs of maximum
degree 4 (Theorem 7.7). We then give another L-reduction from Min Dom Set for subcubic
bipartite graphs to Min Id Code for bipartite graphs of maximum degree 5. This reduction
implies that Identifying Code is NP-complete for chordal bipartite graphs (Theorem 7.10).

In Section 7.2, we de�ne the natural class of split graphs with bounded maximum CS-degree
and show that Min Id Code is APX-complete in this class (recall that by Corollary 6.8, it is
log-APX-hard for the class of all split graphs). This result is proved using an L-reduction from
Max (≤ 3,≤ 3)-SAT (see Theorem 7.19).

We then investigate the class of line graphs in Section 7.3, proving in Corollary 7.21 thatMin

Edge-Id Code (and therefore Min Id Code restricted to line graphs) is 4-approximable. This
follows from combinatorial bounds that we proved in Section 5.3. We complement this result
by showing that Min Edge-Id Code is APX-hard. More precisely, we reduce Max (≤ 3,≤ 3)-
SAT to Min Edge-Id Code for bipartite graphs of maximum degree 3 and arbitrarily large
girth and prove that it is an L-reduction in Theorem 7.38. This implies that Min Edge-Id

Code is APX-complete in this class, and thatMin Id Code is APX-complete when restricted to
perfect line graphs of maximum degree 4. This reduction also implies that Edge-Identifying
Code is NP-complete even when restricted to bipartite planar graphs of maximum degree 3
and arbitrarily large girth, and that Identifying Code is NP-complete for perfect planar line
graphs of maximum degree 4 (Theorem 7.36).

Finally, in Section 7.4, we prove thatMin Id Code is NP-complete when restricted to interval
graphs by a reduction from 3-Dimensional Matching (Theorem 7.50).

The result about split graphs (Section 7.2) is joint work with A. Kosowski, G. Mertzios,
R. Naserasr, A. Parreau and P. Valicov from [FKM+12]. The results about line graphs (Sec-
tion 7.3) appeared in [FGN+12] (joint work with S. Gravier, R. Naserasr, A. Parreau and P. Val-

130 7.1. Min Id Code for bipartite graphs of small maximum degree

icov) as an NP-completeness reduction; we choose to present it as a more powerful L-reduction.
Moreover, in [FGN+12], only the proof for the case of girth 8 appeared, mentioning that the
same proof could be done for arbitrary girth; herein, we present such a general proof. The result
of Section 7.4 is joint work with A. Kosowski, G. Mertzios, R. Naserasr, A. Parreau and P. Val-
icov from [FKM+12]. The other results are solely the author's work; they are new and have not
appeared elsewhere.

7.1 Min Id Code for bipartite graphs of small maximum degree
and Identifying Code for planar bipartite graphs of maxi-
mum degree 4 and for chordal bipartite graphs

In this section, we improve Theorems 2.42 from [6], 2.43 from [9], Theorem 2.44 from [161]
by showing that Identifying Code is NP-complete for planar bipartite graphs of maximum
degree 4. We also improve Theorem 2.51 from [94] by showing that Min Id Code is APX-hard
in bipartite graphs of maximum degree 4. The result of Theorem 2.51 from [94] is for non-
bipartite graphs of maximum degree 8, and the authors asked whether it could be extended to
bipartite graphs. Finally, we show that Identifying Code is NP-complete for chordal bipartite
graphs. Note that the class of chordal bipartite graphs is quite interesting for the following
reason: Dominating Set is NP-complete for this class [160], but the related problem Total

Dominating Set is polynomial-time solvable [70].

7.1.1 A reduction from Min Vertex Cover

We �rst present a reduction from Min Vertex Cover to Min Id Code.

Reduction 7.1 (Min Vertex Cover → Min Id Code). Given a graph G, we construct the
graph G′ on vertex set

V (G′) = V (G) ∪ {pe, qe, re, se, te, ue | e ∈ E(G)},

and edge set

E(G′) ={{x, re}, {y, se}, {re, te}, {te, se}, {ue, re}, {ue, se},
{pe, qe}, {qe, te}, {qe, ue} | e = {x, y} ∈ E(G)}.

The construction is illustrated in Figure 7.1.

x re
pe qe

se y

te

ue

Figure 7.1: Reduction gadget for edge e = {x, y} in Reduction 7.1 from Min

Vertex Cover to Min Id Code. The original vertices of G, x and y, are circled.

For the following claims, let G be a graph and G′, the graph obtained from G using Reduc-
tion 7.1.

Claim 7.2. Let V C be a vertex cover of G. Using V C, one can build an identifying code of G′

of size at most |V C|+ 3|E(G)|.

Proof. First, let C = V C. Then, for each edge e = {x, y} ∈ E(G), if x ∈ V C, put vertices
se, te, qe into C. Otherwise, put vertices re, te, qe into C.

Chapter 7. Graph classes for which Min Id Code is APX-hard or NP-hard 131

We can easily check that C is an identifying code of G′: if an original vertex x of G belongs
to V C, x is separated from every vertex that is non-adjacent to x by x itself, and from each of
its neighbours (re or se for some edge e of G) by vertex te. If x does not belong to V C, all its
neighbours in G belong to V C; hence all the neighbours of x in G′ are some se, se′ , se′′ , where
e, e′, e′′ are the three edges incident to x in G. By the construction of C, all three vertices belong
to C. Hence x is separated from every other vertex in G′. Finally, for each edge e of G, vertices
pe, qe, re, se, te, ue are separated by all vertices of V (G′) \ {pe, qe, re, se, te, ue} by either te or qe;
moreover it is easy to check that they are correctly separated from each other. 9

Claim 7.3. Let C be an identifying code of G′. For each e ∈ E(G), we have:

|C ∩ {pe, qe, re, se, te, ue}| ≥ 3.

Proof. Note that te, ue are false twins, hence one of them (say te) belongs to C. Similarly, pe, qe
are false twins and one of them belongs to C, say qe. Now, te, qe need to be separated, hence one
of pe, re, se, ue belongs to C. 9

Claim 7.4. Let C be an identifying code of G′. For each e = {x, y} ∈ E(G), we have:

|C ∩ {x, y, pe, qe, re, se, te, ue}| ≥ 4.

Proof. By contradiction, suppose |C ∩ {x, y, pe, qe, re, se, te, ue}| = 3. By the same arguments as
in the proof of Claim 7.3, we can assume te, qe ∈ C, and |C ∩ {pe, re, se, ue}| = 1. We derive a
contradiction for each case. If pe or ue belong to C, re, se are not separated. If re ∈ C, pe, se are
not separated. If se ∈ C, pe, re are not separated. 9

Claim 7.5. Let C be an identifying code of G′. From C, we can build an identifying code C′ with
|C′| ≤ |C| such that for each e = {x, y} ∈ E(G), we have |C′ ∩ {pe, qe, re, se, te, ue}| = 3.

Proof. Assume that |C ∩ {pe, qe, re, se, te, ue}| ≥ 4. By the same arguments as in the previous
proofs, we may also assume that te, qe ∈ C. Now, if pe ∈ C, one can check that C′ := C\{pe} is still
an identifying code, since pe, qe are false twins and qe ∈ C′. If |C′ ∩ {pe, qe, re, se, te, ue}| = 3, we
are done. Otherwise, we have re ∈ C′ or se ∈ C′. In the former case, let C′ := (C′ \{se, ue})∪{y};
in the latter case, C′ := (C′ \ {re, ue}) ∪ {x}. One can check that C′ is still an identifying
code: indeed, assume that we had re ∈ C′ (the other case follows by symmetry). Then we have
re, te, qe, y in the new code C′. It is easy to see that vertices x, pe, qe, re, se, te, ue are separated
from each other and remain separated from all other vertices. However, y might have been
separated from one of its neighbours by se. But all neighbours of y are of the form re′ or se′ fro
some edge e′ incident to y in G, and hence they are separated from y by te′ . 9

Claim 7.6. Let C be an identifying code of G′. One can use C to build a vertex cover of G of
size at most |C| − 3|E(G)|.

Proof. Use Claim 7.5 to build code C′ such |C′| ≤ |C| and for each e = {x, y} ∈ E(G), we have
|C′ ∩ {pe, qe, re, se, te, ue}| = 3. By this property and Claim 7.4, we have |C′ ∩ {x, y}| ≥ 1. Hence
V C = C′ \ {pe, qe, re, se, te, ue | e ∈ E(G)} is a vertex cover of G with |V C| ≤ |C′| − 3|E(G)| ≤
|C| − 3|E(G)|. 9

These claims are enough to give a new proof that Identifying Code is NP-complete:

Theorem 7.7. Identifying Code is NP-complete, even when restricted to planar bipartite
graphs of maximum degree 4.

Proof. We apply Reduction 7.1 to Vertex Cover for planar subcubic graphs, which is known
to be NP-complete [87]. Given a planar subcubic graph G, it is easy to check that G′ is planar,
has maximum degree at most 4 (due to vertices te, ue in the edge gadget), and is bipartite,
since the edge gadget for edge e = {x, y} is bipartite, with x, y in the same part. Claim 7.2
applied on a optimal vertex cover shows that γID(G′) ≤ τ(G) + 3|E(G)|. Claim 7.6 applied on
a optimal identifying code shows that τ(G) ≤ γID(G′) − 3|E(G)|. Hence we get that γID(G′) =

τ(G) + 3|E(G)|, completing the proof. 9

132 7.1. Min Id Code for bipartite graphs of small maximum degree

In fact, we can show that Reduction 7.1 applied to Vertex Cover restricted to subcubic
graphs is an L-reduction.

Theorem 7.8. Reduction 7.1 applied to graphs of maximum degree 3 is an L-reduction with
parameters α = 10 and β = 1. Therefore, Min Id Code is APX-complete, even for bipartite
graphs of maximum degree at most 4.

Proof. Let G be a graph of maximum degree 3 and G′ the graph constructed from G using
Reduction 7.1. We have to prove Properties 1 and 2 from De�nition 2.4.

First of all, observe that by Claim 7.2, given an optimal vertex cover V C∗ of G, we can
construct an identifying code C with γID(G′) ≤ |C| ≤ |V C∗| + 3|E(G)| = τ(G) + 3|E(G)|.
Similarly, by Claim 7.6, given an optimal identifying code C∗ of G′, we can construct a vertex
cover V C of G such that τ(G) ≤ |V C| ≤ |C∗| − 3|E(G)| = γID(G)− 3|E(G)|. Hence we have:

γID(G′) = τ(G) + 3|E(G)|. (7.1)

Property 1.

Since G has maximum degree 3, each vertex can cover at most three edges, hence we have
τ(G) ≥ |E(G)|

3 , so |E(G)| ≤ 3τ(G). Using Equality (7.1), we get:

γID(G′) = τ(G) + 3|E(G)| ≤ 10τ(G),

which proves Property 1 of De�nition 2.4.

Property 2.

Let C be an identifying code of G′. Using Claim 7.6 applied to C, we obtain a vertex cover V C
with |V C| ≤ |C| − 3|E(G)|. By Equality (7.1), we have −τ(G) = 3|E(G)| − γID(G′). So we
obtain:

|V C| − τ(G) ≤|C| − 3|E(G)|+ 3|E(G)| − γID(G′)

|τ(G)− |V C|| ≤ |γID(G′)− |C||,

which proves Property 2 of De�nition 2.4.
For the second part of the statement, note that Min Vertex Cover is known to be APX-

complete, even for graphs of maximum degree 3 [54]. By construction, the graphs built from
subcubic graphs in Reduction 7.1 are bipartite and of maximum degree 4 (see the proof of
Theorem 7.7 for the precise arguments). 9

7.1.2 A reduction from Min Dom Set

We now give another reduction, this times from Min Dom Set. Since the proof of validity is
very similar to the one of the previous subsection, we leave it to Appendix A.8.

Reduction 7.9 (Min Dom Set → Min Id Code). Given a graph G, we construct the graph
G′ on vertex set

V (G′) = V (G) ∪ {ax, bx, cx, dx, ex | x ∈ V (G)},

and edge set

E(G′) = E(G)∪{{x, ax}, {x, ex}, {ax, bx}, {ax, cx}, {ax, dx}, {ex, bx}, {ex, cx}, {ex, dx} | x ∈ V (G)}.

The construction is illustrated in Figure 7.2.

One can show that Reduction 7.9 is in fact an L-reduction, leading to the following theorem:

Theorem 7.10. Identifying Code is NP-complete, even when restricted to chordal bipartite
graphs.

The proof can be found in Appendix A.8.

Chapter 7. Graph classes for which Min Id Code is APX-hard or NP-hard 133

x

ax

bx cx dx

ex

G

..
.

Figure 7.2: Reduction from Min Dom Set to Min Id Code.

7.2 Min Id Code for split graphs of bounded maximum CS-
degree

We saw in Chapter 6 thatMin Id Code is log-APX-hard in split graphs. In this section, we show
that when the split graphs are given a further restriction, one can approximate Min Id Code

within a constant factor. However, we provide a reduction from Max SAT to Min Id Code for
split graphs to show that more e�cient approximations are not tractable. The reduction of this
section is similar (however simpler) than the one of the next section on line graphs (Section 7.3),
and can be regarded as a �starter� for the latter.

The class of split graphs of given maximum degree ∆ is, not a very rich one. Indeed, the
vertex set of a split graph G can be partitioned into a clique K and an independent set S, but
if G has maximum degree ∆, K must be of order at most ∆ + 1. Hence, we consider instead
split graphs G for which the adjacencies of each vertex across the (K,S)-partition of G are in
bounded number.

De�nition 7.11. Let G be a split graph. We say that G has maximum CS-degree1 ∆ if V (G)
can be partitioned into a clique K and an independent set S such that for each vertex v ∈ V (G):

• v ∈ K ⇒ |N(v) ∩ S| ≤ ∆, and

• v ∈ S ⇒ |N(v) ∩K| ≤ ∆.

7.2.1 Min Id Code for split graphs of bounded maximum CS-degree is in

APX

We showed in Corollary 6.8 that Min Id Code is log-APX-complete even when restricted to
split graphs. The following theorem shows that this is not the case for split graphs of bounded
maximum CS-degree.

Theorem 7.12. Min Id Code is O(ln(∆))-approximable when restricted to split graphs of
maximum CS-degree at most ∆.

Proof. Let G be a split graph and K,S the clique and the independent set forming a partition
of V (G) yielding the right bound on the maximum CS-degree of G.

First of all, we may assume that |K| is unbounded, as otherwise, there would be only a
bounded number of possible neighbourhoods within K for vertices of S. Then, if V (G) is
unbounded, many of the vertices in S would be false twins and we could easily solve Min

Id Code exactly in polynomial time using the fact that among a set of mutually false twins, all
but one necessarily belong to any identifying code (see Chapter 1.1.2).

Notice that the size of the symmetric di�erence between the closed neighbourhoods of two
vertices of S is at most 2(∆ + 1), and the size of the symmetric di�erence between the closed
neighbourhoods of two vertices of K, at most 2∆.

1This notation stands for maximum Clique-Stable-degree.

134 7.2. Min Id Code for split graphs of bounded maximum CS-degree

We reduce the problem of dominating all vertices of S and separating all pairs of vertices
within S and within K to k-bounded Min Set Cover, which is (1+ln(k))-approximable [127],
as follows (the reduction is very similar to Reduction 2.23 from the Chapter 2). First of all, notice
that for each pair u, v of vertices of (K ×K) ∪ (S × S), the number of vertices that separates
u, v is at most 2(∆ + 1) for a pair in S, ans 2∆ for a pair in K. Similarly, each vertex of S
is dominated by at most ∆ + 1 vertices. We de�ne (X,S) as an instance of k-bounded Min

Set Cover, with X, the set of pairs of (K × K) ∪ (S × S) and all vertices of S, and where
each set of S stands for a vertex of the graph and contains the pairs of (K × K) ∪ (S × S)
that this vertex separates, as well as all the vertices of S that it dominates. By the previous
remark, this is an instance of k-bounded Min Set Cover with k ≤ 2(∆ + 2), and thus it is
O(ln(∆))-approximable.

Let C be a code obtained using the previous algorithm, and suppose that C is not an identifying
code of G. Then, either some vertex of K is not dominated, or some pair u, v from K ×S is not
separated by C. In the former case, picking an arbitrary vertex from K is enough to dominate
all vertices of K. In the latter case, there is no code vertex within K \ N(v), so pick some
arbitrary vertex x from K \N(v) to separate u, v. Now, all pairs k, s from K × S that are still
not separated must be such that x ∈ N(s) (otherwise x would separate them); since x has at
most ∆ neighbours within S, there are at most ∆− 1 vertices of S participating to such a pair.
Let S′ be the set of these vertices. We have |N(S′)| ≤ ∆2. Since |K| is unbounded with respect
to ∆, K 6= N(S′) and we can pick one additional vertex of K \N(S′) in order to separate each
unseparated pair k, s.

Hence we added at most two vertices from K to C, and we get an identifying code of G. We
do not lose the asymptotic approximation factor O(ln(∆)) by just adding these two vertices. 9

7.2.2 Min Id Code for split graphs of bounded maximum CS-degree is APX-

hard

We now reduce Max SAT to Min Id Code for split graphs. We will show that this reduction
is an L-reduction.

Reduction 7.13 (Max SAT → Min Id Code for split graphs). Given an instance (X,Q)
of Max SAT consisting of a set Q = {Q1, . . . , Qm} of clauses over a set X = {x1, . . . , xn}
of boolean variables, we construct in polynomial time the split graph Sp(X,Q) on 11|X| + 4|Q|
vertices, with vertex set V (Sp(X,Q)) = K ∪ S (K is a clique and S is an independent set).
More speci�cally, we have:

K = {si, ti | Qi ∈ Q} ∪ {aj , bj , cj , dj | xj ∈ X}
S = {ui, vi | Qi ∈ Q} ∪ {xj , xj , ej , fj , gj , hj , ij | xj ∈ X}.

Moreover, Sp(X,Q) has edge set:

E (Sp(X,Q)) = {{si, ui}, {si, vi}, {ti, ui}, {ti, vi} | Qi ∈ Q}
∪ {{xj , aj}, {xj , cj}, {xj , dj}, {xj , bj}, {xj , cj}, {xj , dj},
{aj , ej}, {aj , fj}, {aj , gj}, {aj , hj}, {bj , ej}, {bj , fj}, {bj , gj}, {bj , hj},
{cj , gj}, {cj , hj}, {dj , gj}, {dj , hj}, {dj , ij} | xj ∈ X}

∪ {ti, xj | xj ∈ Qi, Qi ∈ Q, xj ∈ X}
∪ {ti, xj | xj ∈ Qi, Qi ∈ Q, xj ∈ X}
∪ {a, b | a, b ∈ K, a 6= b}.

The construction is illustrated in Figure 7.3.

The intuition behind Reduction 7.13 is that for each variable xj ∈ X, the choice made
between vertices xj , xj represents the fact that xj is �true� (vertex xj is in the code) or �false�
(vertex xj is in the code). For each clause Qi, vertex ti is adjacent to the vertices corresponding
to the literals of Qi. Since si and ti can only be separated by these vertices, this models the fact
that at least one of them has to be �true� (i.e. belongs to the code). The basic idea is inspired

Chapter 7. Graph classes for which Min Id Code is APX-hard or NP-hard 135

si ti

ui vi

−
−

−
−

− −

(a) Clause gadget

−
−−

− · · · −
−−

− · · ·
xj xj

aj bj cj dj

ej fj gj hj

ij

(b) Variable gadget

Figure 7.3: Reduction gadgets for clause Qi and variable xj . Vertices within the
ellipses belong to the clique of the split graph.

from the reduction in [61], where the decision problem Identifying Code was proved to be
NP-complete for the �rst time.

We apply Reduction 7.13 to the problemMax (≤ 3,≤ 3)-SAT, where each clause has at most
three literals, and each literal appears at most three times. Note that this restriction implies
that the constructed split graphs have maximum CS-degree at most 5. We point out the fact
that one may assume that each variable xi appears at least once as a positive literal, and at least
once as a negative literal (xi). Indeed, otherwise it is easy to satisfy the clauses containing xi
and one may remove these clauses and xi to get a smaller equivalent instance.

Let (X,Q) be an instance of Max (≤ 3,≤ 3)-SAT, let s : X → {0, 1} be a truth assign-
ment of the variables of X, and let C be an identifying code of the graph Sp(X,Q) de�ned in
Reduction 7.13. We �rst prove some helpful claims.

Claim 7.14. One can construct an identifying code C(s) of Sp(X,Q) of size at most 6|X| +
3|Q| − cost(s).

Proof. Construct C(s) as follows: for each clause Qi ∈ Q, vertices si and ui belong to C(s). For
each variable xj ∈ X, vertices cj , fj , hj , ij belong to C(s). Now, if variable xj has value �true�
in s, vertices aj and xj belong to C(s). Otherwise, vertices bj and xj belong to C(s). Finally,
consider the set of |Q| − cost(s) clauses which are not satis�ed by s. For each such clause Qi,
the corresponding pair of vertices si, ti is not yet identi�ed by C(s). It is su�cient to add a
vertex corresponding to one of the literals of clause Qi to C(s). In total, we have �rst considered
six vertices per variable gadget and two vertices per clause gadget. In the last step, we have
considered at most |Q| − cost(s) additional vertices, hence |C(s)| ≤ 6|X|+ 3|Q| − cost(s).

We show that C(s) is a valid identifying code of Sp(X,Q): �rst of all, it is easy to see that it
is a dominating set. Furthermore, all vertices of K are dominated by all the vertices of K ∩C(s),
hence (since we can assume that there are at least one clause and one variable) each vertex of K
is separated from each vertex of S by this set of vertices. Hence we only need to check separation
of pairs of vertices within S and within K. In fact, similarly, it is easy to see that any two vertices
of S and any two vertices of K belonging to di�erent clause or variable gadgets are separated
by C(s). Now, in each clause gadget (for a clause Qi), vi is dominated only by si, and ui is
dominated by both si and itself, hence ui, vi are separated. Next, si, ti are separated by some
vertex representing a literal of Qi (the construction ensures that at least one of them belongs
to C(s)). For each variable gadget of variable xj , observe that each vertex among ij , fj , hj is
separated from each other variable of S in the gadget by itself. A similar fact holds for the vertex
among xj , xj that belongs to C(s) Let us assume, without loss of generality, that xj ∈ C(s) and
xj /∈ C(s); hence, aj ∈ C(s) and bj /∈ C(s). Then ej is dominated by aj only; xj is dominated only
by cj ; gj is dominated by both aj , cj . Finally, it remains to check that aj , bj , cj , dj are separated
from each other. Both aj , bj are separated from both cj , dj by fj ; cj , dj are separated by ij ; aj , bj

136 7.2. Min Id Code for split graphs of bounded maximum CS-degree

are separated by the vertex among xj , xj which belongs to C(s). 9

The next two claims will help us to lower-bound the intersection between an identifying code
of Sp(X,Q) and given parts of the graph.

Claim 7.15. We have |C ∩ (V (G) \⋃xj∈X{xj , xj})| ≥ 5|X|+ 2|Q|.

Proof. For each clause Qi ∈ Q, C contains either vertex ui or vertex vi since C separates ui from
vi (ui, vi are false twins). Say ui ∈ C, then vi must be dominated; hence, either vi, si or ti belongs
to C. Similarly, for each variable xj ∈ X, we have |C ∩ {ej , fj}| ≥ 1 and |C ∩ {gj , hj}| ≥ 1 since
ej , fj and gj , hj are false twins: say ej and gj belong to C. But fj and hj must be dominated.
If they are both dominated by the same vertex only (aj or bj) they are not separated, hence
|C∩{aj , bj , cj , dj , fj , hj}| ≥ 2. Finally, vertex ij belongs to C since it is forced by cj , dj , completing
the proof. 9

Claim 7.16. Let xj ∈ X. We have |C ∩ {xj , xj}| ≥ 1.

Proof. The claim follows from the fact that N [aj]	N [bj] = {xj , xj}. 9

The next claim allows us to �normalize� a given identifying code of Sp(X,Q).

Claim 7.17. Using C, one can construct an identifying code C′ with |C′| ≤ |C| and |C ∩ (V (G) \⋃
xj∈X{xj , xj})| = 5|X|+ 2|Q|.

Proof. For each clause Qi ∈ Q, replace C ∩ {si, ti, ui, vi} by {si, ui}. For each variable xj ∈ X,
replace C ∩ {cj , dj , ej , fj , gj , hj , ij} by {cj , fj , hj , ij}. Finally, if xj ∈ C, replace C ∩ {aj , bj} by
{aj}. Otherwise, replace it by {bj}. Using similar arguments as in the proof of validity of C(s)
(last paragraph of the proof of Claim 7.14), one can easily check that the constructed code is
still an identifying code. 9

Claim 7.18. Using C, one can construct a truth assignment s = s(C) of the variables of X such
that cost(s) ≥ |Q| − (|C| − 6|X| − 2|Q|).

Proof. Let us �rst build code C′ from C using Claim 7.17. By Claim 7.16 (the second inequality
being trivial), we have:

|X| ≤ |C′ ∩
⋃
xj∈X

{xj , xj}| ≤ 2|X|. (7.2)

We construct s(C) as follows. For each variable xj ∈ X, if C′ ∩{xj , xj} = {xj}, variable xj is
set to �true�. If C′∩{xj , xj} = {xj}, variable xj is set to �false�. Otherwise, C′∩{xj , xj} = {xj , xj}.
We know that xj appears at most three times as a literal and, as observed previously, it appears
at least once in its negated form and at least once in its non-negated form. Hence, among
{xj , xj} we choose the literal which appears most times in Q, and set it to �true�. Doing this,
since the other literal appears at most once in Q, at most one clause may remain unsatis�ed. By
Claim 7.17 and Inequality (7.2), there are exactly |C| − 6|X| − 2|Q| such variables, yielding the
claim. 9

Claims 7.14 and 7.18 show that (X,Q) is satis�able if and only if γID(Sp(X,Q)) = 6|X|+2|Q|,
giving a proof that Identifying Code is NP-hard even for split graphs of maximum CS-degree 5.
However we are able to show the following stronger result:

Theorem 7.19. Reduction 7.13 applied to the restricted version Max (≤ 3,≤ 3)-SAT of Max

SAT is an L-reduction with parameters α = 44 and β = 1. Therefore, Min Id Code is APX-
complete when restricted to split graphs of maximum CS-degree 5.

