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Abstract

In order to converge as soon as possible toward the most preferable design solution, taking
robust decisions appears as a topical issue to ensure the best choices in engineering design. In
particular, started from a selected concept, embodiment design consists in determining the
main dimensioning and monitoring parameters of the system while meeting the design
requirements. The continuity of the design process between the preliminary and detailed
phases strongly depends on the efficiency of the embodiment design phase in providing
embodied solutions with a validated physical behaviour and an optimized functional structure.
Embodiment design problems are thus generally turned toward numerical optimization. This
requires an accurate modelling of embodiment design problems, and in particular,
investigation of large design spaces, representation and evaluation of candidate solutions and
a priori formalization of preferences are topical issues.

Research works presented in this thesis deal with the development of methodologies and
tools to support decision making during embodiment design of industrial systems and
machines. In particular, it aims to provide designers with a convenient way to structure
objectives functions for optimization in embodiment design. This approach consists in linking
the physical behaviour of the system to be designed, with the design criteria and objectives
through the modelling of designer’s preferences according to observation, interpretation and
aggregation steps. Based on the concept of desirability, this modelling procedure is used to
formulate design objectives and to quantify the overall level of satisfaction achieved by
candidate solutions. In the scope of robust design, this method is applied first to formulate
design objectives related to performances, and then, to formulate design objectives related to
the sensitivity of performances. Robust design problems are thus tackled as a trade-off
between these two design objectives. Measurement methods for performance dispersion and
original trade-off function specific to robust design are proposed.

Finally, an application of the modelling methodology through the embodiment design of a
two-staged flash evaporator for must concentration in the wine industry is presented.
Objective is to find robust design solutions, i.e. configurations with simultaneously a
desirable level of performance, including the quality of the vintage, the transportability of the
system and the costs of ownership, and a low sensitivity of some performances, namely the
temperature of the outlet product and the final alcoholic strength.
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Résumé

Afin de déterminer le plus tét possible dans le processus de conception, les solutions les plus
pertinentes, la prise de décisions robuste apparait comme fondamentale pour garantir les
meilleurs choix. A partir de solutions conceptuelles, I'étape de conception architecturale, dite
de pré-dimensionnement, vise a déterminer les principales grandeurs dimensionnantes et
pilotantes du systeme a concevoir, tout en satisfaisant 'ensemble des exigences du cahier des
charges. La continuité du processus de conception entre les phases préliminaires et détaillées
dépend alors de l'efficacité de la phase de conception architecturale a fournir des solutions
avec un comportement physique validé et une architecture fonctionnelle optimisée. Les
activites de pré-dimensionnement sont donc fortement tournées vers I'optimisation
numerique. L'utilisation de ces techniques requiert une modélisation précise du probleme de
conception architecturale. En particulier, I'exploration de vastes espaces de conception, la
représentation et I'évaluation de solutions candidates, ainsi que la formulation a priori des
préférences sont des enjeux majeurs.

Les travaux de recherche présentés dans cette these concernent le développement de
méthodologies et la proposition d’outils pour I'aide a la décision en conception architecturale
des produits et des machines. Plus précisément, I'ensemble de ces travaux vise a fournir aux
concepteurs une démarche adaptée pour structurer et formuler des fonctions objectifs lorsque
I'activité de conception est abordée par I'optimisation. Notre approche consiste a relier par la
modélisation de préférences, le comportement physique du systéme a concevoir avec les
criteres et les objectifs de conception, selon des étapes d’observation, d’interprétation et
d’agrégation. A partir du concept de désirabilité, cette méthode de modélisation est utilisée
pour formuler les objectifs de conceptions et pour quantifier le niveau de satisfaction global
atteint par les solutions candidates. Cette approche est utilisée pour aborder les problemes de
conception robuste ou les objectifs de performance et de sensibilité sont mis en balance. Dans
cette perspective, des mesures de dispersion des performances, ainsi qu’'une fonction de
compromis spécifique au probléme de conception robuste en ingénierie, sont proposes.

Enfin, l'application de ces méthodes et outils est illustrée au travers du pré-
dimensionnement d’'un évaporateur flash bi-étagé, utilisé pour le traitement des modts dans
I'industrie viticole. L'objectif est alors de trouver des solutions de conception robustes, c'est-
a-dire, des architectures présentant a la fois un niveau de performance globale satisfaisant,
incluant la qualité du produit, la transportabilité de la machine ou les codts, et une faible
sensibilités de la température de sortie du produit, ainsi que de son titre alcoolémique.

Mots clés

Conception architectural, Conception Robuste, Désirabilité, Modélisation des Préférences,
Optimisation, Aide a la décision
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CHAPTER

CHAPTER 1 Introduction

Un probleme sans solution est un probléme mal posé.
Albert Einstein, Conscience

1.1 Context

1.1.1 Introduction to engineering design

Design is a fundamental human and goal-directed activity. Whatever the field of endeavour,
design is directed toward the fulfilment of human needs. All design activities involve
creativity (the generation of alternative solutions) and decision (selection among those
alternatives). Although it is difficult to give an exhaustive definition, engineering design can
be considered as an applied science, using various techniques and scientific principles to
determine relevant solutions, and define systems in sufficient detail for their physical
realization.

Engineering design differs from other fields of design by the intensive use of techniques
and scientific principles, calculation and mathematical analysis. During preliminary design
stages, there is generation, analysis, refinement of alternatives, and finally, decision among a
set of candidate solutions. Although the generation of concepts and alternatives may remain
informal, the intensive use of modelling and calculation formalizes their evaluation. It follows
that decision making can be potentially be made formal as well.

Moreover, engineering design also differs from natural sciences as the resulting solution is
a compromise satisfying in unequal way the design requirements. Actually, the development
of real products or processes rarely involves one objective, but several conflicting objectives
which must be traded-off. For example, costs are often traded-off against system effectiveness
in system engineering, since highly effective systems are often expensive. Actually, trade
studies and negotiations are intrinsic to the design process, involving judgment, perception,
and finally, decision.

Scope of the thesis

— — —

— —

N

Feasible > Detailed

DRI embodiment /| design
design

Planning and Preliminary desigr} 7

clarifying Requirements
tasks

Conceptual

Select concept

design

Figure 1. lllustration of the design process

Engineering design as a process can be defined as the transformation of the information from
demands, requirements and constraints (functions) into a description of a technical system and
a set of instructions for its manufacturing. However, this sequential view of design is not
applicable in real life. In fact, designing as a process is iterative. No design problem is simple
enough to fit with the mental limitations of short-term human memory. The final design
solution which will be manufactured and put on the market is most often an alternative which
was not considered at the beginning of the process.
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A classical view of design processes consists in an iterative sequence of steps aiming at
clarifying the design tasks, conceptualizing, embodying and detailing solutions. This
arrangement is represented on figure 1. The clarification of tasks leads to design specification
and requirements. Conceptual design produces abstract models of the system to be designed,
for the generation of framework and outlines. From conceptual solutions, embodiment design
aims to provide preliminary and/or dimensional layouts, components configurations and
parameterization of the system. Although there are still disagreements, it can be considered
that both conceptual and embodiment stages are involved within the scope of preliminary
design activities. The final stage of detailing consists in performing advanced simulations and
calculations to provide complete manufacturing information.

The scope of this thesis concerns computer aided design for embodying activities. In
particular, we are interested in supporting embodiment design stages of industrial products
and machines.

1.1.2 Embodiment design of industrial products

Early stages of design processes are inherently imprecise and are of major economic
importance. Preliminary decisions which are often informal and based on imprecise
information, can impact up to 70% of the life-cycle costs [Berliner 1987]. Consequently,
supporting decision making during preliminary design activities is of main interest to
converge as soon as possible toward the most preferred design solutions. In particular, from a
selected concept, embodiment design aims at determining the main dimensioning and
monitoring parameters of the system in respect with design requirements. While conceptual
design aims to discriminate concepts, the purpose of embodiment design consists in the
discrimination of physical quantities. Therefore, the continuity of design processes between
preliminary and detailed phases mainly depends on the ability of embodiment design phases
to provide embodied solutions with validated physical behaviours and optimized functional
structures.

From a practical point of view, the existence of embodying steps mainly depends on the
type of products to be designed. In general, the design of consumer products or “low-tech”
items involves minimal science and knowledge, and low development costs. Consequently,
embodiment design is not necessary and conceptual solutions can be directly provided with
dimensional layouts. However, the design of industrial products and machines which can
perform complex functions, such as gas turbine engines for aircraft propulsion, implies
important development costs and risks tend to be critical. Design problems related to these
systems are often complex, multidisciplinary and multiobjective. Requirements include
extreme demands for improvement of performances, reliability and robustness, ease and
flexibility of manufacturing for different production processes. Thus, the phases of generating
preliminary design proposals for cost and performance estimating are extensive, and need
substantial time and financial expenditures. A careful analysis of requirements by every
expert involved in the whole system development is also required to adjust the design
specification to the customer's specific needs. Due to progressive increase in the amount of
knowledge for the design of systems, changes often occur during designing and
manufacturing machinery.

Therefore, the generation of embodied solutions of industrial systems enables to compute
first estimates of performances and feasibility. This guides designers toward relevant design
alternatives during initial stages of the design process. The integration of complex physical
behaviours and objectives in embodiment design improves the efficiency of the whole design
process by reducing the number of iterations between preliminary and detailed phases.
Embodiment design also limits the intensive use of time consuming computational tools such



I
17 CHAPTER 1 Introduction

as CAD or CAE systems. Simulation models involved at this stage of the process are often
predictive, parsimonious, but precise enough to carry out the decision-making process.

1.2 Challenges in embodiment design

Embodiment design problems mainly differ from other kinds of design problems by the
inherent uncertainty and imprecision related to the prior lack of knowledge about the system
to be designed. Consequently, the determination of relevant embodied design solutions cannot
rely only on objective knowledge derived from physical or technical laws. Designing is a
human activity and embodiment problems necessary require subjective knowledge related to
designer’s preferences and judgement. At this stage of the design process, most of dimensions
and component arrangements remain unknown. In many cases, the main dimensioning and
monitoring parameters are determined a priori according to designers’ past experience and
through “trial and error” approaches. This provides embodiment design problems with many
degrees of liberty which tends to complicate the search for optimal embodied solutions.

In particular, embodiment design problems involve high numbers of design variables, each
one being related to a range of acceptable values. Therefore, designers have to deal with vast
design spaces within which the most preferred solution must be identified. These variables are
related to physical units (dimensions, temperature, pressure, etc.), types of materials,
alternatives of standard components, but they can also be linked to enumeration or logic
values (number of rivets on planes’ wings or the presence of air jet impact on warm parts of
turbomachinery). Consequently, they can be continuous (interval) and discrete variables (list,
table or constructor data). As combinations of design variable values results in different
design solutions, the combinatory possibilities are almost limitless, making thus difficult any
exhaustive evaluation of the design space.

Designer defined:
Problem’s description
Criteria and objectives

Py
Representation

Generate

Search Process

Evaluate

Figure 2. Challenges in engineering design

Evaluation and comparison of design solutions are based on estimates of their ability to
satisfy every design requirements. Requirements are based on physical, manufacturing,
economical or environmental considerations and are expressed as criteria or objectives.
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Design criteria are constraints which are related to performances (satisfaction levels), and thus
define feasible domains within the design search space. However, the interpretation of design
criteria in the strict mathematical way does not make sense in embodiment design. In such
imprecise context, designers can consider as relevant solutions which slightly violate some
criteria. Therefore, it is of main interests to be able to rank not only desirable solutions, but
also weak satisfactory candidates.

Moreover, embodiment design problems are also characterized by the presence of decision
phases involving trade studies between the satisfactions of objectives. Whereas constraints are
functional or technical requirements that the system must satisfy, design objectives are
specific tasks or goals that the system should meet. Due to antagonist phenomena and
coupling effects between variables, these objectives are conflicting and must be traded-off.
For example, trades-off between effectiveness and costs are often expected in most industrial
problems.

The research works presented in this thesis fall within the scope of methodologies in
design engineering aiming at modelling design activities in a formal way to be processed by
artificial intelligence systems. In this way, embodiment design problems are turned toward
numerical optimization. They consist in investigating a design space to determine the best
combination of design variables values, i.e. the solution which simultaneously optimizes
every objective and satisfies the set of design criteria. The automation of such a process by
optimization techniques requires an accurate modelling of design problems with all their
specificities. This is represented on figure 2. The main challenges in modelling such kind of
problems deal with:

= How to represent the set of all feasible design solutions?

» How to manage and investigate large design spaces?

= How to generate candidates based on that representation?
= How to evaluate the quality of each candidate?

= How to guide the search for better solutions?

The representation and evaluation of candidate solutions are salient points of this thesis. Due
to conflicting objectives, a unique optimal solution is rarely met, but instead, the designer has
to cope with a set of equivalent solutions. While the visualization of design solutions has been
widely studied in decision-making for problems involving two or three objectives, since 2-D
and 3-D graphical means can be used to visualize the solution space, difficulties comes from
trading-off hundreds or thousands of design candidates while more than three objectives are
considered.

The generation of candidates and guidelines for the search of better solutions concerns
numerical techniques used to solve the optimization problem. Research spaces involved by
optimization problems in engineering design are discontinuous and present numerous local
extrema making difficult the implementation of deterministic methods, such as conjugate
gradient, since their efficiency mainly depends on the determination of a started point.
Moreover, the accurate determination of the true global optimum has not sense in
embodiment design due to the inherent imprecision. This may lead to expensive
computational time and waste of resources.

1.3 Contributions and structure of the thesis

The main contribution of this thesis is the development of methodologies and the proposition
of tools to support decision making during embodiment design of industrial systems and
machines. In particular, it aims to provide designers with a convenient way to structure
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objectives functions for optimization in embodiment design. The initial multiobjective
embodiment design problem is modelled as a mono objective optimization problem using a
priori articulation of preferences. The choice of an a priori modelling of preferences enables
designers to provide additional information to fully reflect their own preferences and
intentions. Moreover, this approach can generate only relevant portions of the whole set of
solutions and thus avoids additional efforts.

Although, many design methodologies and methods have been proposed in the literature,
the development of a formal approach dedicated to the design of whole systems and machines
(involving the management of high number of variables, criteria and complex objectives), is
innovative. Designers are neither mathematicians nor programmers, but they know how to
design and manufacture machines. One objective of this thesis consists in remaining close to
designers’ activity and following their reasoning facing design problems. This consists in first
observing, then interpreting and finally synthesizing design information to enable the decision
making.

Compared to other approaches, in this thesis, embodiment design problem modelling is not
only limited to the physical behaviour of the system, but it also includes objectives. This leads
to model both physics linked to machine functioning and socio-economic relations related to
their environment.

Another contribution of this thesis is the development of an original approach to tackle
robust design problems. In this methodology, robustness of system performances and
robustness of the choice are both considered. The main idea here consists in formulating two
design objectives, one related to the overall performance and another linked to performances
sensitivity facing uncertainties, which are then traded-off according to designer’s preferences.
In this way, a new trade-off function dedicated to robust design problems is proposed.
Objective measures of performances dispersion are also proposed.

Facing the lack of a clear framework of desirability in engineering design, a chief
contribution of this thesis is the proper definition of desirability and its implications in
engineering. In particular, ambiguity between the notions of desirability and utility is intended
to be lifted by analyzing their meaning in different research fields.

A further contribution of this thesis concerns the development of metaheuristics, mainly
genetic algorithms and particle swarm algorithms [Quirante 2011b], to solve optimization
problems in embodiment design. Metaheuristics are iterative optimization algorithms,
generally based on stochastic techniques, developed to solve non-trivial optimization
problems. Facing specificities of response surfaces in embodiment design problems, the
choice of metaheuristics appears as relevant. Although the selection of a particular
metaheuristic for a specific class of design problem is not addressed here, recent research
works presented by Collignan [Collignan 2012b] deal with such issues.

The structure of this thesis is as follows: Chapter 2 provides a general research context. It
depicts a general and suitable framework to situate the research works presented here. Some
of the priors work, future challenges and topical issues falling into the scope of this thesis are
also described. Fundamental notions and concepts are introduced and defined. Chapter 3 is a
review of preference assessments. Two methodologies to express preferences in engineering
design, namely the utility theory and the method of imprecision (Mol), are presented and
compared. The concept of desirability and desirability functions are then introduced. Benefits
of using this approach for embodiment problems are highlighted and discussed. Chapter 4 and
chapter 5 concern the modelling methodology proposed in this thesis. Chapter 4 explains how
to structure design problems through the formulation of design objectives. In particular, the
formulation of objectives related to robust design problems is presented. Chapter 5 deals with
the modelling issues related to the trade-off between objectives. Most of concepts used in
these chapters have been introduced and defined through chapter 2 and chapter 3. Finally,
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chapter 6 deals with the embodiment design of a whole machine, namely a two-staged flash
evaporator for must concentration in the wine industry. The modelling methodology and some
results of this thesis are illustrated through this example. The robustness and the selection of
the most preferred design solution is discussed according to different trade-off strategies and
scenarios.
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CHAPTER 2 State of the Art

The development of methodologies for supporting decision-making in embodiment design is
based on several fields of research including design theory, decision theory and optimization.
This chapter presents the general framework of our research work. The fundamental notions
and concepts covered in this thesis are introduced and defined. Some of the topical issues,
priors work and future challenges in engineering design are also presented in this chapter.

2.1 Design Theory and Methodology

2.1.1 Overview of design theories and methodologies

The field of Design Theory and Methodology (DTM) is a rich collection of advances and
knowledge resulting from studies and experiments on design processes and activities.
Although there is still no consensus on a formal definition of DTM, many design theories and
methodologies have been proposed and developed in the past few years. Although all these
methodologies and theories have not yet succeeded in covering all the aspects of designing,
many observations from individual design cases have led to develop the foundations for
rationalizing the design process.

In 1989, Finger and Dixon [Finger 1989a, Finger 1989b] have proposed a classification of
DTM into six categories. This classification is represented in table 1. Although the intention
of authors was not to be exhaustive, this classification is currently incomplete, since many
important theories, such as TRIZ and Quality Function Deployment (QFD) are missing.

DTM categories Example
1) Descriptive models of Protocol studies [Ullman 1988], cognitive models [Gero 1985], case studies
design processes [Wallace 1987], and so-called German school of design methodologies [Hubka

1989, Pahl 2006]

2) Prescriptive model for Canonical design process [Asimow 1962, French 1971], morphological analysis
design [Pahl 2006] and prescriptive models of the design artefacts, General Design
Theory (GDT) [Reich 1995, Tomiyama 1987, Yoshikawa 1981, Yoshikawa
1985] , Suh's Axiomatic Design (AD) and Taguchi Method

3) Computer-based models Parametric design, configuration design, Al-based methods for conceptual

of design processes design [Gero 1985, Sriram 1987, Sriram 1997], distributed agent-based design
[Cutkosky 1993]
4) Languages, representationGeometric modelling, shape grammars, behaviour and function modelling
and environment for [Umeda 1997], feature-based modelling [Dong 1991], product modelling
design [Krause 1993] integrated design support environment

5) Analysis to support design Optimization methods [Roy 2008], interfaces for finite element analysis or
decisions CAE, decision-making support

6) Design for manufacturing Concurrent engineering, DfX, tolerances [Farmer 1986, Tichkiewitch 2007],
and other life cycle issues life cycle engineering [Curran 1996, Hauschild 1998]
such as reliability

Table 1. Classification of DTM adapted from Finger and Dixon [Finger 1989a, Finger 1989b] and completed

Recently, intensive research works have made DTM to evolve toward more abstract and
general principles. While the ultimate goal of research in DTM would be to propose a
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universal theory of design (general and abstract), there is still a need in the development of
general theories and methodologies for concrete applications. Design methodologies concerns
applied design procedures about processes and activities (sometimes denoted as prescriptive
theory [Finger 1989a]), and must be distinguished from design methods which deal with the
design of a specific class of product such as turbomachines [Gorla 2003] or heat exchangers
[Shah 2003]. Design methodologies involve a model of the design process which can be used
to develop product specifications. Although there are notable differences between models, in
particular in regards to the scope and the use of iterations, they all present similarities in
describing a progression through a sequence of logical steps.

In 1997, Tomiyama [Tomiyama 1997] has proposed a classification based on the scope of
applicability (concrete/abstract) and level of abstraction (general/individual) of DTM. This
classification is given in table 2. Except for abstract design theories, most of these DTM are
either a generalisation of design methods, and thus, can be applicable to a wide range of
products, or computational methods which are applicable only to a specific class of products.
An overview of these DTM is presented by Tomiyama [Tomiyama 2006].

General Individual

Abstract Design theory Math-based methods

Abstract Design Theory (ADT) [Kakuda 2001], General Design Thedkyiomatic Design,

(GDT) [Yoshikawa 1981, Yoshikawa 1985], Universal Design ThedDptimization, Taguchi

(UDT) [Grabowski 1998, Grabowski 2000] method [Taguchi 2004],
Computer programs

Concrete Design methodology Design methods

Adaptable Design [Gu 2004], Characteristics-Properties Modelling
(CPM) [Weber 2005, Weber 2007, Weber 2008], Contact and Channel
Model (C&CM) [Albers 2003], Design Structure Matrix (DSM)
[Browning 2001], Emergent Synthesis [Ueda 2001, Ueda 2007], Hansen
[Hansen 1974], Hubka and Eder [Hubka 1989, Hubka 1996], Integrated
Product Development [Andreasen 1987, Andreasen 1994], Pahl and
Beitz [Pahl 2006], TRIZ [Altshuller 1984, Altshuller 1999], Ullman
[Uliman 2002], Ulrich and Eppinger [Ulrich 1999]

Methodology to achieve concrete goals

Axiomatic Design (AD) [Suh 1990, Suh 2001], Design for X (DfX)
[Huang 1996], Design Decision-Making Methods [Lewis 2006], Failure
mode and Effects Analysis (FMEA) [Beauregard 1996], Quality
Function Deployment (QFD) [Mizuno 1993], Total Design of Pugh
[Pugh 1991]

Process methodologies
Concurrent Engineering [Sohlenius 1992], DSM

Table 2. Classification of DTM adapted from Tomiyama [Tomiyama 1997]

However, as discussed in [Finger 1989a, Finger 1989b, Horvath 2004], design research
cannot be limited to DTM. Many other practices and techniques are used in industry, such as
the so-called Toyota product development method [Sobek 1999, Morgan 2006]. In
multidisciplinary product development, V-models of systems engineering is a widespread
development approach used in many industrial areas [VDI 2004]. For example, in
mechatronics systems, mechanical engineering, electronics, control engineering and softer
engineering are both integrated to achieve superior functions. Therefore, the concurrent
execution of the different domains, and the simultaneous resolution of conflicts among them
become a topical issue.

Furthermore, computational techniques and Information Communication Technology
(ICT) have changed the way in which product development is addressed. Current product
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development often requires technical information systems, such as Computer-Aided Design
(CAD), Computer-Aided Engineering (CAE), and Product Data Management (PDM). During
production and further life cycle phases, it is also suitable to use digital engineering systems
[Bernard 2005, Bernard 2007] such as Computer Aided Manufacturing (CAM), Enterprise
Resource Planning (ERP), Custom Relation Management (CRM), and Product Life Cycle
(PLM). Function modelling and knowledge management [Tichkiewitch 2007] are also topical
issues in design methodologies.

2.1.2 General Design Theory framework

General Design Theory (GDT) is a theory of design knowledge developed by Yoshikawa
[Yoshikawa 1981, Yoshikawa 1985, Tomiyama 1987, Reich 1995] which has inspired lots of
researchers, and has resulted for example, in Kakuda's ABT and Grabowski's UDT. GDT is
mainly based on Suh's axiomatic set theory [Suh 1990] in which design is defined as:

“... the creation of a synthesized solution in the form of product, processes or systems that
satisfy perceived needs though mapping between the functional requirements (FRS) in the
functional domain and the design parameters (DPs) of the physical domain, though proper
selection of the DPs that satisfy the FRs.”

GDT's major achievement is to propose a mathematical formulation of design processes. GDT
deals with concepts that only exist in our mental recognition and tries to explain how design is
conceptually performed with knowledge manipulation based on axiomatic set theory. In this
sense GDT is not a design theory but an abstract theory about (design) knowledge and its
operation as well. It is based on the statement that our reasoning and knowledge can be
mathematically formalized and operated. Three axioms define knowledge as a topology, and
reasoning as a set of mathematical operations. Products to be designed perform functions
through a set of attributes (properties). The design process is then regarded as a mapping from
the function space to the attribute space. Figure 3 illustrates the design process in the GDT's
framework.

Function space Attribute space

Y

of functional space to the attributive information
selected found . .
concepts attribute space for production

. Specification Mapping from Analysis of
Entity .\ as intersect10n>> Design >> the function neighborhood to obtain
concept set is . solution is R .

Figure 3. Design process in ideal knowledge [Tomiyama 2009]

According to this representation, Tomiyama [Tomiyama 2006] has proposed a rational
classification of DTM into three major categories: DTM to generate a new design solution,
DTM to enrich functional and attributive information of design solutions and DTM to manage
design and to represent design knowledge [Tomiyama 2009]. Embodiment design falls into
the second category. Once one conceptual solution has been selected in respect of functional
requirements, analysis of neighbour solutions is required to look for an optimal solution
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(improvement of the overall satisfaction), not only within the attribute space, but also in the
functional space. This leads to the improvement of the performance and the generation of
additional information for the physical realization of the product.

2.1.3 John Gero's Function-Behaviour-Structure ontology

From the GDT framework, descriptive models of design processes have been derived in the
past few years. In particular, John Gero [Gero 1990a, Gero 1990b] has proposed his Function-
Behaviour-Structure (FBS) ontological model of designing. John Gero's FBS ontology
extends GDT by covering the notion of interactions between designer (design agent) and its
environment through actions such as observation and interpretation. Fundamental relations
between physical structure of a product, functions and expected behaviour are established.
Consequently, most of design processes can be modelled within the FBS framework, in
particular optimization processes.

The basis of Gero's FBS ontology is made of three classes of variables describing different
aspects of a design object (also called artefact): Function (F) variables, Behaviour (B)
variables and Structure variables (S). According to Gero, designers establish connections
between functions, behaviour and structure through experience. In particular, designers link
function to behaviour and derive behaviour from structure. However, a direct connection
between function and structure is not established.

Q)

F—S———D

Be = expected behviour — = transformation
Bs = beaviour derived from structure < = comparison

D = Design description

F = Function

S = Structure

Figure 4. John Gero's FBS framework [Gero 2004]

The FBS framework represents the design process as a set of elementary design steps in
which function, behaviour and structure are linked together. Figure 4 shows the FBS
framework as described in [Gero 2004]. Eight elementary steps common to every designing
activity are considered. Five of them are sequential and transform the expressed functions into
design description. The first step is calledmulation step (1) and transforms the design
problem expressed as functions (F), into behaviour (Be) which is expected to perform these
functions. Secondly, the expected behaviour is transformed $ynthesis step (2) into a
solution structure (S) intending to achieve the desired behaviour (Be). In a third step, the
actual behaviour (Bs) is derived from thealysis(3) of the synthesis structure (S). Fourthly,
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this actual behaviour (Bs) esvaluated (4) and compared with the desired behaviour (Be). If

the evaluation is satisfactory, a design descripflae documented (5) for manufacturing the
product. Otherwise designers have to go back to previous steps in the sequence. This defines
three elementary loop-back steps, turning designing into an iterative procedure [Gero 2004].
Reformulation steps (6, 7, 8) address changes in the design state space in terms of structure
variables (S'), behaviour variables (Be'), function variables (F') and ranges of values.

Gero's FBS ontology presents a fundamental difference with other approaches of designing
within the notion ofSituatednesfGero 2004]. According to Gero, designing is an activity in
which designers perform actions to interact and change the environment, by carrying out
observation and interpretation on the results of their actions. This also covers the notion of
constructive memory, since designers' concepts may change according to their own past
experience and the phenomena they observe.

External World

Interpreted World

External

Expected World
Xe'

Expected
World

(within Interpreted
World)

Interpreted
World

X°® = external Design representation
X' = interpreted design representation
Xe' = expected design representation
<«— = transformation (action)
«— . . .
<«— = interpretation/constructive memory
<«— = focusing

(a) (b)
Figure 5. Situatedness as the interaction of three worlds [Gero 2004]: (a) general model, (b) specialized model
for design representation

The model ofSituatednesproposed by Gero and Kannengiesser [Gero 2004], represented in
figure 5a, is based on the interaction of three different worlds (including the designer's
internal and external world). In this model, designer's internal world is subdivided into an
interpreted world and an expected world. These two worlds are linked by a process of concept
definition in the interpreted world, and using them as goals (design objectives) located in the
expected world. Goals are used to inform actions changing the external world.

The notion of interaction appears as fundamental in the framework proposed by Gero.
According to situatedness, changes can impact every entity involved in one particular
interaction. Another important aspect linked to situatedness is the notion of interpretation,
which is regarded as being more than a simple flow of information; it is a kind of designer's
action coming from both external and internal environment, and resulting in changes in the
internal world.

From the general model of Situatedness, it is derived a specialized model for design
representation purpose (see figure 5b) [Gero 2004]. According to this model, designers are
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situated within the external world and the different design representations belong to the other
layers of the model. The design space (i.e. the space of all possible design solutions that
satisfy the set of requirements) corresponds to the set of expected design representation (Xe
The explicit integration of an expected world into a model of interaction accounts for situated
designing, as changes in the internal and external world provides the basis for further changes
of the current design process via reformulations of the design space.

In 2006, from its original FBS framework and situatedness model, Gero has proposed a
framework for situated design optimization [Gero 2006]. The three fundamental processes in
optimization are identified. They refer synthesisanalysisandevaluation. This framework
involves changes in all relevant aspects of situated optimization such as changes in design
space, changes in designer's experience and changes in external design representation.

2.2 Optimization techniques in engineering design

2.2.1 Introduction

Designing is a goal-directed activity. Whatever the field of application, a product is designed
to satisfy human needs. To improve customer satisfaction, designers try to determine the
solution which satisfies every requirement in the best way. This process refers to
optimization. However, the termgptimization andoptimumare often used in very loose
senses without necessarily referring to the use of specific optimization techniques. For
example, in engineering design, optimization often refers to "trial and error" approaches, i.e.
iterative processes where the final solution is improved step-by-step. These approaches are
often manual and time consuming. Moreover, optimal solutions are rarely achieved since such
approaches do not allow a global exploration of the design research space.

In a highly competitive and technology-driven industry, it is necessary to develop suitable
methods to automate engineering design optimization and design systems which satisfy
human needs in the most effective manner. This has motivated many research works in design
optimization for the purpose of developing efficient techniques for engineering problems
[Ray 1995, Sobieszczanski 1997, Dornberger 2000, Murawski 2000, Costa 2008, Schiffmann
2010].

2.2.2 Design evaluation model

Design optimization problems require the formulation of a design (evaluation) model to
evaluate candidate solutions. This model depends on the design stage, and thus, differs from
preliminary design to detailed design. The complexity and efforts provided to solve design
problems depend on the nature of the relations and variables involved in the design evaluation
model. As a general rule, a design evaluation model requires the definition of design variables
(x) and their domain of value$)], performance variabley); objectives f), design criteria

and design parameters (constants). Then, the simulation model of the physical behaviour of
the system links the independent and dependent variables. Thus, a design solution is defined
from a set of design variables and is evaluated according to its ability in satisfying every
design criterion and objective. Depending on authors, the decomposition into design
performances and objectives seems not to be systematic. Sometimes the expression of design
performances is implicit to the criteria formulation, such as there is a mapping between the
design space (domain of design variables) and the objective space (domain of design
objectives).
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Figure 6. Design evaluation model represented as “black-box” system

Classically in optimization, one or several objective functions are expected to be minimized,
or maximized, subjected to a set of constraints. In general, the design evaluation model
corresponds to the objective function(s). According to automatics, the design evaluation
model can be regarded as a “black-box” system in which physical models are encapsulated in
such a way that designers can only control inputs (design variables) and observe outputs
(performance measurement or objectives). A “black-box” representation of the design
evaluation model is given by figure 6. According to this figure, design criteria can be
regarded as filter acting on the performance measurements, discriminating feasible from
unfeasible solutions. This process serves as basis for the evaluation process.

2.2.3 Classification of engineering design optimization problems

In 2008, Roy [Roy 2008] has proposed a classification of engineering design optimization
problems into five categories and two points of view. While categories refer to design
variables, constraints, objective functions, problem domains, and environment of the design,
the two points of view concern the design evaluation complexity and the degrees of freedom
of the design problem. According to Roy, the number of design variables, their nature (static
or dynamic) and admissible values (integer, continuous or mixed) and dependence among
design variables deeply impact the overall complexity of the optimization problem. Here,
complexity is defined as the amount of effort required to formulate the optimization problem
and identify the optimal solution(s).

Moreover, the presence of constraints impacts the optimization techniques used to solve
the design problem [Coello 2002a]. Constraints can be linear or non-linear, expressed in
equality or inequality forms and are separable or not. Number of constraints and constraints
modelling directly affects computational times of optimization processes. Recent advances in
constraint programming techniques (programming paradigm in which relations between
variables are stated in the form of constraints) results in promising perspectives to deal with
multicriteria optimization problems [Rossi 2006].

As previously mentioned, objective functions are used in optimization to evaluate design
solutions. Quantitative objective functions are related to simulation-based (FEA, CFD),
analytical (linear or non-linear mathematical model) and empirical techniques, whereas
qualitative objective functions concerns issues like manufacturability or aesthetics. Number of
objective functions, their (non-linear, continuous or discontinuous) nature and dependency
also impacts the complexity of the optimization problem. In particular, Corne [Corne 2007]
considers that the complexity of multiobjective optimization problems strongly increases from
the minimum of ten objectives (large scale multiobjective problems). One of the major
challenges in engineering design optimization is to deal with computationally expensive
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objective functions. Moreover, the existence of numerous local optimums often makes
difficult the determination of the global optimum.

Engineering design optimization Examples

approaches

Expert-based optimization Knowledge based, Simulation based

Design of Experiment based Taguchi's approach, Experiment arrays based methods
optimization

Algorithmic optimization

Dealing with increasing Constrained (Lagrange-multiplier, gradient projection, generalized
complexity of design problems gradient projection, feasible direction, evolutionary algorithm, genetic
algorithm, direct search method, leap-frog method and penalty function,
linearised search method, simulated annealing, swarm intelligence, ant
colony algorithm, co-evolutionary approach);
Multiobjective  (evolutionary algorithm, genetic algorithm, goal
programming, fuzzy set theory, heuristic, immunity based, swarm
intelligence, Tabu search);
Multi-modal (Evolutionary algorithm, immunity based, random search
algorithm, simulated annealing, swarm intelligence);
Multi-disciplinary

Dealing with real life design Reliability-based (discrete optimization technique, evolutionary algorithm,
requirements inverse reliability strategy, analysis of variance)
Robust (Mathematical programming, Monte-Carlo simulations based,
analysis of variance , deterministic approach, evolutionary algorithm)
Uncertain environment (evolutionary algorithm, sequential approximate
optimization, deterministic algorithm, method of imprecision)

Increasing designer confidence Interactive (Mathematical programming, evolutionary algorithm, fuzzy set
theory)
Qualitative (evolutionary algorithm, evidence theory)

Hybrid, Other

Table 3. Engineering design optimization approaches: current trends and challenges (adapted from [Roy 2008])

The two last categories identified by Roy concern the problem domains and optimization
environment. While the problem domain is related to the physics of the problem and multi-
disciplinary approaches used to solve it (mechanics, thermofluids, electromagnetic),
optimization environment concern uncertainties (robust and reliability-based approaches)
[Wood 1989, Beyer 2007, Schueller 2008], existing knowledge about the problem
(imprecision, incomplete data) [Wood 1989, Antonsson 1995], levels of confidence
(qualitative or interactive evaluation) [Collignan 2012a, Collignan 2012b] and nature of the
environment (static or dynamic).

In [Roy 2008], another classification based on current trends and challenges in design
optimization techniques (Expert-based optimization, Design of Experiment based
optimization, Algorithmic optimization) is proposed. This classification is presented in table
3. According to this table, it appears that the automation of engineering design optimization
process has motivated the development of a vast range of algorithms in the past few years.

2.2.4 Challenges in engineering design optimization

Facing real application problems, major design challenges in engineering design optimization
arise in the past few years. In [Roy 2008], Roy highlights that these challenges concern:

= Global exploration of design spaces
= |dentification of robust solution areas
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» |dentification of the largest set of satisfying solutions

= Interactions and coupling effects between design variables

» Analysis, modelling and propagation of uncertainties

» Reduction of computational costs of the evaluation models

= Modelling of human knowledge and preference

= CAD systems interfacing feature-based parametric CAD models and optimization models

This thesis tackles some of these issues. In particular, we propose techniques to investigate
large design spaces and determine relevant robust design solutions. Difficulties in
investigating design spaces of real design engineering problems arise from the presence of
multiple mixed design variables, nonlinear constraints, discontinuities and pitfalls. Thus, as
these design models are often non-differentiable, classical optimization techniques based on
gradient and hessian matrices computation cannot be implemented. Moreover, the global
optimum should also be robust, i.e. it is desirable that optimal solution presents a low
sensitivity to uncertainties [Beyer 2007, Arvidsson 2008]. A design is thus said robust if it
maintains the same level of performance facing with design variable variations. Global
optimum, local optimum and robust optimum are represented on figure 7a.

fix) 4 . Global Local fix)* ‘ ‘ ‘ 504
optimum optimum Multiple optimum solutions

P N

Robust optimum

L

Pareto frontier

/

\ 4
\ 4

" X fi(x)

(a) (b) (©)
Figure 7. Representation of optimal solutions in design engineering optimization from [Roy 2008]: (a) global,
local and robust optimal solutions, (b) multi-modal optimization problem, (c) Pareto frontier in multiobjective
optimization problem

The search for robust solutions has led to analyze and model uncertainties due to
manufacturing dispersions, environmental parameters variations and error modelling. These
uncertainties can be aleatory or epistemic by nature [Oberkampf 2004]. In the past few years,
many approaches have been developed to deal with uncertainty such as robust design
methodology (RDM) [Messac 2002a], utility function optimization [Chen 1999] and
reliability-based design optimization (RBDO) [Samson 2009b]. Major challenges linked to
uncertainty in design engineering concern the reduction of computational costs and the
establishment of a mathematical criterion to identify deep "valleys" [Shan 2008, Samson
2009a].

Furthermore, many design problems involve more than one admissible solution (multi-
modal optimization) as shown on figure 7b. In multiobjective optimization, this refers to the
identification of Pareto optimal solutions (for details see section 2.3.2). Pareto frontier has
been represented on figure 7c. The definition of Pareto optimal solutions enables to filter the
whole set of feasible solutions and thus to reduce the set of candidates. As real engineering
design problems often involve multiple conflicting objectives which must be traded-off, the
expression of designer's preferences is required to select the final solution. Thus, the
formulation of expert knowledge and preferences in a formal way to be used by artificial
systems [Oduguwa 2007] create major challenges in engineering design and partly explains
why optimization techniques have difficulties to be applied in industry. The next section
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further details multiobjective optimization problems and presents some insights and issues
linked to their implications in design engineering.

2.3 Multiobjective optimization methods for engineering design
problems

2.3.1 Introduction

Initially, multiobjective optimization (MO) techniques have been developed within the fields
of economicequilibrium and welfare theoriegame theory [Vincent 1983], and mathematics
[Stadler 1988]. These techniques intend to accurately model the decision-makers' preferences,
for ranking or filtering alternatives. For this reason, many terms and concepts such as
preference utility and trade-off are derived from economics and decision-making theory
[Lewis 2006]. However, the terminology must be adapted according to the domain of study.
For example, in engineering applications, the so-called decision-maker may be identified as
the designer or teams of persons belonging to design departments. In the same way, design
variables in engineering design are denoted as decision varialdesisions theories.

Fundamental basis of MO are presented by Coello [Coello 2002a, Coello 2002b] and
Miettinen [Miettinen 1999]. The general MO problem is usually expressed as:

minimizef (x) =[ f, ( - (X)]T
subject to:

g (x)20 i=12...,m

h(x)=0 j=12...,p

(2.3.1.1)

wherex is a vector oh decision variables. The vectorial functiff) is composed by thke
objective functions (also denoted asiteria, payoff or costs functions) to be jointly
minimized. The functiongy; and h; refer respectively to then inequality andp equality
constraints to be satisfied. In this thesis, the design search spasedéfined as the union of
the design variables domain of value as:

Q= U[xI X ] TSx <X (2.3.1.2)

Figure 8 illustrates the mapping between the design space and the objective space, for a bi-
objective maximization problem, with two design variables and two design criteria. Design
constraints shear the design space in two distinct domains. The feasible design/decision space
(X) is defined as the set of solutions which satisfy the set of constigints (

X={x|x0Q,g(x)=0} (2.3.1.3)

Inversely, the unfeasible domain represents the set of solutions which do not verify at least
one of the constraints. Then, the feasiblgerion spaceZ (also calledattainable sétis
defined as the set:

Z={ f (x)|xOX} (2.3.1.4)
The termsfeasible criterionandattainable setare both used in the literature to describe the

objective space. However, feasibility implies that no constraint is violated, whereas
attainability means that a point in the criterion space maps to a point in the design space.
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While every point in the design space maps to a single point in the criteria space, the opposite
can be false, and thus, every point in the criteria space is not necessary attained.

Design space Objective space
X, 4 fZ(x) 4
. Q g1(x)
X2 [
/ X Behaviour
— model
7 —

\%

X' ~ 2(%) Pareto frontier
Xy X Xj fi(x)

[ ] =Feasible domain
/77 = Unfeasible domain

Figure 8. Mapping between design space and objectives space for a bi-objective minimization problem with two
design variables<} and two design criteria)

The mapping relation between the design research space and the objective space is
represented on figure 8. Within the feasible design space, there is a particular sub-set of
solutions denoted as Pareto frontier or non-dominated set, which is often expected in design
optimization. The determination of the Pareto frontier is particularly relevant in engineering
since it represents the set of solutions such as there are no others solutions which are better
simultaneously on every objective. The notion of Pareto optimality and domination, defined

in the next section, are fundamental for solving MO problems.

2.3.2 Pareto optimality and relations of domination

Principles of MO are different from classical mono-objective approaches. While mono-
objective optimization consists in determining the global optimum, i.e. the solution which
minimizes (or maximizes) a single objective function, MO problems deals with the
determination of a set of equivalent solutions which must be traded-off. Consequently, the
classical concept afptimumis no longer appropriate, and the concepPafeto optimality

(or efficiency is used instead.

Definition: 1) For minimization problems solution pointx* [1X is Pareto optimal if there
is no other poinx X such thatf (x) <f (x*), and f, (x) < f, (x*) for at least one objective

function. The set of all Pareto optimal solutions defines the so-called Pareto frontier.

2) For maximization problems, a solution poxitl] X is Pareto optimal if there
is no other pointxJX such thatf (x) 2f (x*), and f (x) > f (x*) for at least one objective

function. The set of all Pareto optimal solutions defines the so-called Pareto frontier.

All Pareto optimal points lie within the feasible criterion spacdAthan 1996]. Some
methods for determining Pareto optimality are described in [Miettinen 1999]. Although Pareto
optimal solutions are often relevant in engineering design, Pareto optimality is not
systematically expected. In fact, many algorithms provide solutions satisfying other criteria
and making them relevant for practical applications. From these considerations, it is derived
the concept of weak Pareto optimality.
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Definition: 1) For minimization problems, solution pointx* [1X is weakly Pareto optimal
if there is no other poink [0 X such ad (x) <f (x*).

2) For maximization problems, a solution poxitl] X is weakly Pareto optimal
if there is no other poink (01X such ad (x) >f (x*).

A solution is weakly Pareto optimal if there is no other solution which improves all objectives
of the objective functions simultaneously. In contrast, a solution is Pareto optimal if there is
no other point improving at least one objective function. The notion of proper Pareto
optimality had also been introduced [Geoffrion 1968, Miettinen 1999] as a trade-off
expressed by the ratio between the increment in one objective function and the resulting
decrement in another objective function.

Whatever the MO problem, the resulting Pareto optimal set can involve an infinite number
of relevant solutions. Therefore, MO techniques and methods must be distinguished according
to they provide the whole Pareto set, some parts (filtering), or a single solution point.

In [Steuer 1999], the Pareto optimality criterion is introduced using the notion of
domination. While Pareto optimality concerns a vector of design variables in the design
space, relations of domination between solutions refers to a functional vector in the criteria
space.

Definition: 1) For minimization problems, vector of objective functions(x*)[JZ is non-
dominated if there is no other vectiofx) [1Z such ad (x) <f (x*), with at least one.

2) For maximization problems, vector of objective functions(x*)[1Z is non-
dominated if there is no other vectiofx) [1Z such ad (x) =f (x*), with at least one.

Let us consider the two solutions B and C represented on figure 9. These solutions are such as
that %(C) > f»(B) and {(C) > fi(B). Therefore, B dominates C, and C is dominated by B.
According to the domination criterion, B is preferred to C, which is nddedC. Let us
consider now, solutions A and B which are two non-dominated solutions and belongs to the
non-dominated set. Consequently, it is impossible to operate a rational choice between these
two solutions. They are regarded as equivalent or equally preferred. In this case, we note this
equivalence adA~B. The domination in the whole set of candidate solutions results in the
definition of the Pareto frontier and multiple sub-Pareto fronts, which is equivalent to rank
solutions. Many MO techniques, such as the non-dominated sorting genetic algorithm
NGSAII [Deb 2002], are based on the principle of domination to generate the Pareto frontier
in the best way.
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Figure 9. Pareto frontier and relations of domination for a bi-objective minimization problem

A survey of necessary and sufficient conditions for objective functions to generate Pareto
optimal solutions can be found in [Miettinen 1999]. On the one side, objective functions
based on a necessary condition formulation of Pareto optimality, imply that every Pareto
optimal solution is attainable, performing some adjustments on the function parameters
(weights, exponents, etc). If a point is attainable using a particular objective function, then
this point is said to beapturableby the function [Messac 2000a, Messac 2000b]. However,
this formulation may provide solutions which are not Pareto optimal. On the other side,
objective functions based on a sufficient condition formulation of Pareto optimality, ensure
that every captured solution is Pareto optimal, although it is noticeable that certain Pareto
optimal points are unattainable.

2.3.3 Convex and non-convex set of points

The convexity property of the Pareto set is of main interest for designer and their practical
applications. In general, solutions located in the concave parts of the Pareto frontier are of low
interest for designers. In fact, the compromise represented by these solutions, i.e. the
increment of one objective compared to the decrement of another one, can be improved by
considering solutions located in the convex parts.

Formally, a convex Pareto set (S) implies that for every point A and B taken in S, the
segment [AB] completely lies within the boundaries of S.

Definition: A set of points S is said convex iffA ,B0S,0A0[0,1], AA+(1-A)BOS

Figure 10 represents a non-convex Pareto set for a bi-objective minimization problem. Points
A and C are located on the convex parts of the Pareto frontier, whereas point B lies on a
concave part. The dashed line between solutions A and C represents the convex hull of the
Pareto set. We define the gain and the loss on one objective respectively as the decrement and
the increment of this objective. To illustrate the relevancy of convex Pareto solutions, suppose
that point A represents a solution of reference, and that solutions B and C are alternative
choices. The trade-off represented by the selection of B or C is expressed by the ratio
“gain/loss” defined as:
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According to figure 10, it is obvious that T(C)>T(B), since the selection of B implies an
important loss on objectivf for a small gain on objective, whereas the selection of C
implies equivalent levels of gain and loss on the two objectives. Therefore, solution C is
regarded as a better alternative to solution A than solution B.
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Figure 10.Non-convex Pareto frontier for a bi-objective minimization problem

2.3.4 Ability of objective functions to generate Pareto optimal solutions

In engineering design, the notion of Pareto optimality is used to support the selection of the
most preferred design alternatives by filtering the whole set of solutions. As every Pareto
point is potentially of interest for the designer, each point should be capturable by the
objective function. But, as previously explained, certain portions of the Pareto frontier are of
low interest for designers. For example, non-convex parts usually correspond to areas of
unattractive trades-off. Therefore, challenges for the selection of suitable objective functions
in MO are mainly concerned with modelling designers’ intentions. In particular, mathematical
behaviour of functions must reflect designer’s preferences in the best way.

In this thesis, we are mainly interested in the formulation of preferences within the
objective functions, and thus, we focus on aggregated objective functions (AOF). For
scalarization methods (or global criterion approach), Sadler has proposed that the
minimization of the global objective function (i.e. the AOF) is a sufficient condition for
Pareto optimality if the global objective function increases monotonically in respect to each
aggregated objective function [Stadler 1988]. This implies that the Hessian of the objective
function in respect to aggregated objective functions must be negative definite [Athan 1996].
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Moreover, for every Pareto optimal point, there is an AOF satisfying the previous
requirements and captures each point of the front [Messac 2000a].

In [Messac 2000b], Messac tackles the issue related to the ability of AOF to generate
points lying on non-convex parts of Pareto frontiers. He distinguishes locally capturable
points, which correspond to local minima of a given AOF specified with a particular
parameterization, from globally capturable points which are global minima. Messac provides
a sufficient and necessary condition that must be verify by AOF for local capturability of
points lying on non-convex Pareto frontier. In particular, he shows that a solution is locally
capturable by weighted sum AOF if this solution lies on convex parts of Pareto frontiers.
Although globally capturable points are locally capturable too, the reverse is not true, and
locally capturable points are not necessary globally capturable.
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Figure 11.lllustration of globally and locally capturable points by minimization of the weighted sum AOF

Figure 11 shows the non-convex Pareto frontier of a bi-objective minimization problem.
Points A and D lie on the convex parts of the Pareto frontier. These points are globally
capturable since they correspond respectively to global minima of the objective function.
Points B and C lie on convex parts of the Pareto frontier too and correspond to local minima
of the objective function. Thus, points B and C are only locally capturable. Points located on
the concave part of the Pareto frontier (segment BC) are not capturable. Consequently, in a
MO context, using the weighted sum AOF doesn’t enable to detect the solutions located on
the segment AD of the front. This illustrates why the weighted sum aggregation approach
suffers from serious drawbacks [Das 1997] for preferences assessment. In particular, in
engineering design, it excludes vast areas of solutions which may be considered as relevant
for designers.

2.3.5 Classification of the MO methodologies according to the articulation of
preferences

As previously mentioned, the main issues in MO are related to the accurate modelling of
designers’ preferences. In decision theory, preference refers to the decision-maker opinion
about solution points within the criteria space (or objective space). Preference functions are
defined as abstract functions in the mind of decision-makers which integrate criteria,
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objectives and preferences. Preference assessment aims to reflect preference functions in the
best way in order to select the most preferred solutions among a set of plausible alternatives.
As presented in table 4, most of MO methodologies and techniques can be classified
according to a priori or a posteriori preferences modelling [Marler 2004].

In this research work, we are mainly interested in techniques based on a priori articulation
of preferences. Table 4 presents some of these methods. They are based on models of
decision-makers’ judgment and perception before computing design solutions. Preferences are
express within the objective function(s) and are formulated as goals, trade-offs or relative
importance relations between objectives (priorities). These methods are based on the
specification of a set of parameters (coefficients or weights, exponents, constraint limits,
utopia point) whose values enable to accurately model the designers’ preferences within the
decision model. Since multiple objectives introduce degree of freedom within the
design/decision MO problem, the expression of preferences provides additional constraints to
the problem, and consequently, the initial MO problem can be turned into a mono-objective
optimization problem. It can be noticed that, depending on methods, continuous modifications
of parameters enable the generation of the whole Pareto set or just some parts of this set.
Therefore, the selection of a particular MO technique based on a priori articulation of
preferences depends on its ability in modelling designers' preferences within a given context.
Finally, a priori articulation of preference requires additional efforts in modelling processes to
formalize much more knowledge about the design problem.

Articulation of Methodologies and techniques
preference
A priori formulation Weighted Global Criterion method and its extensions (including utopia point

method) [Yu 1974, Zeleny 1981, Wierzbicki 1982, Chankong 1983, Miettinen 1999]

Weighted Sum method [Zadeh 1963, Steuer 1989, Chankong 1983, Athan 1996,
Das 1997, Koski 2005]

Weighted Min-Max method (or Tchebycheff method) [Miettinen 1999, Messac
2000a, Messac 2000b]

Weighted Product method [Bridgman 1922]
Exponential Weighted method [Athan 1996]
Lexicographic method [Stadler 1988]
Goal Programming method [Charnes 1977, Tamiz 1998]
Bounded objective method-€¢onstraint approach) [Haimes 1971, Hwang 1979]
Physical Programming [Messac 1996, Messac 2002a]

A posteriori formulation  Physical Programming [Messac 2002b]
Normal Boundary Intersection (NBI) method [Das 1998]
Normal Constraint (NC) method [Messac 2003]

Table 4. Classification of MO methodologies and techniques according to a priori or posteriori formulation of
preferences

However, preferences are sometime so complex that it is difficult to express them in a formal
way. Therefore, it is suitable to allow designers to select the most preferred solution among a
set of effective solutions (in general the Pareto set). Therefore, methods based on a posteriori
articulation of preferences imply the development of algorithms for generating and
representing the set of Pareto optimal solutions in the best way. In general, the final solution
is very close to the expected preference function. Some of methods involving a posteriori
formulation of preferences are given in table 4. These methods are in general coupled with
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visualization techniques to support the representation of design solutions, which is obviously
relevant while the number of objectives doesn’t exceed three.

Finally, some methods with no articulation of preference, called mixed methods or
interactive methods, allow designers to adjust the optimal solution according to their
preferences after each iteration of the optimization process [Steuer 1983, Xiao 2007, Jeong
2009]. This approach enables to integrate the designer within the optimization loop and
provides guidelines to orient the search of relevant solutions.

2.3.6 Genetic algorithms

Recently, a particular class of algorithms, called genetic algorithms (GA), has received
increased interests to solve MO problems. As GA do not require gradient computations, they
are efficient to deal with non trivial optimization problems, independently of the nature of the
objective function(s) (continuous/discontinuous, non differentiable) and constraints
(equality/inequality, linear/nonlinear). These algorithms are efficient as global optimization
algorithms and hybridation techniques with classical approaches can be used for local
optimization. Although computing costs are often expensive while optimizing design
problems, parallelization computing and clustering techniques can be used to cover this issue
and increase the performance of GA [Deb 1989, Cantu-Paz 2000, Bonham 2004]. Finally, in
an industrial context, benefits of using GA come from their ease of implementation as “black-
box” systems, making them popular in many areas of application.
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Figure 12.Principles of Genetic Algorithms
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GA use stochastic optimization techniques to simulate the natural selection process of
individuals in selective environments. The concepswival of the fittesfGoldberg 1996]

states that within a population, the most adapted individuals tend to live long enough to breed
whereas the weakest individuals tend to disappear. By analogy with this natural evolution
rules, GA consists in making a population of individuals evolve toward the optimum of the
optimization problem. Each individual corresponds to a candidate solution represented by a
set of design variables values. Individuals are evaluated and ranked according to their fitness,
I.e. their ability in optimizing the objective function.

Figure 12 represents the principles of GA in graph form. The best individuals of the current
population are first selected by comparison of their fithess scores, and then, a new population
of solutions is created for the next generation by tournament selection, crossover and mutation
operators. This process is performed generation after generation, until termination criteria are
reached (the maximum number of iterations for example). Each generation corresponds to one
iteration. Further details on GA mechanisms are given in the literature [Srinivas 1994,
Goldberg 1996, Oduguwa 2005, Chiong 2009].

According to Deb [Deb 1999], one of the major challenge in the development of such
algorithms for MO is to ensure the convergence toward the Pareto frontier taking into account
the uniformity of the repartition of the non-dominated solutions. In 1985, Schaffer presents
the first GA for MO problems, called VEGA (Vector Evaluated Genetic Algorithm) [Schaffer
1985]. In 2002, Deb proposed his NSGA-1I (Non Dominated Sorting Genetic Algorithm)
[Deb 2002] which is currently regarded as a reference evolutionary MO. The algorithm
NGSA-Il is very effective in generating the Pareto set with a high accuracy and a high
converge speed. Due to the elitist approach, it preserves the best individuals from one
generation to another (acting as a memory). It uses a selection procedure, based on the non-
domination principle, and a comparison operator using the computation of crowding distance.

New children

F population Q+

pom— | | Miscread

P(N) by tournament,

F3 crossover and
mutation
operators

Put (V) Qu1 (V)

Q(N) Eliminated
| ‘ | ‘ individuals

rRey 4

t=t+1

Figure 13.lllustration of the NGSA-II principles [Deb 2002]

Principles of NGSA-Il are represented on figure 13. A parent population Pt and a children
population Qt composed by N individuals are gathered into a population Rt of 2N individuals.

This operation enables to apply the elitist strategy. Individual of the resulting population Rt
are sorted according to a non-domination criterion to identify the different fronfigrsA(

rank is assigned to every individual of the population based on the front on which they lie.
The best individuals belong to the first frontier (fithess value of 1). In addition to the fitness

value, a crowding distance is calculated for each individual with respect to the others. The
crowding is computed from the perimeter formed by every closest individual's neighbour and
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for each objective. Large average crowding distance results in better diversity within the
population. Parents are selected from the population by using binary tournament selection
based on the rank and crowding distance. A new children population is then created by
genetic operators (crossover and mutation). Simulated Binary Crossover (SBX) and
Polynomial Mutation were also proposed for real-coded GA operators [Deb 1995].

2.4 Design optimization methodologies under uncertainties

2.4.1 Introduction

Design optimization methodologies under uncertainties aim to develop systems satisfying a
certain level of performance during their lifetime. In most cases, models and optimization
techniques are deterministic. Consequently, variations of design variables, tolerances on
dimensions, dispersion of materials properties, fluctuation of environmental parameters or
modelling errors are either not taken into account, or introduced in the design process by
simplifying assumptions (worst-case based design, application of safety factors). These
assumptions often penalize the performances of systems by increasing their dimensions,
which increases material costs and costs of production.

Moreover, classical optimization techniques tend to push design toward admissible
domains boundaries while performances are expected to be improved, leading to optimal
design solutions with a low level of reliability and robustness, since a slight variation of
design variables, or changes in the environmental parameters, may cause violation of
constraints or deep degradation of performances.

Due to recent advances in high-speed computing, optimization techniques considering
uncertainty have received increasing interests while designing systems. Figure 14 represents
the different types of uncertainty which are classically identified in engineering design. They
can be classified into four categories listed as:

» FHuctuations of environmental and operational parameters

= Variations of design variables such as manufacturing tolerances and actuator imprecision
= Modelling errors and imprecision

= Uncertainty related to constraints satisfaction

The first source of uncertainty refers to fluctuations of environmental and operational
parameters such as humidity, operating temperature or pressure. They are considered as noise
factors or uncontrollable parameters, and refefype Ivariationsaccording to Chen [Chen

1996]. It is modelled by introducing an additional parameitgin the simulation model. The

second type of uncertainty is linked to variations of design variables, such as manufacturing
tolerances and actuator imprecision. In mechanical design, dimensions can be realized only
with a certain degree of accuracy, which introduces dimensional dispersions. This kind of
uncertainty is regarded as control factor and referByfme Il variations [Chen 1996]. This

type of uncertainty is introduced in the evaluation model using a perturbation vé&ctor (
related to the design variableg.(For exampled=ex may model the relative uncertainty of

measurements provided for materials Young modulus or mechanical strength estimations.
Uncertainty in performances predictions can also results from modelling errors and inherent
imprecision. This type of uncertainty is caused by modelling assumptions, measurements
errors or experimental correlations, which can be modelled as a random function of the
nominal performancey}. The last type of uncertainty to be taken into account is related to the
constraints satisfaction and concerns the uncertainty reflecting the designer choices. Methods
to deal with this kind of uncertainty are presented in chapter 3.
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Figure 14.Representation of uncertainty in engineering design

However, uncertainty can be also classified into aleatory and epistemic uncertainty
[Oberkampf 2004, Samson 2009b]. While aleatory uncertainties are linked to the intrinsic
stochastic nature of physical phenomena (humidity, temperature, pressure or material
parameters), and so, cannot be removed or reduced by design parameters, epistemic
uncertainties reflect the lack of knowledge about the design problem and .can be reduced by
increased efforts. This kind of uncertainty also includes uncertainties about the model used to
describe the system behaviour, its boundaries and operating conditions, and the errors linked
to the numerical solving methods (such as discretization, convergence, approximation).
Discrete/continuous interval and fuzzy sets are suitable to model this type of uncertainty,
whereas probability distributions are suitable to model aleatory uncertainty due to their
probabilistic nature.