Chapter 7. Graph classes for which Min Id Code is APX-hard or NP-hard 137

Proof. Let (X,Q) be an instance of Max (≤ 3,≤ 3)-SAT. We have to prove Properties 1 and 2
from De�nition 2.4.

Property 1.

Since each variable appears in at most three clauses, we have:

|Q| ≤ 3|X|. (7.3)

Consider the truth assignment s with all variables �true�. Since each variable xi appears at
least once as a positive literal, at least one clause is satis�ed thanks to variable xi. Since each
clause contains at most three literals, we get that OPT (X,Q) ≥ cost(s) ≥ |X|3 , that is:

|X| ≤ 3 ·OPT (X,Q). (7.4)

Using Inequalities (7.3) and (7.4) together with Claim 7.14, we obtain:

γID(Sp(X,Q)) ≤ 6|X|+ 3|Q| −OPT (X,Q)

≤ 18 ·OPT (X,Q) + 27 ·OPT (X,Q)−OPT (X,Q)

= 44 ·OPT (X,Q)

which proves Property 1 of De�nition 2.4.

Property 2.

Let C be an identifying code of Sp(X,Q) and C∗ be a minimum identifying code of Sp(X,Q),
that is |C∗| = γID(Sp(X,Q)). We consider the code C′ built using C and Claim 7.17. We also
assume that |C∗ ∩ (V (G) \⋃xj∈X{xj , xj})| = 5|X|+ 2|Q| using Claim 7.17.

Following Claim 7.16, for each variable xj ∈ X, we have 1 ≤ |C′ ∩ {xj , xj}| ≤ 2 and 1 ≤
|C∗∩{xj , xj}| ≤ 2. Hence |C′∩⋃xj∈X{xj , xj}| = (1+γ)|X| and |C∗∩⋃xj∈X{xj , xj}| = (1+ρ)|X|
for some γ, ρ ∈ [0, 1].

By Claim 7.15 and since |C′ ∩ (V (G) \ ⋃xj∈X{xj , xj})| = |C∗ ∩ (V (G) \ ⋃xj∈X{xj , xj})| =

5|X|+ 2|Q|, we have γ ≥ ρ and:

|C′| − |C∗| = (γ − ρ)|X| (7.5)

Applying Claim 7.18 to C′, which has size 6|X| + 2|Q| + γ|X|, we can construct the truth
assignment s(C′) of the variables of X such that:

cost(s(C′)) ≥ |Q| − γ|X|. (7.6)

Furthermore, we claim that the following holds:

OPT (X,Q) ≤ |Q| − ρ|X|. (7.7)

Indeed, suppose not. Then, there would be a truth assignment s∗ of the variables of X
satisfying strictly more than |Q| − ρ|X| clauses. But then by Claim 7.14 there would be an
identifying code of size at most 6|X|+3|Q|−cost(s∗) < 6|X|+2|Q|+ρ|X| = |C∗|, a contradiction
since C∗ is a minimum identifying code.

By combining Inequalities (7.6), (7.7) and Equality (7.5), we get:

OPT (X,Q)− cost(s(C′)) ≤ |Q| − ρ|X| − (|Q| − γ|X|) = |C′| − |C∗|,

which proves Property 2 of De�nition 2.4.
Now, sinceMax (≤ 3,≤ 3)-SAT is APX-hard [165], our reduction implies thatMin Id Code

for split graphs of maximum CS-degree 5 is APX-hard. Since by Theorem 7.12 it is also in APX,
it is APX-complete. 9

138 7.3. Min Id Code for line graphs

7.3 Min Id Code for line graphs

In this section, we investigate the computational complexity of Min Edge-Id Code or, equiv-
alently, Min Id Code for line graphs. For the formal de�nition and a study of edge-identifying
codes, we refer to Section 5.3. We use some of the results of Chapter 5. This work was published
as part of [FGN+12] under the point of vue of the decision problem Identifying Code. Here,
we extend it to the (non-)approximability of Min Id Code.

7.3.1 Min Id Code for line graphs is 4-approximable

We showed in Theorem 5.27 from Section 5 that for any edge-identi�able graph G, and any
inclusionwise minimal edge-identifying code CE of G, it holds:

|V (G)|
2

≤ γEID(G) ≤ |CE | ≤ 2|V (G)| − 3.

This chain of inequalities naturally implies a nice algorithmic result. Indeed, note that one
can construct an inclusionwise minimal edge-identifying code in polynomial time in a greedy
fashion: start with CE as the whole edge set, and for each edge e, check whether CE \ {e} is an
edge-identifying code. If yes, let CE := CE \ {e} and continue until no such edge exists. We get
the two following (equivalent) results:

Corollary 7.20. Min Edge-Id Code is 4-approximable.

Corollary 7.21. Min Id Code restricted to line graphs is 4-approximable.

7.3.2 Min Id Code for line graphs is APX-hard

In the following, we reduceMax (≤ 3,≤ 3)-SAT toMin Edge-Id Code. We use this reduction
to prove that Edge-Identifying Code is NP-complete, even when restricted to planar bipartite
graphs of maximum degree 3 and arbitrarily large girth. We use the same reduction to show that
Min Edge-Id Code is APX-hard, even when restricted to bipartite graphs of maximum degree 3
and arbitrarily large girth. The basic ideas and the structure of the proof of the reduction of this
section are the same as the ones of Section 7.2, which is also from Max SAT. However, since
the class of graphs is more restrictive, the proof is also longer and more intricate. Most of the
technical proofs can be found in Appendix A.9.

We �rst need to de�ne a generic sub-gadget (denoted P -gadget) that will be needed for the
reduction.

De�nition 7.22. The P -gadget is the tree on vertex set {a, b, c, d, e, f} and edge set
{{a, b}, {b, c}, {b, d}, {d, e}, {e, f}}.

In order to have more compact �gures, we will use the representation of this gadget as drawn
in Figure 7.4, where the P -gadget is illustrated. We will say that a P -gadget is attached at
some vertex x in some graph G if x is identi�ed with vertex a of the P -gadget as depicted in
the �gure. When speaking of a P -gadget as a subgraph of a graph G, we always mean that it
forms an induced subgraph of G, that is, there are no other edges within the gadget than those
of De�nition 7.22. Moreover, vertex a is the only vertex of the P -gadget which may be joined
by an edge to other vertices outside the gadget.

In order to describe our reduction from Max (≤ 3,≤ 3)-SAT, we de�ne the clause gadget
and variable gadget that will be used in the reduction.

De�nition 7.23. Let Qi ⊆ {li1 , li2 , li3} be a boolean clause over at most three literals and λ ≥ 1,
an integer. Let Vij = {l1ij , . . . , l2λij } and Eij =

⋃
1≤k≤2λ−1{lkij , l

k+1
ij
} for 1 ≤ j ≤ 3.

The clause gadget G(Qi, λ) is the graph constructed from the vertices of the vertex set

{q0, q1, q2, q3}
⋃

lij∈Qi

Vij

Chapter 7. Graph classes for which Min Id Code is APX-hard or NP-hard 139

a

b

c d

e

f

G

a

G

P

Figure 7.4: The generic P -gadget and its compact representation.

and edge set

{{q0, q1}, {q0, q2}, {q0, q3}}
⋃

lij∈Qi

{qmin(j,2), l
2λ
ij }

⋃
lij∈Qi

Eij ,

with the addition of the vertices and edges of 2λ|Qi|+1 copies of the P -gadget attached at vertices
q3 and lkij for all lij ∈ Qi and 1 ≤ k ≤ 2λ.

De�nition 7.24. Let xj be a boolean variable and µ ≥ 2, an integer. We assume that xj is used
at most three times, once in its negative form (xj), and once or twice in its positive form (xj).
The variable gadget G(xj , µ) is the graph constructed from the vertices of the vertex set

{x1
j , xj

2, x3
j} ∪

⋃
1≤k≤2µ

{ak, bk, ck} ∪
⋃

4≤k≤2µ

{yk, zk},

and edge set

{{a1, x
1
j}, {a2, }, xj2, {a3, x

3
j}}

∪
⋃

1≤k≤2µ

{{ak, bk}, {bk, ck}, {bk, a(k mod 2µ)+1}}

∪
⋃

4≤k≤2µ

{{ak, yk}, {yk, zk}},

with the addition of the vertices and edges of 4µ − 3 copies of the P -gadget attached at vertices
ck for all 1 ≤ k ≤ 2µ and vertices zk for all 4 ≤ k ≤ 2µ. Moreover, if xj is used only twice, we
attach an additional P -gadget to vertex x3

j .

The clause gadget and variable gadget from De�nitions 7.23 and 7.24 are illustrated in Fig-
ure 7.5.

Reduction 7.25 (Max (≤ 3,≤ 3)-SAT → Min Edge-Id Code for bipartite graphs of maxi-
mum degree 3 and arbitrarily large girth). Let (X,Q) be an instance of Max (≤ 3,≤ 3)-SAT
consisting of a set Q = {Q1, . . . , Qm} of clauses over a set X = {x1, . . . , xn} of boolean variables
and two integers λ ≥ 1 and µ ≥ 2. We construct in polynomial time the graph G(X,Q, λ, µ) on
at most (36λ+ 9)m+ (30µ− 18)n vertices, with vertex set⋃

Qi∈Q
V (G(Qi, λ)) ∪

⋃
xj∈X

V (G(xj , µ)).

For each Qi ∈ Q and xj ∈ X, subgraphs G(Qi, λ) and G(xj , µ) are copies of the clause gadget
and variable gadget from De�nitions 7.23 and 7.24.

In addition, for each clause Qi ⊆ {li1 , li2 , li3} where lik ∈ {xj(ik), xj(ik)} and for each literal
lik ∈ Qi (1 ≤ k ≤ 3) we connect G(Qi, λ) with G(xik , µ) by identifying vertex l1ik from G(Qi, λ)

140 7.3. Min Id Code for line graphs

l1i1
l2i1

...

l2λi1
q1 q0

q3

q2

l2λi2 l2λ−1
i2

...

l1i2

l2λi3

l2λ−1
i3

..
.

l1i3

P P P

P

P P P

P

P

P

2λ times 2λ times

2λ
ti
m
es

(a) Clause gadget GQi(λ)

a1

b1

c1

a2

b2

c2

a3

b3

c3

a4

b4
...

c4

b2µ−2

c2µ−2

a2µ−1

b2µ−1

c2µ−1

a2µ

b2µ

c2µ

x1
j xj

2 x3
j

y4 y2µ−1 y2µ

z4 z2µ−1

z2µ

P P P P P P

P

P P P

2µ− 3 times

(b) Variable gadget Gxj (µ)

Figure 7.5: Reduction gadgets for clause Qi and variable xj .

with one of the vertices x1
j(ik), x

3
j(ik) from G(xj(ik), µ) if lik = xj(ik), and with vertex xj(ik)

2 if

lik = xj(ik). We do this in such a way that for each vertex among x1
j(ik), x

3
j(ik) from G(xik , µ) is

identi�ed to at most one vertex of some clause gadget.2

The intuition behind Reduction 7.25 is that for each variable xj ∈ X, the choice made between
the sets of edges {{a1, x

1
j}, {a3, x

3
j}, {a5, y5}, . . . , {a2µ−1, y2µ−1}} and {{a2, xj

2}, {a4, y4}, . . . ,
{a2µ, y2µ}} represents the fact that xj is �true� (the �rst set is a subset of the code code) or

2Note that this is possible due to the fact that in (X,Q), which is an instance of Max (≤ 3,≤ 3)-SAT, each
variable appears once in its negated form and once or twice in its non-negated form.

Chapter 7. Graph classes for which Min Id Code is APX-hard or NP-hard 141

�false� (the second set is a subset of the code). For each clause Qi, edges {q0, q1} and q0, q2

need to be separated by one of the edges of {q1, l
2λ
i1
}, {q2, l

2λ
i2
}, {q2, l

2λ
i3
}. The choice made be-

tween these edges indicates which of the corresponding literals are set to �true�. This choice is
�transmitted� to the variable gadgets using the paths l2λik , . . . , l

1
ik
.

Let us now show some properties of the graphs constructed using Reduction 7.25.

Proposition 7.26. Let (X,Q) be an instance of Max (≤ 3,≤ 3)-SAT and G(X,Q, λ, µ), the
graph constructed in Reduction 7.25. G(X,Q, λ, µ) is bipartite, has maximum degree 3 and has
girth min{4µ, 8(λ+ 1)}.

Proof. Note that G(X,Q, λ, µ) has the same structure as the bipartite incidence graph B(X,Q)
of (X,Q). One can easily check that no odd cycle is created in the construction. It is also easy
to check from the construction that there is no vertex incident to four edges or more.

Finally, for the girth, observe that G(xj , µ) has a unique cycle of length exactly 4µ. Since the
girth of B(X,Q) is at least 4, it follows that the minimum length of a cycle between some clause
gadgets (at least two) and some variable gadgets (at least two) is at least 4(2λ + 1) + 2 + 2 =

8(λ+ 1). 9

We now prove a few claims on the gadgets and Reduction 7.25. First, consider a P -gadget
PG attached at some vertex a in some edge-identi�able graph G. We make the following claims.

Claim 7.27. At least three edges of PG belong to any edge-identifying code of G.

Proof. This follows from the fact that {d, e} is forced by {b, c} and {c, d}. Similarly {c, d} is
forced by {d, e} and {e, f}. Finally, in order to separate {c, d} and {d, e}, one has to take at
least one of {a, c}, {b, c} or {e, f}. 9

Claim 7.28. Any edge-identifying code of G contains an edge of G[V (G) \ V (PG)] incident to
vertex a.

Proof. This follows from the fact that edge {a, c} must be separated from edge {b, c}. 9

The following claim helps one to �normalize� the intersection between a given edge-identifying
code E(PG). The proof is in Appendix A.9.

Claim 7.29. Let CE be an edge-identifying code of G. One gets an identifying code C′E with
|C′E | ≤ |CE | by replacing CE ∩ E(PG) by the three edges {{b, c}, {b, d}, {d, e}}.

For the next claims, we let (X,Q) be an instance of Max (≤ 3,≤ 3)-SAT, and s : X → {0, 1},
a truth assignment of the variables of X. Moreover, let CE be an edge-identifying code of the
graph G(X,Q, λ, µ) de�ned in Reduction 7.25. Note that we make a simplifying assumption in
order to simplify our proofs: assume that each clause of C contains exactly three literals, and that
each variable of X appears exactly three times in C (once negated and twice unnegated). This
assumption can actually not be made formally because such instances are solvable in polynomial
time, see Theorem 2.13. However if not making it, we would have to count separately clauses
containing two or three literals, and variables appearing twice or three times, but the whole proof
would remain the same.

Claim 7.30. One can construct an edge-identifying code C(s) of G(X,Q, λ, µ) of size at most
(17µ− 12)|X|+ (21λ+ 5)|Q| − cost(s).

Proof. Construct an edge-identifying code C(s) as follows. First of all, in each of the (6λ +
1)|X| + (4µ − 3)|Q| P -gadgets, edges {b, c}, {c, d}, {a, c} belong to C(s). For each clause Qi =
{li1,li2 ,li3} ∈ Q, edge {q0, q3} belongs to C(s). For each literal lik , 1 ≤ k ≤ 3, if lik is �true�

in s, the λ edges l1ik , l
3
ik
, . . . , l2λ−1

ik
belong to C(s). Otherwise, the λ edges l2ik , l

4
ik
, . . . , l2λik belong

to C(s). For each variable xj ∈ X, in addition to the edges inside the P -gadget, all edges
{bk, ck} (1 ≤ k ≤ 2µ) and {yk, zk} (4 ≤ k ≤ 2µ) belong to C(s). If xj is �true� in s, the
µ edges {a1, x

1
j}, {a3, x

3
j}, {a5, y5}, . . . , {a2µ−1, y2µ−1} belong to C(s). Otherwise, the µ edges

{a2, xj
2}, {a4, y4}, . . . , {a2µ, y2µ} do. Finally, for each clause Qi = {li1 , li2 , li3} among the |Q| −

cost(s) unsatis�ed clauses, we arbitrarily add one of the edges {q1, l
2λ
i1
}, {q2, l

2λ
i2
}, {q2, l

2λ
i3
}.

142 7.3. Min Id Code for line graphs

The validity of the construction is proved in Claim A.16 of Appendix A.9. 9

In the following, for each xj ∈ X, let Ej denote the set of edges

{{a1, x
1
j}, {a2, xj

2}, {a3, x
3
j}, {a4, y4}, . . . , {a2µ, y2µ}}

of G(xj , µ). Moreover, we denote by E+
j , the set of edges of �odd index� of Ej : E+

j =

{{a1, x
1
j}, {a3, x

3
j}, {a5, y5}, . . . , {a2µ−1, y2µ−1}}. Similarly, we let E−j = {{a2, xj

2}, {a4, y4}, . . . ,
{a2µ, y2µ}}. Finally, we de�ne the set Aj =

⋃
1≤k≤2µ{{ak, bk}, {bk, a(k mod 2µ)+1}}.

The proofs of the next four claims can be found in Appendix A.9.
The next two claims are used to lower-bound the intersection between CE and speci�c parts

of G(xj , µ).

Claim 7.31. We have |CE ∩ (V (G(xj , µ)) \⋃xj∈X(Ej ∪Aj))| ≥ (16µ− 12)|X|+ (21λ+ 4)|Q|.
Claim 7.32. Let xj ∈ X. We have |CE ∩ (Ej ∪Aj)| ≥ µ. Moreover if |CE ∩ (Ej ∪Aj)| = µ, then
either |CE ∩ (Ej ∪Aj)| = E+

j , or |CE ∩ (Ej ∪Aj)| = E−j .

The next two claims allow one to �normalize� CE .
Claim 7.33. Using CE, one can construct an edge-identifying code C′E with |C′E | ≤ |CE | and such
that for each variable xj ∈ X, |CE ∩ (Ej ∪Aj)| ≤ µ+ 1.

Claim 7.34. Using CE, one can construct an edge-identifying code C′E with |C′E | ≤ |CE | and
|CE ∩ (V (G) \⋃xj∈X(Ej ∪Aj))| = (16µ− 12)|X|+ (21λ+ 4)|Q|.

The following claim shows how to build a good truth assignment from edge-identifying code
CE .
Claim 7.35. Using CE, one can construct a truth assignment s = s(CE) of the variables of X
such that cost(s) ≥ |Q| − (|CE | − ((17µ− 12)|X| − (21λ+ 4)|Q|)).

Proof. Let us �rst build code C′E from CE using Claims 7.33 and 7.34. Note that by Claims 7.32
and 7.33, we have for each variable xj ∈ X, |C′E ∩ (Ej ∪Aj)| ∈ {µ, µ+ 1}.

µ|X| ≤ |C′E ∩
⋃
xj∈X

(Ej ∪Aj)| ≤ (µ+ 1)|X|. (7.8)

We construct s(CE) as follows. For each variable xj ∈ X, if C′E ∩ (Ej ∪ Aj) = µ, then by
Claim 7.32 either C′E ∩ (Ej ∪ Aj) = E+

j or C′E ∩ (Ej ∪ Aj) = E−j . In the former case, variable
xj is set to �true�. In the latter case, it is set to �false�. Otherwise (C′E ∩ (Ej ∪ Aj) = µ + 1),
we set xj to �true�. Doing this, at most one clause may remain unsatis�ed. By Claim 7.34 and
Inequality (7.8), there are exactly |CE | − ((17µ− 12)|X| − (21λ+ 4)|Q|) such variables. Since all
other clauses are necessarily satis�ed due to the structure of C′E , we get the claim. 9

We are now ready to use the previous claims to show how to apply Reduction 7.25. We �rst
give a result on the decision problem Edge-Identifying Code:

Theorem 7.36. Edge-Identifying Code is NP-complete even when restricted to bipartite
planar graphs of maximum degree 3 and arbitrarily large girth.

Proof. We apply Reduction 7.25 to instances (X,Q) of the restricted version of (≤ 3,≤ 3)-SAT,
Planar (= 3,≤ 3)-SAT, where each variable appears exactly three times in the formula (once
negated, twice non-negated), and the clause-variable bipartite incidence graph B(X,Q) is planar
(see Subsection 2.3.5 for a precise de�nition). Note that using the planarity of B(X,Q), we
can �nd a planar embedding of it in polynomial time [51, 123]. Using this embedding, it is
easy to construct the graph G(X,Q, λ, µ) (for arbitrarily large λ, µ) such that it is planar since
G(X,Q, λ, µ) has the same underlying structure as B(X,Q).

Now, we can apply Claims 7.30 and 7.35 to an optimal identifying code and an optimal truth
assignment to show that (X,Q) is satis�able if and only if γID(G(X,Q, λ, µ)) = (17µ− 12)|X|+
(21λ+ 4)|Q|. 9

Chapter 7. Graph classes for which Min Id Code is APX-hard or NP-hard 143

Recall that a graph is perfect if and only if for each of its induced subgraphs H, the chromatic
number of H equals the clique number of H. Recall that a line graph L(G) is perfect if and only
if G has no odd cycles of length more than 3, (see Theorem 2.3) � this applies to G(X,Q, λ, µ),
which is bipartite. Moreover, one can check that the line graph of G(X,Q, λ, µ) is planar and
has maximum degree 4. Therefore, the following corollary follows:

Corollary 7.37. Identifying Code is NP-complete even when restricted to perfect planar line
graphs of maximum degree 4.

Using the claims, we are able to show that Reduction 7.25 is in fact an L-reduction (the proof
is given in Appendix A.9).

Theorem 7.38. For any λ ≥ 1 and µ ≥ 2, Reduction 7.25 is an L-reduction with parameters
α = 51µ + 201λ + 8 and β = 1. Hence Min Edge-Id Code is APX-complete when restricted
to bipartite graphs of maximum degree 3 and arbitrarily large girth, and Min Id Code is APX-
complete when restricted to perfect line graphs of maximum degree 4.

7.4 Identifying Code for interval graphs is NP-complete

In this section, we show that Identifying Code is NP-complete when restricted to interval
graphs by reducing 3-Dimensional Matching to it. In what follows, when considering an
interval graph, we will refer to its vertices as intervals (from the corresponding intersection
model). In order to describe the reduction, we �rst de�ne the following gadget:

De�nition 7.39. In an interval graph G, a P5-gadget P is a set V (P) of �ve intervals aP , bP ,
cP , dP , eP whose intersection subgraph induces a P5, and such that each interval of V (G)\V (P)
either contains all intervals of V (P), or does not intersect with any of them.

A P5-gadget is represented in Figure 7.6, where we also give a compact graphic representation
that will be used in later �gures.

aP
bP

cP

dP
eP

P

Figure 7.6: A P5-gadget P and its compact representation.

We now de�ne another useful gadget:

De�nition 7.40. Given a set S of two or three pairs of adjacent intervals in an interval graph
G, we de�ne a transmitter gadget Tr(S) as follows. V (Tr(S)) = {u, uv1, uv2, v, vw1, vw2, w} ∪
V (P (u)) ∪ V (P (uv)) ∪ V (P (v)) ∪ V (P (vw)) ∪ V (P (w)), where P (u), P (uv), P (v), P (vw), P (w)
are P5-gadgets, and we have the following properties:

• Intervals {u, uv1, uv2, v, vw1, vw2, w} appear in this order and induce a path;

• Gadgets P (u), P (v), P (w) are included in u, v, w respectively, and no interval of {u, uv1, uv2,
v, vw1, vw2, w} other than u (v, w, respectively) intersects V (P (u)) (V (P (v)), V (P (w)),
respectively);

• Similarly, P (uv) and P (vw) are included in the intersection of uv1, uv2 and vw1, vw2,
respectively, and no other interval of V (Tr(S)) intersects with a vertex of P (uv), P (vw),
respectively;

• All pairs of S are separated by a unique interval among u,w, and no other interval of Tr(S)
separates any pair of S;

• At least one pair of S is separated by u, and at least one, by w;

• The pair {uv1, uv2} can only be separated by either u or v, and the pair {vw1, vw2} can
only be separated by either v or w (i.e. no other interval of G separates these pairs).

144 7.4. Identifying Code for interval graphs is NP-complete

For an illustration and a succinct graphical representation of a transmitter gadget, see Fig-
ure 7.7.

x1

x2

u
uv1

uv2

v

y1

y2

vw1

vw2

w

z1

z2

P (u)

P (uv)

P (v)

P (vw)

P (w)

x1

x2
y1

y2
z1

z2

Tr(S)

Figure 7.7: A transmitter gadget Tr(S) and its representation, with S =
{{x1, x2}, {y1, y2}, {z1, z2}}

We can now de�ne gadgets modelling each element of A ∪B ∪ C, and each triple of T from
some instance of 3-Dimensional Matching.

De�nition 7.41. Let x be an element of A ∪ B ∪ C. The element gadget Gel(x) is de�ned as
follows: V (Gel(x)) = {fx, gx} ∪ V (P (x)), where P (x) is a P5-gadget. Intervals fx, gx intersect
each other, and P (x) is included in their intersection.

An element gadget is depicted in Figure 7.8.

fx

gx

P (x)

Figure 7.8: Element gadget Gel(x)

De�nition 7.42. Let Ti = {aj(i), bk(i), c`(i)} be a triple of T . The triple gadget Gt(Ti) is de�ned
as follows: V (Gt(Ti)) = {p1, p2, q1, q2, r1, r2, s1, s2} ∪ V (P (p))∪ V (P (q))∪ V (P (r))∪ V (P (s))∪
V (Tr(p, q)) ∪ V (Tr(r, s)) ∪ V (Tr(s, a)) ∪ V (Tr(p, r, b)) ∪ V (Tr(q, r, c)), where:

• p = {p1, p2}, q = {q1, q2}, r = {r1, r2}, s = {s1, s2}, a = {faj(i) , gaj(i)}, b = {fbk(i)
, gbk(i)

}
and c = {fc`(i) , gc`(i)};

• the two intervals of each pair p, q, r, s intersect with each other;

• P (p), P (q), P (r) and P (s) are P5-gadgets that are included in the intersection of the two
intervals of each pair p,q,r, and s, respectively;

• Tr(p, q), Tr(r, s), Tr(s, a), Tr(p, r, b) and Tr(q, r, c) are transmitter gadgets. Moreover,
their intervals intersect in such a way that for two distinct transmitter gadgets Tr(x, y, z)
and Tr(t, u, v), the two intervals of each of the pairs {uv1, uv2}, {vw1, vw2}, x, y and z
of Tr(x, y, z) both intersect the same set of intervals from gadget Tr(t, u, v). This can be
easily done by placing and �stretching� the intervals appropriately.

An illustration of a triple gadget is given in Figure 7.9.
We are now ready to describe the reduction.

Reduction 7.43 (3-Dimensional Matching → Identifying Code for interval graphs).
Given an instance of 3-Dimensional Matching consisting of element sets A = {a1, . . . , an}, B =
{b1, . . . , bn}, C = {c1, . . . , cn} and triple set T = {T1, . . . , Tt}, we construct in polynomial time
the interval graph Int(A,B,C, T). This graph is de�ned as follows:

Chapter 7. Graph classes for which Min Id Code is APX-hard or NP-hard 145

p1

p2
q1

q2
r1

r2
s1

s2
faj(i)

gaj(i)
fbk(i)

gbk(i)

fc`(i)

gc`(i)
. . .

P (p) P (q) P (r) P (s) P (aj(i)) P (bk(i)) P (c`(i))

Tr(p, q) Tr(r, s)

Tr(p, r, b)

Tr(q, r, c)

Tr(s, a)

Figure 7.9: A triple gadget Gt(Ti) with Ti = {aj(i), bk(i), c`(i)} together with the
element gadgets Gel(aj(i)), Gel(bk(i)) and Gel(c`(i))

• For each element x of A ∪ B ∪ C, Int(A,B,C, T) contains an element gadget Gel(x) as
de�ned in De�nition 7.41. The intervals of any two distinct element gadgets are disjoint.
Moreover we assume that the gadgets are positioned consecutively on the real line in the or-
der Gel(a1), . . . , Gel(an), Gel(b1), . . . , Gel(bn), Gel(c1), . . . , Gel(cn) (though this order does
not matter).

• For each triple Ti = {aj(i), bk(i), c`(i)} of T , Int(A,B,C, T) contains a triple gadget Gt(Ti)
that is connected with the gadgets Gel(aj(i)), Gel(bk(i)) and Gel(c`(i)}) as described in Def-
inition 7.42. The triple gadgets have to intersect; however they must be intersecting in a
speci�c way (in order to prevent �bad� interactions in the reduction). More speci�cally, for
two distinct triples Ti, Tj, the two intervals of each of the pairs {uv1, uv2}, {vw1, vw2},
{x1, x2}, {y1, y2} and {z1, z2} of each transmitter gadget of Gt(Ti) both intersect the same
set of intervals from gadget Gt(Tj). This can be done by placing and �stretching� the inter-
vals appropriately. All triple gadgets are placed consecutively on the real line (on the left of
all element gadgets), in the order: Gt(T1), . . . , Gt(Tt).

First of all, we note that Int(A,B,C, T) is identi�able, provided that each element from
A ∪ B ∪ C is contained in some triple of T , that is, (A,B,C, T) is a feasible instance of 3-
Dimensional Matching. In order to determine the properties of Reduction 7.43, we �rst
prove a few claims on the gadgets and the reduction itself.

Claim 7.44. Let G be a identi�able interval graph containing a P5-gadget P and let C be an
identifying code of G. Then |C ∩ V (P)| ≥ 3. Moreover, one can always construct an identifying
code C′ from C with |C′| ≤ |C| and C ∩ V (P) = {aP , cP , eP }.

Proof. Vertex cP belongs to C since it is the only vertex separating aP , bP . In order to separate
bP , cP , either aP or dP belongs to C; similarly, in order to separate cP , dP , either bP or eP belong
to C. Since by the de�nition of a P5-gadget, any interval from V (G) \ V (P) either intersects
all intervals of P or none, the composition of C ∩ V (P) does not in�uence the separation or
domination of intervals other than the ones of P (provided C ∩ V (P) 6= ∅). Now it is easy to see
that {aP , cP , eP } correctly separate and dominate all intervals of P . Moreover, all intervals that
intersect P are dominated by the three of aP , cP , eP , but this is not the case for any interval
from P . This implies that they are correctly separated from any other interval of G. Hence,
replacing C ∩ V (P) by {aP , cP , eP } in C yields the claimed identifying code C′. 9

Given an interval graph G containing a P5-gadget P , we call the set {aP , cP , eP } the locally
normalized identifying code of P .

We continue with a few claims regarding the other gadgets.

Claim 7.45. Let G be an identi�able interval graph with a transmitter gadget Tr(S).
(1) When considering the union of the locally normalized identifying codes of the �ve P5-gadgets
in Tr(S), all vertices of Tr(S) are dominated, and all pairs of vertices from Tr(S) are separated,
except for the pairs {uv1, uv2} and {vw1, vw2}.
(2) In an identifying code C of G, either v ∈ C, or both u,w ∈ C.

Proof. For the �rst part of the claim, all intervals of the P5-gadgets are identi�ed following
Claim 7.44. Each other interval is dominated by the vertices of the P5-gadget that intersect with

146 7.4. Identifying Code for interval graphs is NP-complete

it. All intervals having a �private� P5-gadget are separated from all other intervals; only the
vertices of the pairs {uv1, uv2} and {vw1, vw2} share their two P5-gadgets: P (uv) and P (vw),
respectively.

For the second part of the claim, we observe that v is the only interval that can separate both
{uv1, uv2} and {vw1, vw2}; if v /∈ C, only u can separate {uv1, uv2} and only w can separate
{vw1, vw2}. 9

In what follows, we let (A,B,C, T) be an instance of 3-Dimensional Matching with
|A| = |B| = |C| = n and |T | = t, and we consider the graph G = Int(A,B,C, T) constructed in
Reduction 7.43.

Claim 7.46. Let C− be the union of the locally normalized identifying codes of all P5-gadgets of
G = Int(A,B,C, T). Then all intervals are dominated by C−, and all pairs of intervals of G are
separated by C−, except for:

• the pairs {p1, p2}, {q1, q2}, {r1, r2}, {s1, s2} of each triple gadget Gt(Ti);

• the pairs {uv1, uv2} and {vw1, vw2} of each of the �ve transmitter gadgets of each triple
gadget Gt(Ti);

• the pair {fx, gx} of each element gadget Gel(x).

Proof. By Claims 7.45 and 7.44, the claim holds for the intervals of each P5-gadget and each
transmitter gadget. In fact, every interval i that is not in a P5-gadget contains the intervals of
some P5-gadget P , hence i is dominated by the vertices of P ∩ C−. Furthermore, one can check
that except for the pairs listed in the claim, each pair i, j of such intervals includes a distinct set
of P5-gadgets, hence i, j are separated by the code vertices of some P5-gadget. 9

The next claim proves the �rst side of the reduction: given a 3-dimensional matching of a
(feasible) instance (A,B,C, T) of 3-Dimensional Matching, we can construct an identifying
code of G = Int(A,B,C, T) having a certain size.

Claim 7.47. If (A,B,C, T) has a 3-dimensional matching M, then G = Int(A,B,C, T) has
an identifying code of size at most 12n+ 94t− 2|M|.

Proof. Let C− be the union of the locally normalized identifying codes of all P5-gadgets of G.
Since each element gadget contains one P5-gadget and each triple gadget contains twenty-nine P5-
gadgets (�ve in each of its �ve transmitter gadgets, and four other ones), we have |C−| = 9n+87t.

Let us now de�ne the sets CM (for the triples in M), CT \M (for the triples out of M) and
Cum (for the elements that are unmatched byM) as follows.

For each triple Ti ofM, the intervals u,w of each of the three transmitter gadgets Tr(s, a),
Tr(p, r, b) and Tr(q, r, c) of Gt(Ti) belong to CM, and interval v of each of the two remaining
transmitter gadgets Tr(p, q) and Tr(r, s) of Gt(Ti) belong to CM. This yields |CM| = 8|M|.

For each triple Ti of T \ M, interval v of each of the three transmitter gadgets Tr(s, a),
Tr(p, r, b) and Tr(q, r, c) of Gt(Ti) belong to CT \M, and the intervals u,w of each of the two
remaining transmitter gadgets Tr(p, q) and Tr(r, s) of Gt(Ti) belong to CT \M. Hence |CT \M| =
7(t− |M|).

For each element x of A ∪ B ∪ C that does not belong to any triple of M, some arbitrary
interval separating the intervals fx, gx in Gel(x) belongs to Cum (such an element exists since
(A,B,C, T) is feasible, hence there must be a triple gadget with a transmitter gadget that has
an interval intersecting fx but not gx). We have |Cum| ≤ 3n− 3|M|.

Now, we claim that the code C = C− ∪ CM ∪ CT \M ∪ Cum is a valid identifying code of G.
Note that we have |C| ≤ 9n+ 87t+ 8|M|+ 7(t− |M|) + 3n− 3|M| = 12n+ 94t− 2|M|.

By Claim 7.46, we know that C− ⊆ C dominates all vertices and separates all pairs but
the pairs {p1, p2}, {q1, q2}, {r1, r2}, {s1, s2} of each triple gadget Gt(Ti), the pairs {uv1, uv2}
and {vw1, vw2} of each of the �ve transmitter gadgets of each triple gadget Gt(Ti), and the pair
{fx, gx} of each element gadget Gel(x). However, observe that for each transmitter gadget, either
vertex v, or both vertices u,w belong to the code. Hence, all pairs {uv1, uv2} and {vw1, vw2}

Chapter 7. Graph classes for which Min Id Code is APX-hard or NP-hard 147

are separated. Similarly, for each triple Ti fromM, the vertices from V (Gt(Ti)) ∩ CM separate
the pairs {p1, p2}, {q1, q2}, {r1, r2}, {s1, s2} in Gt(Ti). Moreover, they separate all pairs {fx, gx}
such that x is covered by Ti inM. Furthermore, the pairs {fx, gx} for elements x that are not
covered by any triple ofM, are separated by Cum. Finally, for any triple Tj of T \M, the vertices
of V (Gt(Tj)) ∩ CT \M separate pairs {p1, p2}, {q1, q2}, {r1, r2}, {s1, s2} in Gt(Tj). Hence, C is a

valid identifying code of G. 9

Claim 7.48. Let C be an identifying code of G = Int(A,B,C, T). In each triple gadget Gt(Ti)
of G, there are at least two transmitter gadgets for which |C ∩ {u, v, w}| = 2. If there are exactly
two, then these gadgets must be Tr(p, q) and Tr(r, s). Otherwise, we can assume that there are
exactly three of them, and that these three can be Tr(s, a), Tr(p, r, b) and Tr(q, r, c).

Proof. In Gt(Ti), the intervals from the pairs p, q, r, s as de�ned in De�nition 7.42 need to be
separated. Observe that the only way to separate the intervals from p is to use either interval u
of Tr(p, q), or interval u of Tr(p, r, b). Similarly, to separate pair q, we have to use either interval
u of Tr(q, r, c), or interval w of Tr(p, q); to separate pair r, we need either interval u of Tr(r, s),
or interval w of Tr(p, r, b). Finally, to separate pair s, we need either interval w of Tr(r, s), or
interval u of Tr(s, a).

Recall that by Claim 7.45(2), for each transmitter gadget Tr(S), if |C ∩ {u, v, w}| ≥ 2,
we can assume that {u,w} ⊆ (C ∩ {u, v, w}); otherwise, C ∩ {u, v, w} = {v}. Hence, when
|C ∩ {u, v, w}| < 2, the intervals of Tr(S) do not help separating any of the pairs p, q, r, s.
Furthermore, one can easily check (using the previous paragraph) that the only way to separate
all four pairs using only two transmitter gadgets with C ∩ {u, v, w} = {u,w} is to take Tr(p, q)
and Tr(r, s). If we assume that there are at least three of them, taking Tr(s, a), Tr(p, r, b)
and Tr(q, r, c) to have C ∩ {u, v, w} = {u,w} separates all four pairs p, q, r, s. Moreover, by our
construction, this does not cause any con�ict with other pairs. 9

We are now ready to prove the other important claim of our proof.

Claim 7.49. Let (A,B,C, T) be an instance of 3-Dimensional Matching. If the graph
G = Int(A,B,C, T) has an identifying code C of size at most 10n+ 94t, then (A∪B∪C, T) has
a perfect 3-dimensional matching.

Proof. First of all, by Claim 7.44, each P5-gadget has at least three intervals in C; again by
Claim 7.44, we may assume that each P5-gadget has exactly three intervals in C (otherwise it is
easy to transform C so that this property holds). Since in total there are 29t+ 3n P5-gadgets in
G, they account for 87t+ 9n intervals of C.

Now, following Claim 7.45(2), each of the �ve transmitter gadgets in each triple gadget Gt(Ti)
have at least one vertex among {u, v, w} belonging to C. Moreover, by Claim 7.48, we can assume
that either two or three of these transmitter gadgets are such that |C ∩ {u, v, w}| = 2 (we call
such a transmitter gadget full). Hence, if Gt(Ti) has two full transmitter gadgets, the intervals
of these transmitter gadgets that belong to C and that do not belong to P5-gadgets account for
2·2+3·1 = 7 intervals. If Gt(Ti) has three full transmitter gadgets, they account for 3·2+2·1 = 8
intervals.

Let t+ be the number of triple gadgets that have three full transmitter gadgets. By the previ-
ous paragraph, the total number of intervals of C among the intervals {u, v, w} of all transmitter
gadgets account for 8t+ + 7(t− t+) = 7t+ t+ intervals. By the �rst paragraph of this proof, we
have 7t+ t+ ≤ |C|− 87t− 9n and by assumption, |C| = 10n+ 94t. These two facts imply t+ ≤ n.
In fact we can assume that t+ = n, indeed we can assume that there is no code vertex (other
than in a P5-gadget) outside of a triple gadget (otherwise, one could just remove this vertex and
still get an identifying code).

Now, by Claim 7.48, for each of the t+ = n triples that have three full transmitter gad-
gets, these transmitter gadgets can be assumed to be Tr(s, a), Tr(p, r, b) and Tr(q, r, c). By
Claim 7.45(2), for each of these transmitter gadgets, vertex w belongs to C. Since all pairs
{fx, gx} of each of the 3n element gadgets Gel(x) are separated by C and each transmitter gad-
get separates at most one such pair, each pair {fx, gx} is separated by vertex w of exactly one

148 7.5. Conclusion

transmitter gadget. Hence, selecting the set T of t+ triples with three full transmitter gadgets
of Gt(T) yields a perfect 3-dimensional matching of (A ∪B ∪ C, T). 9

We can now prove the following theorem:

Theorem 7.50. Identifying Code restricted to interval graphs (and hence, to (un)directed
path graphs, to trapezoid and to strongly chordal graphs) is NP-complete.

Proof. We know that Identifying Code is in NP; additionally, we show that an instance
(A,B,C, T) with |A| = |B| = |C| = n and |T | = t of 3-Dimensional Matching has a perfect
3-dimensional matching if and only if Int(A,B,C, T) has an identifying code of size 10n+ 94t.
For the �rst side, a perfect matching of (A,B,C, T) has necessarily n triples; hence by Claim 7.47,
Int(A,B,C, T) has an identifying code of size 12n + 94t − 2n = 10n + 94t. The other side is
proved in Claim 7.49. 9

7.5 Conclusion

In this chapter, we exhibited several new classes of graphs for which Min Id Code is APX-
complete or Identifying Code is NP-complete.

In particular, we proved thatMin Id Code is APX-complete for bipartite graphs of maximum
degree 4, and that Identifying Code is NP-complete for planar bipartite graphs of maximum
degree 4. It was shown that Min Dom Set is APX-complete in subcubic bipartite graphs [54]
and in cubic graphs [1]. Can we say the same forMin Id Code? Moreover, note that a reduction
from Min Vertex Cover to Min Id Code for subcubic graphs of girth 9 is provided in [9].
We observed (Theorem 2.52) that this reduction is in fact an L-reduction, and proves the APX-
hardness of Min Id Code for subcubic graphs. However, this reduction relies on a gadget using
9-cycles and therefore it is not suitable for bipartite graphs.

Question 7.51. Is Min Id Code APX-complete when restricted to subcubic bipartite graphs?
When restricted to cubic (bipartite) graphs?

Similarly, Dominating Set is NP-complete when restricted to planar bipartite subcubic
graphs of arbitrarily large girth [188].3 Does a similar result hold for Identifying Code? Note
that it is shown in [6] that Identifying Code is NP-complete when restricted to planar graphs
of maximum degree 4 and arbitrarily large girth.

Question 7.52. Is Identifying Code NP-complete when restricted to planar bipartite subcubic
graphs? If yes, does this hold when we further restrict this class to the graphs which, additionally,
also have arbitrarily large girth?

We also proved that Min Id Code is 4-approximable in the class of line graphs. Recall that
a graph is a line graph if and only if it does not admit any induced subgraph from a list B of
nine elements �rst determined by Beineke (see Theorem 2.2), that is, line graphs are exactly the
induced B-free graphs. Hence the following is a natural question:

Question 7.53. For which minimal subsets SB of B can Min Id Code for SB-free graphs be
c-approximated for some constant c?

Another superclass of line graphs to potentially investigate is the class of quasi-line graphs
(we recall that a graph is quasi-line if the neighbourhood of each vertex can be partitioned into
two cliques). However, recall that we showed in the conclusion of Chapter 6 (Corollary 6.14)
that Min Id Code restricted to co-bipartite graphs (and therefore also to quasi-line graphs) is
log-APX-hard.

In fact, we note once again (as in the discussion around Question 5.37 in Chapter 5.3) that
among the graphs of the list B of nine forbidden subgraphs characterizing line graphs, only four

3This result is derived from an easy reduction from Dominating Set for subcubic planar graphs (known to
be NP-complete [88]) to Dominating Set itself by subdividing the edges of the graph 3k times for an arbitrary
k such that 3k is odd.

Chapter 7. Graph classes for which Min Id Code is APX-hard or NP-hard 149

(B2, B3 = K−5 , B6, B8 = P 2
6 in Figure 2.15) are not co-bipartite, hence we deduce the following

proposition regarding Question 7.53:

Proposition 7.54. Let SB be a subset of B. If Min Id Code is c-approximable in SB-free graphs
for some constant c, then SB contains at least one of the graphs B2, B3 = K−5 , B6, B8 = P 2

6 .

The fact that Identifying Code is NP-complete for interval graphs is particularly interest-
ing since many problems (such as Dominating Set) are in P when restricted to interval graphs.
However, we leave the question of the complexity of approximating Min Id Code for interval
graphs open. In particular we have not managed to prove that Reduction 7.43 is an L-reduction,
as opposed to the reductions of the previous sections.4 A possible way to do so would be to
extend Claim 7.49 so that a (not necessarily perfect) matching of an appropriate size can be
constructed from an identifying code, as was done for example in Claim 7.35 for Reduction 7.25
for Min Id Code for line graphs.

Question 7.55. Is Min Id Code restricted to interval graphs APX-hard? Is it in APX?

Moreover, a graph class that, like the one of interval graphs, is also a subclass of trapezoid
graphs is the class of permutation graphs. It is a class where many hard problems become
polynomial-time solvable. This is the case for Dominating Set [83]. Hence, we ask what
happens for Identifying Code:

Question 7.56. What is the complexity of Identifying Code for permutation graphs?

4Since the maximization version of 3-Dimensional Matching, Max 3-Dim Matching, is APX-complete
even in its variant where each element appears in at most two triples [52], this would prove that Min Id Code
is APX-hard even for interval graphs.

Chapter 8. Graph classes where Min Id Code is in PTAS or in PO 151

Chapter 8

Graph classes where Min Id Code is in
PTAS or in PO

In this chapter, we �rst discuss the computational complexity of Min Id Code for unit interval
graphs in Section 8.1. We prove in Proposition 8.4 that this restriction of Min Id Code can be
reduced to an interesting covering problem (that we call Min Ladder Cycle Cover) whose
complexity is unknown and which seems to be unstudied in the literature. Despite the fact that
we are not able to solve this problem, we however provide a PTAS for Min Ladder Cycle

Cover which implies a PTAS for Min Id Code for unit interval graphs (Theorem 8.7).

8.1 Identifying Code for unit interval graphs 151

8.2 Edge-Identifying Code for graphs of bounded tree-width 156

8.3 A class of graphs for which Identifying Code is in P but Domi-
nating Set is NP-complete . 157

8.4 Conclusion . 158

In Section 8.2, we extend known results about Identifying Code for graphs of bounded
tree-width to Edge-Identifying Code using Courcelle's theorem, proving that this problem
can be solved in linear time for graphs of bounded tree-width (Corollary 8.11).

Finally, in Section 8.3, we de�ne a class of graphs, SC-graphs, for which solving Identifying
Code is computationally easy but solving Dominating Set is hard (see Corollary 8.14 and
Theorem 8.15). No such class was previously known.

The results about unit interval graphs are joint work from [FKM+12] with A. Kosowski,
G. Mertzios, R. Naserasr, A. Parreau and P. Valicov. The core idea of the PTAS was suggested
by N. E. Young in an online discussion [202]. The ones about line graphs of graphs of bounded
tree-width appeared in [FGN+12] (joint work with S. Gravier, R. Naserasr, A. Parreau and
P. Valicov). The ones of Section 8.3 are solely the author's work; they are new and did not
appear previously.

8.1 Identifying Code for unit interval graphs

We saw in Section 7.4 that Identifying Code is NP-complete when restricted to interval
graphs, but the interval graphs constructed in Reduction 7.43 are far from being unit interval
graphs. We now discuss this case.

First of all, recall that by Theorem 5.11, for any identi�able unit interval graph G, we have
|V (G)|+1

2 ≤ γID(G) ≤ |V (G)|. Hence, taking as an identifying code the whole vertex set, we have
a trivial 2-approximation:

Corollary 8.1. Min Id Code is 2-approximable when restricted to the class of unit interval
graphs.

152 8.1. Identifying Code for unit interval graphs

8.1.1 Reducing Min Id Code to Min Ladder Cycle Cover

We can relate Identifying Code for unit interval graphs to another problem, that will allow
us to improve Corollary 8.1.

Let us call the grid graph P2�Pm, denoted Lm, ladder graph. We consider the vertex set of
Lm as {1, 2} × {1, . . . ,m}. We call the edges coming from P2, step edges of Lm (a step edge
{(1, i), (2, i)} is denoted ei); the other edges are side edges of Lm. Note that any cycle of Lm is
determined by the two step edges ei, ej that it contains; we denote this cycle by Si,j . A cycle
cover of Lm is a set S of cycles that covers the whole graph Lm, i.e.

⋃
S∈S E(S) = E(Lm). An

example of a cycle cover of L5 with three cycles is given in Figure 8.1.

1

1

2 3 4 5

2

Figure 8.1: The ladder L5 and one of its cycle covers (dotted cycles).

We de�ne the following related decision and optimization problems:

Ladder Cycle Cover

INSTANCE: An integer m and an integer k, and a set S of cycles of Lm.
QUESTION: Is there a set S ′ ⊆ S of size k which is a cycle cover of Lm?

Min Ladder Cycle Cover

INSTANCE: An integer m and a set S of cycles of Lm.
SOLUTION: A cycle cover S ′ ⊆ S of Lm.
MEASURE: The size |S ′| of the cycle cover.

In the following, given a unit interval graph G on n vertices, we consider its vertex set
V (G) = {1, . . . , n}, where 1 ≤ . . . ≤ n is the natural ordering of the corresponding intervals
introduced in Section 5.2. For the sake of simplicity, we restrict our analysis to connected unit
interval graphs; since any identifying code of a disconnected graph is the union of identifying
codes of its connected components, this study extends easily to the general case. We will need
the following lemma.

Lemma 8.2. Let G be a connected identi�able unit interval graph. Let i be a vertex of G and
let il, ir be the two vertices of G such that il is the neighbour of i of smallest index in G, and ir
is the neighbour of i of biggest index in G. Then the set Di of vertices that are dominated by i is
exactly {il, . . . , ir}. Moreover, the set Pi of pairs of consecutive vertices separated by i is exactly:

Pi =


{{il−1, il}, {ir, ir+1}} if il 6= 1 and ir 6= n,

{{ir, ir+1}} if il = 1 and ir < n,

{{il−1, il}} if il > 1 and ir = n,

∅ if il = 1 and ir = n.

Proof. For Di, the claim is obvious. For Pi, we have seen in Proposition 5.10 that i may separate
at most two pairs of consecutive vertices. Vertex i will indeed separate the pair of vertices that
consists of il and il−1 if il−1 exists (and similarly, ir and ir+1 if ir+1 exists), i.e. if il 6= 1 (ir 6= n,
respectively). 9

Reduction 8.3 (Min Id Code for unit interval graphs → Min Ladder Cycle Cover).
Given a connected identi�able unit interval graph G on n vertices, we construct a set S(G) =
{S1, . . . , Sn} of n cycles of Ln+1. For each vertex i of G, we have a cycle S(i). Let il, ir be the

Chapter 8. Graph classes where Min Id Code is in PTAS or in PO 153

two vertices of G such that il is the neighbour of i of smallest index in G, and ir is the neighbour
of i of biggest index in G. Then, Si = Sil,ir+1.

Proposition 8.4. Let G be a connected identi�able unit interval graph on n vertices. A set
C = {c1, . . . , ck} of k vertices of G is an identifying code of G if and only if the set of cycles
{S(c1), . . . , S(ck)} ⊆ S(G) as de�ned in Reduction 8.3 is a cycle cover of Ln+1.

Proof. In Reduction 8.3, we let each step edge ej among {e2, . . . , en} correspond to the pair
{j − 1, j} of consecutive vertices of G. For each i ∈ {2, . . . , n − 1}, each pair of side edges
{(1, i), (1, i+ 1)} and {(2, i), (2, i+ 1)} represents vertex i of G. Finally, vertex 1 is represented
by step edge e1 and side edges {(1, 1), (1, 2)} and {(2, 1), (2, 2)}; similarly, vertex n is represented
by step edge en+1 and side edges {(1, n), (1, n+ 1)} and {(2, n), (2, n+ 1)}. Observe that these
sets form a partition of E(Ln+1) into n sets, each corresponding to a vertex of G.