2.4.2 Uncertainty modelling

The simulation of the performance variations, while design variables and parameters are
moved from their nominal values, requires the development of methodologies for uncertainty
modelling and methods for uncertainty propagation through evaluation models. These
challenges have motivated many research works in the past few years [Du 2000a, Padulo
2007, Lee 2009].
In general, the easiest way to deal with uncertainty is to use Monte Carlo simulation

method, Taylor series expansion or orthogonal arrays based simulation [Shyam 2002] to
introduced stochastic variations within evaluation models as follows:

y=u[u(xa)], x=x+s (2.4.2)

where X, Y, and U represent respectively the vector of disturbed design variables, the vector
of disturbed performances and a random function simulating inherent errors within simulation
models. Parameteré and 8 model uncertainties linked to fluctuations of epwimental
parameters and manufacturing dispersions. They define interval of variations around the
nominal value, which is equivalent to define a neighbourhood of solutions around the nominal
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value. The dispersion of the performances is then observed in the performance space (or
criteria space) as represented on figure 15.
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Figure 15. Representation of nominal and disturbed points while uncertainty is stochastically modelled

2.4.3 Reliability-based optimization

The most commonly used methods to deal with uncertainty refer to reliability-based
optimization (RBDO). RBDO methods are based on probability distributions to describe
variability of design variables and model parameters. Variations are represented by standard
deviations (typically assumed to be constant). Mean performance measures are then optimized
subjected to a set of probabilistic constraints (failure probabilities and expected values), i.e.
with an associated reliability. As the improvement of reliability of systems often leads to
penalize its performances (in particular increasing of overall dimensions and costs), RBDO
methods intend to achieve systems with an acceptable level of reliability and a satisfying level
of performance. Classical RBDO problems are formulated as follows:

minimize f(d,Hy Hp)

subject to:
P[G(dXP)20]zR i=12...,n (2.4.3)
d- <d<d"
My S Hy S

whered is the vector of deterministic design variabl¥sjs the vector of random design
variables andP is the vector of random design parameters. The objective furicgpnesents

the performance to be minimized (costs for example). A solution is said reliable if the
probability of satisfying each constraint is greater than a specified reliability (confidence)
level R. Reliable and performance optima are both represented on figure 16. The performance
optimum (C) appears as non-reliable since the performance constraint is violated while design
variables X) are disturbed. The reliable optimum (A) satisfies the constraint whatever the
value of x within its domain of variation. However, this implies a slight performance
decrement.
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In mechanical design, RBDO approaches are particularly effective to increase the
confidence of designers toward a design solution in regards to safety criteria (mechanical
strength of bridges facing to wind vibrations for example) [Enevoldsen 1994, Gasser 1997,
Youn 2004, Jensen 2005, Samson 2009b]. Two class of RBDO methods are commonly used
to solve the problem (2.4.2). The first class consists in decoupling the RBDO process into a
sequence of deterministic design optimizations which are followed by a set of reliability
assessments loops [Royset 2001, Du 2004]. The deterministic and reliability loops are
iteratively repeated until convergence. The second class of RBDO methods converts the
problem into an equivalent single-loop deterministic optimization [Liang 2008], leading to
significant computational efficiency improvements. The reliability assessment can be
performed according to the reliability index approach (RIA) or the performance measure
approaches (PMA). Every time the optimization loops call for a constraint evaluation,
estimates on the failure probability are based on first-order or second-order reliability
methods (FORM and SORM) [Ditlevsen 1996] in order to determine the so-called most
probable point (MPP) of failure.

2.4.4 Robust design optimization

While RBDO methods concern the probability of constraints satisfaction facing aleatory
uncertainly, robust design optimization (RDO) aims at minimizing the variations of the
performance under epistemic uncertainty (no distributions on the input variables). Although
there is still not a clear definition obbustnessn engineering, most of the authors agree to
say that robust design aims at sizing systems which are intrinsically low sensitive to all
sources of uncertainty, rather than trying to reduce or control them [Park 2006, Beyer 2007].
Concepts of robustness and RDO have been developed simultaneously in the fields of
operational research (OR) [Mulvey 1995] and engineering design.

In engineering, robust design has been initiated by G. Taguchi in quality engineering
[Taguchi 1984, Taguchi 2004]. The methodology proposed by Taguchi is divided into three
steps. In particular, the phase of parameter design aims at optimizing design parameters in
respect with the variations of performances under noise factors. Taguchi introduces a “signal-
to-noise” ratio (SNR) to evaluate the robustness of a selected configuration. This ratio is
generally expressed as follows:

SNR=- 10|o{c¥jj (2.4.4.1)

where Y represents the mean performance @nepresents the standard deviation. However,

the methodology proposed by Taguchi doesn't really use an automated optimization process to
maximize the SNR since he suggests the use of design of experiments (DOE) for designing
evaluation of design solutions robustness. This approach is therefore limited by the number of
alternatives and the number of design variables. Controversial debates about the Taguchi
methods are summarized in [Nair 1992].

According to figure 16, point B corresponds to a robust optimal solution. However, the
selection of this solution implies the decreasing of the performance. Although in this case, the
robust optimum solution is also reliable, in general, robustness doesn't imply reliability, and
inversely, reliability doesn't mean robustness. Robust solutions closed to the bounds of the
feasible domain may present slight performance variations around their nominal values, and
then, fall beyond the admissible limits. On the contrary, reliable optimal solutions may
present important performance variations while remaining within the feasible domain.
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Figure 16. Representation of different optimal solutions achieved by optimization methods under uncertainties:
(A) Reliable-based design optimization, (B) Robust design optimization and (C) Deterministic optimization

Reviews of existing RDO methodologies and methods are presented in [Beyer 2007,
Arvidsson 2008, Schueller 2008]. While many RDO techniques developed in the past few
years are based on the computation of the mean performance and standard deviation [Brotchie
1997, Parkinson 1997, Du 2000b, Ardakani 2009], some of them have proposed to tackle
robust design as MO problems [Chen 1996, Chen 1999, Greiner 2011]. In fact, using the MO
formulation (2.3.1.1), RDO problems can be formulated as follows:

minimize V; (d b )

subject to:
g (d,X,P)=0 (2.4.4.2)
d-<d<d’
My < My S

where Vs is a variation measure of the performaifcé is equivalent to trade performance
against variability. Although, trade-off between performance and variability has already been
tackled in some recent studies [Chen 1999, Du 2004], this approach seems to be still not
extensively applied in industry.

2.5 Summary

Fundamental notions and concepts related to formal design theories and methodologies are
introduced in this chapter. The FBS ontology proposed by John Gero offers a suitable
framework to link real and expected behaviour in design and thus enables to situate
optimization in engineering design. Some of the topical issues, priors work and future
challenges related to address engineering problems with optimization techniques are also
presented through this chapter. In particular, it highlights that most of these techniques have
not meet yet designer's needs in industry. The development of suitable tools dedicated to
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support decision making in embodiment design is thus required to improve the whole design
process of machines.

The research work presented in this thesis uses the Gero’s FBS framework to develop a
modelling methodology for embodiment design problems. In particular, we propose a
preference model to link physical behaviour, design criteria and objectives, with an
observation, interpretation and aggregation decomposition. While design optimization
involves generation and evaluation of solutions, we focus here on how candidate solutions can
be evaluated and ranked according to the design requirements and designers’ intentions.
Finally, as optimal solutions are often disturbed by inherent uncertainty, it is obvious that they
must also be robust. Two levels of robustness are considered here. While the first level of
robustness concerns the sensitivity of systems performances facing physical uncertainty, the
second level of robustness deals with uncertainty of the choice and tackle trade-off between
two design objectives, namely (1) the improvement of the overall performance and (2) the
minimization of the performances’ variability. Therefore, a more relevant definition of
robustness in engineering may be that a robust design solution is a solution whose
performance is desirable in regards to its sensitivity under uncertainty. The formulation of
these two types of robustness within a global robust design approach is one of the salient
points developed in this thesis.




CHAPTER

CHAPTER 3 Preference modelling in
Engineering Design

Preference modelling has a central role in engineering design to support decision-making and
guide designers toward the most preferred solutions. As the selection of a particular
methodology can impact the outcomes of decision-making, different approaches result in
different final solutions for the same set of preferences. Thus, the best fit for a given design
problem mainly depends on the ability of methodologies to reflect the intentions of the
designer through the set of assumptions on which methodologies are based. Facing with
multiple criteria, one possibility for preference assessment is to determine individual
preference functions, and then, generate adequate aggregation strategies to form a single
global criterion, used as a metric for alternatives evaluation. This chapter aims to introduce
the main concepts and issues related to preference modelling in engineering design. Three
different approaches, namely utility theory, method of imprecision and desirability index, are
presented and discussed according to their ability in modelling preferences in engineering
design.

3.1 Concepts and definitions

3.1.1 Alternative and attribute

Any formal methods developed in decision theory aims to model and compare the
acceptability of different alternatives. In economics, alternatives are usually regarded as
bundles of goods, and are often represented as vectors, in which each position represents a
specific good. The scalar value associated to this position denotes the number of units of this
goods. In engineering design, the definition of alternatives depends on the stage of the design
process. In conceptual design, alternatives are often abstraction of products, represented as
whole artefacts, whereas in embodiment and detailed design, alternatives designate
combinations of design variables values describing products.

Definition: In embodiment design, a design alternative X is represented as a vector of
controllable design variableg=[x1, X.....X,]' whose scalar values quantify the main
characteristics of the system to be designed and enable to differentiate two alternatives
between them.

Alternatives evaluation is based on their attributes which refer to some properties of the
system, performance measures or objective achievement indicators.

3.1.2 Preferences and order of relation

The basic concept in ranking alternatives is the simple comparison. This comparison involves
no association of numbers with alternatives, but only the idea that an alternative A is preferred
to an alternative B. A ranking method involving a simple comparison between two
alternatives A and B is a weak order of relation.

©2012 T. Quirante, Bordeaux University. All right reserved. 45
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Definition: A weak order of relation among a set of alternatiXess a binary transitive
relation = such thatll] A B1X, A>-B (A is at least as preferable as B), AkB (B is at

least as preferable as A). The indifference rela#onB is obtained wherA>-B and A<B.

In this case, A and B are equally preferred and it is impossible to perform a direct rational
choice. Inversely, the strict preference relatién-B (A is strictly preferred to B) is

equivalent toA-B and AﬁB.

A weak order ranking is an ordinal ranking. Alternatives are ranked alternatives without

assigning any numerical scalar quantities. However, any computational method in decision-
making requires the definition of an interpretable numerical scale of value to sort alternatives
according to a cardinal ranking.

3.1.3 Value functions

Cardinal ranking of alternatives consists in interpreting preferences in term of value. Value is
commonly defined as a numerical quantity used to illustrate the goodness of the attributes of
alternatives. Utility, desirability and level of acceptability are common value used to measure
preference. A value function designates the mapping between the weak ordered set of
alternatives and the scale of value.

Definition: A value functionv is an assignment of scalar values to alternatives such as the
weak order of acceptability among these alternative is preserved. It allows the construction of
a model of preference such as Biff v(a )>v( ). In general, a value functions maps the

levels of alternatives' attributes onto the interval [0,1].

While it is always possible to derive a value function from a weak order relation [Krantz
1971], there is nothing inherent in the definition of value function for the quantification of the
level of acceptability or degree of satisfaction achieved by alternatives. In other words,
beyond a set of alternative, there is a possible interpretation of the relative value. Therefore,
preference modelling requires additional information about the structure of value functions.

(@) (b)

Figure 17.Two basic value functions: (a) “bound low values is better” and (b) “close to a target value is better”
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The selection of a particular structure for a value function should reflect the designer's
interpretation of preferences. Value functions used in engineering design often models three
major intentions which can be expressed as follows: “bounding low values is better”, the
“bounding high values is better” and “close to a target value is better”. A value equal to one
means that design attributes completely meet the designer's expectations, whereas a value
equal to zero reflects the inadequacy of design attributes with design requirements. Between
these extreme values, the behaviour of the value function intends to model variations of
designer's preferences according to attributes values.

Figure 17 represents two basic value functions. On figure 17a, the value function in crisp
form (plotted in dashed line) implies that a property with a value §£5+0) is completely
satisfying, whereas the same property with a value y=5—0] is regarded as completely
unsatisfying. This is obviously not suitable to model preference since extremely close
property values result in two extreme different values. Change of preference value is actually
progressive with the gain of value of the property. A more convenient model is represented by
the function plotted in solid line on figure 17. This function indicates a progressive transition
of the preference from the not satisfying property va{yg=0 to the most satisfying property
value \y)=1.

In the following, we present three different value functions for preference modelling in
engineering design, namely multiattribute utility functions, preference functions of the
method of imprecision and desirability functions.

3.2 Utility theory

3.2.1 Introduction

Utility theory is an analytical method based on a probabilistic model to support multicriteria
decision-making under risk and uncertainty. Utility is defined as a numerical quantity lying in
the range [0,1] which is used to illustrate the goodness of alternatives’ attributes under
uncertainty. Originally developed in economics, utility theory has been extensively used in
the past few years to design products and systems [Hazelrigg 1996, Lewis 2006].

Utility theory fundamentals consist in a set of axioms restricting the way by which
designers can express preferential judgments among a set of alternatives facing risk and
uncertainty. Under these assumptions, utility theory is the only way to provide consistent
outcomes with designers’ preferences. In this approach, preference modelling is based on
lottery assessments from which single-preference utility functigpsand scaling constant
are derived.

3.2.2 Assessment of utility functions

According to the von Neumann-Morgenstern axioms [Von Neumann 1947], a single-attribute
function (SAU) can be derived from designer's judgment facing a lottery assessment. SAUs
are defined as monotonic function with a utilif¢dFl for the most preferred attribute value,
and with a utility yos=0 for the less preferred attribute value. These functions model
designers’ compromises between the best and worst cases according to the priority orders
derived from the lottery assessment [Keeney 1993].

The definition of SAUs is based on the notionceftainty equivalentA certainty value
can be regarded as a guaranteed outcome facing a lottery between the two extreme values, in
which there is a probabilitypdor obtaining the best value and a probability glfep obtaining
the worst value. A probability opl results in the selection of the lottery, whereas a
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probability of p=0 results in the selection of the certainty. The value of the indifference
probability p corresponds to the utility of the certainty equivalent which is equal to the
mathematical expectation of the lottery outcome. While lottery questions are necessary to
describe the implications of attributes between them, analytical function formulations (linear,
exponential) are required to describe the preference structure of SAUSs.

Certainty Lottery outcomes
P=Po 250 cm? (Best)
500 cm?
p=1-po 900 cm? (Worst)

Figure 18.Typical lottery assessment [Krishnamurty 2006]

As an example, figure 18 illustrates a typical lottery assessment for the cross-section of an I-
beam [Krishnamurty 2006]. In this case, a cross-section area of 500cm? represents a
guaranteed result (certainty) compared to the two lottery outcomes in which there is a
probability @ of obtaining the best value of 250cm? and a probabilityof I3pobtaining the

worst value of 900cmz2. Here, the best value (250cm?) may refer to the lowest admissible
cross-section area according to safety criteria, whereas the highest value (900cm?2) can be
determined from costs considerations. Therefore, the utility of the certainty equivalent
(500cm?) corresponds to the mathematical expectation of the lottery which is expressed as
follows:

u(500cnt) = pm( 250ch)+( 2 Pm( 900cH (3.2.2.1)

While decision problems involve multiple attributes, it is necessary to define a multiattribute
(MAU) function to evaluate the alternatives overall utility. The overall utility over a set of
attributes valuesi(y1, Y2,...,Yn) can be either directly estimated over the values ofnthe
attributes, or computed from the mathematical combinatiom GAUs functionsui(y;)
through some scaling constants. The structure of MAU functions can be provided with
additive, multilinear or multiplicative formulations. Due to its relative simplicity, additive
formulation is the most popular form. In this case, the MAU to be maximized is expressed as:

U(Y1,Yoree Ya) :iki [ (y;) (3.2.2.2)

where k refer to scaling constants (weights). These constants reflect the designer's
preferences about attributes. They can be determined by evaluating the marginal rate of
substitution of one objective in term of another or by lottery assessment.

3.2.3 Why does utility theory partly fail to meet designers' needs in engineering
design?

According to Scott [Scott 1999], utility theory intends to treat decision-making problems
under probabilistic uncertainty or risk, rather than intend to define solutions of multicriteria
decision problem. Although the lottery assessment seems to be suitable to derive numerical
scale of value for preference assessment facing risk and uncertainty, engineering design may
not fall into these assumptions, and consequently, the definition of SAUs are no longer
relevant.
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Indeed, utility theory had been initially developed to deal with a particular range of
problems, in which the estimation of expectation for each alternative is regarded as the most
relevant information. For example, in production stages, it can be suitable to use utility theory
to deal with the probability distributions linked to manufacturing tolerances. However, early
stages of the design process differ from classical decision problems by the existence of
epistemic uncertainties, incomplete data and high degree of imprecision due to a lack of
knowledge about the design. Thus, design variables and performance measures (attributes)
values change without any probability distribution, falling out of the scope of utility theory.

Moreover, while engineering design is a goal-directed activity in which multiple
preferences are expressed from different experts involved in the design process, the
assumptions of utility theory make difficult any interpersonal comparison of utility
(preference) between multiple attributes.

Finally, according to Keeney [Keeney 1993], the additive form used in MAU fails to
completely capture designers' intentions in engineering design. Additive formulation implies
that any decrement of the overall preference (utility) caused by any changes of one
performance variable value, is always compensated by an increment of any other performance
variable value. This reflects for example the behaviour of a designer who wishes to
compensate an increase of the overall mass of the system by an appropriate decrease in costs.
Although the notion of compensatory is inherent in design, the compensatory situation
modelled by the additive form of utility does not always map the intentions of designers.
Others trade-off strategies can be expected by designers. For example, in engineering design,
alternatives are often considered as unacceptable if at least one of the attributes doesn’t meet
design criteria. Such a situation is modelled in the method of imprecision (Mol) through the
axiom of Annihilation, and thus, represents a fundamental difference between these two
approaches.

3.3 The Method of Imprecision

The Method of Imprecision (Mol) was initiated by Anthonsson and Wood [Wood 1989] to
deal with the inherent levels of imprecision in preliminary design. It is based on the
assumption that the imprecise information in engineering design can be handled and modelled
by formal methods. In the past few years, the Mol has been developed through many research
works [Otto 1991, Antonsson 1995, Scott 1998, Scott 1999, Scott 2000] which are
synthesized in [Anthonsson 2001].

Preferences of Mol are modelled by mapping the design space (or the performance space)
onto the interval [0,1]. They are expressed on an absolute scale of value where a preference
p=1 indicates a completely acceptable value, and a prefereficendicates a completely
unacceptable value. Preference function of the Mol does not express vagueness like in fuzzy
set theory, but the wish of designers to use a particular value within the admissible range.
Unlike utility theory, the notions of acceptabiliand desirabilityare here fundamentals.

Preference functions concern the performance, expressing some requirements for potential
performance values or the design space, modelling some non-formalized considerations about
design variables. While the definition of performance preference functions is partly objective,
since it is based on design requirements, the specification of design preference functions
depends on the subjectivity of designers. For example, they can be derived from interpolation
between data points.

However, the Mol does not provide guidelines, or methods, about how the designer should
specify an individual preference function for a specific performance measure or design
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variable. In particular, the method suffers from a lack of some effective techniques to handle
and interpret the degree of constraint satisfaction.

The Mol rather focuses on the combination of the individual preferences into an overall
preference. As it is often impossible to maximize simultaneously every individual preference,
the Mol is interested in the definition of appropriate aggregation operators to model trade-off
strategies in engineering design. Overall preference involves all individual preferences and is
expressed as [Scott 1998]:

p=P(p..., P, Wypoo, W), NON (3.3.1)

where the overall preference p results from the combination of ith@ividual preferences p
through the aggregation functidhand the weighting parameters Wowever, all aggregate

operators are not suitable to model rational decisions. A fundamental result of the Mol is the
definition of relevant aggregation function for preference modelling in engineering design.

3.3.1 Axioms of the Mol

The development of the Mol as a formal theory intends to formalize the intuitive notions of
the rational human behaviour within a set of axioms that aggregation functions must satisfy.
These axioms form a consistent basis to set restrictions on any preference aggregation
function for rational preference modelling in engineering design [Otto 1992]. The axioms of
the Mol are illustrated in table 5 and are detailed in [Scott 1998].

For example, th&€ontinuity axiom implies that an increase of preference on a particular
attribute should never result in a decrease of the overall preference, while the Syaxiomtry
indicates that the overall preference should only depend on the assigned individual
preferences, independently of the order in which they are expressed.

Axioms Formulation
N P(R. 0w, w,)(x)< A R B, w, w,)(x) O p(x)< p(x)
onotonicity

PR, R w, o) ()< B R B Wy W) (%) Dw, (%) < W (X); py(X) < py(x)

Symmetry P(p.pw, wo)(x)=P( B, R w,w,)(x)
- PP w, w )(X)= P(n B W,y w,)(x)

Continuity

P(R R, w,)(x) = PR, R w, W,)(x)
Idempotency P(p.piw, W,)(x) = p(x) Ow, +w, >0
Annihilation P(pO;w, w,)(x)=0 Ow, #0

(p

Self-scaling weights ~ P(p, B iw, 0@ w,0)(x)=P(p,pw, w,)(x), Ow,+w, t>0

Zero weights P(p.pw,0)(x)= pn(x) Ow,#0

Table 5. Axioms of the Mol for design appropriate aggregation functions

Axioms of Idempotencyand Annihilation are specific to engineering design and differentiate
Mol from other approaches in multicriteria decision-making. Tdenpotencyaxiom refers

to the notion of rational behaviour and states that if several identical individual preferences
are combined, then the resulted overall preference must be equal to the individual preferences.
This axiom has major implications for the specification of consistent preference functions
through the simultaneous comparison of attributes. As previously mentioned, the axiom of
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Annihilation implies that if one individual preference is equal to zero (unacceptable attribute
value), then the resulted overall preference should be equal to zero too (unacceptable
alternative). This differentiates engineering design from most of classical decision-making
problems where objectives can always be traded-off.

3.3.2 Design-appropriate aggregation functions

According to Scott [Scott 1991], an aggregation function is said teesign-appropriatef it

satisfies every axioms of the Mol. In particular, Scott suggests the class of weighted means as

a family of aggregation functions in engineering design, and shows that any weighted mean

satisfying theAnnihilation axiom is design-appropriate. The general form of the weighted

mean aggregation functions can be expressed as follows:
1

Wl p:IS.+W2 pZJS’ SDR

R(P,RW, W, = 3.3.2.1
2(pu o, ) [ W (3:3.2.1)
wheres is the trade-off strategy parameter, also called compensatory level parameter. From
this general expression, changes of the paransetalues results in the generation of
weighted mean aggregation functions. In particular:

» the min aggregation function,R while s»>—w

= the weighted geometric mean (or weighted product) aggregation fuRgtfons=0
» the weighted arithmetic mean (or weighted sum) aggregation functifom £=1

» the max aggregation function,& while s—+w

Further details are provided in Annex 1. According to #mnihilation axiom, design-
appropriate aggregation functions correspond to the set of weighted means generated while
s<0. In particular, thenin aggregation {s>—o) and the weighted geometric mean aggregation
functions (s=0) are both design appropriate. The weighted sum aggregation obtained for s=1
is therefore considered as not design appropriate within the Mol framework.

; 1 w, [p,+w, [P
P. =min , = e Ywew, R=| 22 2772 P =ma ,
min ( H Q) F% _(pl Dpz ) 1 [ W1+W2 j max )( E’ 9)
i 4 4 4
=00 0 1 +o0
t t > S
Non-compensatory Compensatory Super-compensatory
aggregation aggregation aggregation
Design-appropriate Non design-appropriate

Figure 19.Representation of the weighted mean aggregation functions continuum

Figure 19 illustrates the continuum of weighted mean aggregation functions generated while
the value of the parameter s is spanning its domain of values. Actually, it is not a real
continuum since there is a discontinuity for s=0. The compensatory level of the aggregation
function increases progressively with the value of s. Aggregation functions can be thus
classified into non-compensatory, compensatory and super-compensatory aggregation
functions. Super-compensatory aggregation functions are generated while s>1 and thus, are
not design appropriate.
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In particular, the weighted geometric mean aggregation (s=0) is compensatory. It is
denoted asaggressivestrategy by Otto [Otto 1991] since it traduces the intention of
improving the overall preference by worsening the lowest individual preference. Indeed,
design optimization is often hampered by one criterion which is more difficult to satisfy than
the others. On the contrary, thmin aggregation is non-compensatory. It is denoted as
conservativestrategy by Otto, since in this case, designers expect to improve the lowest
individual preference against a decrement of the overall preference.

3.4 Desirability approach in engineering design

3.4.1 Desirability and Utility

Desirability is a preference measurement which reflects the level of satisfaction achieved by
design alternatives’ properties according to designers’ point of view. Since Harrington has
introduced the concept of desirability and desirability functions to deal with multicriteria
optimization in quality engineering [Harrington 1965], this approach has been massively used
to tackle MO problems in a large range of scientific areas including engineering design
[Derringer 1980, Derringer 1994, Kim 2000, Réthy 2004, Trautmann 2005, Trautmann 2009,
Kruisselbrink 2009, Chen 2011]. However, the basis and implications of the desirability
concept in engineering design are still unclear.

In fact, there is some ambiguity between the notions of desirability and utility in
engineering design, and the “desirability” of an alternative often refers to its utility value
[Keeney 1993]:

“Expected utility theory ... can provide a normative analytical method for obtaining the
utility value ("desirability") of a design ...” Krishnamurty, 2006

“A natural measure of the desirability of choice ... is the expected maximum utility”,
Kenneth, 2006

Facing the lack of clear definition of desirability in engineering design, we intend to cover
this issue in the following by proposing definitions of desirability and utility in different fields
of science and insights on how they are closely related.

a. Desirability/Utility in economic sciences

In economics, Fischer [Fischer 1906] discussestytdind desirability of goods where
“goods” refer to any services, properties or wealth. According to his point of view, utility is
linked to the satisfaction of the desire rather to the desire itself. Utility requires experience
and duration in time for its existence, whereas desirability is defined rather as the intensity or
the strength of individuals’ desire for goods under certain conditions. Desirability merely
reflects the state of individuals’ mind at a particular moment. However, the concepts of utility
and desirability are closely linked since the desirability of goods represents the current esteem
on which future satisfactions are based.

Moreover, the term “utility” in economics also covers technical meaning and often refers
to money. Utility is a financial compensation resulting from a monetary exchange. For
example, diamonds are commonly considered as ornamental artefacts, and thus, are useless by
definition, whereas in economics, they are regarded as useful.

Finally, it can be useful to distinguish total desirability which is defined as the desirability
of an entire group of goods, from the marginal desirability which is the desirability associated
to the loss or the gain of one more good within the group.
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b. Desirability/Utility in social sciences

According to Beauvois [Beauvo1995, Cambon 2006the value associated to a pel, or
an artefactresults from a particar kind of social interactions and determined from tw
different componentdenotecrespectively as social desirability asalcial utility.

Social desirabilityefers to people's awareness about what it is considered desirable
a society or a group.d8ial desirability differs from individual desirability which is ratt
related to the particulaeélingthat one person can develop foratefac or another person.
For example, some soci@lehaviou such as altruism or politeness can be considere
socially desirable, whereas one individual cannot stand behavious due to his past
experiencdindividual desirability)

Social utility refers to the value assigned toartefact or anndividual, in respect with it
ability to meetsome fundamenteproperties of social functioning.o8ial utility reflects the
awareness of thehances of success or failLtfor a person living in a socie. It is mainly
related tothe economic sense the “market’value of a person, rather than the fact to rel
services to someone.

Finally, Beauvoisoncludes thi the social value of individuais composed by the desi
value which is represented by social desirability (cordial, friendly), and the market
which is represented by social utility (efficient, ambitio

c. Desirability/Utility in design sciences

In design siences, the notionof utility and desirability are often méh User Experienc
Design (UXD). UXD cover: all aspects of a user experience facing a sysncluding
interface, physical interactions and hur-computer interactions desighgw 200¢.

User experience (UXintends to reflec the feeling of an individual using a product
system or a service. Udoes nc only focus on interactionsetween human and prodt but
also includes individual's perceptions of practical aspects such as utility, desirabil
usability. Figure 20llustrates a common vie in UXD which admits that the optimal U
exists at the intersection of the three following factors: Dedlity, Utility and Usability.
Focusing only on onef them ma cause confusion, apathy or frustration among u
Consequently, the “ideaBystem should results from a balance of these three f:

Desirability

Figure 20.The optimal User Experien

Usability refers tahe ease of use and learning ability of a system or a producstandards
(ISO/TR 16982:2002, ISO 924 define usability as The extent to which a product can
used by specified users to achieve sped goals with effectiveness, efficiency, ¢
satisfactim in a specified context of L”. The concept of usability leadis generato systems
which are simple to understand, easy to master, responcbasicneeds of humar



54

In UX, desirability is required to make attractive product in regards of what is commonly
admitted as desirable in the society. It is a measure of the desire intensity for a product.
However, focusing on the desirability aspect may results in unintuitive or excessive products.
On the contrary, utility is of practical implications. It implies that systems do what they are
expected to do. In return, systems may require additional efforts for control or use.

d. Summary

According to the different views of desirability antlity met in different fields of science, it
appears that desirability and utility are considered as two separate and distinct concepts which
are closely linked. Therefore, the same distinction should be made in engineering design.