By Proposition 5.12, a set C of vertices of G is an identifying code if and only if it separates
all pairs of consecutive vertices of G and it dominates G. Using Lemma 8.2 and the previous
paragraph, we now observe that there is a one-to-one correspondence between objects of G that
need to be separated or dominated (i.e. vertices and pairs of consecutive vertices) and the subsets
of the partition of E(Ln+1) described above. Moreover, each cycle S(i) of S(G) covers exactly
the subset of E(Ln+1) that corresponds to the elements of Di∪Pi as de�ned in Lemma 8.2. This
completes the proof. 9

By Proposition 8.4, if Ladder Cycle Cover is in P, then Identifying Code for unit
interval graphs is also in P. However, we do not know the complexity of Ladder Cycle Cover.

Let us make a few remarks. First of all, in Min Ladder Cycle Cover, if one is asking
to cover only side edges of Lm, this problem can be reduced to Min Dom Set in a certain
interval graph (the interval graph de�ned by the restriction of the input cycles to the side edges
of the form {(1, i), (1, i+ 1)}, together with a small additional interval for each side edge). This
problem is solvable in linear time [30].

Similarly, if we ask, in Min Ladder Cycle Cover, to cover only step edges, then the
corresponding problem is polynomial-time solvable, as it can be reduced to Min Edge Cover.1

As it will be used later on, we formalize this reduction as follows.

Reduction 8.5 (�Covering step edges of a ladder� → Min Edge Cover). Given a ladder Lm
and a set S of cycles of Lm, we construct the graph G(Lm,S), where the vertex set of G(Lm,S)
is the set {e1, . . . , em} of step edges of G, and there is an edge between two vertices ei, ej if and
only if the cycle Si,j belongs to S.

The following proposition is now trivial:

Proposition 8.6. Let S be a set of cycles of Lm. A subset C of S covers all step edges of Lm if
and only if G = G(Lm,S) as de�ned in Reduction 8.5 has an edge cover of size |C|. Hence, �nding
a minimum-size set of cycles from S can be done in time O

(√
|V (G)| · |E(G)|

)
= O

(
m5/2

)
.

We also remark that the complexity of Identifying Code for unit interval graphs does not
capture the whole complexity of Ladder Cycle Cover. Indeed, the instances of Ladder
Cycle Cover given by Reduction 8.3 are restricted by the structure of unit interval graphs.
For example, the input set of cycles of Lm has m − 1 elements, and one can check that certain
con�gurations of input cycles are not allowed (e.g. a cycle passing through two consecutive step
edges, or a set of �cyclic� cycles such as, for instance, three cycles of the form Si,j , Sj,k, Si,k).
Hence, Ladder Cycle Cover might be NP-complete, but Identifying Code for unit interval
graphs, polynomial-time solvable.

8.1.2 Min Id Code for unit interval graphs is in PTAS

When it comes to the optimization problem Min Ladder Cycle Cover, we are able to show
that it belongs to the class PTAS. The proof of this theorem was suggested by N. E. Young

1Recall from Corollary 2.15 that Min Edge Cover is solvable in time O
(√
|V (G)| · |E(G)|

)
for an input

graph G by using an algorithm solving Max Matching.

154 8.1. Identifying Code for unit interval graphs

in [202] on the theoretical computer science research-level answers and questions website http:

//cstheory.stackexchange.com, answering one of my questions on the complexity of Ladder
Cycle Cover. The proof which follows is a completed and formalized version of this sketch.

Theorem 8.7. Min Ladder Cycle Cover is in PTAS.

Proof. Let Lm be a ladder, S be a set of cycles of Lm, and ε > 0. We will give a polynomial-
time approximation scheme solving Min Ladder Cycle Cover, i.e. we compute a cycle cover
having size (1 + ε)OPT (Lm) in polynomial time (for �xed ε).

The algorithm can be sketched as follows: we �slice� the ladder Lm into roughly mε sections,
each centered around some speci�c step edge. We then use these sections to compute a set
of locally optimal covers. Among all these covers, the smallest one is chosen using a dynamic
programming-like technique.

First of all, we assume that the input instance has a feasible solution, as this is easy to check
in polynomial time beforehand.

Let k =
⌊
mε
4

⌋
. We mark every m

k 'th step edge: consider a1, . . . , ak, where for each i, 1 ≤ i ≤ k,
we let ai = ei(m/k). Moreover, vi denotes the vertex (1, i(m/k)) of ai. Consider the set Si of
cycles of S that contain vertex vi. Each such cycle is of the form Sj,k with j ≤ i(m/k) and
k ≥ i(m/k). Let `(i) be the minimum �rst index, and let r(i) be the maximum second index
of any of these cycles: `(i) = minSj,k∈Si j and r(i) = maxSj,k∈Si k. Moreover let S`(i), Sr(i) be
two (arbitrary) cycles of Si containing edge e`(i), er(i), respectively. We call the subgraph of
Lm induced by all vertices (1, a) and (2, a) of index a with `(i) ≤ a ≤ r(i), the block around
ai, denoted Bi. Moreover, for two consecutive blocks Bi, Bi+1 (1 ≤ i ≤ k − 1), the subgraph
of Lm that lies between these two blocks and that is not included within any block is called a
block neighbourhood and is denoted Ni. The similar subgraphs lying before B1 and after Bk are
denoted N0 and Nk, respectively. We note that we might have some subgraph Ni that is empty,
e.g. if the blocks Bi, Bi+1 are overlapping. An illustration of blocks and block neighbourhoods
is given in Figure 8.2.

e1 ai−1 e`(i) ai er(i) ai+1 em

.

Bi−1 Ni−1 Bi Ni Bi+1

Figure 8.2: Dividing Lm into blocks and neighbourhood blocks.

Given a block neighbourhood Ni and given any set Si of cycles of Lm each including a step
edge of Ni, we say that Si is valid for Ni if it covers all edges of Ni, i.e. E(Ni) ⊆

⋃
S∈Si E(S) (if

Ni is empty then ∅ is the only valid set of cycles for Ni). The collection of all sets of cycles that
are valid for Ni is denoted Vi.

Consider a block Bi and the two surrounding block neighbourhoods Ni−1 and Ni. For each
pair S1 ∈ Vi−1, S2 ∈ Vi of valid sets of cycles, we denote by Fi(S1,S2) a minimum-size set of
cycles of S required in order to cover the step edges of Bi that are not covered by any cycle of S1

nor S2. We remark that Fi(S1,S2) can be computed using Reduction 8.5 to Min Edge Cover.

We now de�ne a directed acyclic graph
−→
D having vertex set:

{s, t} ∪
⋃

i∈{0,...,k}

Vi

and arc set:

A(
−→
D) = {(s,S0) | S0 ∈ V0}
∪

⋃
i∈{1,...,k−1}

{(S1,S2) | S1 ∈ Vi,S2 ∈ Vi+1}

∪ {(Sk, t) | Sk ∈ Vk}.

http://cstheory.stackexchange.com
http://cstheory.stackexchange.com

Chapter 8. Graph classes where Min Id Code is in PTAS or in PO 155

Moreover, each arc (s,S0) starting from s is assigned weight 0; each arc (S1,S2) with S1 ∈
Vi−1,S2 ∈ Vi for some i ∈ {1, . . . , k − 1} is assigned weight |S1|+ |Fi(S1,S2)|; each arc (Sk, t) is
assigned weight |Sk|. Digraph

−→
D is illustrated in Figure 8.3.

s

0

. .
.

0

V1 V2 Vk

Sa Sb

|Sa|+ |F1(Sa, Sb)|

..
. . . .

Sc

t..
.

|Sc|

Figure 8.3: The directed acyclic graph
−→
D .

We can now describe the PTAS: see Algorithm 8.4.

Algorithm 8.4 PTAS for Min Ladder Cycle Cover

Input: A ladder Lm, a set of cycles S of Lm, some ε > 0.
1: C ← ∅
2: Compute the edges a1, . . . , ak, the cycles S`(i), Sr(i) for each i ∈ {1, . . . , k}, the blocks
B1, . . . , Bk and the block neighbourhoods N0, . . . , Nk.

3: Add all cycles S`(i), Sr(i) to C.
4: for each i from 0 to k do
5: Compute the collection Vi of all valid sets of cycles of Ni

6: end for

7: for each i from 1 to k do
8: for each pair S1,S2 with S1 ∈ Vi−1, S2 ∈ Vi do
9: Compute the set F(S1,S2) using Reduction 8.5 to Min Edge Cover.
10: end for

11: end for

12: Construct the directed acyclic graph
−→
D

13: Compute a shortest weighted directed path P from s to t in
−→
D

14: Add to C all cycles given by the union of the cycles of the vertices of P , together with the
union of all cycles of Fi(S1,S2) for each arc (S1,S2) of P

15: return C

Let us proceed with the analysis of Algorithm 8.4. We begin with analyzing its running
time. First of all, step 2 of the algorithm takes O(k +m2) = O(εm+m2) time, since there are
O(k) = O(mε) blocks and block neighbourhoods to compute, and at most

(
m
2

)
= O(m2) cycles

in S.
Notice that each neighbourhood block Ni contains at most m

k step edges, since there are
at most m

k step edges between any two edges ai, ai+1 with i ∈ {1, . . . , k − 1} (and similarly,
between e1, a1 and ak, em, respectively). Hence, for each neighbourhood block Ni, there are at
most

(
m/k

2

)
cycles containing a step edge of Ni; indeed, by de�nition of a block, such a cycle

cannot contain vertex vi nor vi+1. As a consequence, we have that for each i ∈ {1, . . . , k},
|Vi| ≤ 2(m/k2) = 2O(1/ε2). Hence, computing all k + 1 sets Vi (i ∈ {0, . . . , k}) in step 5 takes
(k + 1) · 2O(1/ε2) = O(m · ε · 2O(1/ε2)) time.

Similarly, each block Bi has at most 2mk step edges, hence we can compute Fi(S1,S2) by
using |Vi−1| · |Vi| times Reduction 8.5 to Min Edge Cover on a graph on 2mk = O

(
1
ε

)
vertices

(and therefore a number of edges at most quadratic in this order). By Proposition 8.6, each call

to the algorithm for Min Edge Cover then takes O
(

1
ε5/2

)
time. Hence, computing all sets

Fi(S1,S2) in step 9 takes O(k · 2O(1/ε2) 1
ε5/2

) = O
(
m2O(1/ε2)

ε3/2

)
time.

Computing the digraph
−→
D in step 12 takes O(k · 2O(1/ε2)) = O(mε2O(1/ε2)) time since

−→
D has

156 8.2. Edge-Identifying Code for graphs of bounded tree-width

at most (k + 1)2O(1/ε2) + 2 vertices and all the weights have been computed in step 9.

Finally, �nding a shortest path from s to t in
−→
D at step 13 takes time O(|V (

−→
D)|+ |A(

−→
D)|)

(see e.g. [17, Theorem 2.3.4]), that is, O
(
m2ε22O(1/ε2)2

)
= O

(
m2ε22O(1/ε2)

)
.

Hence in total, we have a running time of O
(

2O(1/ε2)
(

m
ε3/2

+ ε2m2
))

(from steps 5 and 13).

At this point, let us prove the correctness of the algorithm. At step 3 of the algorithm,
for each of the k step edges a1, . . . , ak, we add two cycles to our solution; they account for
2k ≤ 2mε

4 ≤ ε · OPT (Lm). Indeed, we have OPT (Lm) ≥ m
2 since each cycle can cover at most

two step edges of Lm, and there are m step edges. The cycles that we have already considered
cover all side edges within all the blocks. Hence it remains to prove that all step edges and all
side edges from the block neighbourhoods are covered by the computed solution.

We remark that in any solution to Min Ladder Cycle Cover, the step edges of each
neighbourhood block Ni can only be covered by the edges of some set of Vi. This implies that in
any solution, for each block Bi, some set S1 from Vi−1 and some set S2 from Vi will be subsets
of this solution. Moreover, the step edges of any block Bi can only be covered by cycles from Bi
or from the two neighbouring neighbourhood blocks. Hence, given the two sets S1 ∈ Vi−1 and
S2 ∈ Vi, computing a set of cycles using Reduction 8.5 toMin Edge Cover in step 5 is optimal.
Hence, choosing a solution among all sequences from V0× . . .×Vk will provide a solution of size
at most OPT (Lm) that will cover all edges of the neighbourhood blocks and all step edges of
the blocks. This is exactly what is done in steps 13 and 14.

Hence in total we obtain that |C| ≤ (1 + ε)OPT (Lm) and C is a valid cycle cover of Lm.
Furthermore, the algorithm runs in quadratic time O(m2) when ε is �xed. This completes the
proof. 9

By Reduction 8.3 and Proposition 8.4, we get the following immediate corollary:

Corollary 8.8. Min Id Code is in PTAS when restricted to unit interval graphs.

8.2 Edge-Identifying Code for graphs of bounded tree-width

We have seen that Identifying Code can be solved in linear time when the instances are
restricted to graphs of given tree-width or clique-width (see Proposition 2.48 and Corollary 2.49).

We can use Corollary 2.49 in the context of Edge-Identifying Code as well:

Corollary 8.9. Edge-Identifying Code can be solved in linear time for trees.

Proof. It is known that block graphs (which are those graphs for which every bi-connected compo-
nent is a clique) have clique-width at most 3 [92]. Observe that the class of line graphs of trees is
exactly the class of claw-free block graphs. Since Edge-Identifying Code is the same problem
as Identifying Code when restricted to line graphs, the result follows from Corollary 2.49. 9

We can however use the same ideas than for Proposition 2.48 in order to extend Corollary 8.9.

Proposition 8.10. Given a graph G and an integer k, let EID(G, k) be the property that
γEID(G) ≤ k. Property EID(G, k) can be expressed in MSOL(τ2).

Proof. For convenience, the graph is encoded as a set V of vertices, a set E of edges and two
unary predicates a, b : E → V such that for each edge xy, either a(xy) = x and b(xy) = y or
b(xy) = x and a(xy) = y. We �rst de�ne two auxiliary binary relations over E × E: 6= and I∗,
where 6= is the di�erence relation and I∗ is an extension of the incidence relation where edges
are not necessarily distinct:

• e 6= f :=
(
a(e) 6= a(f) ∧ a(e) 6= b(f)

)
∨
(
b(e) 6= a(f) ∧ b(e) 6= b(f)

)
• eI∗f := a(e) = a(f) ∨ a(e) = b(f) ∨ b(e) = b(f) ∨ b(e) = a(f)

Chapter 8. Graph classes where Min Id Code is in PTAS or in PO 157

Now we de�ne the MSOL(τ2) logic formula which expresses that the graph has an edge-
identifying code of size at most k. Note that |C| ≤ k is an MSOL(τ2) operation when k is
�xed.

∃C, C ⊆ E, |C| ≤ k,
(
∀e ∈ E,∃f ∈ C ∧ eI∗f

)
∧(

∀e ∈ E,∀f ∈ E, e 6= f, ∃g ∈ C,
(
(eI∗g ∧ ¬(fI∗g)) ∨ (fI∗g ∧ ¬(eI∗g))

))
9

Corollary 8.11. Edge-Identifying Code can be solved in linear time for all classes of graphs
having their tree-width bounded by a constant. Equivalently, Identifying Code can be solved
in linear time in classes of line graphs of graphs having their tree-width bounded by a constant.

Note that because of Theorem 2.12, Corollary 8.11 cannot be extended easily to graphs having
their clique-width bounded by a constant; indeed, it seems not possible to express EID(G, k) in
MSOL(τ1) since Edge-Identifying Code deals with edges identifying edges.

8.3 A class of graphs for which Identifying Code is in P but
Dominating Set is NP-complete

An interesting question is whether there are classes of graphs for which the complexities of the
decision problems Identifying Code and Dominating Set di�er. To our knowledge, such a
result was not known in the literature. We have seen in Chapter 6.5 that this is the case, for
example, for the class of co-bipartite graphs (where Dominating Set is trivially solvable, but
Min Id Code is even log-APX-hard). Note that this class is included in the class of AT-free
graphs, which itself is a subclass of the class of DSP graphs, in which Dominating Set is
solvable in polynomial time (an O(n7) algorithm for Dominating Set for DSP graphs on n
vertices is given in [139]).

In this section, we construct a somewhat arti�cial, but large, class of graphs for which the
converse holds: Dominating Set is NP-complete, but Identifying Code is solvable in poly-
nomial time. We call these graphs SC-graphs. The name comes from the fact that the hardness
of the problem follows from their similarity to instances of the Set Cover problem, from which
they are built.

De�nition 8.12. A graph G is said to be an SC-graph if it can be built from a bipartite graph
with parts S and T and an additional set S′ with |S′| = 2|S| such that:

• for each vertex x of S, there is a path x, ux, vx of length 2 starting at x with ux, vx ∈ S′,
degG(ux) = 2 and degG(vx) = 1, and

• each vertex of T has a distinct neighbourhood within S, and this neighbourhood has at least
two elements.

An example of an SC-graph is pictured in Figure 8.5.

T S S′

Figure 8.5: Example of an SC-graph.

158 8.4. Conclusion

Proposition 8.13. Let G be an SC-graph built from a bipartite graph with parts S and T , with
S1, the set of all degree 1-vertices of the pendant paths attached to the vertices of S. We have
γID(G) = 2|S| and S ∪ S1 is an identifying code of G.

Proof. Note that all vertices of S are forced. Indeed, each vertex a of S is forced by the two
vertices of the path of length 2 attached to a. Moreover, each vertex of degree 1 in each pendant
path of length 2 must be dominated, hence γID(G) ≥ 2|S|. To see that S ∪ S1 is an identifying
code, observe that each vertex a of S is identi�ed by itself. Its neighbour of degree 2 in its
pendant path of length 2 is identi�ed by a and its neighbour in S1. Each vertex of S1 is only
identi�ed by itself. Finally, all vertices of T are identi�ed by their sets of neighbours within S.
Since these sets are distinct and of size at least two, S ∪ S1 is an identifying code. 9

Corollary 8.14. Let G be an SC-graph. Even if the parts S and T are not given, one can
compute an optimal identifying code of G in polynomial time.

Proof. To observe this, observe that the set S1 of all degree 1-vertices of the pendant paths
attached to the vertices of S can be detected easily: search for all vertices of degree 1 having a
neighbour of degree 2. If G is an SC-graph, only vertices of S1 satisfy this property, and it is
easy to check whether G is indeed an SC-graph. Then, take as a code, this set S1 together with
each vertex at distance 2 of a vertex of S1. By Proposition 8.13, this is an optimal identifying
code of G. 9

Theorem 8.15. Dominating Set is NP-complete in planar (bipartite) SC-graphs of maximum
degree 4.

Proof. We reduce Set Cover to Dominating Set for SC-graphs. Let (X,S) be an instance
of Set Cover such that each vertex of S has a distinct neighbourhood within X and at least
two neighbours in X. For example, one can take an instance of Vertex Cover for subcubic
planar graphs, which is a special case of Set Cover (where X is the set of edges of a simple
graph; each set of S stands for a given vertex and contains all edges incident to it), known to
be NP-complete [87]. Let B(X,S) be the bipartite incidence graph of (X,S), and build the
SC-graph G from B(X,S) with parts S = S and T = X. If (X,S) comes from Vertex Cover

for subcubic planar graphs, G is planar and has maximum degree 4.
We claim that (X,S) has a set cover of size k if and only if G has a dominating set of size

k + |S|. Let S1 and S2 be the sets of all degree 1 and degree 2-vertices of the pendant paths
attached to the vertices of S, respectively.

For the �rst part, let C ⊆ S be a set cover of (X,S). One can easily check that the set C ∪S2

is a dominating set of G.
For the converse, let D be dominating set of G of size k + |S|. Since each vertex of S1

needs to be dominated, we have |D ∩ (S1 ∪ S2)| ≥ |S| = |S|. We may in fact assume that
D ∩ (S1 ∪ S2) = S2. We can also assume that D ∩ T = ∅, since by the previous observation,
all vertices of S are dominated by some vertex of S2: if a vertex t ∈ T belongs to D, we can
replace it by an arbitrary neighbour of t in S to get a dominating set D′ with |D′| ≤ |S|.
Observe that D′ ∩ S has to cover all the vertices of T , hence (X,S) has a set cover of size
|D′ ∩ S| ≤ |D| − |S| = |D| − |S| = k, which completes the proof. 9

8.4 Conclusion

In this chapter, we showed in particular that the complexity of Min Id Code for unit interval
graphs is tightly linked to the one of Min Ladder Cycle Cover. However the two following
questions are still open:

Question 8.16. What is the complexity of Ladder Cycle Cover?

Question 8.17. What is the complexity of Identifying Code when restricted to unit interval
graphs?

Chapter 8. Graph classes where Min Id Code is in PTAS or in PO 159

We also showed that Min Id Code admits a PTAS for unit interval graphs. We remark that
this class is a subclass of the class of unit disk graphs. It is known that Dominating Set admits
a PTAS in unit disk graphs [125], even when no geometric representation of the input graph is
given [162]. So, we ask whether Corollary 8.8 can be extended to this class:2

Question 8.18. Does Min Id Code admit a PTAS when restricted to unit disk graphs?

The following weaker question is also open:

Question 8.19. Is Min Id Code in APX when restricted to unit disk graphs?

Similarly, we note that Min Dom Set and related problems admit PTAS algorithms in the
class of planar graphs. This was shown by using layerwise decomposition of these graphs [16],
and has been extended to any class of graphs excluding a �xed minor using the technique of
bidimensionality [72].

Question 8.20. Does Min Id Code admit a PTAS for planar graphs? If yes, does this hold for
classes of graphs excluding a �xed minor?

We showed that Identifying Code is in P for SC-graphs, but Dominating Set is NP-
complete in this class. This calls for the following question:

Question 8.21. Is there another class of graphs for which Identifying Code is polynomial-
time solvable but Dominating Set is NP-hard?

2Recall however, that Identifying Code is NP-complete when restricted to (planar bipartite) unit disk
graphs [161] (Theorem 2.44).

Chapter 9. General conclusion and perspectives 161

Chapter 9

General conclusion and perspectives

We have studied identifying codes from both combinatorial and algorithmic perspectives.
Regarding the combinatorial side, we have �rst studied graphs and digraphs having very

large identifying code in Chapter 3. This study has led to the precise characterization of the
family of �nite graphs having as identifying code number their order minus one, as well as the
characterization of all in�nite graphs, �nite digraphs and in�nite oriented graphs having their
order as identifying code number. These results answer several questions and conjectures from
the literature.

We then investigated lower and upper bounds on the identifying code number of graphs
of given maximum degree in Chapter 4. We have described all such graphs reaching the lower
bound that was known in the literature. We then made the �rst known study of upper bounds for
graphs of given maximum degree, which motivated the formulation of Conjecture 4.4. We gave
several upper bounds supporting our conjecture, using two di�erent techniques: the construction
of special independent sets on the one hand, and the interplay between two techniques of the
probabilistic method on the other hand (the Lovász Local Lemma and the Cheno� bound).

We then turned our attention to identifying codes of graphs belonging to speci�c graph classes
in Chapter 5. We gave upper bounds in terms of the order and the minimum degree for graphs
of girth at least 5, using both deterministic and probabilistic approaches and applying these
bounds to random regular graphs. We also gave lower bounds on the identifying code number of
interval graphs, before studying line graphs via edge-identifying codes, leading to several lower
and upper bounds on their identifying code number. These classes of graphs had not been
previously studied in the context of identifying codes.

For the algorithmic side, we have studied the computational complexity of the natural decision
problem related to identifying codes, Identifying Code. We have also studied the complexity
of approximating its optimization counterpart, Min Id Code. These studies have been done for
various graph classes, and we have tried to be as systematic as possible.

In particular, we have provided, in Chapter 6, new reductions of di�erent kinds and exhibited
several new graph classes such as bipartite graphs, co-bipartite graphs, split graphs and DSP
graphs for which Min Id Code is NP-hard to approximate within a sub-logarithmic factor.

We then studied, in Chapter 7, graph classes where Min Id Code admits a constant factor
approximation algorithm but admits no PTAS (such as bipartite graphs of small maximum
degree, split graphs of small maximum CS-degree and line graphs). Our reductions also imply
that Identifying Code is NP-complete for several classes such as planar bipartite graphs of
maximum degree 4, chordal bipartite graphs, or perfect planar line graphs of maximum degree 4.
In this chapter, we have also shown that Identifying Code remains NP-complete in interval
graphs, a result that contrasts with the complexity of other related computational problems such
as Dominating Set, which is linear-time solvable for interval graphs.

Finally, in Chapter 8, we have shown how to give an e�cient PTAS approximation algorithm
forMin Id Code for unit interval graphs by relating it to a special covering problem. There, we
have also shown that Identifying Code can be solved exactly in linear time for line graphs of
graphs of bounded tree-width using Courcelle's theorem. We have also exhibited the �rst known
graph class for which Dominating Set is computationally harder than Identifying Code.

The studies of this thesis have raised many questions that merit to be investigated. We have
mentioned most of them in the conclusions of the corresponding chapters; let us recall some of
the most interesting ones.

• Can we solve Conjecture 4.4, i.e. does there exist a (small) constant c such that every
identi�able graph G on n vertices has an identifying of size at most n− n

∆(G) + c? Can we

162

prove a relaxed bound of the form n − n
Θ(∆(G))? Can the conjecture be proved for some

large classes of graphs such as subcubic graphs, trees or line graphs?

• We asked in Question 4.53 what is the complexity of deciding whether a given graph
G reaches the lower bound of Theorem 2.29, i.e. whether γID(G) = 2|V (G)|

∆(G)+2 .
1 The same

question can be asked for the bound of Theorem 2.24: can it be decided in polynomial-time
whether for a given graph G on n vertices, the bound γID(G) = dlog2(n+ 1)e holds? 2

• Can we extend the lower bounds of the form γID(G) ≥ Ω
(√
|V (G)|

)
that hold for an

interval or a line graph G to other graph classes?

• Can we �ll the open cases and the cases that are not tight from Tables 1.3, 1.4, 1.5, 1.6
and 1.7 about lower and upper bounds of the identifying code number in speci�c graph
classes? In particular, what is the tight lower bound on γID for planar graphs or permutation
graphs? What can we say about lower bounds on γID for graphs of girth at least 5 and given
minimum degree? What about tight upper bounds in the same class when the minimum
degree is small?

• Can we �ll the open and non-tight cases about the computational complexity of Identi-
fying Code andMin Id Code from Tables 1.8 and 1.9? In particular, what is the precise
complexity of Identifying Code for unit interval graphs and for permutation graphs?
What is the complexity of approximating Min Id Code for interval graphs, (un)directed
path graphs, strongly chordal graphs? Is there a PTAS forMin Id Code for planar graphs
or for unit disk graphs?

In addition to these open problems, we also point out that many of the questions that
have been answered in this thesis can be asked for similar identi�cation parameters such as
the locating-domination number, the identifying open code number or the metric dimension,
which are related parameters which have also gained a lot of attention. Many combinatorial and
algorithmic questions remain open for these parameters as well. For example, the complexity of
determining the metric dimension of a planar graph was a long-standing open problem (solved
only recently in [74] by showing its NP-completeness), and two recent papers study the hardness
of approximating this parameter [105, 107]. Extending these studies to various classes of graphs,
as done in this thesis for identifying codes, is a possible future line of research.

Another interesting research topic, raised in [181] and recently studied for the metric di-
mension problem in [4], is the concept of a fractional identifying code. In this concept, rational
weights are assigned to vertices of the identifying code; vertices are required to be dominated and
separated by a total weight sum of at least 1. Questions of interest are lower and upper bounds
on this new parameter, which is polynomial-time computable. Such bounds could possibly be
applied to the study of the usual identifying code number.

Finally, we also raise the question of the parameterized complexity3 of the identifying code
problem, that mostly remains unstudied. We point out that the parameterized complexity of the
test cover problem according to four natural parameters has been recently investigated in [40].

1We point out again that the similar question for test covers with tests of restricted size has recently been
shown to be NP-complete in [39].

2We remark that for this question, a trivial brute-force quasi-polynomial-time algorithm exists: for each of
the

(
n

dlog2(n+1)e

)
subsets of dlog2(n + 1)e vertices of G, check whether it is an identifying code. This algorithm

has time complexity O
((

n
dlog2(n+1)e

)
nc
)

= O
(
nO(ln(n))nc

)
= O

(
2O(ln2(n))nc

)
, where c is some constant. Hence,

the NP-completeness of this problem would imply that 3-SAT can be reduced in polynomial time to it. This
would imply the existence of a quasi-polynomial-time algorithm for 3-SAT and therefore violate the well-known
Exponential Time Hypothesis from [126] (a conjecture implying P6=NP and which states that for any constant c
there is no 2o(n)nc algorithm for 3-SAT, where n is the number of variables of the input formula). However, the
aforementioned problem is clearly in the class LOGSNP, a subclass of NP de�ned in [166] whose problems have
quasi-polynomial-time algorithms. Maybe one can show that our problem is LOGSNP-complete.

3In the framework of parameterized complexity, the algorithmic complexity of a decision problem is not only
studied with the size of the input as a parameter, but also according to one or several other parameters that can
be measured either on the instance or on the solution (for example, the solution size, or a given graph parameter).
This allows for a �ner classi�cation than the binary classi�cation of classical decision problems.

Chapter A. Appendix: omitted proofs 163

Appendix A

Appendix: omitted proofs

In this appendix, we gather some proofs that are of minor relevance, repetitive, or that show
results from the literature whose proof is unaccessible.

A.1 Proof of Lemma 4.15 . 163

A.2 Proof of Theorem 4.28 . 163

A.3 Proof of validity of codes Ca and Cb in Lemma 4.36 165

A.4 Proof of Theorem 4.44 . 166

A.5 Proof of Theorem 5.5 . 169

A.6 Proof of Theorem 5.17 . 170

A.7 Proof of Corollary 5.28 . 171

A.8 Proof of Theorem 7.10 . 172

A.9 Proofs from Section 7.3 . 174

A.1 Proof of Lemma 4.15

Lemma A.1 (Lemma 4.15 [23]). If G is an identi�able graph (in�nite or not) not containing
A+
∞ as an induced subgraph, then for every vertex x of G, there is a vertex y ∈ N [x] such that

G− y is identi�able.

Proof. By contradiction, suppose that x1 is a vertex that fails the statement of the lemma. Then
G − x1 has a pair of twin vertices. We name them y1 and y2. Without loss of generality we
assume that x1 is adjacent to y2 but not to y1. Now, in G−y2 we must have another pair u, u′ of
twin vertices. By Lemma 3.20, x1 ∈ {u, u′}, we name the other element x2 (x2 ∈ N [x1]). Note
that the subgraph induced on x1, x2, y1, y2 is isomorphic to A2. We prove by induction that A+

∞
is an induced subgraph of G, thus obtaining a contradiction.

To this end suppose Ak on {y1, . . . yk, x1, . . . , xk} is already built such that xk−1, xk are twins
in G−yk and yk−1, yk are twins in G−xk−1. Then xk ∈ N [x1]. Consider G−xk. There must be
a pair of twins and, by Lemma 3.20, yk must be one of them. Let yk+1 be the other one. Since
yk and yk+1 are twins in G− xk, then yk+1 is adjacent to x1, . . . , xk and y1, . . . , yk, in particular
yk+1 ∈ N [x1]. Now, there must be a pair of twins in G − yk+1 and again by Lemma 3.20 one
of them must be xk, let the other one be xk+1. Since xk and xk+1 are twins in G − yk+1,
then xk+1 is adjacent to x1, . . . , xk and not adjacent to y1, . . . , yk. Thus the graph induced on
{y1, . . . , yk+1, x1, . . . , xk+1} is isomorphic to Ak+1 with the property that xk,xk+1 are twins in
G− yk+1 and yk,yk+1 are twins in G− xk. Since this process does not end, we �nd that A+

∞ is
an induced subgraph of G. 9

A.2 Proof of Theorem 4.28

We can use the idea of Subsection 4.3.2 to get improved bounds depending on the order and the
maximum degree for the class of quasi-line graphs. Recall that a graph G is quasi-line if each

164 A.2. Proof of Theorem 4.28

closed neighbourhood of G can be partitioned into two (not necessarily disjoint) cliques. We use
the following improvement of Lemma 4.26:

Lemma A.2. Let G be an identi�able quasi-line graph of order n without isolated vertices and
with maximum degree ∆ having n ·NF (G) non-forced vertices. Then, there exists an independent

set I of G ful�lling the three properties of Proposition 4.25 and having size at least n·NF (G)
2∆2+3∆−2

.

Proof. The proof starts in the same way as for the proof of Lemma 4.26: we �rst greedily build
an independent set I0 ⊆ N (where N is the set of non-forced vertices in G). We refer to the
proof of Lemma 4.26 for the description of the greedy procedure. Note that since G is quasi-line
(and therefore induced claw-free), each vertex can have at most one false twin. Hence, in each
step of the procedure, we remove at most ∆ + 2 vertices from the candidate set and |I0| ≥ |N |

∆+2 .
Now, as in the proof of Lemma 4.26, we build the auxiliary graph G′ on vertex set I0 and

construct an independent set I ⊆ I0 of G′ which will also be an independent set of G and which
ful�lls all required properties. Now, we claim that ∆(G′) ≤ 2∆.

Before proving our claim, we point out that each pair u, v of adjacent vertices with N [u] 	
N [v] ⊆ I0 is such that N [u]	N [v] = {x, y} with x ∼ u and y ∼ v. Moreover, the set of vertices
of N [u]	N [v] that are adjacent to u form an independent set together with v; since a quasi-line
graph is also induced claw-free, the neighbourhood N(u) may only induce an independent set of
size at most two, hence there is at most one vertex of N [u]	N [v] adjacent to u. A symmetric
argument holds for v. Since we have |N [u] 	 N [v]| ≥ 2 (there is no forced vertex in I0), this
proves our claim.

Now, let x be a vertex of I0 and let Y = S ∪ T be the set of all vertices s, t of G such that x
belongs to N [s]	N [t] and x ∼ t (s ∈ S and t ∈ T). We note that S and T are not necessarily
disjoint. We claim that this set is the union of two cliques. Since T ⊆ N(x) and G is quasi-line,
T is the union of two cliques, T 1 and T 2. Let s, t ∈ S × T be a pair of vertices in Y ; we may
assume that t ∈ T 1. By the observation of the previous paragraph, x is the only vertex adjacent
to t in N [s]	N [t]. Hence s is adjacent to all other neighbours of t, in particular to all vertices
in T 1. This proves our claim.

Now, we have that x is joined by an edge to some vertex y in G′ only if {x, y} = N [s]	N [t]
for some s, t from Y . But for each vertex s of S, there can be at most one such vertex playing
the role of y. Indeed, suppose there are two vertices y, y′ ∈ I0 such that y ∈ N [s] 	 N [t] and
y′ ∈ N [s] 	 N [t′]. Then y, y′ are not adjacent but since G is quasi-line N(s) is the union of
two cliques, one of them including either T 1 or T 2, say T 1. Hence, one of y, y′ (say y) must be
adjacent to all vertices of T 1 (including t) � a contradiction. Therefore, for each vertex s of S,
x is joined in G′ to at most one vertex y with y ∼ s. Since S ⊆ Y and Y induces two cliques,
and some vertex of each of the two cliques has x as a neighbour, we have |Y | ≤ 2∆. Moreover,
x is only joined in G′ to vertices that are at distance exactly 2 of x in G. Hence in each of
the two cliques there is at least one vertex which does not contribute to the degree of x in G′.
Summarizing, x has at most 2(∆− 1) neighbours in G′.

Now, in the same way as in the proof of Lemma 4.26, we build a maximal independent set I
of G′ that has at size at least |I0|

∆(G′)+1 ≥
|I0|

2∆−1 .

To summarize, since |I0| ≥ |N |
∆+2 , we have |I| ≥

n·NF (G)
2∆2+3∆−2

and I ful�lls all required properties.

9

We are now ready to prove Theorem 4.28:

Theorem A.3 (Theorem 4.28). Let G be an identi�able quasi-line graph of order n without
isolated vertices and with maximum degree ∆. Then γID(G) ≤ n − n

2∆3+5∆2+∆−2
. If G has no

forced vertices, γID(G) ≤ n− n
2∆2+3∆−2

.

Proof. Let I be an independent set as constructed in Lemma 4.26. By Proposition 4.16, we have
NF (G) ≥ 1

∆+1 . Hence, we get |I| ≥ n
2∆2+3∆−2

· 1
∆+1 = n

2∆3+5∆2+∆−2
. If G has no forced vertices,

NF (G) = 1 and |I| ≥ n
2∆2+3∆−2

. In both cases, Proposition 4.25 completes the proof. 9

Chapter A. Appendix: omitted proofs 165

A.3 Proof of validity of codes Ca and Cb in Lemma 4.36

Claim A.4. The sets Ca and Cb constructed in teh proof of Lemma 4.36 are (L,R)-quasi-
identifying codes without Ca-isolated or Cb-isolated vertices.

Proof. First of all, note that in both constructions, the �nal step consists in replacing some Ca-
isolated vertices from Ca (resp. Cb). In order to simplify the proof, let C∗a (resp. C∗b) be the code
as it is before this last step. We �rst prove that C∗a (resp. C∗b) have all desired properties except
that there remain C∗a-isolated (resp. C∗b -isolated) vertices in L. We then prove that performing
the last step transforms it into an (L,R)-quasi-identifying code with all required properties.

It can �rst be noticed that both C∗a and C∗b are dominating sets, so point number 1 of De�ni-
tion 4.32 holds.

Let us now show point number 2 of De�nition 4.32 (the separation condition). In both codes,
the vertices of all pairs u, v of vertices of L1 ∪ R1 are separated from each other, since C1 is a
subset of both C∗a and C∗b .

Now, suppose that u ∈ R1 and v ∈ L2 ∪R2. By de�nition of R1, no vertex of R1 is adjacent
to any vertex of L2 ∪ R2. Therefore, by condition number 3 of De�nition 4.32, either u or its
neighbour in R1 belong to C1, hence u and v are separated.

Thus, it remains to check if u and v are separated when u ∈ L1 and v ∈ L2 ∪R2, and when
both u and v belong to L2 ∪R2. We deal with C∗a and C∗b separately.

Code C∗a
• Suppose u ∈ L1 and v ∈ L2 ∪ R2. Note that u is dominated by some vertex x within
L1 ∪ R1 since C1 ⊆ C∗a. If v ∈ L2, u and v are separated by x since no vertex of L2 is
adjacent to any vertex of L1∪R1. If v ∈ R2 and v /∈ C∗a, then u and v are separated by the
neighbour of v in R2, which belongs to C∗a. Similarly, if u has a neighbour in R1 belonging
to C1, we are done. Otherwise, it means that v ∈ C∗a and u ∈ C1 (otherwise u would not
be dominated by C1). Hence v has another neighbour in L, say u′, belonging to C∗a, and
u′ separates u from v. Indeed, at step 4 of the construction of Ca, either v already had at
least two neighbours in L ∩ C∗a, or an additional one has been added.

• Now, suppose both u and v belong to L2 ∪R2.

If both u and v ∈ L2, they are separated since the whole set L2, which is independent,
belongs to C∗a.
If both u and v belong to R2 and they are not adjacent, they are separated since either
themselves or their respective neighbours in R2 belong to C∗a by step 3 of its construction.
Otherwise, for the same reason one of them (say u) belongs to the code. It is ensured in
step 4 that at least one neighbour of u in L belongs to C∗a, therefore u and v are separated
by this neighbour.

If u ∈ L2 and v ∈ R2 and they are not adjacent, they are separated by u since the whole
set L2 belongs to C∗a. Otherwise, if v /∈ C∗a, they are separated by the neighbour of v in
R2. Otherwise, again by step 4 of the construction v has a second neighbour in L ∩ C∗a,
separating them.

Code C∗b
• If u ∈ L1 and v ∈ L2∪R2, u and v are separated by a neighbour of v belonging to R2 since
the whole set R2 is in C∗b .

• Now, suppose u, v ∈ L2 ∪R2.

If both u, v belong to L2, and they have the same set of neighbours within R, we are done
since they do not need to be separated (point number 2 of De�nition 4.32). Otherwise,
they are separated since all their neighbours within L ∪R belong to R2, and R2 ⊆ C∗b .

166 A.4. Proof of Theorem 4.44

If both u, v belong to R2, u and v are separated by themselves if they are not adjacent.
Otherwise, they are separated by a neighbour of one of them in L ∩ C∗b , added at step 3 of
the construction.

Finally, if u ∈ R2 and v ∈ L2, then u and v are either separated by u if u and v are not
adjacent, or by the neighbour of u in R2 otherwise.

Let us now check point number 3 of De�nition 4.32, i.e. that for each pair of adjacent
vertices in R, at least one of them belongs to the code. This is true for vertices of R1 since C1 is
an (L1, R1)-quasi-identifying code and therefore ful�lls this condition. This is also ensured for
vertices of R2 at step 3 of the construction of Ca and at step 2 of the construction of Cb.

Hence, we have shown that both C∗a and C∗b are (L,R)-quasi-identifying codes.
Moreover, there are no C∗a-isolated (resp. C∗b -isolated) vertices in R: there are no such vertices

in R1 by Lemma 4.35, and no such vertices in R2 for C∗a by step 4 of its construction, and for C∗b
as well since R2 ⊆ C∗b .

As announced previously, we now have to deal with the last step of the constructions of
both Ca and Cb. It is easily observed that this step does not a�ect the domination property of
both codes. Indeed, the former Ca-,Cb-isolated vertices themselves are now dominated by some
neighbour. Moreover each of their neighbours belongs to R, and since Ca and Cb are (L,R)-quasi-
identifying its own neighbour in R belongs to the code.

Let us prove that the separation condition is still satis�ed by Ca and Cb. Let Cx (x ∈ {a, b})
be the considered code and let l ∈ L be a Cx-isolated vertex which gets replaced in Cx by one of
its neighbours in R, say rl. The only vertices which might be a�ected by the modi�cation, are
vertices which were previously dominated by l, i.e. vertices of N [l]: assume, by contradiction,
that u ∈ N [l] is no longer separated from some vertex v.

If u = l, in Cx, we have N [l] ∩ Cx = {rl}. Since N [v] ∩ Cx = {rl} and the neighbour of rl in
R belongs to Cx, v ∈ L. Moreover, observe that v was dominated by a vertex of C∗x, say v′, and
v′ /∈ N [l] since l is C∗x-isolated. Hence, it means that v was also C∗x-isolated. But then, in the last
step of the construction of Cx, one of l and v, say l, has been considered �rst and replaced by rl,
leaving them separated by v′, a contradiction.

Now, if u is a neighbour of l, u ∈ R and the neighbour of u in R, call him u′, belongs to Cx
by construction. Since C∗x is an (L,R)-quasi-identifying code, u′ has a neighbour belonging to
L and to the code. Hence u and u′ are separated, u 6= rl and v must be a neighbour of u′ not
belonging to the code. Hence u ∈ R2 since u′ has degree at least 3. Moreover, v ∈ L2; otherwise,
since C1 ⊆ Cx, v would be dominated within C1 and u, v would be separated � a contradiction.
Now, if Cx = Ca, v ∈ Ca, a contradiction. If Cx = Cb, u ∈ Cb, a contradiction too. This completes
the proof of the separation property.

Now, note that point number 3 of De�nition 4.32 remains veri�ed as no vertex of R is removed
from neither Ca or Cb in the last step of their construction. Finally, observe that thanks to the last
step of the constructions, there are no Cx-isolated (x ∈ {a, b}) vertices in L anymore. Moreover,
this step has not created any Cx-isolated vertices in R. Indeed, the vertices which are added, did
not belong to C∗x, and hence their neighbour in R did. This completes the proof of the validity
of both constructions Ca and Cb. 9

A.4 Proof of Theorem 4.44

In order to prove Theorem 4.44, we �rst need the following lemma.

Lemma A.5. Let G be a connected triangle-free graph on n ≥ 4 vertices and of maximum
degree ∆ ≥ 3 such that each subgraph H of G has an independent set of size at least f(∆)|V (H)|.
There exists an independent set S in G such that S = S1 ∪ S2, S1 and S2 are disjoint, and the
following properties hold:

1. For each vertex u of S, u has a false twin in G if and only if u ∈ S1.

2. S does not contain any pair of false twins.

Chapter A. Appendix: omitted proofs 167

3. For each vertex u ∈ V (G) of degree 1, there exists a vertex at distance 2 of u which does
not belong to S.

4. There exists an α ∈ [0, 1] such that:

• |S1| ≥ α
2∆n and |S2| ≥ (1− α) min

{
1
3 , f(∆)

}
n;

• if G has no false twins, |S1| ≥ α
∆+1n;

• if G has minimum degree at least 2, |S2| ≥ (1− α)f(∆)n.

Proof. The proof of this lemma is algorithmic, in the sense that we propose an algorithm (Algo-
rithm A.1) which builds S, S1 and S2. This algorithm uses the construction from Lemma 4.34.

Algorithm A.1 Greedy construction of the special independent set S = S1 ∪ S2

Input: a connected graph G = (V,E) on at least four vertices
1: X ← V , S1 ← ∅, S2 ← ∅, P ← ∅, Q← ∅
2: while there exists a vertex s ∈ X having a false twin in G do

3: S1 ← S1 ∪ {s}
4: if s has degree 1 in G and has only one false twin s′ in G then

5: Find a vertex x at distance 2 of both s and s′, x /∈ S1 {we will prove that such a vertex
exists}

6: P ←
(
N [s] ∪ {s′, x}

)
∩X

7: else

8: P ←
(
N [s] ∪ {t ∈ V

∣∣ N(s) = N(t)}
)
∩X

9: end if

10: Q← Q ∪ P
11: X ← X \ P
12: end while

13: Compute independent set S2 of G[X] using the construction of Lemma 4.34
14: return S = S1 ∪ S2

Let us describe Algorithm A.1 in more detail. The set X is the set of candidate vertices,
i.e. the potential vertices to be put into either S1 or S2. In the beginning of the algorithm,
X = V (G). The algorithm contains two main parts. In the �rst part, we build independent set
S1 by picking only vertices having a false twin in G. For each such picked vertex s, we remove
from X the ball of s together with all false twins of s (plus one additional vertex in a very special
case). We denote by Q, the set of vertices which have been removed from X during this �rst
part of the algorithm.

In the second part of Algorithm A.1, we have X = V (G) \Q. We build independent set S2

by applying the construction of Lemma 4.34 to G[X].
Let us prove that vertex x always exists at line 5 of the algorithm. Vertex s has degree 1 in

G, and a unique false twin s′. Let t be the unique common neighbour of s and s′. Since n ≥ 4
and G is connected, t has a neighbour u. If u /∈ S1, we set x = u. Otherwise, u has a false twin
u′ which is also a neighbour of t, but does not belong to S1. Hence we can set x = u′, and we
are done.

It can be �rst noticed that S is an independent set: in the �rst part of Algorithm A.1, when
picking a candidate vertex s from X to put into S1, we remove (at least) N [s] from X. Moreover,
since we pick a vertex at most once and add it either to S2 or to S1 but not to both, these two
sets are disjoint. Let us prove that the claimed properties of S hold.

The �rst and the second properties are ensured by the �rst step of Algorithm A.1: each time
a vertex having some false twins is added to S, all its false twins are removed from the set X of
candidates. Moreover after this step no vertices having a false twin remain in X.

Let us show that the third property holds. Let u be a vertex of degree 1 in G. If u ∈ S1,
its false twin is not in S1 and we are done. If u ∈ Q \ S1 (i.e. it has been removed from the
set of candidates while computing S1), either it has a false twin u′ in S1, or it is a neighbour
of a vertex in S1. In the former case, if u has at least two false twins, we are done since only

168 A.4. Proof of Theorem 4.44

one of them can belong to S1. Otherwise, this means u′ has only one false twin (u) and we have
ensured that some vertex at distance 2 of both u, u′ has neither been put into S1 nor S2 (line 5 of
Algorithm A.1). Finally, if u ∈ V (G)\Q, by Lemma 4.34 we know u has a vertex x at distance 2
which does not belong to S2. Suppose x belongs to S1. Then x has a false twin x′ which does
not belong to S, and x′ is also at distance 2 from u, so we are done.

It remains to prove the last property of S. Set Q ⊆ V (G) is the set of vertices removed from
X when adding a vertex to S1. The sets Q and V (G) \ Q form a partition of V (G) and there
exists some α ∈ [0, 1] such that |Q| = αn and |V (G) \Q| = (1− α)n.

Now, we claim that |Q| ≤ 2∆|S1|. Indeed, let s be a vertex which is put into S1 and consider
the step where s has been added to S1. If s is of degree 1 and has only one false twin, at most
four vertices are removed from X and added to Q. Otherwise, at most the vertices of the closed
neighbourhood of s and the set of its false twins are removed from X and added to Q. This set
of vertices has at most ∆ + 1 + ∆ − 1 = 2∆ elements. Since G is connected and n ≥ 4, ∆ ≥ 2
and max{4, 2∆} = 2∆. Hence the claim follows, and we have |S1| ≥ α

2∆n. Moreover, if G has
no false twins, a similar argument shows that |Q| ≤ (∆ + 1)|S1|.

Similarly, |S2| ≥ (1−α)(ln ∆−1)
2∆ n. Indeed, we build S2 by applying Lemma 4.34 on G[V (G)\Q],

which has (1 − α)n vertices. Since G[V (G) \ Q] has no false twins, we obtain the two bounds
(the general case and the case where G has minimum degree at least 2) by the second property
of S2 in Lemma 4.34. 9

We can now use Lemma A.5 in order to prove Theorem 4.44. The proof is very similar to
the proof of Theorem 4.37, except that we do not make a case distinction using the number of
vertices having a false twin, and that we compute an independent set of G using Lemma A.5.
Therefore we only sketch the main steps of the proof.

Theorem A.6 (Theorem 4.44). Let G be a nontrivial connected identi�able triangle-free graph
on n vertices with maximum degree ∆ ≥ 3 such that each subgraph H of G has an independent
set of size at least f(∆)|V (H)|. Then γID(G) ≤ n− n

max
{

2∆,9, 3
f(∆)

} .
If G has no false twins, γID(G) ≤ n− n

max
{

∆+1,9, 3
f(∆)

} .
If G has minimum degree at least 3, γID(G) ≤ n − n

max
{

2∆, 2
f(∆)

} ; if moreover G has no false

twins, γID(G) ≤ n− n

max
{

∆+1, 2
f(∆)

} .

Proof. Let S = S1 ∪ S2 the independent set of G computed using Algorithm A.1 of Lemma A.5.
Like in the proof of Theorem 4.37, we compute the set of pairs u, v forming an isolated edge in
G[V (G) \ S]. We observe that this set forms a strong induced matching M . Let L = L(M) and
R = R(M).

We now partition V (G) into L∪R and its complement. Like in the proof of Theorem 4.37, we
build an (L,R)-quasi-identifying code C1 using Lemma 4.36, such that |L′| ≥ |L|3 , where L′ = (L∪
R) \C1 (if G has minimum degree at least 3, |L′| ≥ |L|2). We also set C2 = (V (G) \ (L ∪R)) \S.
Note that set S restricted to V (G) \ (L ∪ R) ful�lls the properties needed in order to apply
Proposition 4.29. Hence it follows that C2 is a

(
V (G) \ (L ∪R)

)
-identifying code of G.

Since S does not contain any pair of false twins, we can apply Proposition 4.33: C = C1∪C2

is an identifying code of G.

We now claim that L ⊆ S2. Indeed, if some vertex l of L has a false twin l′, by construction
of S, l′ /∈ S. Let r be a neighbour of l in R, and let r′ be the neighbour of r′ in R. If l′ 6= r′,
r, r′ are not an isolated edge in G[V (G) \ S], a contradiction. But then l′ = r′ and l′ has at
least one additional neighbour l′′ in L. But since l, l′ are false twins, l′ and l′′ are adjacent, a
contradiction.