Desirability doesn’t express preference under risk or uncertainty like utility, but rather
intend to model experts knowledge and designers’ judgment about how should be designed. It
reflects the level of satisfaction (or the desire intensity) of designers for particular design
property values. Desirability links objective and subjective knowledge about the system to be
designed in respect with requirements and designers’ past experiences.

Through desirability functions, designers can express their so-called “feel for design”
[Hubka 1975] which refers to the ability in estimating appropriate dimensions, forms,
temperatures or performances of a design, without any calculations. This subjective
knowledge is developed through past experiences and is generally formulated as experts'
rules, heuristic advises or guidelines. For example, larger dimensions and smooth transitions
favour the mechanical strength in the higher stressed areas of mechanical systems. In the
same way, progressive changes of pipe cross-sections with the largest possible channel radius
are suitable for fluid flowing. Such expert knowledge is fundamental to tackle any design
problem. It provides additional non-formalized information (i.e. more constraints and less
degrees of freedom). This enables to distinguish early undesirable design solutions and to
converge quickly toward the most desirable ones.

Therefore, desirability enables to model preferences related to the true knowledge of
designers about design. It is not concerned neither with risk, nor imprecision, but with the
level of satisfaction resulting from the adequation between the real behaviour of alternatives
and the expected behaviour expressed by designers.

3.4.2 Desirability functions

Desirability functions are value functions which express the level of satisfaction of designers
for attributes values according to the design requirements and his expectations. They are non-
dimensional, monotonous, or piecewise monotonous functions, whose values are ranged in
the interval [0, 1]. A desirability d=0 represents an unacceptable property value, whereas a
desirability d=1 represents a completely acceptable property value such as slight
improvements of this property will not further change its level of satisfaction. In particular,
desirability functions can be used to model the degree of satisfaction associated to one
particular design criteria. Two classes of desirability functions, namely Harrington's
desirability functions and Derringer's desirability functions are usually used in multicriteria
optimization problems.

a. Harrington's desirability functions

In 1965, Harrington [Harrington 1965] proposed twygpds of continuous desirability
functions to deal with MO problem. While the one-sided formulation is suitable to reflect
“bounding low values is better” and “bounding high values is better”, the two-sided
formulation is used to express that “closer to a particular target value is better”. The general
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Harrington's one-sided desirability function for bounding low values (minimization) is
expressed as:

d" (y) = exp(- exfpa +B))

_In(in(d" (AC)) /In(d" (SL)))
AC-SL

B=In(-In(d" (SL)))-asL

o (3.4.2.1)

where the parameters AC and SL refer respectively to an absolute constraint and a soft limit
such as SL<AC. This function is represented on figure 21. In the same way, the Harrington's
one-sided desirability function for bounding high values (maximization) is expressed as:

d" (y) = exp(- exfpa +B¥))

_In(in(d" (sL)) / In(d" (AC)))
SL-AC

B=In(-In(d" (SL)))-asL

o (3.4.2.2)

where the parameters AC and SL are such as AC<SL. In general, the desirability levels
associated to the desirability function parameters are sud(4€)=0.01 andd”(SL)=0.99.

But, other desirability values can be assigned to the AC and SL bounds according to design
requirements and designers’ intentions. While AC bounds correspond to the strict satisfaction
of design criteria, SL bounds are related to the flexibility of design requirements.

I T T 3 T T
0.8F 1 .
0.67 S “.‘ -
2 ™S 5
5=
] 0.5 :
0.4 I |“ -1
0.2 i 7 i
....... Basic desirability function ‘.“ AC
Harrington's desirability function 5\ /
O | 1 | 1 L
0 2 4 53 6 75 8 10
Mass (tons)

Figure 21.Representation of the one-sided Harrington's desirability function

As an example, figure 21 represents the desirability function associated to the mass

requirements of the two-staged flash evaporator described in chapter 6. This system has been
designed for must concentration in the wine industry. As the evaporator must be transportable

from a production site to another, the mass requirements has been derived from the

dimensions and maximal carrying capacities of medium-sized flat bed trucks (PTAC<7.5t).
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Moreover, as explained in section 6.4.1, existing evaporators proposed by competing
constructors can be used to define reference systems with a mass of intermediate desirability
d"(Masse)=0.5 with Masg=5.3t. From these considerations, the preferences related to the
mass of the two-staged flash evaporator are modelled by specifying the Harrington’s
desirability with AC=7.5t, SL=5.3td(AC)=0.01 andd(SL)=0.5. The basic value function
associated to these constraints has also been plotted in dashed line. Compared to this basic
modelling, Harrington’s function presents progressive desirability variations approaching the
bounds. As a consequence, the desirability of alternatives with a mass ef(®ifit+€—0) is
very low but not null. This actually models the preference of designers facing alternatives
which are closed to the admissible limits of the design problem. Although these alternatives
do not satisfy constraints, they can remain relevant for designers, and therefore, their level of
desirability should not be null.

The Harrington's two-sided desirability functions are specified with four parameters,
namely: a lower absolute constraint (ACa lower soft limit (SL), an upper soft limit (SL)
and an upper absolute constraint (ACThe general form of the Harrington's two-sided
desirability functions is expressed as follows:

" (y)=ex{ |y

,_2y—(uU+L)
U-L
where (3.4.2.3)
case (1): W= AG L=AC,
case (2): U= S| L=SL,

case (3): WU=( AG+ Si)/ 2 I=( AC+ SL)/

However, the initial formulation proposed by Harrington doesn't support non-symmetric
boundaries. There are three possibilities to make symmetric boundaries: (1) use absolute
constraints boundaries and use a soft limit to determine n, (2) use soft limits boundaries and
use a constraint limit to determine n, or (3) use an average value between absolute constraints
and soft limits boundaries, and then use a constraint limit to determine n.
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------ Basic deSi[’ﬂl’i]il_\' function _— (2) Soft limit (SL) boundaries
—— (1) Absolute constraint (AC) boundaries (3) Average between AC and SL boundaries

Figure 22. Representation of the two-sided Harrington's desirability function
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Figure 22 represents the two-sided Harrington's desirability function associated to the
temperature requirements for the vintage at the outlet of the previous two-staged flash
evaporator. As it is explained in chapter 6, the continuity and efficiency of the fermentation
process is ensured for temperatures comprised 25°C and 30°C. Therefore, the related
desirability function has been specified with A&Q0°C, SL=25°C, Sly=30°C and
ACy=35°C. The basic value function associated to these constraints has been plotted in
dashed line. The different curves plotted in solid line correspond to the two-sided Harrington's
desirability functions specified with the three types of symmetric boundaries given in the
relation (3.4.2.3).

b. Derringer's desirability functions

In 1980, Derringer [Derringer 1980] has proposedtlaroclass of desirability functions to
balance multiple responses in quality engineering. He used a modified formula of the
Harrington’s desirability functions combined with a response surface methodology to form a
so-called Desirability Optimization methodology (DOM). Unlike Harrington's desirability
functions, Derringer's desirability functions are discontinuous and piecewise-defined
functions. The general form of the Derringer's one-sided desirability function for bounding
low values (minimization) is expressed as:

1 y<L
U_ |
dD(y): (U——?_’) L<y<U with I0OR, (3.4.2.4)
0 y<U

where the parameters U and L refer designate respectively the upper and lower bounds such
as L<U (see figure 23). In the same way, the Derringer’'s one-sided desirability function for
bounding high values (maximization) is expressed as:

1 y=>U
Dl _ y—LI , .
d®(y)= UL L<y<U with IOR, (3.4.2.5)
0 y<L

The parameter | is used to modify the variations of desirability between the bounds. Assigning
different values of this parameter modifies the shape of the desirability function and thus,
enables to fit the designer’'s preferences. Figure 23 represents the Derringer's desirability
function related to the mass requirements of the two-staged flash evaporator. In this example,
from the relation (3.4.2.4), the Derringer's desirability function with a lower bound of L=4.5t
and an upper bound U=7.5t. The value of the parameter | has been determined according to
the mass of the reference system with an the intermediate desirdB{tyt)=0.5. From
relation (3.4.2.3), it follows that:

>3~ 7 5) =2.234¢ (3.4.2.6)

4.5-7.5

| =-log(2)/ Iog(

It can be noticed that the basic desirability function is obtained for I=1. However, unlike the
formulation proposed by Harrington, the use of Derringer’s desirability functions implies that
every solution with a mass lower than 4.5t are equally preferred, dfifidass<4.5t)=1, and,

in the same way, every solution with a mass higher than 7.5t are undesirable since
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d°(Mass>7.5t)=0. Therefore, the existence of such threskaldes does not enable to rank
neither completely satisfying solutions between them, nor undesirable solutions between
them.

Figure 23. Representation of the one-sided Derringer’s desirability function

For target problems, the formulation of the Derringer's two-sided desirability function
requires the specification of five parameters. Two parameters are required to set the lower and
upper bounds, another specifies the target values, and finally, the two last parameters are used
to adjust the slope of the function on both sides of the target value. The general form of the
Derringer's two-sided desirability functions is expressed as follows:

0 y<L
|
d°(y)= . IOR,, uOR, (3.4.2.7)
(_y—Uj T<y<U
T-U
0 y>U

where T represents the target value. The parameters (I, u) can be set independently to
approach the target value in different way from both sides. Figure 24 represents the target
temperature requirements linked to the design of the previous flash evaporator. The two-sided
Derringer's desirability functions have been specified with L=20°C, T=27.5°C and U=30°C,
and have been plotted for different values of (l,u). The three functions model different
designer’s intentions, in particular in regards to the variations of preferences approaching the
bounds and the target value. According to this modelling, only solutions presenting an outlet
temperature equal to the target, i.e. 37.5°C, achieve a desirability value equal to one.



|
59 CHAPTER 3 Preference modelling in Engineering Design

091 — =1, uv=1
—1=0.5, u=0.5

1=2, u=0.3

071

d(Temperature)

10 15 20 25 275 30 35 40 45

Temperature (°C)

Figure 24.Representation of the two-sided Derringer’s desirability function

C. Summary on desirability functions

Although the specification of Derringer's desirafyilfunction is easier than Harrington’s,

they are less suitable to accurately express designers’ preferences. Due to the threshold
values, Derringer's formula don't differentiate the most satisfying design solutions between
them (d=1) and unacceptable design solutions between them (d=0). Therefore, a ranking
between “good” (or “bad”) cannot be established.

On the contrary, due to their exponential form, Harrington's desirability functions allow
progressive desirability variations approaching the bounds, and consequently, assign different
desirability scores to every design performance value. Consequently, using Harrington’s
desirability functions in design problem are used to rank the whole set of solutions, including
acceptable and unacceptable solutions.

According to the example illustrated on figure 21, it may happen that there is no solution
satisfying the absolute constraint of 7.5 tons. Harrington's desirability functions overcome this
difficulty by providing a soft formulation of constraints. Due to the monotonicity of the
functions; even if the absolute constraint has been violated, the desirability value of the
performance measure remains very low but not null. Consequently, a design solution with a
performance value equal to 7.%twill remain relatively desirable, and the desigolpem
can be solved.

To conclude, Harrington's desirability functions appear to be relevant functions to interpret
properties values and model preference based on design requirements and designers’
expectation. Once individual desirability functions have been specified on every property,
they are then aggregated into single global criterion called Desirability Index (DI). This
criterion represents the overall level of desirability achieved by design solutions and is used as
a metric for their evaluations.
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3.4.3 Desirability Index

Derringer proposed to aggregate individual desirability function into a single Desirability
Index (DI) using a weighted geometric mean aggregation [Derringer 1960]. As a function, the
Dl is expressed as follows:

k Kk
DI (y)=]di(v)" with > w =1 (3.4.3.1)

1=1 i=1
where w represents the numerical weight assigned to'thaesirability function. Numerical
weights reflect the relative importance of properties between them. DI corresponds to the
overall desirability of a design solution over all its properties. As it is still a desirability level,
it lies in the interval [0,1]. The formulation of the DI as the average of the individual
desirability scores enables synthesizing the set of preferences expressed on the design. This
reduces the number of criteria and consequently, allows a direct comparison of alternatives.
Derringer has proposed a weighted geometric mean to aggregate the desirability functions
into a single desirability value. This proposition results from the statement that during most of
product development processes, a single property with an unacceptable value makes the
product uselesgnihilation axiom of the Mol).
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Figure 25. Representation of the Desirability Index for different weight assignments

Figure 25 illustrates the influence of the weights on the DI values for an aggregation of two
individual Harrington’s desirability functions, namety(y) and dx(y). According to the
relation (3.4.2.1), the desirability functiah has been specified with SL=0.4,(@L)=0.99)

and AC=0.6 ((AC)=0.01) using the relation (3.4.2.2). The desirability functipimas been
specified with AC=0.1 (g{AC)=0.01) and SL=0.9 SL)=0.99). The weight wis expressed

as w=1-w;, and the weight wis decreased from 1 to O with a step of 0.25 to generate the
different DI functions. When w1, it results that yw=0 andDI(y)=di(y). Inversely, when
w;=0, it comes that w1 andDly(y)=dx(y). Decreasing the value of;wnakesDI(y) to
deviate fromd;(y) and it tends toward,(y). As DI(y) is expected to be maximized, another
interesting point concerns the variations of the optimum with the weights. According to this
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figure, points A, B, C, D and E correspond respectively to the optimum of the functions
Dlwi=1,Dlwi=0.75 Dlwi=05 Dlwi=0.25andDl1-0. These points correspond to the optimal solutions
resulting from the optimization of the DI functions. The DI scores linked to these solutions
are such as:

DI (D), 525 <DI (C),, o5 <D! (B),, 5,5 <D! (A), ,, =DI (E) (3.4.3.2)

w,=0.25 w;=0.75 w,=0

However, the relation (3.4.3.2) does not induce a preference relation order between these
solutions. In fact, these solutions correspond to different optimization problems, and thus,
cannot be directly compared. Therefore, the ranking of solutions resulting from the
optimization of DI functions is possible only for a given set of weights. For example, for
w;=0.5, the comparison of the solutions B and C requires the computatiiB)f,1-0.5 and
DI(C)wi=05 In chapter 5, it is explained that variations of weight combinations enables to
determine optimal solutions along the Pareto frontier.

Later, another approach is proposed by Kim and Lin [Kim 2000] to avoid the use of
numerical weights. They suggest an aggregation function based on the minimum of the
individual desirability scores. The DI is then expressed as follows:

DI (y) =min(d (v,)) (3.4.3.3)

While the optimization of the aggregation function proposed by Derringer (weighted
geometric mean) enables to improve the DI value by worsening the lowest individual
desirability score, the aggregation formula suggested by Kim and Lin aims to improve the
lowest individual desirability against a decrement of the overall desirability (DI value).
According to the axioms of the Mol, these two aggregation functiondesign appropriate

and thus, are suitable to model preference in engineering design (for details see section 3.3).
Consequently, we propose here to combine the concept of desirability with the concept of
design appropriateaggregation functions. The formulation of the DI is thus extended to the
class of weighted means as follows:

o1 (3)={ Swa(y)'| win 3w =1 6434

As it is explained in section 3.3, only aggregation functions generated ¥@thredesign
appropriate Figure 26 illustrates the impact of the parametex@)(en the DI values for an
aggregation of the two previous desirability functi@h§/) andd,(y) according to the relation
(3.4.3.4). The weights are set such aswg=0.5. The formulations proposed by Derringer
and Kim correspond respectively Ris-o and Dls_,_.. Decreasing the value of s causes a
decrement of the compensatory level between the two desirability functions. For high
negative values (s<-10), the generated aggregation functions tend quickly towanth the
aggregation function{ls_,—). On the interval [0;0.5], thein aggregation function leads to
DI(y)s——-=d2(y), whereas on the interval [0.5,1], it leadsD&(y)s—.=0d1(y). Like weight
assignment, variations of the trade-off parameter value also modify the optimum of the DI
function. Each value of s corresponds to a particular trade-off strategy and leads to a specific
type of solution. This is further discussed in chapter 5 where a procedure to determine
consistent values of s according to designers’ preferences is presented.
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Figure 26. lllustration of the Desirability Index for different values of trade-off strategy parameter (s)

3.5 Summary

As design is a human activity, embodiment design problems differentiate themselves from
others kinds of problems by the expression and the formulation of designer’'s preferences.
Facing multiple criteria, preference assessments can be tackled by determining individual
preference functions, and generating adequate aggregation strategy to form a single global
criterion used as a metric for alternatives evaluation. This chapter 3 introduces the main
concepts and issues related to preference modelling in engineering design. Three different
approaches, namely utility theory, method of imprecision and desirability index, are presented
and discussed according to their ability in modelling preferences in engineering design. The
desirability approach appears as the most relevant to reflect designers’ intention in
embodiment design. Desirability enables to model preferences related to the true knowledge
of designers about design. It is not concerned neither whit risk, nor imprecision, but with the
level of satisfaction resulting from the adequation between the real behaviour of alternatives
and the expected behaviour expressed by designers. In particular, Harrington's desirability
functions appear as relevant functions to interpret properties values and model preference
based on design requirements and designers’ expectation. Due to their exponential form,
Harrington’s desirability functions allow progressive desirability variations approaching the
bounds, and consequently, enable to rank the whole set of solutions, including acceptable and
unacceptable solutions. Moreover this class of desirability functions provides the design
problem with a soft formulation of constraints which reflects better the designer’s behaviour
evaluating design candidates. Individual desirability functions are then aggregated into
desirability index according to the general weighted mean. The concept of desirability index
has been extended here in respect with the definition of design appropriate aggregation
functions proposed by the Mol. This enables to express different trade-off and compensatory
levels between objectives.
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CHAPTER 4 Methodology for design
problem modelling based on
observation, interpretation and
aggregation

From a selected concept, embodiment design purpose consists in determining the main
dimensions and monitoring parameters of the system to provide designers with embodied
solutions with validated physical behaviours and optimized functional structures.
Consequently, embodiment design problems are naturally oriented toward numerical
optimization. The automation of this optimization process using artificial systems requires
suitable methods to reach the most preferred design solutions. In particular, models in
engineering design should involve not only objective knowledge, derived from physical and
technical laws, but also subjective knowledge related to designers’ preferences. In this
chapter, we propose a modelling methodology for design problems, based on observation,
interpretation and aggregation models, linking physical behaviours with functional constraints
and design objectives. This methodology is then applied for modelling robust design
problems.

4.1 Design definitions

4.1.1 Design variables

Design solutions are formally represented by vectors of design vandbleesign variables
define the main dimensioning and monitoring elements of the system and their values enable
to distinguish design solutions between them. A vector of design variables is expressed as:

X=X, X0 X,], NON', x0Q (4.1.1)

In embodiment and detailed design, design variables often concern physical and technical
units. They can be continuous (length, flow rate, temperature) or discrete (type of material,
standard component). Each design variables is related to a minimijirangt a maximum

(xi") bound defining its range of admissible values (value domain). The union of the design
variables domains of value forms the so-called design spgargof research space) as
defined by the relation 2.3.1.2.

4.1.2 Observation variables

Observation variables/) are quantitative measures of system effectiveness, performance or
technical attributes (mass, cost, efficiency, temperature). These variables are also denoted as
performance variables, criteria variablesr outcome variablesn the literature. They are
closely related to the definition of goals and objectives, and thus can be derived from
functional analysis steps. Observation variables are expressed as:
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Y=[ViYore Y] + MON 4.1.2)

Observation variabley) are dependent of the design variabkds &nd possibly some other

model parameters. Moreover, these performance measures are also associated to a set of
design criteria. Observation of performances through the filter of design criteria forms the
basis for the evaluation and comparison of design solutions.

4.1.3 Design criteria

Design criteria are physical or technical requirements that design solutions must satisfy to be
considered as acceptable. They are equality or inequality relations between observation
variables and a set of threshold values. Criteria are expressed as constraints, defining its
physical or functional limits. They are expressed as logic relations or interval ranges. Design

criteria can be formulated as functions of design variables as follows:

g (x)=0 i=12,..,m mON

4.1.3
h(x)=0 j=12...,p pON ( )

For example, facing the requirement of transportability linked to the design of sized system
constraints the mass (M) to be lower than the maximum permissible weight in charge of a flat
bed truck (Mhay) such as M{)<Mmax According to economical stakes, the development costs
are often constrained by budgeted amount such @5Cfa.x In manufacturing, a tolerance

(¢) on a dimension (L) is often expressed as the viollg inequality constraint

L max—€e<L(X)<L maxte.

However, the constraint satisfaction in the strict mathematical sense fails in reflecting the
preferences of designers who may consider solutions as acceptable if some of constraints are
slightly violated. As a general rule, constraints in engineering design can be more or less
satisfied, and consequently, they need to be expressed with a soft formulation. In our
approach, this issue is addressed by using Harrington’s desirability functions

4.1.4 Design objectives

Design objectives (or goals) are task specific requirements, or desired performance
characteristics, that the system should meet. In general, they are linked to functions of
systems and can be identified by performing functional analysis at each stage of the life cycle
of the system. Unlike design criteria, design objectives are evaluated by designers in a
gualitative way and cannot be directly estimated from the simulation model of the physical
behaviour of the system. Design objectives can be more or less satisfied by design candidates.
The achievement of particular design objectives is the purpose of "design for X" approaches.
The reduction of manufacturing costs, minimization of environmental impacts, improvement
of the transportability and robustness of the system are classical design objectives in industrial
applications. In classical MO methodologies, the set of objectives to be optimized is
expressed as follows:

£(x)=[f,(x), () f (x)] . kKON (4.1.4)

As design engineering problems involve design objectives which cannot be satisfied in the
same way, they must be traded-off. A typical trade study process is described in the NASA
engineering handbook [NASA 1995]. Trade studies and decision analysis must be performed
jointly by designers and every expert involved in the design or life cycle of the system. Such
studies require the application of human experience, judgment and perception, and result in
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the expression of preferences, priorities and compromises among design solutions. The
modelling of design objectives and trade-off is one of the major issues tackled in this thesis.

4.2 Overview of the modelling methodology

The modelling methodology proposed here aims to support the decision making process to
guide designer toward the selection of the best design solutions. These solutions correspond to
different configurations of the system to be designed and are modelled through a vector of
design variablesxj. From this representation and using an optimization approach, the
modelling methodology presented in this thesis provides designers with a sequence of logical
steps to build relevant objective functions in regards to design requirements and preferences.

This methodology is inspired from the natural process used by humans to make judgment
and operative choices. This process is based first on the observation and interpretation of
performances in regards to design criteria and designers’ expectations, and then, on the
synthesis of the resulting design information. It results in a design model composed by three
kinds of model:

1. The observation modely),
2. The interpretation modeb),
3. The aggregation mode])(

The first layer of the model structure is the observation mqdelFfom a set of design
variables X), it consists in observing relevant properties or performance measures (mass, cost,
strength, etc) through a set of observation variabjg¢s The second layer of the model
concerns the interpretation modé).(It qualifies the degree of acceptability achie\sd

every observation variables in regards to the design constraints and designers’ expectations. It
results in a set of interpretation variableswhich can be regarded as individual preferences

set on the design criteria. The last layer of the design structure concerns the aggregation
model ) and consists in aggregating together all the pnétation variables participating to

the achievement of the same design objective. According to this modelling methodology, the
preferences are expressed inside the interpretation and aggregation models to link the physical
behavior with the functional constraints and design objectives. From this priori expression of
preferences, it results an overall preference (p) expressed as:

p=¢(x) =& o u(x) (4.2.1)

This general expression of the preference is enhanced by using the concept of desirability. It
follows that interpretation functions are desirability functions (and interpretation variable
values are desirability values) which are aggregated successively into multiple design
objective indices (DOI) and one single global desirability index (GDI). The whole preference
model is represented in graph form on figure 27.
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Figure 27.0Observation, interpretation and aggregation models using desirability functions

The global formulation of the single criterion GDI corresponds to the objective fungjitm (
be maximized, and consequently, the initial MO design problem (see relation 2.3.1.1) related
to the performances optimization is synthesised as:

maximize GDI

subject to x0Q (4.2.2)

According to this formulation, design objectives and constraints are no longer explicitly
expressed in the design problem formulation, but now, are intrinsic to its definition through
desirability functions. In the following, the proposed design model is situated within the
framework of the Gero’s FBS ontology and its structure is detailed. The methodology is
applied first to model preferences linked to the performance of the system. It is then extended
to robust design problems by modelling the preferences related to the robustness of design
solutions.

4.3 Structure of the design model

4.3.1 Situatedness of the design model within the FBS framework

The design model presented here may be mapped onto the FBS ontological model proposed
by John Gero (see section 2.1.3). In this framework, the system to be designed is three
fundamental concepts: function, behaviour and structure. The real behaviour of the system
(BS) depends on its structure (S). The function (F) is linked to the expected behaviour of the
system (Be) and represents the designer's expectations. Gero emphasizes that the main
difficulty in modelling design problems consists in linking observable and expected
behaviours of systems. According to the design model proposed in this thesis, the structure of
the system (S) is associated to the set of design variaf)leghe function (F) is represented

by the satisfaction of design objectives which are quantified by the overall preference (p). The
real behaviour (Bs) of the system is observed through the observation varyaplesefeas

the expected behaviour (Be) corresponds to the interpretation of the observation vajables (

in regards to the functional constraints.

As previously mentioned, the satisfaction of one specific design objective corresponds to
the achievement of one particular function. To ensure the consistence of the global design
model, the main idea here is to derive its structure from the functional analysis of the system.
In preliminary design, function analysis describes the functions of the system and indicates
their mutual relations for a given life cycle situation. It is on the assumption that a function
structure can be defined from a limited number of elementary functions. Functions are
abstractions characterizing what the system is expected to do. Once the main function has
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been identified (satisfaction of the global need), the auxiliary functions must be determined
for each situation of the system life cycle. Functions are usually classified into two categories:

= The “service” functions link two components of the system environment
» The “constraint” functions are requirements imposed by the environment

In our approach, the achievement of a particular function is associated to the satisfaction of a
specific design objective, and so, to a specific DOI. It can be noticed that “constraint”
functions are expressed through design criteria which are tuned into objectives by
interpretation functions. Consequently, from the decomposition of the systems into functions
and sub-functions, we derive a preference model structure composed by design objective
indices, interpretation variables and observation variables. In this way, the consistency of the
design model is guaranteed, in particular in regards to the aggregation model.

e
Aggregation into design objective W

(" Observation of physical behavior h

o
=y
v
s
v
»)

Formulation

Simulation

L Interpretation of design criteria /—/
N J
Be = expected behviour x = Design variables n = Observation model
Bs = beaviour derived from structure y = Observation variables d = Interpretation model
D = Design description z = Interpretation variables (= Aggregation model
F = Function p = Preference

S = Structure

Figure 28.Observation, interpretation and aggregation models within the FBS framework

Figure 28 represents the design model developed in this thesis situated within the FBS
framework. This model intends to formalize the implicit and explicit relations existing
between function and structure through a set of variables and functions. In particular, it links
the physical behavior of the system to be designed with the satisfaction of functional
constraints and design objectives (expected behavior), using a priori modelling of preferences.
According to this figure, two processes are highlighted, namely the “formulation” and the
“simulation” process. On the one side, the “formulation” process enables to build the whole
design model from the definition of functions (design objectives) to the characterization of the
structure (design variables). On the other side, the “simulation” process computes numerical
values for the overall preference p from a set of design variable values. This process is used
by the optimization algorithm to evaluate candidate solutions (computation of the fitness
scores). Although the “formulation” process is the convenient way to build the global design
model, in the following, we detail the structure of the model following the “simulation”
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process, i.e. we begin with the description of the observation model, followed by the
description of the interpretation and aggregation models.