By our construction, we have V (G) \C = S1 ∪ (S2 \L)∪L′. Hence by Lemma A.5 and since

Chapter A. Appendix: omitted proofs 169

in the general case |L′| ≥ |L|3 and L ⊆ S2, for some α ∈ [0, 1] we have:

|V (G) \ C| ≥ |S1|+
|S2|
3

≥ α

2∆
n+ (1− α) min

{
1

9
,
f(∆)

3

}
n

≥ min

 n

2∆
,

n

max
{

9, 3
f(∆)

}


Hence |C| ≤ n− n

max
{

2∆,3, 3
f(∆)

} .
Similar computations yield the other cases, taking into account that by Lemma A.5, when G

has no false twins, |S1| ≥ α
∆+1n, and when G has minimum degree at least 3, by Lemmas 4.36

and A.5, |L′| ≥ |L|2 and |S2| ≥ (1− α)f(∆)n . 9

A.5 Proof of Theorem 5.5

Theorem A.7 (Theorem 5.5). Let G ∈ G(n, d), then w.h.p. all the dominating sets of G have
size at least ln d−2 ln ln d

d n.

Proof. We will proceed by contradiction. Given a set of vertices D of size m, we will compute
the probability that D dominates Y = V (G) \ D. Recall that G has been obtained from the
con�guration model by selecting a random perfect matching of Knd. Let y ∈ Y �xed, then let
Ay = {N(D) ∩ {y} 6= ∅} be the event that y is dominated by D. Its complementary event
corresponds to the situation where none of the edges of the perfect matching of Knd connects the
points corresponding to y to the ones corresponding to any vertex of D. De�ne WD = ∪v∈DWv

as the set of cells corresponding to D in Knd. Then for any v ∈ WD, the event Bv corresponds
to the fact that v is not connected to any point in Wy. If WD = {v1, . . . , vmd},

Pr(Ay) = Pr(∩v∈WDBv)
= Pr(Bv1) Pr(Bv2 | Bv1) . . .Pr(Bvmd | ∩md−1

i=1 Bvi)

=

(
1− d

nd− 1

)(
1− d

nd− 3

)
. . .

(
1− d

nd− (2md− 1)

)
=

md∏
i=1

(
1− d

nd− (2i− 1)

)

≥
md∏
i=1

(
1− 1

n− 2m

)

Since 1 − x = e−x+(ln(1−x)+x) (here we take x = 1
n−2m) and ln(1 − x) + x = O(x2) (by the

Taylor expansion of the logarithm in x = 0), we obtain:

Pr(Ay) ≥ exp

{
−

md∑
i=1

1

n− 2m
+O

(
1

(n− 2m)2

)}

= exp

{
−(1 + o(1))

md

n− 2m

}
The probability that D is dominating all vertices of Y = {y1, . . . , yn−m} is:

Pr (∩y∈YAy) = Pr (Ay1) Pr (Ay2 | Ay1) . . .Pr
(
Ayn−m | ∩n−m−1

j=1 Ayj

)
.

170 A.6. Proof of Theorem 5.17

We claim that Pr
(
Ayi | ∩i−1

j=1Ayj

)
≤ Pr (Ayi). Suppose that y1, . . . , yi−1 are dominated. This

means that the corresponding perfect matching of Knd has an edge between one of the points
corresponding to yj (1 ≤ j ≤ i − 1) and one of the points corresponding to the vertices of D.
The probability that yi is not dominated by D is now the probability that none of the remaining
edges of the perfect matching connect any vertex of D with yi. Hence:

Pr
(
Ayi | ∩i−1

j=1Ayj

)
=

(
1− d

nd− 2i+ 1

)(
1− d

nd− 2i− 1

)
. . .

(
1− d

nd− 2md+ 1

)
≥
(

1− d

nd− 1

)(
1− d

nd− 3

)
. . .

(
1− d

nd− 2md+ 1

)
= Pr(Ayi)

By considering the complementary events, Pr
(
Ayi | ∩i−1

j=0Ayj

)
≤ Pr (Ayi). Hence these events

are negatively correlated, and:

Pr (∩y∈YAy) ≤
n−m∏
i=1

Pr(Ayi) ≤
(

1− e− md
n−2m

)n−m
≤ exp

{
−(n−m)e−

md
n−2m

}
.

For the sake of contradiction, let m ≤ ln d−c ln ln d
d n for some c > 2. Then:

Pr (∩y∈YAy) ≤ exp

{
−
(

1− ln d− c ln ln d

d

)
n exp

{
− ln d− c ln ln d

1− 2 ln d−c ln ln d
d

}}

= exp

{
− (1 + od(1))n exp

{
− ln d− c ln ln d

1 + od(1)

}}
= (1 + od(1))e−

(ln d)c

d
n

Note that if no set of size m dominates Y , neither will do a smaller one. So we have to look
just at the sets of size m. The number of these sets can be bounded by(

n

m

)
≤n

m

m!
≤
(en
m

)m
=

(
de

ln d− c ln ln d

) ln d−c ln ln d
d

n

=(1 + od(1))

(
de

ln d

) ln d−c ln ln d
d

n

where we have used m! ≥
(
m
e

)m
.

Let EDS be the event that G has a dominating set of size m. Applying the union bound, we
obtain:

Pr(EDS) ≤ (1 + od(1))

(
de

ln d

) ln d−c ln ln d
d

n

e−
(ln d)c

d
n

= (1 + od(1)) exp

{
ln d− c ln ln d

d
(ln d+ 1− ln ln d)n− (ln d)c

d
n

}
= (1 + od(1)) exp

{(
(ln d)2

d
− (ln d)c

d
+ od

(
(ln d)2

d

))
n

}
,

which tends to 0 when n tends to in�nity since c > 2. This shows that w.h.p. no set of size less
than ln d−2 ln ln d

d n can dominate the whole graph and completes the proof. 9

A.6 Proof of Theorem 5.17

Theorem A.8 (Theorem 5.17). We have γEID(Kn) =

{
5, if n = 4 or 5

n− 1, if n ≥ 6
. Furthermore,

let CE be an edge-identifying code of Kn of size n − 1 (n ≥ 6) and let G1, G2, . . . , Gk be the

Chapter A. Appendix: omitted proofs 171

connected components of (V (Kn), CE). Then exactly one component, say Gi, is isomorphic to
K1 and every other component Gj (j 6= i) is isomorphic to a cycle of length at least 5.

Proof. We note that L(K4) is isomorphic to K6 \M , where M is a perfect matching of K6. One
can check that this graph has identifying code number 5. By a case analysis, we can show that
K5 does not admit an edge-identifying code of size 4. Indeed, since an edge-identifying code
must be edge-identi�able, there are only two graphs possible for an edge-identifying code of this
size: a path P5 or a cycle C4. In both cases, there are edges which are not separated. The edges
of a C5 form an edge-identifying code of size 5 of K5, hence γEID(K5) = 5. Furthermore, it is
not di�cult to check that the set of edges of a cycle of length n − 1 (n ≥ 6) identi�es all edges
of Kn. Thus we have γEID(Kn) ≤ n− 1. The fact that γEID(Kn) ≥ n− 1 follows from the second
part of the theorem which is proved as follows.

Let CE be an edge-identifying code of Kn of size n−1 or less (n ≥ 6). Let G′ = (V (Kn), CE).
Let G1, G2, . . . , Gk be the connected components of G′. Since G′ has n vertices but at most n−1
edges, at least one component of G′ is a tree. On the other hand we claim that at most one of
these components can be a tree and that such tree would be isomorphic to K1. Let Gi be a tree.
First we show that |V (Gi)| ≤ 2. If not, by Lemma 5.16 there is a vertex x of degree 1 in Gi
with a neighbour u of degree 2. Let v be the other neighbour of u. Then the edges xv and uv
are not identi�ed. If V (Gi) = {x, y} then for any other vertex u, the edges ux and uy are not
separated. Finally, if there are Gi and Gj with V (Gi) = {x} and V (Gj) = {y}, then the edge
xy is not dominated by CE . Thus exactly one component of G′, say G1, is a tree and G1

∼= K1.
This implies that γEID(Kn) ≥ n − 1. Therefore, γEID(Kn) = n − 1 and, furthermore, each Gi,
(i ≥ 2), is a graph with a unique cycle.

It remains to prove that each Gi, i ≥ 2 is isomorphic to a cycle of length at least 5. By
contradiction suppose one of these graphs, say G2, is not isomorphic to a cycle. Since G2 has
a unique cycle, it must contain a vertex v of degree 1. Let t be the neighbour of v in G2 and
let u be the vertex of G1. Then the edges tv and tu are not separated by CE . Finally we note
that such cycle cannot be of length 3 or 4, because C3 is not edge-identi�able and in C4, the two
chords (which are edges of Kn) would not be separated. 9

A.7 Proof of Corollary 5.28

Corollary A.9 (Corollary 5.28). If G is an edge-identi�able graph on n vertices not isomorphic
to K4 or K−4 , then γ

EID(G) ≤ 2n− 5.

Proof. We �rst prove that if G is an edge-identi�able graph on n vertices not isomorphic to K4,
then γEID(G) ≤ 2n − 4. Let CE be a minimal edge-identifying code and let G′ be the subgraph
induced by CE . Then, by Theorem 5.27, G′ is 2-degenerate. Let vn, vn−1, . . . , v1 be a sequence
of vertices of G′ obtained by a process of eliminating vertices of degree at most 2. Since v1

and v2 can induce at most a K2, we notice that there could only be at most 2n − 3 edges
in G′. Furthermore, if there are exactly 2n − 3 edges in G′, then v1v2 ∈ CE and each vertex
vi, 3 ≤ i ≤ n, has exactly two neighbours in {v1, . . . , vi−1}. Hence, the subgraph induced by
{v1, v2, v3, v4} is isomorphic to K−4 . Considering symmetries, there are three possibilities for the
subgraph induced by {v1, . . . , v5} (recall that v5 is of degree 2 in this subgraph): see Figure A.2
. In each of these three cases, the edge uv has both ends of degree at least 3. Thus, we can
apply the argument used in the proof of Theorem 5.27 on G′ and uv, showing that we have one
of the four con�gurations of Figure 5.9. But none of them matches with the con�gurations of
Figure A.2, a contradiction.

Now we show that if γEID(G) = 2n − 4, then G ∼= K−4 . This can be easily checked if G
has at most four vertices, so we may assume n ≥ 5. Let G′′ be the subgraph of G′ induced by
{v1, v2, v3, v4, v5}. If G′′ has seven edges, then it is isomorphic to one of the graphs of Figure A.2,
and we are done just like in the last case. Therefore, we can assume that G′′ has exactly six
edges and, since it is 2-degenerate, by an easy case analysis, it must be isomorphic to one of the
graphs of Figure A.3.

172 A.8. Proof of Theorem 7.10

u v

u v
u

v

Figure A.2: The three maximal 2-degenerate graphs on �ve vertices.

u v

(i)

u

v

(ii)

u

v

(iii)

v′

v u

(iv)

t

u

v

(v)

Figure A.3: The �ve possibilities of 2-degenerate graphs on �ve vertices with six
edges.

If G′′ is a graph in part (i), (ii) or (iii) of Figure A.3, then again one could repeat the
arguments of the proof of Theorem 5.27 with G′ and the edge uv of the corresponding �gure, to
obtain a contradiction.

Suppose G′′ is isomorphic to the graph of Figure A.3(iv). Since G′′ is not edge-identi�able,
there must be at least one more vertex in G′. Let v6 be as in the sequence obtained by the
2-degeneracy of G′. Since G′ has exactly 2n − 4 edges, v6 must have exactly two neighbours in
G′′. By the symmetry of the four vertices of degree 2 in G′′, we may assume uv6 ∈ CE . Then
u and v are both of degree at least 3 in G′. Therefore, we could again repeat the argument
of Theorem 5.27 with G′ and uv, where only one of the con�gurations of this theorem, namely
5.9(d), matches G′′. Furthermore, if this happens then v′v6 should also be an edge of G′. Now
u and v′ are both of degree at least 3 and we apply the argument of Theorem 5.27 with G′ and
uv′ to obtain a contradiction.

Finally, let G′′ be isomorphic to the graph of Figure A.3(v). We claim that every other vertex
vi (i ≥ 6) is adjacent, in G′, only to u and v. By contradiction suppose v6 is adjacent to t. Then
using the technique of Theorem 5.27 applied on G′ and tu (respectively tv), we conclude that v6

is adjacent to u (respectively v).
Since |E(G′)| = |CE | = 2n− 4, G′ is a spanning subgraph of G. But then it is easy to verify

that CE \ {xu, xv} is an edge-identifying code of G � a contradiction. 9

A.8 Proof of Theorem 7.10

We �rst need a few preliminary claims. For these claims, let G be a graph and G′, the graph
obtained from G using Reduction 7.9.

Claim A.10. Let D be a dominating set of G. Using D, one can build an identifying code of G′

of size at most |D|+ 3|V (G)|.

Proof. Consider the code C = D∪{{ax, bx, cx} | x ∈ V (G)}. One can easily check that each apir
x, y of original vertices of G are separated by ax and ay, and x is seperated from ay, by, cy, dy by
at least one of ay, by. For each original vertex x of G, since D is a dominating set of G, x and dx
are separated by the vertex of D that dominates x. Vertices ax, bx, cx, dx are easily seen to be
separated among themselves by one of ax, bx, cx, as well as ax, bx, cx are separated from x by at
least one of bx, cx. 9

Claim A.11. Let C be an identifying code of G′. For each x ∈ V (G), we have |C∩{bx, cx, dx}| ≥ 2
and |C ∩ {ax, ex}| ≥ 1.

Chapter A. Appendix: omitted proofs 173

Proof. For the �rst part, observe that vertices bx, cx and dx are false twins, so |C∩{bx, cx, dx}| ≥ 2.
Similarly, ax and ex are false twins, so |C ∩ {ax, ex}| ≥ 1. 9

Claim A.12. Let C be an identifying code of G′. One can use C to build a dominating set of G
of size at most |C| − 3|V (G)|.

Proof. By Claim A.11, for each x ∈ V (G), we have |C ∩ {bx, cx, dx}| ≥ 2 and |C ∩ {ax, ex}| ≥ 1.
Without loss of generality, we may assume that C∩{bx, cx, dx} = {bx, cx} and C∩{ax, ex} = {ax}.
Now, since C is an identifying code, x and ex are separated, that is, C∩(N [x]∪{dx}\{ax, ex})) 6= ∅.
We build D as follows: �rst, D = C ∩ V (G). For each x such that x, dx are separated by dx in C,
add x to D. It is easy to observe that D is a dominating set, and by the �rst part of the proof,
that |D| ≤ |C| − 3|V (G)|. 9

These claims are enough to give a proof of Theorem 7.10:

Theorem A.13 (Theorem 7.10). Identifying Code is NP-complete, even when restricted to
chordal bipartite graphs.

Proof. We apply Reduction 7.9 to the class of chordal bipartite graphs, for which Dominating
Set is known to be NP-complete [160]. Given a chordal bipartite graph G, it is easy to check
that the parts added to G to construct G′ do not add any induced cycle of length more than 4.
Claims A.10 and A.12 show that G has a dominating set of size at most k if and only if G′ has
an identifying code of size at most k + 3|V (G)|, completing the proof. 9

We can strengthen this result by showing that Reduction 7.9 applied to Min Dom Set

restricted to graphs of maximum degree 3 is an L-reduction:

Theorem A.14. Reduction 7.9 applied to graphs of maximum degree 3 is an L-reduction with
parameters α = 13 and β = 1. Therefore Min Id Code is APX-complete, even for bipartite
graphs of maximum degree at most 5.

Proof. Let G be a graph of maximum degree 3 and G′ the graph constructed from G using
Reduction 7.9. We have to prove Properties 1 and 2 from De�nition 2.4.

First of all, observe that by Claim A.10, given an optimal dominating set D∗ of G, we can
construct an identifying code C with γID(G′) ≤ |C| ≤ |D∗|+3|V (G)| = γ(G)+3|V (G)|. Similarly,
by Claim A.12, given an optimal identifying code C∗ of G′, we can construct a dominating set D
of G such that γ(G) ≤ |D| ≤ |C∗| − 3|V (G)| = γID(G)− 3|V (G)|. Hence we obtain:

γID(G′) = γ(G) + 3|V (G)|. (A.1)

Property 1.

Since G has maximum degree 3, each vertex can dominate at most four vertices, hence we have
γ(G) ≥ |V (G)|

4 , so |V (G)| ≤ 4γ(G). Using Equality (A.1), we get:

γID(G′) = γ(G) + 3|V (G)| ≤ 13γ(G),

which proves Property 1 of De�nition 2.4.

Property 2.

Let C be an identifying code of G′. Using Claim A.12 applied to C, we obtain a dominating set
D with |D| ≤ |C| − 3|V (G)|. By Equality (A.1), we have −γ(G) = 3|V (G)| − γID(G′). So we
obtain:

|D| − γ(G) ≤|C| − 3|V (G)|+ 3|V (G)| − γID(G′)

|γ(G)− |D|| ≤ |γID(G′)− |C||,

which proves Property 2 of De�nition 2.4.
For the second part of the statement, Min Dom Set is known to be APX-complete, even

for bipartite graphs of maximum degree 3 [54]. By construction, the graphs built from bipartite
graphs of maximum degree 3 in Reduction 7.9 are bipartite and of maximum degree 5. 9

174 A.9. Proofs from Section 7.3

A.9 Proofs from Section 7.3

Claim A.15 (Claim 7.29). Let CE be an edge-identifying code of G. One gets an identifying
code C′E with |C′E | ≤ |CE | by replacing CE ∩ E(PG) by the three edges {{b, c}, {b, d}, {d, e}}.

Proof. Edges {b, d}, {d, e} are forced. Once taking these, we need to separate {b, d} from {d, e},
but it is su�cient to take edge {a, b}. Now one can check that all edges from E(PG) are correctly
identi�ed between each other and from all other edges of G. Moreover, edge {a, b} is the only
one from E(PG) which could possibly separate a pair of edges containing some edge from E(G)\
E(PG), hence C′E is still an identifying code. Moreover by Claim 7.27 we have |CE ∩E(PG)| ≥ 3

hence |C′E | ≤ |CE |. 9

Claim A.16. The edge-identifying code C(s) constructed in the proof of Claim 7.30 is valid.

Proof. Let us show that C(s) is a valid identifying code of G(X,Q, λ, µ). In fact, a proof would be
similar to many other proofs of this type (such as the one of Claim 7.14 for the reduction to split
graphs of bounded CS-degree). It is however easy to check that all edges are dominated by C(s).
Moreover, all edges are separated from each other; this can easily be seen for all pairs, besides
the pair {{q0, q1}, {q0, q2}} in each clause gadget G(Qi, λ), whose proof of sepraration is detailed
next. Note that this pair can only be separated by one of the edges {q1, l

2λ
i1
}, {q2, l

2λ
i2
}, {q2, l

2λ
i3
}

of G(Qi, λ). If Qi is satisi�ed in s, there exists a true literal in it and hence, at least one edge
among {q1, l

2λ
i1
}, {q2, l

2λ
i2
}, {q2, l

2λ
i3
} belongs to C(s). Otherwise, one of these edges belongs to the

code due to the last step of the construction, completing the proof. 9

Claim A.17 (Claim 7.31). We have |CE ∩ (V (G(xj , µ)) \⋃xj∈X(Ej ∪ Aj))| ≥ (16µ− 12)|X|+
(21λ+ 4)|Q|.

Proof. For each clause Qi ∈ Q, by Claim 7.27, counting each P -gadget of G(Qi, λ), we have
18λ + 3 vertices inside all P -gadgets. Moreover, by Claim 7.28, edge {q0, q3} is forced by the
P -gadget attached at vertex q3. Finally, by Claim 7.28 again, we need an edge incident to each
of the vertices l`ik , for 1 ≤ k ≤ 3 and 1 ≤ ` ≤ 2λ. For this we need at least 3λ edges.

Similarly, for each variable xj ∈ X, for each of the 4µ − 3 P -gadgets of G(xj , µ), at least
three edges of the gadget belong to the code. Moreover, each gadget forces a distinct edge to be
in the code. 9

Claim A.18 (Claim 7.32). Let xj ∈ X. We have |CE ∩ (Ej ∪Aj)| ≥ µ. Moreover if |CE ∩ (Ej ∪
Aj)| = µ, then either |CE ∩ (Ej ∪Aj)| = E+

j , or |CE ∩ (Ej ∪Aj)| = E−j .

Proof. The �rst part of the claim follows from the fact that for each k with 1 ≤ k ≤ 2µ, the pair
of edges {ak, bk}, {bk, a(k mod 2µ)+1} needs to be separated by some edge of Aj ∪ Ej , and each
such edge can separate at most two pairs. For the second part, observe that only edges of Ej
can separate two pairs, and two consecutive edges of Ej separate only three pairs together. 9

Claim A.19 (Claim 7.33). Using CE, one can construct an edge-identifying code C′E with |C′E | ≤
|CE | and such that for each variable xj ∈ X, |CE ∩ (Ej ∪Aj)| ≤ µ+ 1.

Proof. As noted in Claim 7.32, |CE ∩ (Ej ∪ Aj)| ≥ µ. Suppose |CE ∩ (Ej ∪ Aj)| ≥ µ + 1. Then
we replace CE ∩ (Ej ∪ Aj) by the set {{a1, x

1
j}, {a2, xj

2}, {a3, x
3
j}, {a5, y5}, . . . , {a2µ−1, y2µ−1}}.

One can easily check that all edges from Ej ∪ Aj are separated, and since all three edges
{a1, x

1
j}, {a2, xj

2}, {a3, x
3
j} (which are those which dominate edges from outside the variable

gadget) belong to the code, C′E is still an edge-identifying code. 9

Claim A.20 (Claim 7.34). Using CE, one can construct an edge-identifying code C′E with |C′E | ≤
|CE | and |CE ∩ (V (G) \⋃xj∈X(Ej ∪Aj))| = (16µ− 12)|X|+ (21λ+ 4)|Q|.

Chapter A. Appendix: omitted proofs 175

Proof. First of all, use Claim 7.29 on all P -gadgets of the graph. All edges that are forced by
a P -gadget have to remain in C′E . Note that the remaining edges are edges {q0, q1},{q0, q2}
and the ones incident to vertices l`ik , for 1 ≤ k ≤ 3 and 1 ≤ ` ≤ 2λ (but not belonging to
any P -gadget). We note that {q0, q1} and {q0, q2} need not to be part of C′E , so we remove
them from the code. However, {q0, q1} and {q0, q2} are separated in CE by one of the edges
{q1, l

2λ
i1
}, {q2, l

2λ
i2
}, {q2, l

2λ
i3
}. For each of these edges, say {q1, l

2λ
ik
}, if it does not belong to CE , we

replace CE∩{{q1, l
2λ
ik
}, {l2λik , l

2λ−1
ik
}, . . . , {l2ik , l1ik}} by {{l2λik , l

2λ−1
ik
}, {l2λ−2

ik
, l2λ−3
ik
}, . . . , {l2ik , l1ik}}. If

it does, we replace it by {{q1, l
2λ
ik
}, {l2λ−1

ik
, l2λ−2
ik
}, . . . , {l3ik , l2ik}}. In this last case, note that we

may loose the property of being an identifying code since there might no longer be an edge of the
code incident to the P -gadget Pk attached at vertex l1ik . But if this was the case, then observe

that we necessarily had |CE ∩ {{q1, l
2λ
ik
}, {l2λik , l

2λ−1
ik
}, . . . , {l2ik , l1ik}}| ≥ λ+ 1. Hence we still have

room for at least one extra edge, and we add the edge incident to l1ik in the neighbouring variable

gadget to C′E , solving the problem without making the code larger. 9

Theorem A.21 (Theorem 7.38). For any λ ≥ 1 and µ ≥ 2, Reduction 7.25 is an L-reduction
with parameters α = 51µ + 201λ + 8 and β = 1. Hence Min Edge-Id Code is APX-complete
when restricted to bipartite graphs of maximum degree 3 and arbitrarily large girth, and Min Id

Code is APX-complete when restricted to perfect line graphs of maximum degree 4.

Proof. Having proved all the previous claims of this chapter, the proof is almost the same than
the one of Theorem 7.19 for split graphs. Let (X,Q) be an instance of Max (≤ 3,≤ 3)-SAT.
First of all, we may assume that each variable xi appears at least once as a positive literal, and at
least once as a negative literal (xi). Indeed, otherwise it is easy to satisfy the clauses containing
xi and one may remove these clauses and xi to get a smaller equivalent instance.

We have to prove Properties 1 and 2 from De�nition 2.4.

Property 1.

Since each variable appears in at most three clauses, we have:

|Q| ≤ 3|X|. (A.2)

Consider the truth assignment s with all variables �true�. Since each variable xi appears at
least once as a positive literal, at least one clause is satis�ed thanks to variable xi. Since each
clause contains at most three literals, we get that OPT (X,Q) ≥ cost(s) ≥ |X|3 , that is:

|X| ≤ 3 ·OPT (X,Q). (A.3)

Using Inequalities (A.2) and (A.3) together with Claim 7.30 with an optimal assignment of
(X,Q) having size OPT (X,Q), we obtain:

γID(G(X,Q, λ, µ)) ≤ (17µ− 12)|X|+ (21λ+ 5)|Q| −OPT (X,Q)

≤ 3(17µ− 12) ·OPT (X,Q) + 9(21λ+ 5) ·OPT (X,Q)−OPT (X,Q)

= (51µ+ 201λ+ 8) ·OPT (X,Q),

which proves Property 1 of De�nition 2.4.

Property 2.

Let CE be an edge-identifying code of G(X,Q, λ, µ) and C∗E , a minimum edge-identifying code
of G(X,Q, λ, µ), that is |C∗E | = γID(G(X,Q, λ, µ)). We consider the code C′E built using CE and
Claims 7.33 and 7.34. We also assume that |C∗E ∩ (V (G) \⋃xj∈X(Ej ∪Aj))| = (16µ− 12)|X|+
(21λ+ 4)|Q| using Claim 7.34.