4.3.2 Observation of performances

In real world, observation is the first thing that enables designers to apply their own judgment.
Performances of systems to be designed are observed through measurements methods
previously defined by designers. They are measures of relevant characteristics required to
support the decision-making process. Within the modelling methodology developed in this
chapter, performances are observed through a set of observation vayipae®(lows:

y = u(x) (4.3.2.1)

The observation modek) is a simulation model of the system behavioucah be composed

by physical, technical, economical and environmental models. Therefore, the simulation
model of the system behaviour can be regarded as a vectoegiations, each one resulting

in a particular observation variable such as:

p(X) = 4 (X) o1, (X) o ot (x)]T , mON (4.3.2.2)

Figure 29 represents the structure of the observation model. Thelleaicerns the
definition of the design variables. It constitutes the basic actions required to instantiate all the
other variables. Each actions of the group Aecessarily involves a unique observation
variable and a behavioural model linked to a set of design variables.
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LA a fm
- ALl S Alim :

. Al—l,l

level [-1

Evaluation of the Evaluation of the
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Evaluation of the
design variable 1
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Figure 29. Observation model structure

As, by definition, such predictive models are abstractions of reality, compromises must be
made in modelling phases according to designers’ requirements. Models used in design
applications are qualified by Vernat [Vernat 2010] through four intrinsic characteristics:
Precision, Exactness, Parsimony and Specialization (PEPS). Simulation models used in
preliminary design, must be mainly predictive, involving the strict minimum of variables, but
enough detailed to enable designers to perform a quick evaluation and comparison between
design solutions. Consequently, trades-off between precision, exactness, parsimony and
specialization must be performed according to designer's requirements.
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4.3.3 Interpretation of the satisfaction levels of design criteria

As design is a goal-directed activity responding to some human needs, designers have to
interpret the value of each observation variable according to requirements. In other words,
they have to estimate if a candidate solution is acceptable or not facing with design
constraints, design objectives and also their own expertise (confidence). For a given design
problem, the acceptability of a design solution mainly depends on its ability in satisfying
every design criterion. These criteria are often expressed in different units making difficult a
direct comparison between them. The interpretation of observation variables consists in
defining a scale of value (design scale according to Messac [Messac 1996]) to bring every
criterion onto a same scale of comparison. Thus, interpretation functions are value functions
taking observation variables as parameters:

z,=9(y), with z0[0,1] (4.3.3.1)

where zis the interpretation variable associated to theliservation variable. Interpretation
variables reflect the ability of design solutions to meet designer’s expectations for every
criterion in a given context. Therefore, they also correspond to individual preference
measurements which have been set on the performances of the system. Figure 30 represents
the interpretation model structure. It can be noticed that each interpretation variable
corresponds to one particular observation variable.

level I-3
Limit the Enhance the i" Target a value for
performance 1 performance the performance m
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— A1—1,1 / ; Al—l,i / . Al—l,m y
level I-1

Figure 30. Interpretation model structure

The vectorial interpretation functidnis bijective, monotonous or piecewise monotonond, a
computes values lying in the interval [0,1]. In section 3.4.2, we conclude that Harrington’s
desirability functions are relevant for preference modelling in engineering design.
Consequently, observation variables are turned into desirability values and relation (4.3.3.1)
becomes:

d,=d"(y;) with d0[0] (4.3.3.2)

where ¢ is the desirability value resulted from the Harrington desirability functfan
Advantages and benefits of Harrington’s desirability functions for preference modelling in
engineering have already been discussed in details in section 3.4.2. Finally, it can be noticed
that design variables can also be interpreted by desirability functions. In this case, they are



70

regarded as both design and observation variables. This is equivalent to express some
preferences inside the design space.

4.3.4 Aggregation into design objectives indices

As previously mentioned, design objective indices (DOI) qualifies the level of achievement of
a particular function. As a general rule, every observation variable and hence, every
interpretation variable, can be linked to one or more design objectives. We state that the
satisfaction of one particular design objective can be derived from the interpretation of the
observation variables participating to the achievement of this objective. For example, the
objective linked to the reduction of the environmental impact of a mechanical draft cooling
tower depends on the energy supply including electricity, pumps and fans and water
consumption. From these considerations and the desirability index proposed by Derringer, we
introduce the Design Objective Index (DOI) [Sebastian 2010]. It is a desirability values
reflecting the level of achievement of design objectives achievement reached by candidate
solutions. The values of the DOI are computed from the aggregation of individual desirability
functions as follows:

DOI, = (d), j=1....k (4.3.4.1)

where d is a vector of thegp observation variables involved in th8 flesign objective
satisfaction. As explained in section 3.3, aggregation functjofor preference modelling in
engineering design problems are required to be design appropriate. Consequently, as
suggested in section 3.4.3, the DOI can be expressed according to a general weighted mean
aggregation function. In this case, relation (4.2.4.1) becomes:

001 =¢{aw, )= Sw, @ () ' wi

wherew; ands represent respectively the weights vector and the trade-off strategy parameter
associated to the definition of tH& POI. The normalized weights vectes is used to adjust

the relative importance of satisfaction criteria between them; strong weights result in high
priorities. In the following, we note:

g (d)=¢(dw;s)  j=1..k (4.3.4.3)

w=1 FL.,k (4.3.4.2)

p
i=1

While observation variables and criteria are identified from the preliminary steps of the
design process, the non-physical meaning of weights makes difficult the assignment of
numerical values [Saary 2006]. In the fields of operational research and decision theory,
methodologies related to analytic hierarchy process (AHP) initiated by Saaty [Saaty 2008],
have received increasing interest to deal with such an issue. Principles of this approach are
first based on the decomposition of the initial multicriteria problem into a hierarchy of sub-
criteria problems, and then, on the statement of normalized priorities derived from pairwise
comparisons. In [Semassou 2011], the AHP is coupled with the failure mode, effects, and
criticality analysis (FMECA). The FMECA is used to classify design objectives according to
their level of criticity, making thus easier the pairwise comparison between objectives. In
chapter 6, the AHP method is used for the design of a two staged-flash evaporator. In section
5.3, a procedure to determine consistent values for the trade-off strategy parameter (s) is
presented.

Definition: Design Objective Index (DOI) measures the ability of a candidate solution in
satisfying one particular design objective (function). It is expressed as a desirability level and
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thus, its value lies in the range [0,1]. The set of the DOIs to be jointly optimized is noted
DOI=[DOI,DOl,,...,DOI]" with k(N . The definition of a DOI requires the specification of
the following variables and parameters:
1. the set of observation variablg$ &nd criteria participating to its achievement
2. the weightsw) reflecting priority orders between aggregated desirability functions
3. the trade-off strategy parameter (s) expressing the compensatory level between
aggregated desirability functions

The definition and formulation of the DOIs is a fundamental result of this thesis since DOIs
enhance the original design model with a preference modelling structure. Figure 31 represents
the aggregation model structure derived from the definition of DOIs. According to this figure,
the interpretation variables; are aggregated into DOIs. The aggregation process into DOI
must involve at least one interpretation variables. According to figure 31, the computation of
DOIl; is performed from the interpretation variablgsand z, whereas the computation of

DOy is performed from the interpretation variablg. For example, the design objective
linked to the transportability of systems may depend on both their masses and floor areas. In
the same way, one particular interpretation variable (and so one particular observation
variable) may participate to the achievement of multiple design objectives. For example, the
mass may be taken into account for the achievement of the transportability objective and may
also participate to an improvement of the environmental impact objective. The total amount of
material used to manufacture a mechanical system increases its weight and its environmental

impact.
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Figure 31. Aggregation model structure

Aggregation models aim at synthesizing design information to reduce the number of variables

and criteria, and make easier the direct comparison of candidate solutions. Therefore, a part of
the initial information is lost during the aggregation process. Preference aggregation models

are thus filters which discriminate the less relevant candidates among the whole set of feasible
solutions.
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a. Global desirability index

In the same way, design objectives participate @catthievement of a global design objective,
reflecting the overall satisfaction of the designer for a candidate design. Therefore, we
introduce the Global Desirability Index (GDI) as result of the DOIs aggregation.

Definition: The Global Desirability Index (GDI) is a measure of the overall ability of
candidate solutions in meeting designers’ expectations. It is expressed as a desirability value
and its value lies in the range [0,1]. GDI measures the overall preference for candidate
solutions and is used to compare them.

The global desirability index GDI is a particular DOI responding to global designers’ need
and which can be formulated as follows:

GDI=¢,(DOI)=¢ (DOl w ,,s,) (4.3.4.4)

The numerical weightsvy enable to deal with priorities of conflicting design objectives.
Assigning a strong weight to a one particular DOI favours its maximization during the
optimization process, and thus, enables the designer to carry out "Design for X" approaches
(see chapter 6).
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Figure 32. Aggregation of design objective indices into global desirability index

Figure 32 illustrates the aggregation of objective indices into a global desirability index. The
satisfaction of the global design objective is the first goal of the designer and adds another
layer to the preference model. It synthesizes the whole information about the design from the
design variables to the design objectives. However, multiple intermediate aggregation steps
can be inserted between the definition of the GDI and DOls.

b. Multi-level aggregation

Each design objective can be decomposed into maikipb-objectives. The division of global
objectives into sub-objectives results from the functional analysis. It is equivalent to
decompose the overall preference into smaller groups of individual preferences which are
obviously easier to evaluate. This improves the preference modelling while respecting the
design problem structure. The aggregation model can be enhanced with several aggregation
steps as follows:

DOl =¢(d) =30, o0y (d), j=1... k (4.3.4.5)
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The decomposition of design objectives into sub-objectives and the whole extended
aggregation model are represented on figure 33. Each aggregation level constitutes a synthesis
of the information provided by the lower levels, and thus, gradually filters the whole set of
feasible solutions. Weights and trade-off parameter values introduce information related to
priority relative levels between sub-objectives.
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Figure 33.Decomposition of the aggregation model

However, these successive aggregation operations, called hierarchical aggregation by Otto
and Scott [Otto 1993, Scott 1999], present some issues which must be highlighted. First, if the
aggregative functiongj() involved in the aggregation process design appropriatend the
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same values are used for the trade-off strategies parameters (s), then the resulted aggregation
function () is still design appropriateOn the contrary, different values for the trade-off
strategies parameters (s) will result in a non-design appropriate global aggregation function
(although some axioms of the Mol are still satisfied).

For weighted geometric mean aggregation, Trautmann [Trautmann 1994] has shown that
optimizing these objective functions leads to Pareto optimal solutions. In the same way, it can
be shown that the weighted aggregation mean also computes Pareto optimal solutis for s
(see Annexe 2 for details). However, Trautmann [Trautmann 1994] has also proved that the
min aggregation function may lead to solutions which are not Pareto optimal (see Annexe 2
for details). To conclude, the Pareto optimality of solutions is guaranteed only if the minimum
aggregation function is not used in the different aggregation steps. However, the property of
Pareto optimality is not always expected the designers and the relevance of the final solution
is justified by the structure of the preference model.

C. Summary on the aggregation model

From interpretation variables (individual desiralifiunction), the aggregation model enables

to derive a global indicator (GDI) to quantity the overall desirability of solutions. The GDI
reflects the adequation between design solutions and the global need derive from the design
problem. It can be regarded as a synthesis of the whole design information. Based on function
analysis and the decomposition of the system into functions and sub-functions, objectives can
be divided into a hierarchy of many sub-design objectives whose levels of satisfaction are
assessed by DOIs. Such decomposition structures the design problem by setting intermediate
preference modelling steps and guarantees the consistency of the whole design model.

In the same way, DOIs express the capability of candidates to satisfy design objectives.
The definition of the DOIs is a fundamental result of this thesis. They enhance the initial
design model with a preference modelling structure, and enable the formulation of an overall
preference from both objective and subjective knowledge. According to the DOI formulation
(4.2.4.2), aggregation functions must specified with @rade-off strategy parameter) to be
design appropriateDifferent trade-off strategies can be used to fit designers’ preferences in
the best way. In particular, weighted geometric mean and minimum aggregation functions
refer respectively to aggressive and conservative strategies. Moreover, suitable weights
assignment enables to deal with the priority orders between objectives. Finally, we suggest
some existing techniques to help designers in building aggregation models, namely functional
analysis, continuum oflesign appropriateaggregation functions, and using AHP to derive
numerical weight assignment.

4.3.5 Conclusion on the design model structure

The design model structure developed in the previous sections enables to assess the overall
desirability level of candidate solutions by the computation of a GDI. From a set of design
variables (x), the general formula of the GDI related to performance is expressed as:

GDI.., =#(X) = o do 14(X) (4.3.5)

whereu is the observation model, refers to the interpretation model afidlesignates the
aggregation model. The resulted functigncorresponds to the objective function to be
optimized. In this case, the GDI value is expected to be maximized. Figure 34 represents the
full design model structure. According to this figure, the modelling methodology suggests the
decomposition of the design problem into a formal structure starting from the identification of
global design objectives to the selection of design variables. Based on the decomposition of
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the system into functions and sub-functions, the “formulation” process allows an easier
identification of design objectives and criteria and ensures the consistency of the whole model
structure. The modelling methodology presented here can be summed up into a sequence of
logical steps as follows:

Decomposition of the design problem into a hierarchy sub-objectives,
Determination of the trade-off strategy,$) for each aggregation stage
Specification of the individual interpretation function,

Determination of the observation variables,

Representation of the design solutions (design variables)

gk

However, the “simulation” process follows the reverse order and starts from a candidate
solution (design variables) to compute the GDI as follows:

Definition of a candidate solution (design variable values)
Computation of the observation variables through the behaviour model
Computation of the individual desirability functions

Computation of the multiple DOls

Computation of the GDI

agrwnhE

In the next section, the modelling methodology is used to tackle robust design problems.
According to the observation, interpretation and aggregation models, the purpose is to model
an objective linked to the sensitivity of the performances which will be traded-off with
another objective related to the overall level of performance. While uncertainly are simulated,
the observation model must compute an estimate of the performance dispersion. Two
measurement methods are proposed. These measures are then interpreted and finally
aggregated into a global desirability index linked to the sensitivity of the performances.
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4.4 Robust design problem modelling

4.4.1 Introduction

As highlighted in section 2.4.4, most of robust design methodologies are based on the
formulation of a ratio between two objective measurements, namely the mean performance
and the standard deviation of the performance. The optimization of such a robustness
indicator does not allow designers to express independently the satisfaction levels expected
for these two measurements. Obviously, a design solution can be preferred to another due to
its high overall performance. Inversely, design solutions with an extreme low sensitivity to
uncertainty can be relevant in some contexts. In this case, design solutions often achieve poor
levels of performances. The improvement of the overall performance and the reduction of the
performance sensitivity facing uncertainty are two design objectives which must be traded-
off according to the designer’s preferences.

Definition: A candidate solution is said robust if it achieves a desirable level of overall
performance compared to the level of sensitivity of its performances under uncertainties.

In other words, robust solutions achieve desirable trade-offs between performance and
sensitivity and must be evaluated simultaneously on these two objectives. Performance and
sensitivity objectives are formulated according to the modelling methodology developed in
this chapter.

1) Observation 2) Interpretation 3) Aggregation
Observation Interpretation Aggregation
model ~ model model
X y
-0~ EE - o
Disturbed design  Disturbed Observation Interpretation Design objective Global Desirability
variables variables variables indices Index of sensitivity

Figure 35. Computation process of GDI related to the performances sensitivity

The performance objective results from the nominal evaluation of design solutions (i.e.
without taking into account uncertainties). The ability of candidates to achieve this objective
is quantified by a desirability score G}, expressed by the relation (4.2.5). The same
modelling structure is used to formulate the sensitivity objective. It is represented on figure
35.

The formulation of the sensitivity objective results in a desirability scoregaBihich
quantifies the ability of candidate solutions to keep low performance variations while the
design variables are disturbed. The observation of the performance dispersion around the
nominal value requires the evaluation of the neighbourhood of the solution. This is addressed
by introducing variability according to the relation (2.4.2). We propose two measures for the
performances dispersion, namely: the bandwidth of variation and the tolerance to nominal.

Facing epistemic uncertainties and non-Gaussian distributions of aleatory uncertainty, no
assessment on the noise factors distributions is made. This contributes to the generalization of
the methodology to a vast range of robust design problems.
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4.4.2 Observation of the performances dispersion

From a normal distribution, it is known that 68% of the values are within one standard
deviationc away from the mean; about 95% of the values lidiwitwo standard deviations;

and about 99.7% are within three standard deviations. However, this is no longer true for non-
Gaussian distributions, and the interpretation of the average and standard deviation values
becomes more difficult. To overcome this difficulty, we propose two other measures for the
performance dispersion. They are respectively the bandwidth of variatjomn@ the
tolerance to nominalsj. Each measure is applied to the observation Vasaleighbourhood

while design variables and model parameters are numerically disturbed according to equation
(2.4.2).

a. Bandwidth of variation

The bandwidth of variationof is the distance between the extreme values acdhiforethe
observation variable disturbing design variables. It traduces the maximum range of variation
to be expected for the performance. This measure is expected to be minimized and is defined
as:

a, :‘max(])— min(])‘ (4.3.2.1)

This measure is equivalent to define an interval of confidence around the target value to be
satisfied. However, this does not provide any information about the dispersion of the
performance around its nominal value. Consequently, a second measure denoted “tolerance to
nominal” is proposed.

b. Tolerance to nominal

The tolerance to noming) measures the relative eccentricity of the nomirah the set of

tested points (neighbourhood). This measure aims to achieve solutions with dispersions of
performance which are uniformly distributed around the centre of gravity of the
neighbourhood (see figure 36). This measure is also submitted to minimization and is
expressed as:

B =[vi-y| y=meaf (4.3.2.2)

Figure 36 represents the sensitivity measuresd  for three observation variables. The
convex hull formed by the set of tested points is also represented. The sensitivity measures are
evaluated through a set of constraints which is equivalent to the definition of a volume of
control around the nominal performance. Thus, the objective is to keep the performance
dispersion within this volume of control. These two measurement methods are used in section
6 for the robust design of flash evaporators.
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Figure 36.Representation of the performance sensitivity measures

4.4.3 Interpretation and aggregation of the sensitivity measures

The performance sensitivity parameters are then interpreted through Harrington’s desirability
functions. The one-sided Harrington's desirability function is suitable to interpret both
measures of bandwidth of variation and tolerance to nominal. The resulted interpretation
variables are then aggregated into DOIs according to the procedure presented in the previous
section. These DOls linked reflect the ability of candidate solution to minimize the variations
of performances while uncertainties are taken into account. Sub-design objectives can also
been identified according to the needs of the designer.

Figure 37.Reliability-based approach by taking the minimum of the desirability scores

For example, reliability-based approach consists in keeping performance variations within the
range of admissible values. As represented on figure 37, the sub-design obj@ataiéed
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“minimum performance value” may be directly formulated by taking the minimum of the
desirability scores among the neighbourhood of the nominal performance:

y =min( d(y)) (5.2.2)

Obviously, the nominal performance of a solution can be close to the bounds of the
admissible domain and thus small variations may result in the non-satisfaction of the
constraints. Therefore, this design objective favours design solutions whose maximal
variation remains close to the admissible domain. This objective is used in section 6 for the
robust design of flash evaporators.

4.5 Summary

The design modelling structure proposed in this chapter intends to enhance classical design
models with a preference model involving the concept of desirability. Preference modelling is
used to link the physical behaviour of the system to be designed with constraints and design
objectives. While physical behaviour is intrinsic to candidate solutions, depending on physical
laws and objective knowledge, their ability to satisfy design constraint and objectives depends
on designers’ expectations, and so on a subjective considerations. Consequently, the
observation model is concerned with objective knowledge whereas interpretation and
aggregation models deal with the subjectivity of the design activity. According to the FBS
framework, this natural and intuitive decomposition enables to model designers’ reasoning
and express preferences. This makes a significant difference from other methodologies such
as the utility theory or Mol.

In particular, the definition of DOIs allows a synthesis of the whole design information at
different levels of the problem decomposition and acts as filters on the initial set of admissible
candidate solutions. The aggregation of the different desirability scores using design
appropriate functions, such as the general weight mean wdileasd weights assignments,
allow different trade-off strategies between objectives, and thus, are suitable to reflect the
designer's preferences. The formulation of DOIs can be applied to robust design problems.

In this thesis, we consider two levels of robustness. While the first level of robustness
concerns the physical sensitivity of the system performance, the second level of robustness
deals with uncertainty in the expression of preference, and thus, aims to take robust decisions.
This second aspect of robustness consists in decreasing the sensitivity of the selected solution
facing with the uncertainty of choices. This can be regarded as a trade-off between two design
objectives, namely the improvement of the performance and the reduction of the performance
variability.

Due to its proximity with the designers’ reasoning and its simplicity of its implementation,
the developed model is applied and extended to a large scope of engineering problems. The
methodology has been initially applied and validated with the preliminary design of a two-
staged flash evaporator [Ho Kon Tiat 2010, Sebastian 2010] (see chapter 6). Later, the
approach has been applied to the design of aeronautic structures and a design objective of
confidence has been introduced using an arc-elasticity measure [Sebastian 2012, Collignan
2012a, Collignan 2012b]. In the field of turbo-machinery, the model has been integrated to
the design methodology of a high pressure distributor [Girardeau 2012]. Moreover, recent
works in energetic system design [Semassou 2011] and building engineering [Valderrama
Ulloa 2012] have also shown promising results in this research area.
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CHAPTER 5 Aggregation and trade-off
strategy modelling for robust decision
making

As mentioned in the previous chapters, engineering design problems involve multiple
conflicting objectives which must be traded-off. In this context, trade studies attempt to
determine design solutions which meet every design objectives in the best ways in regards to
admissible compromises. The design modelling methodology proposed in this thesis suggests
three distinct inputs by which designers can express their preferences, namely specification of
individual desirability functions, weighs assignment and selection of aggregation strategies.
Trade-off is mainly concerned with the selection of weights and suitable trade-off parameter
values. Different trade-off specifications can lead to final solutions with equivalent overall
preference levels. Therefore, trade-off modelling by aggregation functions is a critical part of
the preference assessment process. In particular, designers must be aware of the zones of
design points which can be captured using a particular aggregation strategy.

5.1 Introduction

In engineering design, trading-off is a process in which designers have to degrade one
performance for improving another factor. This supposes decision-making with a full
comprehension of the positive and negative aspects of one particular choice. In economics the
term “opportunity cost” is used, referring to the most preferred alternative given up. Trades-
off also involves the notion of sacrifice that must be made to obtain a certain product, rather
than other products that can be made using the same required resources.

In political economy, Karl Marx introduces the notion of exchange value to represent, not
the price of a product, but the amount of others goods that will be exchanged for it, if it is
traded. For example, consider a trade-off between two products A and B. Then, the notion of
exchange value states that X amount of the product A is equivalent to Y amount of product B.
In design engineering, exchange value can be expressed as “an increment of X on the
performance A is equivalent to a decrement of Y on the performance B”. In other words,
designers accept a decrement of Y on the performance B for gaining an increment of X on the
performance A. In general, this notion refers indirectly to the price paid for the improvement
(or the worsening) of the property.

This compromise is not always linear, but can vary according to the level of the property.
In fact, the trade-off can be expressed as “an increment of X on the performance A is
equivalent to a decrement of Y on the performance B for a particular level of A, but an
increment of X on the performance A is equivalent to a decrement of Y' on the performance B
for another level of A”. This kind of complex trade-off must also be handled and modelled.

Trade studies are mainly related to decision-making problems. In the FAA Systems
Handbook [FAA 2004], the decision analysis matrix (Pugh's method) is proposed to support
trade studies, but this method fails to deal with uncertainty, the management of both
quantitative and qualitative information or the management of teams. To manage uncertainty
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or teams decisions, the NASA Systems Engineering Handbook [NASA 1995] suggests using
the multi-attribute utility theory (MAUT) and the Analytic Hierarchy Process (AHP).

5.2 An introductive example

To illustrate trade-off issues, we present an example tackled by Scott in his own thesis [Scott
1999]. This example deals with a company producing two types of products which differ from
their returns in profit and balance of trade. For example, the product #1 yields $2 profit but
requires $1 in imports, whereas the product #2 can be exported for $2 revenue but makes only
$1 profit. The problem consists in determining the best production schedule to achieve high
profit and a favourable balance of trade. The decision variables are the number of product #1
to be manufactured {xand the number of product #2 to be manufacturgd The balance of
trade (z) and the profit (2 are the two objectives to be maximized and are expressed as
follows:
Z, ==X, +2X

Lo T (5.2.1)
Z,=2%+X,
The production schedule is subjected to capacity constraints modelled as follows:
Cl: —-x+3x,< 2]
C2: x+3x,<27

C3: 4x+3x,< 4

C4: 3x+%< 30 (5.2.2)
C5: x=0
C6: x,=20

As decision variables represent amounts of products, they can be considered here as discrete.
The set of non dominated solutions is given in table 6. The decision and objective spaces are
represented in figure 38. Constraints from C1 to C4 have been plotted in dashed lines on
figure 38a. The Pareto frontier and the non-dominated points have been reported on figure
38b. to illustrate the notion of domination a white circle is used to represent the dominated
point x=(1,7). This point gets;z13 and z=9. In particular, according to table 6, it is
dominated by the poin¢=(3,8) since 7x=(3,8))=13, and £x=(3,8))=14. The decision space

and the objective space are represented on figure 38.

X=(X1,X2) V4] Z;
(0,7) 14 7
(3.8) 13 14
4,7) 10 15
(5,7) 9 17
(6,7) 8 19
(8,4) 0 20
(9,3) -3 21

Table 6. Set of non-dominated solutions
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According to the approach developed in the previous chapters, the first step of the preference
assessment concerns the interpretation of the variablaadzz, i.e. the determination of
preference levels for each one of the two objectives. For sake of simplicity, we assume here
that the preference related to the balance of trade objective increases lineagy(X)e for
z(x)=—3, to p1(x)=1 for z;(x)=14. In the same way, the preference related to the profit
objective varies linearly fronp(x)=0 for z(X)=7, to po(x)=1 for z(x)=21. The interpreted

space is represented on figure 40. One can notice that the ye([@18) andx=(9,3), i.e. the
extremes of the Pareto frontiers, are now considered as dominated points since their overall
preference equals zero (axiom of annihilation).

19 [ uUnfeasible region A | [l‘Jnfe‘ztl)slible region
] Feasible region ‘easible region
9 £=(3.8) = 25 ® Non-dominated points
Z Cl. @/ @ Pareto Frontier
B (0’7) """""" ’ C2 x=(0.7) x=(9,3) X=(8.4)
7970 o e e ; i
x=(1.,7) x=(4,7) x=(5.7) ™ 20 5
6 , x=(5.7)
“.C3 Z x=(47)
4 x=(8,4) @
10
3 _93)®
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X, Z,
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Figure 38.Representation of the decision space (a) and the objective space (b)

The overall level of preferend®; is then computed by aggregating the individual preferences
p; and p as follows:

P(p.po) = (W, 005+ w,08) " with w+ w, =1 (5.2.3)

In this example, weights are supposed to be equal ana-{w(0.5,0.5). Different values of

the trade-off parameter (s) corresponds to different trade-off strategies, and so, lead to
different final solutions. This is illustrated through figure 39 and figure 40. Figure 39 shows
the overall preferencBs of some decision points when the value of the parameter s varies in
the range [-10,10] with a step of one. According to this figure, it appears that the point
x=(5,7) maximizes the overall preference f0f-s10,—6] since in this interval:

P(x=(5.7))>R(x=(6.7))> R(x=(38))> P(x=(17)) (5.2.4)

In this case, the point=(5,7) represents the most preferred solution. In the same way, when
sl1]-6,2], the pointx=(6,7) becomes the optimal solution sinegx=(6,7))> Py(x=(5,7)).

Finally, for £7]2,10], the poinix=(3,8) gets the highest overall preference. However, it can be
notice that the poink=(1,7), which was previously considered as dominated by the point
x=(3,8), approaches it asymptotically in preference while the compensation level increases.
This is a consequence of using supercompensatory functions (s>1). Therefore, for high values
of s, the optimization of the overall preferengec&n return dominated solutions.
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Figure 39.Evolution of the overall preferen@ of some decision points according to the values of the trade-off
parameter

These observations can also be visualized on figure 40. This figure shows the interpreted
space and the iso-preference curves when s varies in the range [-10,10]. For a given value of
P, the iso-preference curve represents the set of points with the same overall préference
From relation (5.2.4), the equation of the iso-preference curve can be expressed as a function
of p and R such as:

p,(p.R) =(MJ (5.2.5)

W,

wherePs, s, w and w are constant. Thus, the optimal solution is determined by the point at
the intersection between the iso-preference curve and the Pareto frontier. This points is then
said to be captured by the objective function since there is a combination of wajses (
making it optimal. For example, as previously explained, for s=—9, the yo{B17) is the
optimal solution and the corresponding point (0.70,0.71) within the interpreted space is
captured. The resulted overall preferencBs{g=(5,7))=0.71. According to figure 40, the iso-
preference curve defined Ipg(p;, Ps=0.71) passes through the point (0.70,0.71). While the
value of s increases from —10 to 10, the powth,7), x=(6,7) andx=(3,8) are successively
captured by the objective function.
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Figure 40. Capturability of the most preferred solutions according to different trade-off parameter values

The specification of a particular combinatiom,§) enables to express a particular trade-off
between objectives and thus, leads to a unique solution. Difficulties arise from the
interpretation of the trade-off associated to the specific couwgkd.(In particular, designers
should be able to interpret these trade-offs in term of gain in one preference against a loss in
another one. Inversely, once exchange values are determined, designers should derive
consistent values fon,s). According figure 40, it appears that the point associated(#37)

Is not captured. Consequently, it is of main interest to find if there is a w@grfaking it
capturable (or optimal), and in this case, to determine the associated trade-off.

Trades-offs modelled by weighted arithmetic mean aggregation (s=1) enables to easily
overcome this difficulty since the compromise is linear. For example, consider that the
decision-maker decides that he is willing to lose 1$ in the balance of trade objective to gain
2% in the profit objective. Therefore, the poirtg(5,7) andx=(6,7) are equivalent, and thus,
they must reach the same level of overall preference. These solutions reach respectively
z=(9,17) and z(8,19) (see table 6). This implies that:

R(x=(57)=R((x=(6.7)) = wOn(9+wOp(1]= wip( $+ wIg B (5.26)
And we get:

w_ p(19-p(179 _08564- 07326 0 1238, 2 (5.2.7)

w, p(9)-p(8 07150648 0067

Finally, it follows that w=0.3511 and w=6489. The overall preferende; can be then
express as follows:

P =0.35110p + 0.6489p, (5.2.8)
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However, the weighted arithmetic mean aggregation isdesign appropriatelt is not well
adapted to treat preliminary design problems. The same kind of approach can be used for
design appropriate aggregation function (s<1), but requires the specification of three points of
equivalence. In fact, the trade-off is non linear and the level of compromise changes with the
objectives values. For the weighted geometric mean aggregation (s=0), the compromise varies
according to a logarithm law with the objectives. In the following, a procedure based on the
specification of indifference points is presented to assign consistent valuessiow(th the
preferences of the designer.