By Claims 7.32 and 7.33, for each variable xj ∈ X, we have µ ≤ |C′E ∩ (Ej ∪Aj)| ≤ µ+ 1 and
µ ≤ |C∗E∩(Ej∪Aj)| ≤ µ+1. Hence |C′E∩

⋃
xj∈X(Ej∪Aj)| = (µ+γ)|X| and |C∗E∩

⋃
xj∈X(Ej∪Aj)| =

(µ+ ρ)|X| for some γ, ρ ∈ [0, 1].
By Claim 7.31 and since |C′E ∩ (V (G)\⋃xj∈X(Ej ∪Aj))| = |C∗E ∩ (V (G)\⋃xj∈X(Ej ∪Aj))| =

(16µ− 12)|X|+ (21λ+ 4)|Q|, we have γ ≥ ρ and:

|C′E | − |C∗E | = (γ − ρ)|X|. (A.4)

176 A.9. Proofs from Section 7.3

Using Claim 7.35 with C′E , which has size (17µ−12)|X|+(21λ+4)|Q|+γ|X|, we can construct
the truth assignment s(C′E) of the variables of X such that:

cost(s(C′E)) ≥ |Q| − γ|X|. (A.5)

Furthermore, we claim that the following holds:

OPT (X,Q) ≤ |Q| − ρ|X|. (A.6)

Indeed, suppose not. Then, there would be a truth assignment s∗ of the variables of X
satisfying strictly more than |Q| − ρ|X| clauses. But then by Claim 7.30 there would be an
edge-identifying code of size at most (17µ− 12)|X|+ (21λ+ 5)|Q| − cost(s∗) < (17µ− 12)|X|+
(21λ+ 4)|Q|+ ρ|X| = |C∗E |, a contradiction since C∗E is a minimum edge-identifying code.

By combining Inequalities (A.5) and (A.6) and Equality (A.4), we get:

OPT (X,Q)− cost(s(C′E)) ≤ |Q| − ρ|X| − (|Q| − γ|X|) = |C′E | − |C∗E |,
which proves Property 2 of De�nition 2.4.
Now, since Max (≤ 3,≤ 3)-SAT is APX-complete [165], the L-reduction and Corollary 7.20

show thatMin Edge-Id Code is APX-complete, and equivalently,Min Id Code for line graphs
is APX-complete. 9

Bibliography 177

Bibliography

General references

[1] P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theo-
retical Computer Science 237(1-2):123�134, 2000.

[2] N. Alon and J. H. Spencer. The probabilistic method, 3rd edition, Wiley-Interscience,
2008.

[3] S. Arora and B. Barak. Computational complexity: a modern approach, Cambridge
University Press, 2009.

[4] S. Arumugam and V. Mathew. The fractional metric dimension of graphs. Discrete
Mathematics 312(9):1584�1590, 2012.

[5] D. Auger. Induced paths in twin-free graphs. The Electronic Journal of Combinatorics
15:N17, 2008.

[6] D. Auger. Minimal identifying codes in trees and planar graphs with large girth.
European Journal of Combinatorics 31(5):1372�1384, 2010.

[7] D. Auger. Problèmes d'identi�cation combinatoire et puissances de graphes. PhD the-
sis, ENST-Télécom ParisTech, France, 2010.

[8] D. Auger, I. Charon, I. Honkala, O. Hudry and A. Lobstein. Edge number, minimum
degree, maximum independent set, radius and diameter in twin-free graphs. Advances
in Mathematics of Communications 3(1):97�114, 2009.

[9] D. Auger, I. Charon, O. Hudry and A. Lobstein. Complexity results for identi-
fying codes in planar graphs. International Transactions in Operational Research
17(6):691�710, 2010.

[10] D. Auger, I. Charon, O. Hudry and A. Lobstein. On the existence of a cycle of length
at least 7 in a (1,≤ 2)-twin-free graph. Discussiones Mathematicae Graph Theory
30(4):591�609, 2010.

[11] D. Auger, I. Charon, O. Hudry and A. Lobstein. Watching systems in graphs: an
extension of identifying codes. To appear in Discrete Applied Mathematics.

[12] D. Auger, I. Charon, O. Hudry and A. Lobstein. Maximum size of a minimum watch-
ing system and the graphs achieving the bound. To appear in Discrete Applied Math-
ematics.

[13] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela and
M. Protasi. Complexity and approximation, Springer, 1999.

[14] L. Babai. On the complexity of canonical labeling of strongly regular graphs. SIAM
Journal of Computing 9(1):212�216, 1980.

[15] L. Babai and P. Frankl. Linear algebra methods in combinatorics, preliminary ver-
sion 2, Department of Computer Science, The University of Chicago, 1992.

[16] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
Journal of the ACM 41(1):153�180, 1994.

178 General references

[17] J. Bang-Jensen and G. Gutin. Digraphs: theory, algorithms and applications, 2nd
edition, Springer, 2009.

[18] L. W. Beineke. Characterizations of derived graphs. Journal of Combinatorial Theory
9(2)2:129�135, 1970.

[19] Y. Ben-Haim and S. Litsyn. Exact minimum density of codes identifying vertices in
the square grid. SIAM Journal of Discrete Mathematics 19(1):69�82, 2005.

[20] C. Berge. Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr
sind. Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle-Wittenberg,
Mathematisch-Naturwissenschaftliche Reihe 10:114, 1961.

[21] T. Y. Berger-Wolf, M. Laifenfeld and A. Trachtenberg. Identifying codes and the set
cover problem. Proceedings of the 44th Annual Allerton Conference on Communica-
tion, Control and Computing, Monticello, USA, September 2006.

[22] A. A. Bertossi. Dominating sets for split and bipartite graphs. Information Processing
Letters 19:37�40, 1984.

[23] N. Bertrand. Codes identi�ants et codes localisateurs-dominateurs sur certains
graphes. Master thesis, ENST, France, June 2001.

[24] N. Bertrand, I. Charon, O. Hudry and A. Lobstein. Identifying and locating-
dominating codes on chains and cycles. European Journal of Combinatorics
25(7):969�987, 2004.

[25] N. Bertrand, I. Charon, O. Hudry and A. Lobstein. 1-identifying codes on trees.
Australasian Journal of Combinatorics 31:21�35, 2005.

[26] B. Bollobás. Combinatorics: set systems, hypergraphs, families of vectors and combi-
natorial probability, Cambridge University Press, 1986.

[27] B. Bollobás. Random graphs, 2nd edition, Cambridge University Press, 2001.

[28] J. A. Bondy. Induced subsets. Journal of Combinatorial Theory, Series B 12(2):201�
202, 1972.

[29] J. A. Bondy and U. S. R. Murty. Graph theory, 1st edition, Springer, 2008.

[30] K. S. Booth and H. J. Johnson. Dominating sets in chordal graphs. SIAM Journal of
Computing 11(1):191�199, 1982.

[31] M. Bouznif. Complexité de problèmes combinatoires dans des graphes de type �grille� :
modèles, algoritmes, saut de complexité. PhD thesis, Université Joseph Fourier Greno-
ble I, France, 2012.

[32] A. Brandstädt, V. B. Lê and J. P. Spinrad. Graph classes: a survey, SIAM Mono-
graphs on Discrete Mathematics and Applications, 1999.

[33] R. L. Brooks. On colouring the nodes of a network. Proceedings of the Cambridge
Philosophical Society 37:194�197, 1941.

[34] J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo and M. L. Puertas. Locating domi-
nating codes: bounds and extremal cardinalities. Manuscript, 2012.

[35] G. Chang and G. L. Nemhauser. The k-domination and k-stability problems on sun-
free chordal graphs. SIAM Journal of Algebraic Discrete Methods 5:332�345, 1984.

[36] E. Charbit, I. Charon, G. Cohen, O. Hudry and A. Lobstein. Discriminating codes
in bipartite graphs: bounds, extremal cardinalities, complexity. Advances in Mathe-
matics of Communications 4(2):403�420, 2008.

Bibliography 179

[37] I. Charon, G. Cohen, O. Hudry and A. Lobstein. Discriminating codes in (bipartite)
planar graphs. European Journal of Combinatorics 29(5):1353�1364, 2008.

[38] I. Charon, G. Cohen, O. Hudry and A. Lobstein. New identifying codes in the binary
Hamming space. European Journal of Combinatorics 31(2):491�501, 2010.

[39] R. Crowston, G. Gutin, M. Jones, G. Muciaccia and A. Yeo. Parameterizations of
test cover with bounded test sizes. Manuscript, 2012.

[40] R. Crowston, G. Gutin, M. Jones, S. Saurabh and A. Yeo. Parameterized study of the
test cover problem. Proceedings of Mathematical Foundations of Computer Science,
MFCS 2012, Lecture Notes in Computer Science 7464:283�295, 2012.

[41] I. Charon, S. Gravier, O. Hudry, A. Lobstein, M. Mollard and J. Moncel. A linear
algorithm for minimum 1-identifying codes in oriented trees. Discrete Applied Math-
ematics 154(8):1246�1253, 2006.

[42] I. Charon, I. Honkala, O. Hudry and A. Lobstein. General bounds for identifying codes
in some in�nite regular graphs. The Electronic Journal of Combinatorics 8(1):R39,
2001.

[43] I. Charon, I. Honkala, O. Hudry and A. Lobstein. Structural properties of twin-free
graphs. The Electronic Journal of Combinatorics 14(1):R16, 2007.

[44] I. Charon, O. Hudry and A. Lobstein. Identifying and locating-dominating codes: NP-
completeness results for directed graphs. IEEE Transactions on Information Theory
48(8):2192�2200, 2002.

[45] I. Charon, O. Hudry and A. Lobstein. Minimizing the size of an identifying or
locating-dominating code in a graph is NP-hard. Theoretical Computer Science
290(3):2109�2120, 2003.

[46] I. Charon, O. Hudry and A. Lobstein. Extremal cardinalities for identifying and
locating-dominating codes in graphs. Discrete Mathematics 307(3-5):356�366, 2007.

[47] I. Charon, O. Hudry and A. Lobstein. Extremal values for the maximum degree in a
twin-free graph. To appear in Ars Combinatoria.

[48] G. Chartrand, L. Eroh, M. Johnson and O. Oellermann. Resolvability in graphs
and the metric dimension of a graph. Discrete Applied Mathematics 105(1-3):99�113,
2000.

[49] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater and P. Zhang. The locating-
chromatic number of a graph. Bulletin of the Institute of Combinatorics and its Ap-
plications 36:89�101, 2002.

[50] C. Chen, C. Lu and Z. Miao. Identifying codes and locating-dominating sets on paths
and cycles. Discrete Applied Mathematics 159(15):1540�1547, 2011.

[51] N. Chiba, T. Nishizeki, S. Abe and T. Ozawa. A linear algorithm for embedding
planar graphs using PQ-trees. Journal of Computer and System Sciences 30(1):54�
76, 1985.

[52] M. Chlebík and J. Chlebíková. Approximation hardness for small occurrence instances
of NP-Hard problems. Proceedings of the 5th Italian Conference on Algorithms and
Complexity, CIAC 2003, Lecture Notes in Computer Science 2653:152�164, 2003.

[53] M. Chlebík and J. Chlebíková. Approximation hardness of edge dominating set prob-
lems. Journal of Combinatorial Optimization 11:279�290, 2006.

180 General references

[54] M. Chlebík and J. Chlebíková. Approximation hardness of dominating set problems
in bounded degree graphs. Information and Computation 206:1264�1275, 2008.

[55] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas. The strong perfect graph
theorem. Annals of Mathematics 164:51�229, 2006.

[56] M. Chudnovsky and P. Seymour. The structure of claw-free graphs. Surveys in com-
binatorics, London Mathematical Society Lecture Note Series 327:153�171, 2005.

[57] M. Chudnovsky and P. Seymour. Excluding induced subgraphs. Surveys in Combi-
natorics, London Mathematical Society Lecture Note Series 346:99�119, 2007.

[58] B. N. Clark, C. J. Colbourn and D. S. Johnson. Unit disk graphs. Discrete Mathe-
matics 86(1-3):165�177, 1990.

[59] A. Cobham. The intrinsic computational di�culty of functions. Proceedings of the
second International Congress for Logic, Methodology and Philosophy of Science,
Jerusalem, 1964.

[60] G. Cohen, I. Honkala, A. Lobstein and G. Zémor. On codes identifying vertices in
the two-dimensional square lattice with diagonals. IEEE Transactions on Computers
50(2):174�176, 2001.

[61] G. Cohen, I. Honkala, A. Lobstein and G. Zémor. On identifying codes. Proceedings of
the DIMACS Workshop on Codes and Association Schemes '99, pages 97-109, 2001.

[62] C. Colbourn, P. J. Slater and L. K. Stewart. Locating-dominating sets in series-
parallel networks. Congressus Numerantium 56:135�162, 1987.

[63] S. Cook. The complexity of theorem proving procedures. Proceedings of the Third
Annual ACM Symposium on Theory of Computing, STOC '71, pages 151�158, 1971.

[64] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of �nite
graphs. Information and Computation 85(1):12�75, 1990.

[65] B. Courcelle, J. Engelfriet and G. Rozenberg. Handle-rewriting hypergraph gram-
mars. Journal of Computing and System Sciences 46:218�270, 1993.

[66] B. Courcelle, J. Makowski and U. Rotics. Linear time solvable optimization problems
on graphs of bounded clique width. Theory of Computing Systems 33(2):125�150,
2000.

[67] B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-decomposable
graphs. Theoretical Computer Science 109:49�82, 1993.

[68] P. Crescenzi, V. Kann, R. Silvestri and L. Trevisan. Structure in aproximation classes.
SIAM Journal on Computing 28(5):1759�1782, 1999.

[69] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour and M. Yannakakis.
The complexity of multiterminal cuts. SIAM Journal of Computing 23(4):864�894,
1994.

[70] P. Damaschke, H. Müller and D. Kratsch. Domination in convex and chordal bipartite
graphs. Information Processing Letters 36:52:31�236, 1990.

[71] K. M. J. De Bontridder, B. V. Halldórsson, M. M. Halldórsson, C. A. J. Hurkens,
J. K. Lenstra, R. Ravi and L. Stougie. Approximation algorithms for the test cover
problem. Mathematical Programming Series B 98:477�491, 2003.

Bibliography 181

[72] E. D. Demaine and M. Hajiaghayi. Graphs excluding a �xed minor have grids as
large as treewidth, with combinatorial and algorithmic applications through bidi-
mensionality. Proceedings of the sixteenth annual ACM-SIAM symposium on discrete
algorithms, SODA'05, pages 682�689, 2005.

[73] H. N. De Ridder and others. Information System on Graph Classes and their Inclu-
sions (ISGCI). http://www.graphclasses.org

[74] J. Díaz, O. Pottonen, M. Serna and E. J. Van Leeuwen. On the complexity of metric
dimension. Proceedings of the 20th annual European Symposium on Algorithms, ESA
2012, Lecture Notes in Computer Science 7501:419�430, 2012.

[75] R. Diestel. Graph Theory, 4th edition, Springer, 2010.

[76] J. Edmonds. Paths, trees, and �owers. Canadian Journal of Mathematics 17:449�467,
1965.

[77] P. Erd®s and L. Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. In A. Hajnal, R. Rado and V. T. Sós, editors. In�nite and �nite
sets (to Paul Erd®s on his 60th birthday). II., North-Holland, pages 609�627, 1975.

[78] P. Erd®s and A. Rényi. On random graphs. I. Publicationes Mathematicae 6:290�297,
1959.

[79] P. Erd®s and H. Sachs. Reguläre Graphen gegebener Taillenweite mit mini-
maler Knotenzahl.Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle-
Wittenberg, Mathematisch-Naturwissenschaftliche Reihe 12:251�258, 1963.

[80] L. Esperet, S. Gravier, M. Montassier, P. Ochem and A. Parreau. Locally identifying
coloring of graphs. The Electronic Journal of Combinatorics 19(2):P40, 2012.

[81] R. Fagin. Generalized �rst-order spectra and polynomial-time recognizable sets. Com-
plexity of Computation, ed. R. Karp, SIAM-AMS Proceedings 7:27�41, 1974.

[82] M. Farber. Domination, independent domination, and duality in strongly chordal
graphs. Discrete Applied Mathematics 7:115�130, 1984.

[83] M. Farber and J. M. Keil. Domination in permutation graphs. Journal of Algorithms
6:309�321, 1985.

[84] J.F. Fink and M.S. Jacobson, n-domination in graphs. Graph Theory with Applica-
tions to Algorithms and Computer Science, John Wiley and Sons, 282�300, 1985.

[85] A. Frieze, R. Martin, J. Moncel, M. Ruszinkó and C. Smyth. Codes identifying sets
of vertices in random networks. Discrete Mathematics 307(9-10):1094�1107, 2007.

[86] P. Gambette and S. Vialette. On restrictions of balanced 2-interval graphs. Proceed-
ings of the 33rd International Workshop on Graph-Theoretic Concepts in Computer
Science, WG'07, Lecture Notes in Computer Science 4769:55�65, 2007.

[87] M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete.
SIAM Journal on Applied Mathematics 32(4):826�834, 1977.

[88] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory
of NP-completeness, W. H. Freeman, 1979.

[89] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory Series B 16:47�56, 1974.

[90] J. Gimbel, B. D. Van Gorden, M. Nicolescu, C. Umstead and N. Vaiana. Location
with dominating sets. Congressus Numerantium 151:129�144, 2001.

http://www.graphclasses.org

182 General references

[91] O. Goldreich. Computational complexity: a conceptual perspective, Cambridge Uni-
versity Press, 2008.

[92] M. C. Golumbic and U. Rotics. On the Clique-Width of Some Perfect Graph Classes.
International Journal of Foundations of Computer Science 11(3):423�443, 2000.

[93] D. Gonçalves, A. Pinlou, M. Rao and S. Thomassé. The domination number of grids.
SIAM Journal of Discrete Mathematics 25(3):1443�1453, 2011.

[94] S. Gravier, R. Klasing and J. Moncel. Hardness results and approximation algorithms
for identifying codes and locating-dominating codes in graphs. Algorithmic Operations
Research 3(1):43�50, 2008.

[95] S. Gravier, M. Kov²e, M. Mollard, J. Moncel and A. Parreau. New results on variants
of covering codes in Sierpi«ski graphs. To appear in Designs, Codes and Cryptography.

[96] S. Gravier and J. Moncel. On graphs having a V \ {x} set as an identifying code.
Discrete Mathematics 307(3-5):432�434, 2007.

[97] S. Gravier, J. Moncel and A. Semri. Identifying codes of cycles. European Journal of
Combinatorics 27(5):767�776, 2006.

[98] S. Gravier, J. Moncel and A. Semri. Identifying codes of Cartesian product of two
cliques of the same size. The Electronic Journal of Combinatorics 15:N4, 2008.

[99] H. Grötzsch. Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz für dreikreis-
freie Netze auf der Kugel (German). Wissenschaftliche Zeitschrift der Martin-Luther-
Universität Halle-Wittenberg, Mathematisch-Naturwissenschaftliche Reihe 8:109�120,
1958/1959.

[100] M. Grötschel, L. Lovász, A. Schrijver. Polynomial algorithms for perfect graphs.
Annals of Discrete Mathematics 21:325�256, 1984.

[101] H. Hadwiger. Über eine Klassi�kation der Streckenkomplexe. Vierteljahrschriften der
Naturforschungsgesellschaft Zürich 88:133�143, 1943.

[102] R. Halin. S-functions for graphs. Journal of Geometry 8:171�186, 1976.

[103] P. Hall. On representatives of subsets. Journal of the London Mathematical Society
10(1):26�30, 1935.

[104] F. Harary et R. A. Melter. On the metric dimension of a graph. Ars Combinatoria
2:191�195, 1976.

[105] S. Hartung and A. Nichterlein. On the parameterized and approximation hardness of
metric dimension. Submitted manuscript, 2012.

[106] A. Harutyunyan, P. Horn and J. Verstraete. Independent dominating sets in graphs
of girth �ve. To appear in Combinatorics, Probability and Computing.

[107] M. Hauptmann, R. Schmied and C. Viehmann. Approximation complexity of metric
dimension problem. Journal of Discrete Algorithms 14:214�222, 2012.

[108] F. Havet. Minimum-density identifying codes in grids. Manuscript, 2010.

[109] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Fundamentals of domination in
graphs, Marcel Dekker, 1998.

[110] T.W. Haynes, S. T. Hedetniemi and P. J. Slater, editors. Domination in graphs:
advanced topics, Marcel Dekker, 1998.

Bibliography 183

[111] T. W. Haynes, D. J. Knisley, E. Seier and Y. Zou. A quantitative analysis of secondary
RNA structure using domination based parameters on trees. BMC Bioinformatics
7:108, 2006.

[112] P. J. Heawood. Map-colour theorem. Quarterly Journal of Pure and Applied Mathe-
matics 24:332�338, 1890.

[113] M. A. H. Henning and A. Yeo. Identifying open codes in cubic graphs. Submitted
manuscript, 2012.

[114] M. A. H. Henning and A. Yeo. Identifying vertex covers in graphs. To appear in The
Electronic Journal of Combinatorics.

[115] D. Hochbaum (editor). Approximation algorithms for NP-hard problems, PWS Pub-
lishing Co. Boston, USA, 1997.

[116] H. Hocquard and M. Montassier. Adjacent vertex-distinguishing edge coloring of
graphs with maximum degree ∆. To appear in Journal of Combinatorial Optimiza-
tion.

[117] I. Honkala. On r-locating-dominating sets in paths. European Journal of Combina-
torics 30(4):1022�1025, 2009.

[118] I. Honkala, M. Karpovsky and S. Litsyn. Cycles identifying vertices and edges in bi-
nary hypercubes and 2-dimensional tori. Discrete Applied Mathematics 129(2-3):409�
419, 2003.

[119] I. Honkala, T. Laihonen and S. Ranto. On codes identifying sets of vertices in Ham-
ming spaces. Designs, Codes and Cryptography 24, 193�204, 2001.

[120] I. Honkala, T. Laihonen and S. Ranto. On strongly identifying codes. Discrete Math-
ematics 254:191�205, 2002.

[121] I. Honkala and A. Lobstein. On the complexity of the identi�cation problem in Ham-
ming spaces. Acta Informatica 38(11-12):839�845, 2002.

[122] I. Honkala and A. Lobstein. On identifying codes in binary Hamming spaces. Journal
of Combinatorial Theory Series A 99(2):232�243, 2002.

[123] J. Hopcroft and R. Tarjan. E�cient Planarity Testing. Journal of the ACM
21(4):549�568, 1974.

[124] J. Hromkovi£. Algorithmics for hard problems: introduction to combinatorial opti-
mization, randomization, approximation, and heuristics, 2nd edition, Springer, 2002.

[125] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz
and R. E. Stearns. NC-approximation schemes for NP-and PSPACE-hard problems
for geometric graphs. Journal of Algorithms 26:238�274, 1998.

[126] R. Impagliazzo, R. Paturi and F. Zane. Which problems have strongly exponential
complexity?, Journal of Computer and System Sciences 63:512�530, 2001.

[127] D. S. Johnson, Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9:256�278, 1974.

[128] V. Junnila. On identifying and locating-dominating codes. PhD thesis, Turku Centre
for Computer Science, Finland, 2011.

[129] V. Junnila and T. Laihonen. Optimal identifying codes in cycles and paths. Graphs
and Combinatorics 28(4):469�481, 2012.

184 General references

[130] V. Junnila and T. Laihonen. Optimal identi�cation of sets of edges using 2-factors.
Submitted manuscript, 2012.

[131] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J.
W. Thatcher, editors, Complexity of Computer Computations, pages 85�103. Plenum
Press, 1972.

[132] M. G. Karpovsky, K. Chakrabarty and L. B. Levitin. On a new class of codes for
identifying vertices in graphs. IEEE Transactions on Information Theory 44:599�611,
1998.

[133] S. Khanna, R. Motwani, M. Sudan, U. V. Vazirani. On syntactic versus computational
views of approximability. SIAM Journal of Computing 28(1):164�191, 1998.

[134] S. Khuller, B. Raghavachari and A. Rosenfeld. Landmarks in graphs. Discrete Applied
Mathematics 70(3):217�229, 1996.

[135] J. H. Kim, O. Pikhurko, J. Spencer and O. Verbitsky. How complex are random
graphs in First Order logic? Random Structures and Algorithms 26(1-2):119�145,
2005.

[136] S. Klavºar and U. Milutinovi¢. Graphs S(n, k) and a variant of the Tower of Hanoi
problem. Czechoslovak Mathematical Journal 47(122):95�104, 1997.

[137] S. Klavºar and B. Mohar. Crossing numbers of Sierpinski-like graphs. Journal of
Graph Theory 50:186�198, 2005.

[138] A. V. Kostochka. Lower bound of the Hadwiger number of graphs by their average
degree. Combinatorica 4:307�316, 1984.

[139] D. Kratsch. Domination and total domination on asteroidal triple-free graphs. Dis-
crete Applied Mathematics 99(1-3):111�123, 2000.

[140] R. Ladner. On the structure of polynomial time reducibility. Journal of the ACM
22(1):155�171, 1975.

[141] E. L. Lawler. Combinatorial optimization: networks and matroids, Holt, Rinehart
and Winston, 1976.

[142] M. Laifenfeld. Coding for network applications: robust identi�cation and distributed
resource allocation. PhD thesis, Boston University, USA, 2008.

[143] M. Laifenfeld and A. Trachtenberg. Identifying codes and covering problems. IEEE
Transactions on Information Theory 54(9):3929�3950, 2008.

[144] M. Laifenfeld, A. Trachtenberg, R. Cohen and D. Starobinski. Joint monitoring and
routing in wireless sensor networks using robust identifying codes. Proceedings of
IEEE Broadnets 2007, pages 197�206, September 2007.

[145] A. Lobstein. Watching systems, identifying, locating-dominating and discriminat-
ing codes in graphs: a bibliography. http://www.infres.enst.fr/~lobstein/

debutBIBidetlocdom.pdf

[146] L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete Mathe-
matics 2:253�267, 1972.