5.3 Trade-offs using equivalent points

5.3.1 Description of the methodology

The main advantage of the preference aggregation method proposed hereafter is that it enables
designers to directly specify the correct trade-off strategy and weights assignment according
to their objectives. In the framework of the Mol, Scott [Scott 1999, Scott 2000] has proposed

a method based on the definition of indifference points, to determine simultaneously a unique
value for the trade-off strategy and for the weight ratio. In the following, we describe this
method for the bi-objective case. The same procedure can be applied to deal with
multiobjective cases. We note b#w, the weight ratio. Then, from equation (5.2.3), the
overall preference p is expressed as:

s s Us
ObOR,OsOR, R(p.p; h$:(%j with b:% (5.3.1.1)
1

According to designers, two candidate solutions are considered indifferent if they get the
same overall preferenceep This overall preference is also achieved by a third equivalent
point associated to the individual preferences,jjrs). In fact, from idempotency, we have:

ObOR*,OSOR, Pe = P Pers Pers B 9 (5.3.1.2)

Figure 41 illustrates the principle of using three equivalent points. According to this figure,
points A, B and C are considered as equivalent since they get the same overall prefgrence p
The point C gets the same value for the two preferenggg{p. As a consequence, the three
points belong to the same iso-preference curve and Ry, p.;b,S)=Rer. From this solution

of reference, the value of s and b can be determined using the following relation:

P(a,Lb9=R(1a; b}=R( B, p: b)s p (5.3.1.3)

where a=pi(x1) and a=p.(x2) are two values provided by the designer for the individual
preferences pand p. From a design solution of reference, with an overall preferepce p
satisfying the relation (5.3.1.2), the valudsadetermined by considering that an increment of

the second preference fromsgo 1, makes the first preference to decrease frgntopa. In

the same way, from the same reference, the valugs @etermined by considering that an
increment of the first preference fromspo 1, makes the second preference to decrease from
Pret t0 &. Consequently, the solution of reference and the solutions represente@drmyx,,

are considered as equivalent. Sometimes it is suitable to think in term of design variables and
then to compute first the observation variables, and then, the associated preferences.
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Figure 41. lllustration of three equivalent points evaluated on two preferences

In practice, it is suitable to take.0.5. This represents the overall preference of a system of
average. From equation (5.3.1.3), it follows:

, . ai+b1/s: 1+b€ 1/s:
O(a,a)0[ Q0% O b $0R" xR, [—Hbj [—1+b j 0.5 (5.3.1.4)

Depending on the values ofi @), equation (5.3.1.4) can be solved in different ways. First, if
a;=a&, then b=1, and:

a) If a;=0.5, then s>—0

b) If a;=0.25, then s=0

c) If a;>0.25, then §]-,0[, and if &<0.25, then §]0,+ « [. From equation (5.3.1.4), the
value of s is then computed by solving+td=2(0.5¥.

If a1#ap, then k1. If s=0, we can show that:

a"=05=d "= a""** =05 (5.3.1.5)
And then, it follows that:

d) If a *® =05 then s=0, andh = (1—Iogal (0.5)) /log, (0.9

e) If a;_logal(o's) >0.5 then s<0, and i (%9 <05 then s>0. From equation (5.3.1.4), the
value of s is then computed by solving the following equation:

(ai-05)(d- 08)=(+ oY (5.3.1.6

Proof:

a) If a;=0.5 then R(0.5,1)=P41,0.5)=0.5, then the only aggregation function which can
verify the relation is the min aggregation functiorsx).
b) If a;=0.25, then it comes from equation (5.3.4) that:

EESERERE
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Setting X = 2—1S , it comes that X=1=2 and finally, s=0.

If s=0 the aggregation function is the weighted geometric mean and thus, the equivalent point
(a1,1) must verify d&'=0.5. In the same way, the equivalent point {l,must satisfy
a; " =0.5. Thus, taking the logarithm form leads to:

mlog( )= log 0.5 = m%= log( OF

And finally, we geai_logal(o'g =0.5.

Once equation (5.3.6) is numerically solved, then b can be determined with the following
relation derived from equation (5.3.1.4):

(5.3.1.7)

5.3.2 Discussion about the equivalent points methods

The preceding procedure is suitable to genedategn appropriatdunctions since it never
returns results such as s>1. However, the procedure can compute values of s in the range
[0,1]. Some precautions are required while equation (5.3.1.6) is solved from numerical
computation and the results are numerical approximations. In fact, whatever the value of
(a,&), the solution s=0 is always solution to equation (5.3.1.6). Moreover, parameters (s,b)
become very sensitive to the variations péad a while either aor & are close to zero. This

also makes difficult the process of the numerical solving of equation (5.3.1.6). It has been
observed that this procedure returns consistent results vil{H£0s0]. For s<-10, it can be
assume that-s—oo, and thus, the related aggregation function isntlre operator. It is also
noticeable that this procedure can be used with another starting point than (0.5,0.5).
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Figure 42.Representation of the indifference points method

Figure 42 represents the indifference point method in graph form taking the preference point
(0.5,0.5) as reference. The shaded lower triangular area represents the space of the
supercompensatory functions. Sincega [1[0,0.5], it appears that any values ¢foa & can

lead to supercompensatory situations. The weighted arithmetic aggregation (s=1) represents
the frontier between the two domains. It is reached while eitfr ar =0. The shaded

upper right square area represents situations where there are no trade-off. In this case, the two
preferences should increase simultaneously and correspond to a “win-win” configuration.
This is impossible in practice since, due to antagonist physical phenomena, the optimization
of one objective is always hampered by some others.

For a=2=0.25, the generated aggregation function is the geometric weighted mean. It is
plotted by the dashed curved line in blue through the three points (0.25,1), (0.5,0.5) and
(1,0.25). While @&&=0.5, the generated aggregation function corresponds tomihe
aggregation function. It is plotted by the line passing through the three points (0.5,1), (0.5,0.5)
and (1,0.5). Compared to the geometric weighted mean, this aggregation function no longer
corresponds to smooth curve but to a crisp line.

An interesting case appears while the equivalent preference points are (0.5,1) Amwit{i,a
&<0.5. According to equation (5.3.1.4), the aggregation function must satisfy the following
relation:

p(0.5)= p(lLa)= 0. (5.3.2.1)
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This configuration is represented in dashed line. In this case, the procedure proposed by Scott
doesn't enable to compute a consistent value for s. Looking at figure 42, it appears that in this
configuration, there is no functions (derived from the general weighted mean) which can be
plotted through the three points (0.5, 1), (0.5, 0.5) and)(ITade only way to achieve the
equality (5.3.2.1) is to use the Tchebycheff aggregation method. This method is a weighted
minimum aggregation of the individual preference values. Thus, it follows:

min(0.5,b) = mir(1,813) = 0 5= t;%m 5 (5.3.2.2)

As b>0.5 (since 41[0,0.5]), we have alsmin(0.5,b)=0.5, and so, the equality (5.3.2.1) is
satisfied. However, the Tchebycheff aggregation is not derived from the general weighted
mean. It is a particular case of the procedure proposed by Scott. Although Tchebycheff
aggregation method enables to capture the whole Pareto frontier, including solutions located
in the non-convex parts (for every Pareto optimal point, there is a unique combination of
weights such as this point is captured [Miettinen 1999, Messac 2000a, Messac 2000Db)), its
interpretation in term of preference remains difficult.
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Figure 43.Screenshot of the GUI implementing the equivalent point method in a Mattafronment

For a better understanding of practical implications and limits of the procedure proposed by
Scott, a demonstrator had been implemented in the Ma#abironment. Figure 43 is a
screenshot of the GUI allowing the computation of the trade-off strategy and weights ratio
according to the equivalent points method. The left side of the GUI is related to the
representation of the decision problem whereas the right side of the GUI concerns the
management of the trade-off. On the right side, the objective space and the set of Pareto
solutions to be traded are presented. In this example, the Pareto frontier being investigated is
non-convex. The left side is dedicated to the interactions with designers. Cursors on the top
are used to assign the reference value of the overall preferengg=f %) and the preference
values of equivalent points 1&0.1 and #0.45). The positions of the reference and
equivalent points are updated simultaneously on the graph located at the right bottom of the
screen. The checkbox enables to sega Once these three parameters have been specified,
trade-off strategy parameter and weights ratio can be computed. In this example, the
equivalent points are specified with#0.5, a=0.1 and g0.45. This leads to s=-0.65312 and
b=5.11111. The related aggregation function is plotted both on the graph at the right bottom
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of the screen, and on the objective space at the left of the screen. The final solution is the one
which maximizes the objective function, i.e. the one which is located on the aggregation
function curve.

The equivalent points method proposed by Scott seems relevant to manage trade-offs and
support decision making in engineering design. This approach can be completely integrated
within the design modelling methodology that we proposed in this thesis.

5.4 Trade-off function for robust decision making in engineering
design

5.4.1 Preliminary considerations

It is considered here that robust design approaches in engineering design involves two kinds
of robustness. The first level of robustness concerns the physical sensitivity of the system
performance whereas the second level of robustness deals with uncertainty of the choice. The
later consists in determining solutions such as slight variations of their performances will not
further alter the decision of designers. In chapter 4, we have proposed to tackle robust design
problems as a trade-off process between two design objectives, namely the improvement of
the overall performance and the minimization of the performance sensitivity due to
uncertainty. These two objectives have been formulated through the design modelling
methodology proposed in chapter 4.

In this chapter, we propose an original function to operate trade-off among candidate
solutions using indifference levels. The development of a trade-off function for robust design
problems stems from the observation that designers often expect to achieve first the
performance of a system and then, its robustness. The objective linked to the improvement of
the performance is often of higher priority than the objective of sensitivity reduction. From a
solution with a high level of performance, the developed approach consists in investigating
the neighbourhood of the nominal solution to find solutions with a quite similar level of
performance but less sensitive to uncertainty. In this section, we denote respectively by u and
v the preferences related to the satisfaction of the performance objective and sensitivity
objective.
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Figure 44.Ranking of candidate solutions according to their belonging to iso trade-off curves

A set of candidate solutions is reported on figure 44. The Pareto dominant solutions are
represented by black squares. Let us consider the alternative B with a very high level of
performance (g=1) and an extreme variability g¥0). Although, such a solution is not
robust, but remains relevant for the designer since the objective of performance is maximized
with this solution. To improve its robustness, and select another alternative, designers should
evaluate the admissible compromise between performance loss and robustness gain. This
compromise is represented by the solution of reference A with and w=1. The two
solutions A and B are thus equivalent and designers can choose indifferently one of them.
Actually, every alternatives belonging to the level curve defined by A and B is equally
preferred. This curve (line) is called iso trade-off curve.

5.4.2 Order of relations and iso trade-off curves

The trade-off function developed in this section is mainly based on iso-trade-off curves. An
iso-trade-off curve corresponds to the alternatives considered as equally preferred by
decision-makers. Let us consider a set of candidates evaluated on the two preferences u and v,
such that the tuple (u,v) belongs to the interval f0;Iypically, the ideal decision concerns

the solution which achieves the best preferences for both u and v. Such cases are rare in real
design problems. Designers often face compensatory situations in which the weak value of
one preference is compensated by the high value of another.

Our approach enables them to operate selections by quantifying a trade-off when one of the
two preferences is favoured. If the preference u is constrained to keep a minimal value, then
the compromise between u and v can be expressed as the maximal degradation allowed by
designers to improve the preference v. Let’s consider a solution for which the preference u
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equals one and the preference v equals zero. Then the iso-trade-off curve indicates the
minimal admissible value for u to increase v from zero to one.

According to figure 44, the indifference relation states that two alternativesvAwand
B(us,vs) are equivalent provided that it is impossible to operate a rational choice between
them. The two solutions are thus equally preferred, and we note A~B. The specification of the
two hypothetic solutions defines an initial level of iso-trade-off, and also a value for the
sensitivity of choice defined as follows:

_(VA _VB)
Xeg =| =7 (5.4.2.1)

The set of alternatives N(u,v) equivalent to A and B, belongs to the iso trade-off curve (AB),
and each candidate solutions must verify:

(v—vBJ_(vA —VBJ
= (5.4.2.2)
U=U; U~ 4§

However, in order to allow designers to express more complex initial compromises, we
introduce the parameter n in relation (5.4.2.2):

VAEAVA v —v! .
— 5| a—>| nOR, (5.4.2.3)
u —Ug U~y

Finally, substituting the components of A and B by their own values, the equation of the
initial iso-trade off curve is:

1-u" —v”(l— k”): 0
with {u >k, kO[0,d (5.4.2.4)

nOR,

where k and n are the two specification parameters used to adjust the shape of the function to
designers’ specifications. Parameter k gives the minimal admissible value reached by
preference u to increase the value of preference v from zero to one. The parameter n is used to
refine the expression of the compromise expected between the two preferences. Increasing the
value of n makes the compromise more restrictive on the minimal admissible value on u. This
parameter value is determined by considering a third point of indifference to specify the
compromise, and is then numerically computed by solving the equation (5.4.2.4).

Different compromises can be expressed through the specification of these two parameters.
Figure 45 presents three iso-trade-off functions specified with different values of parameters.
The iso trade-off function represented in solid line (1) is the least restrictive. It states that
preference u can be decreased from 1 to 0.5 to improve preference v from zero to one. Both
candidate solutions A and B verify equation (5.4.2.4) and thus are considered as equally
preferred. In other words, it is equivalent to choose either alternative B or alternative A, if
preference v is expected to be improved. The iso-trade-off function plotted in dotted line (2)
considers that alternatives C, D and F are considered as equally preferred. By increasing the
value of n, designers agree to decrease preference u only if the gain in preference v is
important. Solutions F or C can be selected. The compromise is therefore more restrictive
than the previous one, since solutions A and C achieve the same preference u. The same
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remarks can be done with the iso-trade-off function in dashed line (3), which allows very
small loss on the preference u, since k=0.8 and n=3.
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Figure 45.Representation of iso trade-off curves for different parameter values

Similar analyses can be made with solutions represented on figure 44. In this case, it appears
that an equivalent choice to both A and B is the alternative C. However, solution D is very
close to solution C in regards to the performance but presents a much better level of
insensitivity. Thus, we getcsup and w<<vp. This leads toC<D. Consequently, the
alternative D achieves a better compromise than the one initially specified (level 0), and thus,
constitute a better choice than C. According to equation (5.4.2.4), the compromise achieved
by D satisfies:

1-uy-vp(1-K)< 0, with k<y, e (5.4.2.5)

The alternative D belongs to another iso trade-off curve (level 1) and, as the value of v for D
and E remains the same, it follows that D~E. Consequently, the solutions can be gathered and
ranked according to their membership to the different iso trade-off levels (curves). The
quantification of the iso trade-off levels is the purpose of the trade-off function developed in
the next section.

5.4.3 Trade-off function and robustness indicator

The trade-off function assigns numerical values to the iso trade-off levels. From equation
(5.4.2.4), the trade-off function(T,v) is formulated as a piecewise function defined as:

T :{[O']] -1 with  @UuV)=1-u'-(1- K) V (5.4.3.1)
(V) al@(uv)+p
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where k and n are the specification parameters of the iso trade-off curves. The coefficients o
and B are determined as follows:

(1) «a (1 ) if u=k and @ (u,vk C
(2) a=-1B=0 if w k and® (U (5.4.3.2)
(3) a:—E B=%< if u<k and @ (uvk C

From equations (5.4.3.1) and (5.4.3.2), we introduce the robustness indicator Rl expressed as
RI=T(u,v). This indicator to be maximised, quantifies the trade-off achieve by candidate
solutions between the performance and the robustness.

Robustness Indicator
1

Initial iso trade-off curve

0.8

0.6

r 0.4

10.2

-0

r 702

Figure 46. Trade-off function specified with k=0.5 and n=3

Figure 46 represents a trade-off function specified with k=0.5 and n=3. The initial iso-trade-
off curve have been plotted and correspond$(tov)=0. Every points of this curve get the
same robustness indicator value. The three parts of the trade-off function have also been
identified according to relation (5.4.3.2). Considering that for a set of alternatives, the initial
iso-trade-off curve corresponds to RI=0, positive values of RI traduce the improvement of the
trade-off, whereas negative values of RI imply the degradation of the trade-off. This is
illustrated on figure 47. According to this figure, alternatives A and B correspond to
compensatory configurations for which any rational decision could be taken. The first
example (1) deals with trade-off improvement. Alternative C is equivalent to alternative A in
regards to the preference v (robustness), but is also better in regards to the preference u
(performance). Compared to alternative B, alternative C is equivalent in regards to the
preference u, but is better in regards to the preference v. Therefore alternative C constitutes a
better choice than both A and B. The second example (2) deals with the conservation of the
trade-off. According to the preference values, it is not possible for the decision-makers to
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operate a rational choice between alternatives A, B and D, considered as equivalent. The last
example (3) refers to the degradation of the trade-off indicator. As solution E is less preferred

than both alternatives A and B for u and v, it represents the worst compromise compared to
examples (1) and (2). Therefore, the trade-off function enables to rank design solutions

according to their ability to improve or worsen the initial compromise specified by designers.
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Figure 47.1so trade-off functions and robustness indicator behaviour

On figure 46, the trade-off valudgk,v) have been reported. This corresponds to the set of
solutions such as u=k. It appears that for a given value of u (performance objective), the trade-
off function ranks the solutions by increasing value of v (sensitivity objective). Conversely,
for a given value of v, the solutions are ranked by increasing level of u. From relations
(5.4.3.1) and (5.4.3.2), it can be shown that:

D(u,v)D[O,ﬂ2 , (g—:j >0 ant{%j > (5.4.3.3)

In other words, the trade-off function computes consistent ranks even if all the alternatives
achieve the same level for preference u or v, or for both of them. Consider the robustness
indicators RA and Rg related respectively to the alternatives A) and B(w,vg). From
relations (5.4.3.1) and (5.4.3.2), the difference between these indicators can be expressed as:
RI, —RI, :[a (1-u,"-(1- ¥) VA“)+[3}—[0((1— ug" - (1- K') vB”)+B}

(5.4.3.4)
=a(u"-w")+a(1-K)( %"= ")

Alternative A is preferred to alternative B if RIRIg, and:

RI,-Rlg20 « o(u,"-y")+a (- K)( "~ v")= 0 (5.4.3.5)
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As a<0, if both alternatives A and B achieve the sanmefgoence u=pFug, it follows from
relation (5.4.3.5) that:

(RIp)yoe = (Rlg) e 20 = (V"= V") 20 (5.4.3.6)

Thus, alternatives A and B are ranked according to preference v. In the same way, if the two
alternatives reach the same preference v, then they are ranked according to the preference u. it
can be shown that:

(RIy),c = (Rlg), 20 = (u"~y")= 0 (5.4.3.8)

Finally, if all the alternatives get the same values for both preferences u and v, then the
alternatives cannot be ordered, since all candidates achieve equivalent trade-off indicators.
Consequently, they all verify the equation of the same iso-trade-off function, and are
considered as equally preferred.

5.5 Summary

Major difficulties in engineering design problems come from the balancing act between many
design criteria and objectives. Modelling such a trade-off is of main interest in design
optimization to compute optimal solutions. Trade-off can be expressed as a compromise
allowing increments of one performance against decrements of some others. However, trade-
off in engineering design is often complex and requires the definition of compromises for
different levels of performances.

In this chapter, we present two approaches to manage trade-off in engineering design. The
first methodology proposed by Scott uses equivalent point to determine consistent trade-off
parameters values and weights assignment for preference aggregation. This enables to model
compromises evolving with several levels of preference. However the weights and trade-off
parameter are highly sensitive while preferences values are close to extreme bounds (p=0 and
p=1). Consequently, it is suggested to takigH0,0] for the generation of consistetgsign
appropriate aggregation functions. Such an approach can be easily implemented within
systems to support decision-making in engineering design. Some applications of the
equivalent points method are presented in [Scott 1999, Mourelatos 2006].

As the trade-off between performances against their variability is specific to robust design
problems, we propose a suitable trade-off function to model designers’ preferences facing
with these two objectives. The trade-off function has been designed to evaluate the relative
sensitivity of choice among a set of alternatives. This is done by quantifying the improvement
or the degradation of the compromise between two preferences when one of them is favoured.
In the framework of robust design, the improvement of the overall performance is traded-off
against the reduction of the performance sensitivity. It results in an objective function to be
maximized. Recently, the trade-off function has been applied to improve the robustness of car
structure for crashworthiness of vehicle side impact [Quirante 2011b]. In another research
work [Quirante 2012], the trade-off function is used to tackle the robust design of a truss
structure.
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CHAPTER

CHAPTER 6 Design of two-staged flash
evaporators for must concentration
applications in the wine industry

In the past few years, flash evaporation processes have received an increased attention in the
wine industry for must concentration applications. Specific constraints related to the wine
industry area had led to many improvements of flash evaporators. Preliminary design of
evaporators must deal with many design objectives specific to this area of application. In
particular, the robustness of these vinification processes is of main interest since the variations
of temperatures and flow rates of liquids at the inlet of the process can deeply impact the
qguality of the product at the system outlet. The methodology developed in this thesis is
applied to achieve robust design of flash evaporators. Each step of the design modelling
methodology is described and illustrated with concrete examples. Design objectives are
formulated with a preference aggregation method. The selection of the optimal design
solution is discussed according to different trade-off strategies. The generation of the Pareto
set is addressed by the non dominated sorting genetic algorithm NGSAII. The study
developed in this chapter is mainly based on recent publications [Ho Kon Tiat 2010,
Sebastian 2010, Quirante 2010, Quirante 2011a].

NOMENCLATURE

Physical variables and parameters Decision variables and parameters

C energy consumption d desirability score

C costs d desirability score related to the sensitivity objectjve
Cx rate of concentration DOI design objective index

D alcoholic strength DOI design objective index of the sensitivity objective
El environmental impact GDI global desirability index

k  heat transfer coefficient X  vector of design variables

M mass ~ . ; .

- X disturbed design variables vector

N number of plates within the condensers f ob : bl

P pressure y vector of observation variables

q mass flow rate Y, disturbed vector for thd'iobservation variable

S  floorarea y,  average of thd"iobservation variable values

T temperature w vector of numerical weights

t time

Greek symbols Subscripts

Q design space cl coolant liquid

a measure of the bandwidth of variation elec electric

B measure of the tolerance to nominal invest investment

Y measure of the minimum admissible value LP/VLP low pressure/very low pressure

Ax  variation of control factors op operating

€ variation of noise factors perfo performance

o standard deviation pi/po inlet product/outlet product

0] flash evaporator simulation model sens sensitivity

sys system
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6.1 Introduction

Due to a drop of the table wine consumption and changes of consumer tastes, there is a
growing interest in using flash evaporation processes in the wine industry. Indeed, according
to recent studies in the pre-treatment of grapes by flash-release (or flash détente), benefits
come from considerable improvements of the wine quality and enhancement of its gustative
properties [Ageron 1995, Escudier 1995, Escudier 1998]. In particular, the final content of
polyphenol in the wine (chemical agent in the berries skin tissues responsible for the colour
and flavour of red wines) is at least 50% higher compared to wines obtained from traditional
production techniques [Vinsonneau 2002]. Figure 48 shows the must concentration process by
flash evaporation through the wine production process. This operation aims to increase the
alcoholic strength of the must until the final desired value is reached. As a general rule, an
enrichment of 1% by volume is obtained by evaporating of 10% of the vintage volume.
Grapes are usually first heated at temperatures ranging between 70°C to 90°C [Celotti 1998].
The vintage is then suddenly cooled by flash evaporation to temperatures ranging between
25°C to 30°C which may cause the fermentation of the vintage. The word “flash” comes from
the phenomena of quasi-instantaneous and partial vaporization of the vintage when it is
subjected to a sudden drop of pressure below its saturation pressure [Miyatake 1973]. As a
consequence, the liquid temperature drops to the saturation temperature corresponding to the
lowered pressure. Additionally, due to this abrupt change of pressure, sudden mechanical
constraints appear inside the berry skin tissues, enhancing the release of many different
substances such as tannins, and thus, improve the colour and some gustative properties of
wines.

Figure 48.Must concentration by flash evaporation through the wine production process

In practical terms, specific constraints related to the wine industry area had lead to many
improvements of flash evaporators initially designed for seawater desalination [Miyatake
2001] and flavours extraction [Sebastian 2002] applications. Typical flash evaporators must
be designed to treat at least 10 tons of grapes per hour which corresponds to the treatment of
the whole harvest of an average vineyard of 19 ha, with a production efficiency of 50 hl/ha in
the region of Bordeaux [Agreste 2010], during a working day (~10 hours). This requirement
often leads to oversized systems whereas flash evaporators are required to be transportable
from a wine production site to another during the harvest period. But the main weakness of
flash evaporators is their high energetic consumption, impacting the environment and
increasing the operating costs, and consequently, the price of the wine (given in €/litre of
wine). Indeed, thermal and electrical energy (defined in kWh/hl of wine) are required
respectively to heat the vintage at the inlet of the evaporator, and to supply pumps for liquids
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circulation and fan for the aventilation in the cooling tower (se@gure 50). The water
consumption of the system (givenlitre of water by litreof wine) is due to the evaporati
of the water requiretb condensate thvapourswithin the condensers while it goes throt
the cooling tower.

(b)

Figure 49. Two-stage flash evaporator: CAD model of the industrial system (a) and its corresg
experimental prototype (b)

Based on thesequirements, the system designed by Sebastian et al. [Cadiot 2002, S«
2002] is based on the development of a-staged eaporator combined with the  of
compact condensers and mist eliminators. A CAD view and the corresponderimental
prototype arerepresented orfigure 49 The main components of this process and
industrial system have already been presein [Bouchama 2003a, Ho Kon Tiat 200¢

In recent research works [Ho Kon Tiat 2010, Sebastian 20he preliminary design ¢
this flash evaporator hdmeentackled by tradinggff multiple conflicting design objectives
performance such as transporlity, environmental impact, operative cost, product qu:
and cooling power. A mulibbjective optimization method based on preferermodelling
with desirability functionshas bee proposedo investigate the design sp and determine
optimal solutions However, this approach still cannot be consideas completely
satisfactory since we processed a nominal optimization without taking into accot
inherent variability of operating conditions and environmental parameters (uncertainti
may digurb the nominal performances of the system. Obviously, variations of tempe
and flow rates of liquids (must and water) at the inlet of the process can dramatically
the quality of the product at the system outlet. In particular, deviatiom the target values
of temperature and alcoholic strength can lead to a severe degradation of the vintag
two properties are decisive for the final wine quality and thus, their variations m
controlled. Facing this issue, we proposed in a it study [Quirante 2011] to formulate t
sensitivity of the design as a particular design objective to be -off. However, this
approach doesn’t allow designers to express a compromise between the performanc:
sensitivity while, these objectiv must be obviously balanced according to the desig
expectations.
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6.2 Two-staged flash evaporation processes

The two-staged flash evaporator represented in diagram form on figure 50 has been designed
to treat about 10 tons/h of grapes. The vintage is initially heated at temperatures ranging
between 70°C to 90°C under atmospheric conditions, and stored in the buffer tank (1) where it
Is stirred by a mixer (2) to maintain a uniform temperature. The system is put under vacuum
conditions due to the action of a vacuum pump (4a) coupled with an air ejector (4b). A pump
makes the fluid to be sucked up at the low-pressure stage of the evaporation chamber. As
soon as the product enters in the low pressure (LP) expansion chamber (6a), a part of the
liquid phase is suddenly vaporized, and the level of the remaining fluid rises and activates the
float (8) to maintain the pressure difference between the stages. Entering in the very-low
pressure (VLP) stage (6b) of the evaporation chamber, the fluid is then once again partially
vaporized. The remaining part of the fluid is extracted by the extraction pump (5) which is an
eccentric rotor pump of the Archimedes screw type. This type of pump is well adapted for
moving fluids containing solid particles such as grapes. The vapour created by the fluid
evaporation is condensed through two condensers, one for each stage (3a,3b), to maintain the
system under low pressure conditions. Condensates are stored in a tank from where they are
extracted by a condensate pump (9). As the vaporization at the low-pressure stage is very
violent, droplets are formed and carried out with the vapour. Therefore, a mist eliminator (7)
is added to ensure the droplet recovery. The cooling of vapours inside the condensers is
performed by the joint action of a mechanical draft cooling tower (11) coupled with a
centrifugal pump (12).

~ 800 kg/h
_EE_ _______ m _____________ (moist air)
= 100 mbar 5
@ @ ~ 80 kg/h
== .m_ =
Liguids and Flows : =40 mbar ______ x10-35m'/h ‘
’ 15-20°C

Coolant (water)

[ ]
e Product (grapes+must)
m——  (Condensate (water)

Liquid ring (water)

===== Vapor (water)
--------- Alr

@— Electricity

® _%_' .
5 g
“o

1 - Buffer tank 4b - Air ejector 8 - Floater

2 - Mixer 5 - Extraction pump and recovery pump 9 - Condensate pump

3a - Low pressure condenser 6a - Low pressure evaporation chamber 10 - Tank pump

3b - Very low pressure condenser 6b - Very low pressure evaporation chamber 11 - Mechanical draft cooling tower
4a - Liquid ring vacuum pump 7 - Mist eliminator 12 - Centrifugal pump

Figure 50. lllustration of the two-staged flash evaporator principles
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6.3 Preliminary design of flash evaporators

6.3.1 Design requirements

From the life-cycle analysis of flash evaporators, we have identified four major design
objectives of performance to be satisfied. They concern:

» the improvement of the product quality (OPI

» the improvement of the transportability (DI

» the minimization of the environmental impact (BRI

» the minimization of the overall costs of ownership (B)OI

Initially, the design objective performance related to the cooling power of the evaporator was
taken into account [Sebastian 2010, Quirante 2011]. However, it appeared that this design
objective is actually not relevant for must concentration applications in the wine industry.
Flash evaporator design is often constrained by the evaporative capacity of the system to
reach an objective of alcoholic strength and improve the quality of the vintage product.

a. Product quality

Due to the necessity of preserving the gustativegmaes of wine while meeting international

and regional legislations of wine-making practices, the improvement of the product quality
(i.e. grapes and must) at the outlet of the flash evaporator is a crucial design objective to be
considered by wine producers. The quality of the product depends both on the temperature,
the level of final alcoholic strength and the rate of polyphenol of grapes at the outlet of the
system. The temperature of the product at the outlet of the flash evapoggtas @qual to

the saturation temperature of the vapour inside the VLP stage of the evaporation chamber.
Depending on the type of wine expected, the desired target temperature can slightly vary from
a producer to another. But, in general, the continuity and efficiency of the fermentation
process is ensured for temperatures comprised between 10°C (below the temperature is too
low to trigger the alcoholic fermentation) and 35°C (stuck of the alcoholic fermentation). The
rate of concentration (Cx) of the product is the ratio between the volume of water eliminated
during the process and the initial volume of product:

_ (qpi - qpo)
i O

where ¢ and g, are respectively the input and output product flow ratgefis the volume

of water eliminated during the process. The rate of concentration determines the evaporative
capacity of the system. The volume of water to be eliminated, and so, the rate of
concentration, are constrained by the desired final alcoholic strength of the must. In general, it
is estimated using the following formula [Jacquet 2002]:

Cx = qvapor

(6.3.1.1)

D .
qvapor = qpi_ qpo with q)o = api EIDl (6312)

po

where Oy and Dy, are respectively the initial and final alcoholic strength of the must. In this
study, we are mainly interested in increasing the alcoholic strength from 11% to 12% of
100hL/h of must#10tons/h). This implies a vaporization of 12hl/hvediter. More to the

point, as the release of tannins and polyphenol mainly depends on the drop of pressure in the
expansion chambers, and according to the results presented in [Vinsonneau 2002], we
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considered here that the pressure inside the very low pressure chamber must be at least of 94
mbar.

b. Transportability

As mentioned in the introduction, the transport&pibf the system is a significant design
objective since it must be moved from a wine production site to another during the harvest
period. The transportability depends both on the floor argg é®d the overall mass ¢y

of the system which must not exceed a limit defined by the standard maximal capacities of
flat bed trucks. It is estimated by calculating the mass and size of tanks (expansion chambers,
buffer and condensates tanks), condensers and pumps which are the biggest and heaviest
components of the system. The total mass of the system also involves the weight of the
metallic structure used to support the flash evaporator.

M Sys = M an S+M con enser-é-M uth Struct
oo tank ‘ PumP e (6.3.1.3)
S, = Suuct S

ys anks condensers

C. Environmental impact

Facing with the emergence of environmental condsain the agricultural field, the
environmental impact of the flash evaporation process must be also considered as a design
objective. One of the main inconvenient of flash evaporation processes is their high
consumption of energy, materials and fluids. In this study, the material consumption of the
system is mainly based on the total amount of steel used for manufacturing the tanks. Based
on the Ecolndicator99 methodology [Goedkoop 2000], the relative impact corresponding to
one ton of steel is quantified and the related damages coefficients (environment, human
health, resources) are derived from this impact:
El =(a,* a,+ a) OM,

material —

6.3.1.4
a, =19 (environment), &= 13233 (human health)= 2 3 (ressource ( )

Similarly, we evaluate the damages coefficients associated to the consumptions of 10kWh and
1m3 of water. Finally, a global score El is derived from the impacts of material, energy and
water consumptions.

El,, =El El  +El
with,

Elgec = (b1+ b,+ bs) (Ceecs
Elyer = (C1+ €+ C)) [T

water ~

.+
material water

b= 0145,p= 00139, .00271 (6.3.1.5)

c= 00187,c= .000204,% . 000

water?

The energy consumption calculation is based on the power required to supply the different
pumps, mixer and fan. The water consumption corresponds to the volume of water used by
the cooling tower. Mechanical draft cooling towers consume water in three major ways
[Leeper 1981]. Evaporation rate)ds approximately of 1% of the water flow rate per each
10°F &5.5°C) of the cooling range. Drift (is approximately 0.2% of the water flow rate,

and refers to the water which leaves the cooling tower carried out with the exiting air. In order
to prevent concentration of solid and chemical particles in the cooling water resulting from
the evaporation, the blowdown gCis the volume of water removed from the system and
replaced by fresh water. It is generally assumed th&gQals 20% of the evaporation rate.
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Celec = ( Powellr’ﬂxer + POW% + z POW[%rnps) D oé
Cyaer = (Ce+ Cp+ Cy) [t

water

(6.3.1.6)

The electrical consumption and water consumption are respectively expressed in kWh and
m>h. They are estimated over a periagl) (bof 20 years with an average operating time of 10
hours per day during 2 months (duration of the harvest period).

d. Overall costs of ownership

The development of “flash détente” processes inntime area is also hampered by the initial

cost of investment. The economical analysis of the flash evaporator aims at modelling
manufacturing costs (material purchase and forming) of tanks, and purchasing costs of other
parts of the flash evaporation system (condensers, pumps, etc.). The global purchasing cost of
the system is calculated by adding these manufacturing and purchasing costs for each part of
the system.

The total investmentGinvest) cost of the process results from this global purchasing cost
multiplied by the Lang factor to take into account installation costs, transportation costs and
various costs such as insurance costs [Rehfeldt 1997]. From this investment cost, we derive
the maintenance cost which is assessed as 2.5% of the investment cost, and the total
discounting cost of the system which is estimated from the coefficient of discounting
evaluated over a period of twenty years. The overall operating cg3tdver this period is
derived from the electricity and water consumption costs calculated from the peak charges
applied by EDF (0.1275€/kwh) and the average price of water distributed in France

(3.39€/m3) in 2011. Finally, the overall cost of ownerst@p) is calculated by adding the
overall costs of discounting and the operating cost of the system.

6.3.2 Measures of performance, observation variables and design criteria

From these requirements, we derive eight observation variables to evaluate the performances
of the two-staged flash evaporator. These variables refer to:

= Qutlet product temperature,

= Alcoholic strength,

» Pressure within the VLP stage,
= Mass of the system,

» FHoor area of the system,

= Eco-indicator,

» Total costs of investment,

= QOperating costs

Each observation variable is related to one design criterion, expressed as equality/inequality
constraints which must be satisfied. Moreover, every criterion (and so, observation variable)
can be associated to the achievement of one of the four design objectives of performance
identified in section 6.4.1. The definition of the observation variables and design criteria are
summarized in table 7.
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Observation variables Design criteria
Y =[ye Yo Vel name unit

y1- Outlet product temperature Toe (°C) 25°C<Tp<30°C
y»- Alcoholic strength Dpo (%) Dpo~12%
ys- Pressure within the VLP stage P (mbar) Pyip < 94mbar
Y4- Mass of the system Maye (tons) Mgys< 7.5tons
ys- Floor area of the system S (m2) Syye < 16m?
Vs - Eco-indicator Elgg O] Elgg < 50 000
y;— Total cost of investment Civest (KE) Cinvest < 465K €
yg- Operating costs Cop (k€) Cop <153KE

Table 7. Definition of the observation variables and design criteria

6.3.3 Design variables

The observation variables are computed from a set of design variables. They are the main
dimensioning and monitoring parameters required to completely define the system (regarded
as a candidate solution) and its functioning environment (vintage and coolant liquid). The
preliminary design of two-staged flash evaporators involves six design varigbles (

» inlet temperature of the product (must and grapes),

» inlet temperature and flow rate of the coolant liquid (water),

= flow rate of the coolant added to the LP condenser,

= number of plates in the low-pressure and very low-pressure condensers

Condensers can be composed of 250 plates which represents a maximal heat surface exchange
of 40m2 per condenser. As the flash evaporator is supposed to be designed for treating 10
tons/h of grapes, the inlet product flow rate is considered here as a constant parameter of the
design model. The ranges of admissible design variables values are provided in table 8. As a
set of design variable values characterizes one particular candidate solution, different
combinations of design variables values lead to flash evaporator configurations with different
levels of performance.

Design variables Domain ()

X = [Xy, X5 Xe]' name unit range nature
Xz-Inlet product temperature Tt (°C) [70.0; 90.0] continuous
Xo-Inlet coolant temperature T (°C) [15.0; 25.0] continuous
xs-Inlet coolant flow rate Qe (m*h)  [10.0; 20.0] continuous
X4-Flow rate of the coolant added to the LP condenser Ooi+ (m*h)  [1.00;25.0] continuous
xs-Number of plates in the low-pressure condenser N p O] {6,...,250} discrete
Xg-Number of plates in the very low-pressure condenser vip N ) {6,...,250} discrete

Table 8. Definition of the design variables and design space
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6.3.4 Uncertainty and performance variations

In functioning phases, variations in liquids (must and water) temperatures and flow rates at
the inlet of the process can dramatically impact the quality of the product at the system outlet.
In particular, deviations of the temperature and alcoholic strength from their target values may
lead to severe degradations of the vintage quality. Therefore, the robust design of the two-
staged flash evaporator concerns the minimization of the variation of the following
performance variables:

= the outlet product temperature)y
» the final alcoholic strength £y
= the pressure within the VLP stage)(y

The variations of these variables are observed through the two measures described in section
4.3.2, namely the bandwidth of variatian) @nd the tolerance to nomindl)( Moreover, the
minimum admissible value criteriomn)(is used to contain the performance dispersionimveh
desirable domain.

Uncertainties type  Uncertain variables/parameters Variations range
name unit
Control factors§)  Inlet product temperature 4{x T (°C) +1°C
Inlet coolant temperature £x Tg  (°C) +1°C
Noise factorsd) Input product mass flow rate Q. (tons) +1 ton/h
heat transfer coefficient for the LP condenser | k (W/m2.K) +1%
heat transfer coefficient for the VLP condens: kyp  (W/m2.K) +1%

Table 9. Definition of uncertainties parameters

We consider the uncertainty associated to the variability of operating conditions and the
uncertainty linked to modelling errors. They are considered as random uncertainties without
any assessment on their distributions. Variations of uncertain variables and parameters used in
this study are given in table 9.

Exp. Factors
# Toi (°C) Ta(°C) i (ton/h) ke (%) Kup (%)

1-4 1 1 0 0 0

5-8 0 0 *1 +1 0
9-12 0 1 0 0 1
13-16 *1 0 +1 0 0
17-20 0 0 0 £l +1
21-24 0 +1 *1 0 0
25-28 *1 0 0 1 0
29-32 0 0 +1 0 1
33-36 0 1 0 +1 0
37-40 0 +1 0 +1 0

41 0 0 0 0 0

Table 10.Box-Behnken design (5 factors, 3 levels)
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Fluctuations during operating phases of flash evaporators are due to variations of inlet
temperatures and mass flow rates of liquids (product and coolant) which can dramatically
impact the quality of vintage by modifying its nominal output temperature and final alcoholic
strength from the target value. The temperature variations of the must and coolant are
supposed to be up to £1°C around their nominal values. As the flash evaporator was initially
designed to concentrate 10tons/h of must, the inlet product flow rate can vary of £1ton/h from
the initial value depending on the size of the vineyard.

Moreover, heat transfer coefficients values are derived from experimental correlations
which are highly sensitive to physical phenomena and with values which are difficult to
estimate. Due to their predominant role in the heat transfer within the condensers, modelling
errors affecting heat transfer coefficients may cause significant inaccuracies in the predictions
of the nominal performances. We add two other variablesafid k/ p) to assign a variability
of £1% on these parameters.

Uncertainties are introduced through stochastic variall@g (luring the evaluation of
candidate solutions (see section 2.4.2 for further details) which is equivalent to define and
evaluate a neighbourhood around the nominal design configuration:

y=u(%0), x=x+3 (6:3.4)

wherey is the vector of disturbed observation variables computed from the vector of design

variablesx submitted to the variations of noise factar&nd control factors. In nominal
evaluation, each combination of design variables results in a unique set of performances. The
variability is propagated through the behaviour model of the flash evaporator towards
observation variables, and results in a set of different functioning states which are
characteristic of one particular candidate solution.

As suggested in section 2.4.2, we usd@@-Behnken design of experiment method
(5factors, 3 levels) to sample the domain of noise and control factors as shown in table 10.
Box-Behnken design is an economical fractionalized design which is useful when numerical
experimentations are high time consuming. Here, only 41 experiments are required to
evaluate the dispersion of the performance. The choice of a fractional design enables to
achieve a homogenous repartition of the experiments around the nominal, and thus, a suitable
representation of the observation variables excentration. Although, design of experiments is
usually used to derive a numerical model of the behaviour of the system, it is not the purpose
of our approach. Here, we use design of experiments to define a set of points to be evaluated.

6.4 Preference modelling

6.4.1 Formulation of the objective of performance

Observation variables are first interpreted through Harrington’s desirability functions in
respect with design criteria and designers’ preferences. The desirability functions are
specified with desirability levels related to an absolute constraint (AC) and a soft limit (SL)
(see section 3.4.2 for further details). The two-sided Harrington’s desirability functions have
been parameterized using average values between the absolute constraints and soft limits
boundaries. Criteria and desirability function parameters are given in table 11.



|
109 CHAPTER 6 Design of two-staged flash evaporators for must concentration
applications in the wine industry

Design criteria Desirability functions Parameters
AC d(AC) SL d(sL)
R o . 20 0.05 25 0.9
25°C<T,<30°C d; two-sided 35 0.05 30 09
~ . 11 0.05 11.8 0.9
Dpo=12% ¢ two-sided 13 0.05 12.2 0.9
Pyip < 94mbar ds one-sided 97 0.01 94 0.9
Msys< 7.5tons d, one-sided 7.5 0.01 5.3 0.5
Sy < 16m? ds one-sided 16 0.01 10 0.5
Elgs < 50 000 ds one-sided 50000 0.01 1000 0.99
Cinvest < 465K € d; one-sided 465 0.01 141 0.5
Cop <153k€ ds one-sided 153 0.01 84 0.5

Table 11.Desirability function related to the performances

As the specification of the parameters must be consistent with the physical behaviour of the
system, it is suitable to define a system of reference of intermediate performance. This system
iIs characterized by a global desirability value equal to 0.5 (GDI=0.5). Since aggregation
functions are design appropriate, all desirability values should be equal t¢=0.5)dn this

study, the system of reference is a mono-stage evaporator from the society “Entropie SAS”
(see figure 51). It concentrates 10tons/h of product from 11% to 12% by volume which
corresponds to an evaporative capacity of 1000l/h of water. From the constructor data, we
evaluate the weight and floor occupation of this system respectively equal to 5.3tons and
10m?2, for an estimated cost of investment close to 141k€. As an example, the SL parameter
value related to the mass of the system is determined sucti(Mess)=0.5 with
Masse=5.3t. As the evaporator must be transportable from a production site to another, the
AC parameter is derived from the dimensions and maximal carrying capacities of medium-
sized flat bed trucks (PTAC<7.5t). The desirability functions associated to the mass is
represented on figure 21 in section 3.4.2. From the reference system and the requirements
enounced in section 6.3.1, the parameter values of the eight desirability functions are
determined.

Figure 51.Must concentrator ENTROPY MTA 300 (evaporative capacity: 300I/h)



110

From the life cycle analysis and functional analysis of the system, four design objectives have
been identified. They concern the improvement of the product quality ;JD@He
improvement of the transportability of the system (POIlthe minimization of the
environmental impact (D@) and the reduction of total costs of ownership (POEach
objective is intrinsically linked to the satisfaction of at least one functional goal. It is then
possible to identify the observation variables and constraints linked to the achievement of
each goal. The output temperature, final alcoholic strength and pressure in the VLP stage
impact the product quality. The mass and the overall floor area of the system are related to the
improvement of the system transportability. The minimization of the system environmental
impact is achieved by the satisfaction of the Eco-Indicator 99 criteria whereas the
minimization of the overall costs of ownership takes into account costs of investment and
operating costs. The desirability functions are then aggregated into four design objectives
indices (DOIs) using a weighted geometric mean aggregation (s=0). At this stage of the
aggregation process, the number of aggregated components does not exceed three and it is
thus possible to assign directly numerical weights. Furthermore, it is assumed here that the
priorities between sub-objectives are equal. Thus, the DOIls are expressed as follows:

DOIl - dll/3 mzl/S |:d31/3 DQIZ Q/Z |:| Q/Z
DOIl, =d_ @, =d. ",
The DOls are then aggregated into a global desirability index of performangg:£3i8Ing a

weighted geometric mean (s=0). The GDI related to the performance is thus expressed as
follows:

(6.4.1)

4
GDI ., = ” DOI™ with w =[0.5660,0.2647,0.0399,0.12F" (6.4.2)

As it is suggested in chapter 4 and 5, the assignment of the numerical weigldsrformed

using the AHP method [Saaty 2008]. From a relative scale of importance ranging from 1 to 9
which corresponds respectively to equal importance and extreme importance, a judgment
matrix is defined from pairwise comparisons between objectives. The judgment matrix is
positive and symmetrical. The validity of the judgment is qualified through a consistency ratio
CR. According to Saaty, consistency ratio values between 1% and 10% validate the
consistency of the results computed by the AHP method. In [Semassou 2011], AHP is
coupled with to the failure mode, effects, and criticality analysis (FMECA), and the values of
the relative scale of importance correspond to the degrees of criticity of the objectives.

W . . : Imp. of the . Min. of the total
Design for improving Imp. of the o Reduction of
the product quality” product quality transportability the env. impact cost Of. w
of the system ‘ ownership
Imp. of the product quality 1 | 3 | 9 | 5 0.5660
Imp. of the transportability
of the system 1/3 1 7 3 0.2674
Reduction of the env. 1/9 117 1/ 1/5 0.0399
impact
Min. of the totql cost of 1/5 1/3 1/5 1 01267
ownership
CR=0.0513

Table 12.Judgment matrix for the scenario “Design for improving the product quality”
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The AHP method enables to define different scenario in respect to the relative importance of
objectives between them (Design for X approach). As the main service function of the two
staged-flash evaporator concern the must concentration, the satisfaction of the product quality
objective is crucial. The transportability of the system is another important objective to be
satisfied. Finally, the objectives related to the environmental impact and total costs of
ownership are considered as secondary. However, it is considered that the minimization of
costs is preferred to the reduction of the environmental impact. Table 12 shows the 4x4
judgment matrix related to a two-stage flash evaporator designed for improving the quality of
wine. In this case for instance, the relative importance of the product quality objective is
regarded as extreme (value of 9) compared to the environmental objective, whereas the cost is
considered as a minor objective (value of 5). The computation of the eigenvector of the matrix
provides the normalized values of weights of the aggregation functions. These weights are
reported in the right column of the table 12. For this judgment matrix, the CR is equal to
5.13%. The numerical values of the weights computed by the AHP method are thus consistent
with the relative order of importance between the objectives satisfaction.
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the overall

Improvement of
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[]oor” ‘
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) < Level 0
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Figure 52. Structure of the preferences aggregation model for the performance

To sum up, the whole structure of the preference aggregation model for the performance is
represented in graph form on figure 52. The weights related to each objective have been
reported in bold. The design criteria are first interpreted and turned into objectives using
Harrington’s desirability functions. The desirability function parameters are derived from the
requirements and from the definition of a reference system of intermediate desirability. The
eight individual desirability functions are then aggregated into four design objective indexes
using the weighted geometric mean. At the stage of the process aggregated sub-objective are
supposed to be of same priority. Finally, the DOIs are aggregated into a global desirability
index of performance using the weighted geometric mean. As the number of objectives now
being used is higher, the weigh assignment is performed using the AHP method.
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6.4.2 Formulation of the objective of performances sensitivity

The objective of design sensitivity is based on the observation of the dispersion of the output
temperature (@ of the must, the final alcoholic strengthy)(\and the pressure in the low
pressure chamber fly During the functioning phase, flash evaporator users expect uniform
juice temperatures at the system outlet to ensure the quality of the product. More to the point,
variations of alcoholic strength and pressure in the low pressure chamber can also impact the
vintage. As proposed in section 4.3.2, the bandwidth of variation, the limitation of the
distance between the nominal value and the centre of gravity of the neighbourhood, and the
satisfaction of the minimum admissible value are used to observe the disperstoang y

when the system is disturbed according to equation (6.3.4). The criteria and desirability
function parameters are defined in table 13.

Observation variables Desirability functions Parameters
name unit AC d(AC) SL d(sL)
Bandwidth of variation for:
Output temperaturfy,) ol (°C) q one-sided 1 001 6 0.9
Alcoholic strength(ymz) a2 (%) d, one-sided 1 0.01 4 0.9
Pressurdy, ) «3  (mbar) d one-sided 10 001 40 0.9

Tolerance to nominal for:

Output temperature p1 (°C) d, one-sided 0.25 0.01 25 0.9
Alcoholic strength p2 (%) a; one-sided 0.05 0.01 125 09
Pressure B3 (mbar) a; one-sided 5 001 20 05

Minimum admissible for:

= 20 005 25 0.9

Output temperature vl (°C) d, two-sided 35 005 30 009
. ~ : 11 0.05 11.8 0.9

0, -
Alcoholic strength v2 (%) dg two-sided 13 005 122 09
Pressure v3 (mbar) a; one-sided 97 0.01 94 0.9

Table 13.Desirability functions parameters for the objective linked to the performance sensitivity

The first step of the aggregation model consists in aggregating individual desirability
functions using thenin aggregation function (non-compensatory aggregation strategy). The
DOls are expressed as follows:

DOl = min‘ﬁiz% a (1)

DOI, = min,_, d (BJ) (6.4.2.1)

i=1.3

D\O/I?’ =min._; Y

j=1...3

As mentioned in section 4.3.2, the measure of the minimum admissible yalake@dy
corresponds to a desirability value. Tinén aggregation function enables the improvement of
the lowest desirability value against the expense of the global desirability level of the design
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solution. No weights are used in this formulation. The DOIs are then aggregated into a global
desirability index of sensitivity GRdns This index is expected to be maximized to reduce to
sensitivity of the performance under uncertainty. The selected aggregation function is the
geometric mean and GRJsis computed as:

A= [4 4 27
GDlsens_I—lDOIi with v=|—,—,— (6.4.2.2)

=1 10 10 10
Using the weighted geometric mean aggregation tends to improve the global level of
desirability by worsening the lowest desirability value. Weights have been determined by
considering that the minimization of the objectives linked to the bandwidth of variation and to
the tolerance to nominal are of equal importance. The global formulation of the sensitivity
objective is summarized in graph form on figure 53.
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Figure 53. Structure of the preferences aggregation model for the performances sensitivity
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6.5 Robust design optimization

6.5.1 Formulation of the optimization problem

A design solution is robust as soon as it achieves a good level of performance while
maintaining a low level of variability under uncertainty. This is expressed mathematically by
equation (2.3.1.1) in which objectives functions are fafdind GDlens

maximize | GDI ., (X) ,GDlen( )]T
subject to: xQ

(6.5.1)

Due to the discontinuity of the response surface and numerous local extrema created by
weighted aggregations, classical gradient-based optimization approaches are inefficient for
solving this numerical problem. Consequently, this MO problem is numerically solved using a
genetic algorithm which enables a global investigation of the design space.

6.5.2 Numerical solving

The robust design problem (6.5.1) has been addressed by NGSAII with a population of 250
individuals and a limit criterion of 200 generations. The reader could refer to section 2.3.6 for
further details. We use the real-coded GA operator with a distribution index of 20. The fitness
computation procedure is presented in flow chart in figure 54. The results are presented and
discussed in the following section.

Start '

Candidate Solution (x) |F----- U nz:;rt;t;nty ————— » Neighbour Solutions (x)
£ Y \ g, y
§ Computation of the § Computation of the _
E observation variables (y) s observation variables (¥)
) -] N
= 2 |
g ) E 0 . )
£ Computatlon of the £ Computation of the
2 desnrablllty scores (d) § desirability scores (d)
77} .
|
Computatlon of the design Computation of the design
objective indexes (DOI) objective indexes (DOI)
.
N\ 4 ‘ N\
Computation of the global Computation of the global
desirability index (GDI o) desirability index (GDlIps)
.

A 4

Fitness score = [GDI,ergo, GDlens]

A

End

Figure 54.Fitness computation procedure
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6.6 Results and discussion

6.6.1 Results

Results are summarized from figure 55 to figure 59. The Pareto sepefBDlseny is
represented on figure 55. It is composed of 250 robust design solutions and appears to be non-
convex. The two extremities of the frontier correspond respectively to the design solutions
with the lowest sensitivity (solution #250) and with the highest level of performance (solution
#1). Therefore, the main challenge consist here in determining which one of the Pareto
optimal solution is the most relevant for the final design of the two- staged flash evaporator.
In the following, the design variables, observation variables and desirability levels have been
plotted according to the GRk, achieved by the candidate solutions. This is equivalent to
represent the evolution of the design properties along the Pareto frontier.

Figure 55.Pareto set for the robust design problem of flash evaporator

The design variables having an impact on the robustness of design solutions are the input
product temperature {J, the coolant liquid temperatureJTand the number of plates in the

LP condenser (J%). The evolution of these three design variables in function ofy&PI

values are reported on figure 56a, figure 56b and figure 56c. The coolant liquid flow rate has a
minor influence on the robustness and keep a constant value of 12.5 I/h of weies5ldh,
0c+=6.941/h). The same remark can be done for the number of plates of the VLP condenser
which keeps a constant value of 23 plateg §N The evaporative capacity (expressed in litre

of evaporated water per hour) has been also reported on figure 56d. Discontinuities on figure
56 are due to the variation of the number of plates in the LP condenggysmich is a

discrete variable. Two kinds of flash evaporator design can be defined. The first one presents
a global heat transfer area of 41.87m2 which corresponds to a LP condenser composed by 248
plates. The second one gets a global heat transfer area of 41.71m2 and involves a LP
condenser composed by 247 plates. Consequently, a decrement of the heat transfer area of the
LP condenser increases the evaporative capacity of the system (improvement of the cooling
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power of the system). As the global desirability index of performance mainly depends on the
objective linked to the product quality, this leads to the improvement of the overall
performance. To the contrary, the evaporative capacity should be slightly decreased to reduce
the variability of the product quality. This means that such a system will be able to cool
vintage at a lower inlet temperature (decreasing of the cooling power of the system).

Figure 56. Evolution of design variables along the Pareto frontier

Observation variables and their interpretation into desirability scores are presented on figure
57. The desirability scale is on the right axis. As the achievement of the product quality
objective is highly prioritized (numerical weight of 0.5) in the geometric mean aggregation,
the performance optimization is mainly driven by the output product temperaydyetiGe

final alcoholic strength (R) and the pressure inside the VLP stag@ P Consequently,

these three performance measures get very high desirability levels (higher than 0.95). The
satisfaction of the final alcoholic strength criterion is linked to the evaporative capacity of the
system from the relation (6.3.1.2). The reduction of the variability of the product quality
implies a decrement of the system overall performance. Its evaporative capacity is lower, and
consequently the design solution moves away from the target objective being realized. The
high prioritization of the quality objective also requires an increment of the cooling power of
the system, and therefore, an increase of the dimensions. Thus, the reduction of the
performance variability leads to design solutions which are more transportable. As a
consequence, the energetical consumptions and overall costs are reduced. These results
strongly depend on the weight assignment values used in the aggregation formula. The
evolution of the design objectives indexes with the ggldhre represented on figure 59.
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Figure 57.Evolution of the observation variables and desirability levels along the Pareto frontier

Measurements related to the design sensitivity i, yi) are presented on figure 58. The
desirability scores associateddioandf; have also been representedig already expressed

as a desirability value). According to figure 58c, figure 58f and figure 58i, the variation of the
pressure inside the VLP chamber is not significant and remains acceptable. However, the
dispersions of the output temperature and final alcoholic strength are significant. From the
variability of the inlet flow rates and temperatures, it results a bandwidth of variation of 3.4°C
for the outlet product temperature;) and 2.48% for the final alcoholic strengthy)(
According to the measure {§ appears that the dispersion of these two vhsatemains close

to the nominal value. Finally, the minimum admissible vaj)eskiows that the variability of

the final alcoholic strength can lead to undesirable results, i.e. solutions with a desirability
level lower than 18. The variability of To and Dy, tends to be reduced by design solutions
with a lower level of performances. The design objective indexes related to the design
sensitivity are represented on figure 59.
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Figure 58. Evolution of the design sensitivity measures along the Pareto frontier

According to the robust design problem definition, the sensitivity of the product quality facing
with external uncertainty can be slightly reduced by performing some compromises on the
performance. In particular, the cooling power and the evaporative capacity of the system are
lower. However, the design objectives linked to the transportability, environmental impact
and costs are improved. The purpose of the following section deals with the selection of the
optimal solution in the Pareto set by performing different trade-off strategies.

Figure 59. Evolution of the design objective indexes along the Pareto frontier
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6.6.2 Decision and trade-off strategy

In the following, we discuss the selection of the optimal solutions for the design of the two-
staged flash evaporator the weighted sum aggregation, weighted geometric aggregation and
min aggregation functions are used. The selected solutions are reported in table 14. Figure 60
represents the iso-preference functions (see section 5.2) and the selection of the optimal
solution for the different trade-off strategies

) Weights GDI values Design variables
Aggregation Selected

) : = T )
function solution GDlperto | GDlgens (oé (°CC:|) (I'T%C/Ih) (rggl/h) Npp

Wperfo Wsens NVLP

095 005| #237 | 09234 03790| 70.83 18.88 555 6.94 248 23
0.98 0.02\ #56 \ 0.9239 0.3643 71.81 1866 5.55 6,94 247 |23
099 001| #27 | 09240 03612| 72.06 18.66 555 6.94 247 23

Weighted sum
(s=1)

095 005 #249 | 09234 03796 70.79 1888 555 694 | 248 |23
098 002| #2026 |0.9234 0.3783|70.89 1888 555 6.94 243 23
099 001 #70 | 09239 03649 71.69 18,66 555 694 247 |23

Weighted
product (s=0)

Min (s——o) #250 | 0.9234 03797 7079 18.89 555 694 248 |23

Table 14.Optimal design solutions selected with different trade-off strategies

It is well known that the weighted sum (WS) aggregation suffers from serious drawbacks due
to its inability to detect solutions in the non-convex parts of the Pareto frontier. Here, the
Pareto frontier is non-convex. Consequently, many relevant solutions cannot be selected.
According to figure 60a, it appears that the WS aggregation function results in 50 selected
solutions among 250 (20% of recovery) with a step of discretization tfobe¢he weights.