[147] L. Lovász. Combinatorial problems and exercises, 2nd edition, Elsevier, 1993.

[148] L. Lovász. Graph minor theory. Bulletin of the American Mathematical Society 43:75�
86, 2006.

http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf
http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf

Bibliography 185

[149] W. McCuaig and B. Shepherd. Domination in graphs with minimum degree two.
Journal of Graph Theory 13(6):, 749�762, 1989.

[150] B. McKay and N. Wormald. Asymptotic enumeration by degree sequence of graphs
with degrees o(n1/2). Combinatorica 11(4):369�382, 1991.

[151] S. Micali and V. V. Vazirani. An O(
√
|V ||E|)-algorithm for �nding maximum match-

ing in general graphs. Proceedings of the 21st Annual Symposium on Foundations of
Computer Science, FOCS 1980):17�27, 1980.

[152] M. Milani£, R. Rizzi and A. I. Tomescu. Set graphs. II. Complexity of set graph
recognition and similar problems. Submitted manuscript, 2012.

[153] M. Milani£ and A. I. Tomescu. Set graphs. I. Hereditarily �nite sets and extensional
acyclic orientations. To appear in Discrete Applied Mathematics.

[154] M. Milani£ and A. I. Tomescu. Set graphs. IV. Further connections to claw-free
graphs. In preparation.

[155] M. Molloy and B. Reed. Graph colouring and the probabilistic method, 1st edition,
Springer, December 2001.

[156] J. Moncel. Codes identi�ants dans les graphes. PhD thesis, Université Joseph Fourier
Grenoble I, France, 2005.

[157] J. Moncel. On graphs on n vertices having an identifying code of cardinality log2(n+
1). Discrete Applied Mathematics 154(14):2032�2039, 2006.

[158] J. Moncel. Monotonicity of the minimum cardinality of an identifying code in the
hypercube. Discrete Applied Mathematics 154(6):898�899, 2006.

[159] B. M. E. Moret and H. D. Shapiro. On minimizing a set of tests. SIAM Journal of
Scienti�cal and Statistical Computation 6(4):983�1003, 1985.

[160] H. Müller and A. Brandtädt. The NP-completeness of Steiner Tree and Dominating
Set for chordal bipartite graphs. Theoretical Computer SCience 53:257�265, 1987.

[161] T. Müller and J.-S. Sereni. Identifying and locating-dominating codes in (random)
geometric networks. Combinatorics, Probability and Computing 18(6):925�952, 2009.

[162] T. Nieberg and J. Hurink. A PTAS for the minimum dominating set problem in unit
disk graphs. Proceedings of the Third international conference on Approximation and
Online Algorithms, WAOA'05, Lecture Notes in Computer Science 3879:296�306,
2006.

[163] O. M. Omodeo and A. I. Tomescu. Set graphs. III. Proof Pearl: Claw-free Graphs
Mirrored into Transitive Hereditarily Finite Sets. To appear in Journal of Automated
Reasoning.

[164] C. H. Papadimitriou. Computational complexity, Addison-Wesley, 1994.

[165] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences 43(3):425�440, 1991.

[166] C. H. Papadimitriou and M. Yannakakis. On limited nondeterminism and the com-
plexity of the V-C dimension. Journal of Computer and System Sciences 53(2):161�
170, 1996.

[167] A. Parreau. Problèmes d'identi�cation dans les graphes. PhD thesis, Université de
Grenoble, France, 2012.

[168] M. Penrose. Random geometric graphs, Oxford University Press, 2003.

186 General references

[169] S. Ranto. Identifying and locating-dominating codes in binary Hamming spaces. PhD
thesis, Turku Centre for Computer Science, Finland, 2007.

[170] S. Ray, R. Ungrangsi, F. De Pellegrini, A. Trachtenberg and D. Starobinski. Robust
location detection in emergency sensor networks. IEEE Journal on Selected Areas in
Communications 22(6):1016�1025, 2004.

[171] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. Proceedings of the Twenty-
Ninth Annual ACM Symposium on Theory of Computing, 475�484, 1997.

[172] B. Reed. Paths, stars and the number three. Combinatroics, Probabilities and Com-
puting 5(3):277�295, 1996.

[173] D. L. Roberts and F. S. Roberts. Locating sensors in paths and cycles: The case of
2-identifying codes. European Journal of Combinatorics 29(1):72�82, 2008.

[174] N. Robertson and P. D. Seymour. Graph Minors. I. Excluding a forest. Journal of
Combinatorial Theory Series B 35(1):39�61, 1983.

[175] N. Robertson and P. D. Seymour. Graph Minors. XX. Wagner's conjecture. Journal
of Combinatorial Theory Series B 92(2):325�357, 2004.

[176] P. Rosendahl. On the identi�cation of vertices using cycles. The Electronic Journal
of Combinatorics 10:P1, 2003.

[177] E. R. Scheinerman and D. B. West. The interval number of a planar graph: three
intervals su�ce. Journal of Combinatorial Theory Series B 35:224�239, 1983.

[178] S. J. Seo and P. J. Slater. Open neighborhood locating-dominating sets. The Aus-
tralasian Journal of Combinatorics 46:109�120, 2010.

[179] S. J. Seo and P. J. Slater. Open neighborhood locating-domination in trees. Discrete
Applied Mathematics 159(6):484�489, 2011.

[180] J. Shearer. A note on the independence number of triangle-free graphs. Discrete
Mathematics 46(1):83�87, 1983.

[181] R. D. Skaggs. Identifying vertices in graphs and digraphs. PhD thesis, University of
South Africa, South Africa, February 2007, available online at http://hdl.handle.
net/10500/2226.

[182] P. J. Slater. Leaves of trees. Congressus Numerantium 14:549�559, 1975.

[183] P. J. Slater. Domination and location in acyclic graphs. Networks 17(1):55�64, 1987.

[184] P. J. Slater. Dominating and reference sets in a graph. Journal of Mathematical and
Physical Sciences 22(4):445�455, 1988.

[185] P. J. Slater and D. F. Rall. On location-domination numbers for certain classes of
graphs. Congressus Numerantium 45:97�106, 1984.

[186] B. M. Stanton. On vertex identifying codes for in�nite lattices. PhD thesis, Iowa State
University, USA, 2011.

[187] J. Suomela. Approximability of identifying codes and locating-dominating codes. In-
formation Processing Letters 103(1):28�33, 2007.

[188] J. Suomela (http://cstheory.stackexchange.com/users/74). Answer to the ques-
tion �Is the dominating set problem restricted to planar bipartite graphs of maximum
degree 3 NP-complete?�, http://cstheory.stackexchange.com/a/2508/1930.

http://hdl.handle.net/10500/2226
http://hdl.handle.net/10500/2226
http://cstheory.stackexchange.com/users/74
http://cstheory.stackexchange.com/a/2508/1930

Bibliography 187

[189] D. Sumner. Point determination in graphs. Discrete Mathematics 5:179�187, 1973.

[190] A. Thomason. The extremal function for complete minors. Journal of Combinatorial
Theory Series B 81(2):318�338, 2001.

[191] S. Thomassé and A. Yeo. Total domination of graphs and small transversals of hy-
pergraphs. Combinatorica 27(4):473�487, 2007.

[192] C. A. Tovey. A simpli�ed NP-complete satis�ability problem. Discrete Applied Math-
ematics 8(1):85�89, 1984.

[193] L. Trevisan. Inapproximability of combinatorial optimization problems. Electronic
Colloquium on Computational Complexity (ECCC) TR04-065:2010. Available online
at http://eccc.hpi-web.de/report/2004/065/.

[194] L. E. Trotter. Line perfect graphs. Mathematical Programming 12(1):255�259, 1977.

[195] R. Ungrangsi, A. Trachtenberg and D. Starobinski. An implementation of indoor
location detection systems based on identifying codes. Proceedings of Intelligence in
Communication Systems, INTELLCOMM 2004, Lecture Notes in Computer Science
3283:175�189, 2004.

[196] P. Valicov. Problèmes de placement, de coloration et d'identi�cation. PhD Thesis,
Université Bordeaux 1, France, 2012.

[197] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen
114(1):570�590, 1937.

[198] A. Winter. Another algebraic proof of Bondy's theorem on induced subsets. Journal
of Combinatorial Theory Series A 89(1):145�147, 2000.

[199] N. Wormald. The asymptotic distribution of short cycles in random regular graphs.
Journal of Combinatorial Theory Series B 31(2):168�182, 1981.

[200] M. Xua, K. Thulasiraman and X. Hu. Identifying codes of cycles with odd orders.
European Journal of Combinatorics 29(7):1717�1720, 2008.

[201] M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM Journal on
Applied Mathematics 38:364�372, 1980.

[202] N. E. Young (http://cstheory.stackexchange.com/users/8237). Answer to the
question �What is the complexity of this covering problem?�, http://cstheory.

stackexchange.com/a/11886/1930.

[203] Z. Zhang, L. Liu and J. Wang. Adjacent strong edge coloring of graphs. Applied
Mathematics Letters 15(5):623�626, 2002.

Author's publications

[BBFP12] O. Baudon, J. Bensmail, F. Foucaud and M. Pil±niak. On the length of the longest
path in partitionable balloons. Submitted manuscript, 2012.

[BFPW12] O. Baudon, F. Foucaud, J. Przybyªo and M. Wo¹niak. On the structure of arbitrarily
partitionable graphs with given connectivity. Submitted manuscript, 2012.

[Fo09] F. Foucaud. Identifying codes in special graph classes. Master thesis, Université
Bordeaux 1, France, June 2009. Available online at http://www.labri.fr/perso/

foucaud/Research/MastersThesis/.

http://eccc.hpi-web.de/report/2004/065/
http://cstheory.stackexchange.com/users/8237
http://cstheory.stackexchange.com/a/11886/1930
http://cstheory.stackexchange.com/a/11886/1930
http://www.labri.fr/perso/foucaud/Research/MastersThesis/
http://www.labri.fr/perso/foucaud/Research/MastersThesis/

188 Index of de�nitons

[FGN+12] F. Foucaud, S. Gravier, R. Naserasr, A. Parreau and P. Valicov. Identifying codes in
line graphs. To appear in Journal of Graph Theory.

[FGK+11] F. Foucaud, E. Guerrini, M. Kov²e, R. Naserasr, A. Parreau and P. Valicov. Ex-
tremal graphs for the identifying code problem. European Journal of Combinatorics
32(4):628�638, 2011.

[FHL+12] F. Foucaud, I. Honkala, T. Laihonen, A. Parreau and G. Perarnau. Locally iden-
tifying colourings of graphs with given maximum degree. Discrete Mathematics
312(10):1832�1837, 2012.

[FKKR12] F. Foucaud, R. Klasing, A. Kosowski and A. Raspaud. On the size of identifying
codes in triangle-free graphs. Discrete Applied Mathematics 160(10-11):1532�1546,
2012.

[FKM+12] F. Foucaud, A. Kosowski, G. Mertzios, R. Naserasr, A. Parreau and P. Valicov.
Identifying codes in subclasses of perfect graphs. In preparation.

[FK12] F. Foucaud and M. Kov²e. On graph identi�cation problems and the special case
of identifying vertices using paths. To appear in Proceedings of the International
Workshop on Combinatorial Algorithms, IWOCA 2012. Lecture Notes in Computer
Science 7643.

[FLP12] F. Foucaud, T. Laihonen and A. Parreau. An improved lower bound for (1,≤ 2)-
identifying codes in the king grid. Submitted manuscript, 2012.

[FN12] F. Foucaud and R. Naserasr. On the complexity of signed graph homomorphism
problems. In preparation.

[FNP12] F. Foucaud, R. Naserasr and A. Parreau. Characterizing extremal digraphs for iden-
tifying codes and extremal cases of Bondy's theorem on induced subsets. To appear
in Graphs and Combinatorics.

[FP12] F. Foucaud and G. Perarnau. Bounds for identifying codes in terms of degree param-
eters. The Electronic Journal of Combinatorics 19:P32, 2012.

Index of de�nitons 189

Index of de�nitions

adjacency relation, 16
algorithm, 27
ancestor in a tree, 23
approximation algorithm, 30
arc, 16

bipartite
graph, 22
incidence graph, 17

Bondy's theorem, 35

child in a tree, 23
chordal

bipartite graph, 23
graph, 24

chromatic number, 21
clique, 20

-width, 26
number, 20

k-colourable graph, 21
colouring

proper, 21
complement of a graph, 18
complete

C-complete, 30
bipartite graph, 23
graph, 20
join of graphs, 19

complexity class
F-APX, 30
APX, 30
FPTAS, 30
NP, 28
PTAS, 30
P, 28
log-APX, 30
poly-APX, 30

connected
component, 18
graph, 18

cubic graph, 17
cycle

even, 18
graph Cn, 18
in a graph, 18
odd, 18

decision problem, 28
3-Dimensional Matching, 34
Discriminating Code, 41
Dominating Set, 33

Edge-Identifying Code, 34
Identifying Code, 4
Directed Identifying Code, 43
r-Identifying Code, 42
Ladder Cycle Cover, 152
Locating-Dominating Set, 44
Matching, 28
SAT, 28
3-SAT, 28
(≤ r,≤ s)-SAT, 33
Planar (= 3,≤ 3)-SAT, 33
Test Cover, 41

k-degenerate graph, 27
degree

average, 17
in-, 17
maximum, 17
minimum, 17
of a vertex, 17
out-, 17

Depth-First-Search tree, 98
descendant in a tree, 23
digraph, 16

symmetric, 16
directed path graph, 24
discriminating code, 35
disjoint union of (di)graphs, 19
distance, 18
dominating set, 2
Dominating Shortest Path graph, 27
domination

number, 2
of a vertex by another vertex, 2

dual of a hypergraph, 21

edge, 16
-identi�able graph, 106
-identifying code, 106
-identifying code number, 106
cover, 21
endpoint, 16
multiple, 16
set, 16

false twins, 4
forced vertex, 4
forest, 23

genus, 24
girth, 18
graph, 16

190 Index of de�nitons

directed, 16
isomorphism, 17
simple, 16
undirected, 16

grid, 23

Hall' marriage theorem, 23
C-hard, 30
height of a tree, 23
hypercube, 23
hypergraph, 16

uniform, 16

identi�able graph, 4
identifying code, 2

(r,≤ `)-identifying code, 34
r-identifying code, 34
number, 2

identifying open code, 36
incidence relation, 16
independence number, 20
independent set, 20

distance-k-, 20
induced claw-free graph, 26
instance, 28

size, 28
intersection graph, 24
interval graph, 24
isolated vertex, 17

leaf of a tree, 23
level in a tree, 23
line graph, 25
locating-dominating set, 22
location-domination number, 22
loop, 16

matching, 21
induced, 21
perfect, 21
strong induced, 79

minor, 20
monadic second-order logic, 32
multigraph, 16

neighbour, 17
in-neighbour, 17
out-neighbour, 17

neighbourhood
closed, 17
closed in-, 17
closed out-, 17
distance-k closed, 18
hypergraph of a graph, 19
in-, 17
open, 17

out-, 17
non-edge, 16
NP-complete, 28
NP-hard, 28

optimization problem, 29
Max Matching, 33
Max SAT, 29
Max (≤ 3,≤ 3)-SAT, 29
Min Discrim Code, 41
k-bounded Min Discrim Code, 42
Min Dom Set, 33
Min Edge Cover, 33
Min Edge-Id Code, 34
Min Id Code, 5
Min Ladder Cycle Cover, 152
Min Loc-Dom Set, 44
Min Set Cover, 29
k-bounded Min Set Cover, 41
Min Test Cover, 41
k-bounded Min Test Cover, 41
Min Vertex Cover, 33

order of a graph, 16
oriented graph, 16
outerplanar graph, 24

parent in a tree, 23
path

directed path, 18
graph Pn, 18
in a graph, 17
length, 18

perfect graph, 25
performance ratio, 30
permutation graph, 25
planar graph, 23
polynomial-time approximation scheme, 30
power of a graph, 19
probabilistic method, 27

quasi-line graph, 26

random
geometric graph, 40
graph, 26
regular graph, 27

reduction
AP-, 31
Karp, 28
L-, 31
polynomial-time, 28

regular graph, 17
root

of a graph, 19
of a tree, 23

rooted

Index of de�nitons 191

oriented tree, 23
tree, 23

running time, 28

separating code, 2
number, 2

separation of a pair by a vertex, 2
series-parallel graph, 24
set

cover, 21
system, 16

sink, 17
size of a graph, 16
source, 17
spanning

subgraph, 20
tree, 23

split graph, 27
star, 23
subcubic graph, 17
subgraph, 19

induced by edges, 19
induced by vertices, 19

test cover, 35
transversal, 21
tree, 23

-width, 26
triangle, 20

-free graph, 20
twin, 3

-free graph, 3

undirected path graph, 24
unit

disk graph, 25
interval graph, 24

universal vertex, 17

vertex, 16
cover, 21
cover number, 21
set, 16

List of notations 193

List of notations

(u, v) Arc from u to v in a digraph, page 16
{u, v} Edge between vertices u, v in an undirected graph, page 16
A Closure of the set of all graphs Ak with respect to ./, page 56
A ./ K1 Set of all graphs of A with an additional universal vertex, page 57
A(D) Arc set of digraph D, page 16
Ak Basic graph on 2k vertices with identifying code number 2k − 1, page 56
A∞ Basic in�nite graph with all its vertices as only identi�ng code, page 59
α(G) Independence number of graph G, page 20
A	B Symmetric di�erence between two sets A and B, page 15
B(I,A)) Bipartite incidence graph of set system (I,A), page 17
χ(G) Chromatic number of graph G, page 21
Cn Cycle graph on n vertices, page 18
d(u, v) Distance between vertices u and v, page 18
d+(v) Out-degree of vertex v, page 17
d−(v) In-degree of vertex v, page 17
d(G) Average degree of graph G, page 17
deg(v) degree of vertex v, page 17
δ(G) Minimum degree of graph G, page 17
∆(G) Maximum degree of graph G, page 17
E(G) Edge set of graph G, page 16
E(X) Expectance of random variable X, page 15
g(G) Girth of graph G, page 18
γ(G) Domination number of graph G, page 2
γLD(G) Location-domination number of graph G, page 22
γEID(G) Edge-identifying code number of graph G, page 106
γID(G) Identifying code number of graph G, page 2−→
γID(D) Identifying code number of digraph G, page 2
γS(G) Separating code number of graph G, page 2−→
γS(G) Separating code number of digraph D, page 2
G Complement of graph G, page 18
G ∼= H Graphs G and H are isomorphic, page 17
G−X Graph G with vertices of X removed, page 20
G− x Graph G with vertex x removed, page 20
G1 ./ G2 Complete join of graphs G1 and G2, page 19
G1 ⊕G2 Disjoint union of graphs G1 and G2, page 19
Gr rth power of graph G, page 19
G[X] Subgraph of G induced by vertex or edge set X, page 19
Hd Hypercube of dimension d, page 23
Kn Complete graph on n vertices, page 20
K−n Kn minus one edge, page 20
Kn,m Complete bipartite graph with parts of sizes n and m, page 23
L(G) Line graph of graph G, page 25
Lm Ladder graph with m step edges, page 152
LOG(A,L) Bipartite logarithmic identi�cation of A over (A,L), page 120
LOG∗(A,L) Non-singleton bipartite logarithmic identi�cation of A over (A,L), page 120
NF (G) Proportion of non-forced vertices in graph G, page 71
N−[v] Closed in-neighbourhood of vertex v, page 17
N−(v) In-neighbourhood of vertex v, page 17

194 List of notations

N+(v) Out-neighbourhood of vertex v, page 17
N+[v] Closed out-neighbourhood of vertex v, page 17
N(v) Open neighbourhood of vertex v, page 17
N [v] Closed neighbourhood of vertex v, page 17
Nk[v] Distance-k-closed neighbourhood of vertex v, page 18
N(X) Union of open neighbourhoods of vertices of X, page 17
N [X] Union of closed neighbourhoods of vertices of X, page 17
o(g(x)) Little-o asymptotic notation for g(x), page 15
on(g(x, n)) Little-o asymptotic notation for g(x, n) with respect to variable n, page 15
O(g(x)) Big-o asymptotic notation for g(x), page 15
On(g(x, n)) Big-o asymptotic notation for g(x, n) with respect to variable n, page 15
ω(g(x)) Little-omega asymptotic notation for g(x), page 15
ωn(g(x, n)) Little-omega asymptotic notation for g(x, n) with respect to variable n, page 15
ω(G) Clique number of graph G, page 20
Ω(g(x)) Big-omega asymptotic notation for g(x), page 15
Ωn(g(x, n)) Big-omega asymptotic notation for g(x, n) with respect to variable n, page 15
Pn Path graph on n vertices, page 18
Pr(A) Probability of event A, page 15
τ(G) Vertex cover number of graph G, page 21
Θ(g(x)) Theta asymptotic notation for g(x), page 15
Θn(g(x, n)) Theta asymptotic notation for g(x, n) with respect to variable n, page 15
u ∼ v Adjacency between vertices u and v, page 16
u 6∼ v Non-adjacency between vertices u and v, page 16
−→uv Arc from u to v in a digraph, page 16
uv Edge between vertices u, v in an undirected graph, page 16
V (G) Vertex set of (di)graph G, page 16
x−→/ (D) Digraph D with an extra universal source vertex x, page 49

	Introduction
	Identifying codes in graphs
	Formal definition
	First observations

	Applications and motivations of identifying codes
	Overview and contributions of the thesis
	Part I: combinatorial aspects
	Part II: algorithmic aspects

	Other work done during the PhD
	Summary of known bounds on the identifying code number and complexity results for identifying codes

	Definitions, notations and related work
	A few mathematical notations
	Graphs and hypergraphs
	Basic definitions
	Operations, transformations and substructures for graphs and hypergraphs
	Graph classes

	Computational complexity
	Computational problems and algorithms
	Decision problems and related classes
	Optimization problems, approximation algorithms and related classes
	Complexity classes defined using logic and Courcelle's theorem
	Other decision and optimization problems that we will use

	Identification problems that are related to identifying codes
	Codes identifying sets of vertices at a given distance
	Test covers, discriminating codes and Bondy's theorem
	Identifying open codes
	Identification of vertices using stars, cycles and paths
	Identifying the edges of a graph
	Resolving sets and metric dimension
	Identifying colourings

	Existing work on identifying codes in (di)graphs related to this thesis
	General bounds on the identifying code number
	Bounds in specific graph classes
	Complexity of Identifying Code, Min Id Code and related problems

	I Combinatorial aspects
	Extremal (di)graphs for identifying codes
	A useful proposition
	Digraphs with their whole vertex set as only identifying code
	A new family of extremal digraphs
	The characterization
	An application to extremal cases in Bondy's theorem

	The case of infinite oriented graphs
	Families of extremal infinite oriented graphs
	The characterization

	Undirected graphs having as identifying code number their order minus one
	Preliminary tools
	New constructions
	The characterization
	Tightness of the bound of Theorem 2.27 in various graph classes

	Infinite undirected graphs with their whole vertex set as only identifying code
	A family of infinite extremal graphs
	The characterization

	Conclusion

	Identifying codes in graphs of given maximum degree
	Graphs reaching the lower bound of Theorem 2.29
	Upper bounds depending on the order and the maximum degree - a conjecture and some constructions
	A conjecture
	Extremal constructions
	On the number and structure of false twins and forced vertices in a graph
	False twins
	Forced vertices

	Using complements of independent sets to approach Conjecture 4.4
	First bounds
	A refined general approach
	An application to triangle-free graphs
	Proof ideas
	Preliminary considerations
	Quasi-identifying the vertices around a strong induced matching
	The upper bound
	Applying Theorem 4.37

	Using the probabilistic method to tackle Conjecture 4.4
	Probabilistic tools
	The upper bound
	Corollaries of the bound

	Conclusion

	Identifying codes in specific graph classes
	Graphs of given minimum degree and girth at least 5
	Minimum degree 2 and girth at least 5
	Larger minimum degree and girth at least 5
	An application to identifying codes of random regular graphs

	Interval graphs
	Line graphs
	First results
	Lower Bounds
	A first lower bound
	Applying the lower bound to hypercubes
	Refining the lower bound

	Upper bounds
	Line graphs with identifying code number their order minus one
	A minimal edge-identifying code induces a 2-degenerate graph
	An application to Conjecture 4.4 in line graphs

	Conclusion

	II Algorithmic aspects
	Graph classes for which Min Id Code is log-APX-complete
	Some useful constructions
	Min Id Code for bipartite graphs
	Min Id Code for split graphs
	Min Id Code for DSP graphs
	Min Id Code for co-bipartite graphs
	Conclusion

	Graph classes for which Min Id Code is APX-hard or Identifying Code is NP-complete
	Min Id Code for bipartite graphs of small maximum degree and Identifying Code for planar bipartite graphs and for chordal bipartite graphs
	A reduction from Min Vertex Cover
	A reduction from Min Dom Set

	Min Id Code for split graphs of bounded maximum CS-degree
	Min Id Code for split graphs of bounded maximum CS-degree is in APX
	Min Id Code for split graphs of bounded maximum CS-degree is APX-hard

	Min Id Code for line graphs
	Min Id Code for line graphs is 4-approximable
	Min Id Code for line graphs is APX-hard

	Identifying Code for interval graphs is NP-complete
	Conclusion

	Graph classes where Min Id Code is in PTAS or in PO
	Identifying Code for unit interval graphs
	Reducing Min Id Code to Min Ladder Cycle Cover
	Min Id Code for unit interval graphs is in PTAS

	Edge-Identifying Code for graphs of bounded tree-width
	A class of graphs for which Identifying Code is in P but Dominating Set is NP-complete
	Conclusion

	General conclusion and perspectives
	Appendix: omitted proofs
	Proof of Lemma 4.15
	Proof of Theorem 4.28
	Proof of validity of codes Ca and Cb in Lemma 4.36
	Proof of Theorem 4.44
	Proof of Theorem 5.5
	Proof of Theorem 5.17
	Proof of Corollary 5.28
	Proof of Theorem 7.10
	Proofs from Section 7.3

	Bibliography
	General references
	Author's publications

	Index of definitions
	List of notations