For each detectable point, there is a couple of weights such as this point can be captured
[Scott 1995]. Thus, designers can filter Pareto frontiers by adjusting weight values according
to their preferences, but many solutions cannot be selected. Assigning the values 0.95, 0.98
and 0.99 to the weight garo, leads successively to select the solutions #237, #56 and #27.
When the value of the weightyw, increases, the performance objective is favoured and the
solutions tend to be less robust. It can be notice that fef90.95, the low sensitivity
optimum (solution #250) is selected.

The weighted geometric mean (WG) aggregation is more effective than the WS
aggregation for the detection of solutions lying in the non-convex parts of the Pareto frontier.
However, the selection of optimal solutions is often hampered by the high sensitivity of the
weights approaching the extremities of the frontier. On figure 60b, it appears that 52 solutions
are selected among 250 (20.8%) with the same discretization step. However, increasing the
discretization step of the weights leads to capture a high number of solutions. Assigning the
values 0.95, 0.98 and 0.99 to the weighdw leads successively to select the solutions #249,
#226 and #70. These solutions are different from the ones captured with the WS aggregation
function.

Finally, figure 60c has been obtained using the non-compensatory strategy. As the
selection is based on the minimum of the GDI values, the low sensitivity optimum (solution
#250) belongs to the selected solution. Feg%0.95, the WS or WG aggregation functions
lead to the same result.
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Figure 60. Selection of the optimal design solution for different trade-off strategies
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6.6.3 Recommendations

From the previous analysis, we derive some recommendations about the robust design of flash
evaporators. First, it appears that the gain in sensitivity compared to the loss of performance is
low. For werte<0.95, only the low sensitivity optimum is selected with the WS or the WG
aggregation function. This traduces an important difference between the two GDI scores and
that the low values of Gldsis compensated by the high value of i Therefore, the
selection of the high performance optimum requires very high values,d@s (alose to one).

As the development of flash evaporators for must concentration applications is mainly
concerned with the quality of the product at the system outlet, the evaporative capacity
criterion must be fulfilled and thus highly prioritized. The weak values of the design
sensitivity objectives are mainly due to the high sensitivity of the final alcoholic strength.
Consequently, in the context of this study, we prove that a system having a high evaporative
capacity is able to increase of the alcoholic strength of 1% avoiding the degradation of the
product quality when the evaporator is moved from an exploitation site to another.

6.7 Conclusion

In this chapter, a methodology for computing robust optimal solutions of flash evaporators for
the wine industry has been presented. The approach tackles the robust design problem as a
trade-off between two main objectives: (1) improve the overall level of performance including
the quality of the vintage, the transportability of the system and the costs of ownership; (2)
reduce the sensitivity of some performances, namely the temperature of the outlet product and
the final alcoholic strength, under epistemic uncertainty. One of the originality of the method
is to consider uncertainties without probabilistic distributions. Three measures to observe the
dispersion of the performances are also suggested. They concern the bandwidth of variation,
the tolerance to nominal and the minimum admissible value. A preference aggregation
method is used to formulate the two design objectives. The design objective of performance is
based on weighted geometric mean aggregations whereas the sensitivity objective involves
min aggregations function. These two aggregation strategies are considered as design
appropriate, and thus, are relevant to reflect the intentions of designers. The Pareto set of the
optimal design solutions is generated by the non-dominated sorting genetic algorithm
NGSAII. Finally, the selection of the best solution according to different trade-off strategies
has been discussed.

From the robust design formulation and criteria definitions, the methodology proves that
the variability of the product quality, in particular the vintage output temperature and final
alcoholic strength, can be reduced by performing some compromises on the other
performance indicators. These two observations variables are crucial for the wine quality and
their variations must be controlled. In this way, the quality product objective has been highly
prioritized. Such a strategy coupled with a geometric mean aggregation leads to small
improvements of the other objectives. Finally, in the last section, the selection of the most
preferred design solutions is modelled by a class of function which is more or less
compensatory. Designer must express trade-offs between the gain in performance and the
reduction of the performance sensitivity. This salient point can be overcome by using
equivalent point method or the trade-off function presented in chapter 5.
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CHAPTER

CHAPTER 7 Conclusions

This thesis is mainly concerned with the development of suitable methodologies and tools to
support designers in machines embodiment design. In this context, investigation of large
design spaces, representation and evaluation of candidate solutions, and a priori formalization
of preferences are topical issues. In order to converge as soon as possible toward the most
preferable design solution, taking robust decisions appears as a topical issue to ensure the best
choices in engineering design. In particular, starting from a selected concept, embodiment
design consists in determining the main dimensioning and monitoring parameters of the
system while meeting the design requirements. The continuity of the design process between
the preliminary and detailed phases strongly depends on the efficiency of the embodiment
design phase in providing embodied solutions with a validated physical behaviour and an
optimized functional structure. Embodiment design problems in engineering are thus
generally oriented toward numerical optimization. Indeed, they consist in investigating a
research space, also defined as design space, to find the best combination of design variable
values, i.e. the solution which optimizes at least one objective function while satisfying a set
of constraints derived from the design requirements.

Fundamental notions and concepts related to formal design theories and methodologies are
introduced by chapter 2. In particular, the FBS ontology proposed by John Gero offers a
suitable framework to link real and expected behaviour in design and thus enables to situate
optimization in engineering design. Some of the topical issues, priors work and future
challenges related to address engineering problems with optimization techniques are also
presented through this chapter. In particular, it highlights that most of these techniques have
not meet yet designer's needs in industry. The development of suitable tools dedicated to
support decision making in embodiment design is thus required to improve the whole design
process of machines.

As design is a human activity, embodiment design problems differentiate themselves from
other kinds of problems by the expression and the formulation of designer's preferences.
Facing multiple criteria, preference assessments can be tackled by determining individual
preference functions, and generating adequate aggregation strategies to form a single global
criterion used as a metric for alternatives evaluation. Chapter 3 introduces the main concepts
and issues related to preference modelling in engineering design. Three different approaches,
namely utility theory, method of imprecision and desirability index, are presented and
discussed according to their ability in modelling preferences in engineering design. The
desirability approach appears as the most relevant to reflect designers’ intentions in
embodiment design. Desirability enables to model preferences related to the true knowledge
of designers about design. It is not concerned neither with risk, nor imprecision, but with the
level of satisfaction resulting from the adequation between the real behaviour of alternatives
and the expected behaviour expressed by designers. In particular, Harrington's desirability
functions appear as relevant functions to interpret properties values and model preference
based on design requirements and designers’ expectation. Due to their exponential form,
Harrington’s desirability functions allow progressive desirability variations approaching the
bounds, and consequently, enable to rank the whole set of solutions, including acceptable and
unacceptable solutions. Moreover this class of desirability functions provides the design
problem with a soft formulation of constraints which reflects better designer’'s behaviour
evaluating design candidates. Individual desirability functions are then aggregated into
desirability index according to the general weighted mean. The concept of desirability index
has been extended here in respect with the definitiodesign appropriateaggregation

©2012 T. Quirante, Bordeaux University. All right reserved. 123
Univ. Bordeaux, I2M (UMR 5295), Departement IMC, Talence, France



124

functions proposed by the Mol. This enables designers to model different trade-off and
compensatory levels between objectives.

From the FBS ontology and the concept of desirability, chapter 4 presents a modelling
methodology for embodiment design problems, based on observation, interpretation and
aggregation models, linking physical behaviour with functional constraints and design
objectives. Such natural and intuitive decomposition enables to model designers’ reasoning
and express its experience and “feeling” about the design. This makes a significant difference
from other methodologies such as the utility theory or Mol. In particular, the definition of
DOls allows a synthesis of the whole design information at different level of the problem
decomposition and acts as filters on the initial set of admissible candidate. The aggregation of
the different desirability scores using design appropriate functions and weights assignments,
allow to apply different trade-off strategies between objectives, and thus, to reflect in the best
ways the designer's preferences. This approach can be applied to robust design problems
through the formulation of two design objectives, namely the improvement of the
performance and the reduction of the performances variability, which must be traded-off.

This methodology aims to provide designers with convenient ways to structure objectives
functions for optimization in embodiment design. The initial multiobjective embodiment
design problem is modelled as a mono objective optimization problem using a priori
articulation of preferences. The choice of an a priori articulation of preferences enables
designers to provide additional information to fully reflect their own preferences and
intentions. Moreover, such an approach generates only relevant portions of the whole set of
solutions and thus avoids additional efforts.

As engineering design problems involve multiple conflicting objectives which must be
traded-off, the determination of design solutions which meet every design objectives in the
best ways in regards to admissible compromises is a topical issue. The design modelling
methodology proposed in this thesis suggests three distinct inputs by which designers can
express their preferences, namely specification of individual desirability functions, weights
assignment and selection of aggregation strategies. Trade-off is mainly concerned with the
selection of weights and suitable trade-off parameter values. Different trade-off specifications
can lead to final solutions with equivalent overall preference levels. Therefore, trade-off
modelling by aggregation functions is a critical part of the preference assessment process. In
particular, designers must be aware of the areas of design points which can be captured using
a particular aggregation strategy. Chapter 5 presents two approaches to manage trade-off in
engineering design. The first methodology proposed by Scott uses equivalent point to
determine consistent trade-off parameter values and weights assignment for preference
aggregation in engineering design. This models compromises evolving with levels of
preference.

Since the trade-off between performances against their variability is specific to robust
design problems, we propose a suitable trade-off function to model designers’ preferences
facing these two objectives. This trade-off function has been designed to provide a suitable
measurement for the relative sensitivity of a choice from a set of alternatives, by quantifying
the improvement or degradation in the compromise between two preferences when one of
them is favoured. It enables to guide the selection between nominal optimality and robustness
according to acceptable compromises. It results in an objective function to be maximized,
involving not only the optimality and sensitivity of the solution, but also the trade-off
expected by the designer.

Finally, chapter 6 shows application of the modelling methodology through the
embodiment design of a whole machine: a two-staged flash evaporator for must concentration
in the wine industry. In particular, it is expected to achieve robust design configurations. The
robust design problem is tackled as a trade-off between the improvement of the overall level
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of performance including the quality of the vintage, the transportability of the system, the
costs of ownership and the reduction of the sensitivity of some performances, namely the
temperature of the outlet product and the final alcoholic strength, under epistemic uncertainty.
An originality of this approach is to consider uncertainties without any probabilistic
distributions. The design objective of performance is based on weighted geometric mean
aggregations whereas the sensitivity objective involves min aggregation steps. These two
aggregation strategies are considered as design appropriate, and thus, reflects accurately the
intentions of the designer. The Pareto set of the optimal design solutions is generated by the
non-dominated sorting genetic algorithm NGSAII. Finally, the selection of the most preferred
solution according to different trade-off strategies has been discussed.

From the robust design formulation and criteria definitions, this modelling methodology
enables to show that the variability of the product quality, in particular the vintage output
temperature and final alcoholic strength, can be reduced by performing some compromises on
the performances. These two observations variables are decisive for the wine quality and their
variations must be controlled. In this way, the quality product objective has been highly
prioritized. Such a strategy coupled with a geometric mean aggregation leads to small
improvements of the other objectives. But, another assignment of weight values may lead to
different system configurations which can be more robust.

During these three past years, | presented most of the research work described in this thesis
through several international journal [Quirante 2012, Quirante 2011a, Sebastian 2010] and
international conferences publications [Quirante 2011b, Quirante 2010]. This enabled to
identify salient points of the developed methodology which required more effort to meet
designers’ needs. As our work tackles various transverse topics including design theory,
knowledge modelling and cognition, or decision-making theory, numerous remarks from all
these fields have been discussed and integrated in the modelling methodology to improve it.

The research work presented here presents fundaments of the methodology that we propose
to model embodiment design problems. It defines and formalizes concept and basis used in
our approach, and therefore, represents solid basis for further developments. Results of this
work are of practical implications and can be used to develop and implement numerical tools
to help designers in embodiment design of machines. The application of the modelling
methodology to the robust design of flash evaporators suggests the achievement of better
design. This work does not pretend to provide miracle solution to solve every engineering
design problems, but instead, it proposes some guidelines and tools to structure embodiment
design problems and support decisions making processes. Due to the desire to remain close to
designers’ activities, the methodology have been successfully applied to some concrete
industrial cases [Collignan 2011b, Girardeau 2012] and extended to meet building
engineering purpose [Valderrama Ulloa 2012].

Short-term prospects concern further studies about the coupling effects between weights,
trade-off strategy parameters and performance variables. In particular, it may be interesting to
derive these parameters from physical or technical relations, and to reach a better
understanding about their implications in the improvement of the design solution. Moreover,
the analysis of the trade-off strategy parameter for the n-dimensional case is also of main
interests. In this thesis, performance and robustness of design solutions are traded-off.
However others global objectives may be relevant for the designer. In [Collignan 2011b], the
level of confidence of a design solution is proposed as a third objective to be balance against
performance and robustness. Broader prospects mainly consist in applying the methodology
developed here to link life cycle analysis with embodiment design. Life cycle analysis derives
impact factors by using aggregation functions which are not design appropriates. Main
challenges aim to developed a global methodology to model the whole design process with
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design appropriate aggregation functions, and thus, remain consistent with the preferences of
designers.
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ANNEXE | Generation of design
appropriate aggregation functions

The family of design appropriate aggregation functions proposed in the scope of the Mol is
derived from the formulation of the general weighted mean. Changes of the trade-off
parameters enables to generate aggregation functions which are more or less compensatory.
However, design-appropriate aggregation functions correspond to the set of weighted means
generated while . This annex presents the generation of some pkti@aggregation
functions, namely: the weighted sum, the weighted product and the min-max aggregation.

|.1 Generation of the weighted sum aggregation function

For the bi-objective case, the general weighted mean formulation is expressed as:

1
Wy L+ W, 1

R(ul,ﬂz:wl,wz)=[ W J sUR (.1.1)
1 2

wheres is the trade-off parameter and eh weightg\g) are such as ww,=1. For s=1, it is
obvious that the resulted aggregation function is the weighted sum (or weighted arithmetic
mean) and:

w, Ly +w, L,

w,+w,

731(/'11'/'12;W1'W2): (1.1.2)

|.2 Generation of the weighted product aggregation function

For the bi-objective case, the weighted product aggregation function corresponds to s=0. For
s=0, the relation (1.1.1) leads to:

1
: W, LG +W, L4 )8
P, i, w,,w.)=lim L B K l.2.1
D (Hhokd W W) SHO( W J (12.1)
The logarithm form of expression (7.2.1=) leads to:
W, [+ W, [
P (1, s W oW ) -Ilm exp = log —+—272 1.2.2
(Mot r{ 9{ ™ H (12.2)
If we define f(s) such as:
+
f(s)=|og(wl'uls WZ,UZ) (1.2.3)
w, +w,

It follows that:



: . f(s)-f(0
lim }Iog W, 4+ W, Ky =lim M:if(s)_o
=08 W, + W, s-0 s-0 ds " ’%
(1.2.4)
_wyIn(g ) +w,In(u,)
w, +w,
Finally, the weighted geometric mean aggregation function is expressed as:
Wlln(yl)+wzln(,uz) wlln(,ul) wzln(,uz) 1
PO(,ulnuz;Wl,W 2) =€ e =e ™™ (g™ :(/lel w;"z)wpwz (|-2-5)

|.3 Generation of the min-max aggregation function

For the bi-objective case, tinein aggregation function corresponds te-sc. For s»—oo, the
relation (1.1.1) leads to:

1

P, (/'11’/12;W1,W2) = |im (Mjs
S w, +w,
: : (1.3.1)
. wW S W s
= lim 1 + V2 s
S— =00 [W1+W2j (ﬂf Wl II'IZJ
Taking t=—s leads to:
1
. _ 1 w, _1)¢
1
— lim [wj
t t
t > +oo Wlﬂl DJZ
1
t t {
= lim {%J .
t - +oo W1/J2+W2 3
0 y7;
= lim —
t t
[NJ A
M w,
If no< pg, then:
1
) w,|
i (i} +Wj] =1 = P (ki Wa W) = (1.3.3)

Conversely, if g< pp, then:
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1
t T
i B W LK : _
& [(ﬂl%wj w P bl W) = 4

Therefore, it follows that:
P (s W, W ) = min( g, 42,)

In the same way, while-s+o, the relation (1.3.1) leads to:

| - w, ()
’ ) ) :l 1+ 2 2
P st = ML W, [MU

n

If o< g, then:

[

. W °
S|Lr11m Ll+ﬁ£%f}] =1 = Pl-oc(lLtl’/'IZ;Wl’WZ):ﬂl

Conversely, if g< py, then:

[

- w, () [ _u | _
lim |1+—2| 22 =2 P My W, W, ) =
L M[MN 0 (41 W, W) = 11,

Therefore, it follows that:

Pro (1ol W1, W ) = maX{ 1y 11,

(1.3.4)

(1.3.5)

(1.3.6)

(1.3.7)

(1.3.8)

(1.3.9)
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ANNEXE |l Pareto optimality and
desirability index

In [Steuer 1999], the property of Pareto optimality is introduced using the concept of
domination. For maximization problem, a vector of observation variabtfs,...,w]" is
defined as Pareto optimal if there is no other vegtowhich dominates/. The vectory’
dominates the vector if y;*>y; with j=1,....k and y>y; for i0){1,...,k}. Therefore, a Pareto
optimal solution cannot be improved without a degradation of one the criterion. As
observation variables are computed from a set of design variables sg(@f, @sy is Pareto
optimal in the observation space, therixs,....x]" is Pareto optimal is the design space. In
this annexe, the Pareto optimality criterion resulting from the maximization of the desirability
index is analysed and discussed.

II.1 Pareto optimality criterion for desirability index resulting from
the weighted geometric mean aggregation

Consider a design problem characterised by k observation varigdles...,w]" resulting

from n design variablex=[xs,....x]" and interpreted through k desirability functions d
(i=1,...,k). Suppose that the optimal soluti®®'=[ x;°",...%°"]" has been determined by
maximizing the desirability index DI defined by:

k

DI=[](d)" withd=d(yIx)0[0d.wo[a} (1.1.1)

1=1

Consider now that the solutiox?™ is not Pareto optimal. This means that there exists a
solution x which dominates%®". It follows that:

{dtgytlx*g>dtéyt|x°ptg for tO{1....k}

d(y; Ix')zd(y, [x¥) for j=1..k;j#t

dy(y, %)™ = dy(y, Ix™)"

=4d, (yt |X )W‘ >d, (yt |Xopt)wt (1.1.2)

d, (yk |X )Wk >d, (yk |x°‘“)Wk

=X )" > [ )’

= DI’ >DI*



This result is in contradiction with the assumption %8t maximizes the DI. Therefore®™
must be Pareto optimal. To conclude, the maximization of the DI computed by the weighted
geometric mean aggregation leads to Pareto optimal solutions.

II.2 Pareto optimality criterion for desirability index resulting from
the min aggregation

Consider a design problem characterised by k observation varigdles...,w]" resulting
from n design variables=[xs,....x]" and interpreted through k desirability functions d
(i=1,...,.k). Suppose that the optimal soluti®®=[ x:°",...x°"]" has been determined by
maximizing the desirability index DI expressed as:

DI :Igurl{d,} with d =d, (y |x) (11.2.1)
The desirability value D' related to the optimal solution i§%is such as:
D|%" = d, (yp |X0pt) = |=r1mr11{ d (yi |x0pt)} ’ pD{ 1..., @ (1.2.2)

Consider now that the solutiox?™ is not Pareto optimal. This means that there exists a
solution x which dominates%". It follows that:

{dtéyt|x*g>dt§yt |x°ptg for tOf1...,K

d(y IX)=d(y [x®) for j=1..k;j#t (11.2.3)

Accgrding to the values ofpcgnd d, three cases can be identifieg=d| dy#d; and (y[x°")#
(Yolx), d#ck and (yx**)=(yplx ).

Case 1:gF0;
From relations (7.2.2) and (7.2.3), it follows that:

dp(yp|x*)>dp(yp|x°pt) for pO{1...,K
di(y, 1)z d(y, Ix®) for j=L..k:j#p

:imiﬂ{d(yi ) >i4”,.1.i.?{ d(y k) (1.2.4)
= DI’ >DI™

This result is in contradiction with the assumption tf8t maximizes the DI. Therefore, for
dp=ai, x°* must be Pareto optimal.
Case 20, and (yx*)#(yplx)

In this case, the Pareto optimality criterion depends on the monotonicity of the desirability
function g, If the function g is strictly monotonic, it follows from relation (11.2.3) that:

(v, 1X ) # (o 1) = dy (y, X ) > d, (v, 1x™)
= Db Of

This result is in contradiction with the assumption tkf&t maximizes the DI and thug™
must be Pareto optimal. For non-strictly monotonic functions, such as Derringer’s desirability
functions (see section 3.4.2), the situatiogsldand ¢g=0 may append. In particular, fos=.,

(11.2.5)
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the situationdy(y:x**)=dy(yp[x°*) may arise and lead to non Pareto optimal solutions. Non-
monotonic desirability functions are thus non suitable for preference modelling in engineering
design. This partly explains why Harrington’s desirability functions are preferred to
Derringer’s desirability functions.

Case 3r#d: and (¥X)=(ypX)

Using the relation (11.2.3), it comes:

(vo 1% ) =(yo ™) = d, (v, 1X ) =, (v, 1x™)
= DE Of

Therefore, the assumption thef® maximizes the DI is true, and thus, the solutidti is
Pareto optimal.

(11.2.6)

To conclude, the computation of the DI by tmén aggregation function may lead to non
Pareto optimal solutions. Designers have to be aware of this non-Pareto optimality when they
select the min aggregation strategy. This can be seen as a disadvantage for problems in which
the Pareto optimality criterion is required.

II.3 Pareto optimality criterion for desirability index resulting from
the general weighted mean aggregation

Consider a design problem characterised by k observation varigdles...,w]" resulting
from n design variables=[xs,....]" and interpreted through k desirability functions d
(i=1,....k). Suppose that the optimal soluti®®=[ x;°",...x°"]" has been determined by
maximizing the desirability index DI defined by:

DI:(ZWi @?Jm with d =d (y |x)0[0d,wO[a] anog W= (1.3.1)

Consider now that the solutiox®™ is not Pareto optimal. This means that there exists a
solution x which dominates%". It follows that:

d.(y, X )>d/(y, [x*?) for tO{1...,K 132
d(y, IX)=d(y, [x™) for j=1..k;jzt (1-3.2)

The Pareto optimality criterion must be analysis according to the values of the trade-off
strategy parameter s. For s=0, the aggregation function is the weighted geometric mean and in
this case, the Pareto optimality criterion has been disused in section Il.1. For s>0, the relation
(11.3.2) leads to:



w, 0 (y, X ) = w, 8 (y, [x*)

w, [d, (yt |X )s >w, [d (yt |x°'“’t)S

w, @, (y, [X) 2w, @ (y, [x*)

:{iji | (yi |x*)sjﬂs>(|jwi [d (yi |X0pt)SJ

= DI" >DI*
This result is in contradiction with the assumption tf8t maximizes the DI. Therefore, for
s>0, X*' must be Pareto optimal. For s<0, the relation (11.3.2) leads to:

s

(11.3.3)

w, I (y, X ) < w, 8 (y, [x*)
w, [d, (yt |X )s <w, [d, (yt |x°pt)s

w, [ (v, [X) < w, 08, (y, [x*®)

:{iji | (yi |x*)sjﬂs>(|jwi [d (yi |X0pt)SJ

= DI" >DI*
This result is also in contradiction with the assumption xffamaximizes the DI. Therefore,
for s<0,x° must be Pareto optimal. To conclude, the maximization of the DI computed by

the general weighted mean aggregation, leads to Pareto optimal solutions.

1s

(11.3.4)
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ANNEXE Il Design model of two-staged
flash evaporators

Transfer, dimensional, environmental and economical models contributing to the design
model of the flash evaporation process are briefly described in the following, but the reader
could refer to Annexe 3 and to the publications [Bouchama 2003b, Ho Kon Tiat 2008b] for
further explanations.

1.1 Heat and mass transfer model

The physical model is mainly based on heat and mass transfer balances inside the evaporation
chambers and condensers. This is an equilibrium model since, even with the flash
phenomenon, the steam is close to saturation state in the entire system and the working fluid
Is cooled at this saturation temperature. The mass flow rate of the steam generated in the
evaporation chambers is derived from this equilibrium hypothesis. It is calculated from the
following equation, where subscripts i and o refer to the inlet and outlet of the stage being
considered:

— qpi [Ocppl D-I;)i - CQ)O D-Csat)
vapor Ah

evap

(I1.1.1)

The outlet temperature of the product is also equal to the steam saturation temperature.
Therefore, this outlet temperature transferred through the flash evaporator is the saturation
temperature of the vapour inside the low-pressure evaporation chamber:

Too = Tisaup (111.1.2)

The cooling power of the flash evaporator is derived from:
Pcool = qpi |:Cppi |:lTpi - qpo |:lcppo |:lTpo (|“13)

The evaluation of this mass flow rate is used to estimate the mass flow rates of the
condensates flowing out of the condensers. Indeed, the condensate mass flow rate depends
directly on the inlet and outlet steam mass flow rates in the condenser. The outlet mass flow
rate of steam flows towards the air ejector coupled with the vacuum pump and due to this
configuration, the steam outlet mass flow rate is roughly constant. Consequently, the
condensate mass flow rate can be expressed as a function of the steam mass flow rate, as
shown in equation (lll.1.4), where a and b are equal to 0.7163 and 0.0027 respectively for the
high pressure stage condenser, and 0.8025 and -0.0025 for the low pressure stage one. From
experimental measurements, it has been observed that the coefficients of determination
corresponding to these parameters are 91% for the high pressure and 67% for the low pressure
condenser:

O = @LD, + b (11.1.4)

The mass flow rates of the condensates are used to calculate the steam side heat transfer
coefficient, given by equation (111.1.5), based on Nusselt’'s theory. The adaptation coefficient



A has been derived from experimental measurements and is equal to 0.58 for the high
pressure condenser and 0.45 for the low pressure condenser.

2 -1/3
h,, = A00.0230RE; OPLZ) A .. cdst J (11.1.5)
‘ [G ! ‘ ) ‘ pcdst[qp cdst p v) @

In the same way, the coolant side heat transfer coefficient is calculated using equation 6.2.2.6
derived from supplier data. In this equation, the adaptation parameter B is equal to 0.031 and
0.034 for the high pressure condenser and low pressure condensers respectively.

h, =BG, [Cp, ORE*OPF*"? (11.1.6)

The global heat transfer coefficient is then estimated using equation (Ill.1.7), considering that
the thermal resistance of the wall, with a thickness of about 1.5mm, is negligible compared to
the two other coefficients.

K = e g (1.1.7)
hcd + hcI

Bouchama [Bouchama 2003a] has shown that the physical behaviour of the condensers can be
modelled using a NTU-Efficiency model, by considering the energy balance of a volumetric
cell of condensers and heat transfer laws. This model is based on the hypothesis of laminar
flow of the condensates, saturation of the steam, adiabatic heat exchange between the coolant
and the steam, incomplete condensation inside the condenser (no sub-cooling) and immaterial
pressure losses inside of the condensers. Thus, the global heat transfer coefficient has been
introduced in equation (l111.1.8)to calculate the Number of Transfer Units, and then evaluate
the heat efficiency of the condensation through the following equation:

NTU :—["C P (11.1.8)
qcl pcl

In this relation, the exchange surface of the plate-type condensers has been divided into N
plates, each with an exchange surface gf Phe thermal efficiency of the condensers is
derived from:

ge=1-e"™" (11.1.9)

Finally, the outlet temperature of the working fluid is calculated using the definition equation
of the thermal efficiency:
T _-I— - Tclo +(8—1) Ijrcli

po — 'wvsat
€

(I11.1.10)

The outlet temperature of the coolant liquig, s calculated through an energy balance
inside the condensers, considering an adiabatic heat exchange between the coolant and the
steam/condensate flow:

q, [Ah

Too =T +% (11.1.11)
qcl pcl

The assumption of adiabatic heat exchange has been experimentally verified by a comparison
between the vapour side and coolant side thermal powers. The pressures inside the
evaporation stages are then calculated using the correlation of Clapeyron linking pressure and
saturation temperature.

148



M, [Ah,
P = Plexp| ——=2 t 1 (11.1.12)
R Tv.sati Tvo

The design model of the flash evaporation process has been developed around this physical
model, so that the global definition of the system can be adapted to the operative parameters.
Dimensional, economical and environmental models complete the heat and mass transfer
model.

[Il.2 Dimensional model

The dimensional model is used to compute the overall dimensions and mass of the system.
This model is also related to the definition of the main characteristics of some components,
which is equivalent to their dimensioning. The size and the mass of the evaporator are mainly
calculated according to the buffer tank, evaporation chambers and condensers dimensions,
which are the biggest and heaviest components of the system.

The volume of the buffer tank is calculated from the mass flow rate of the product and the
filling time of the tank:

_ty m]p

Vchbbuf - p (|“21)
p

Since this tank is supposed to be cylindrical in shape, the height and diameter are calculated
by fixing one of these two parameters and calculating the other from the volume of a cylinder.
The thickness of the buffer tank is estimated using the relation given by the European
directives concerning pressure equipment (CODAP). In order to limit calorific energy losses
and ensure staff safety, the buffer tank is insulated. The thickness of the insulation layer is
calculated from a heat transfer balance between the product and the surrounding air. The
insulation layer is covered with a thin external layer of aluminium. The buffer tank is also
equipped with a mixer to ensure uniform temperature throughout the product. The mass of
each of these elements is considered in the mass model of the buffer tank.

The dimensions of the high and low pressure evaporation chambers are determined by
considering the droplet carry-over phenomenon inside the chambers due to the flow of steam.
Most of the droplets are generated by the sudden expansion of the liquid phase at the inlet of
the chambers. The minimal diameter of the droplets is assessed assuming thermodynamic
equilibrium between the liquid and vapour phases at the surface of the liquid inside the
chambers. Minimizing droplet diameter is the most unfavourable case regarding the system
dimensioning. Since the droplet generation phenomenon is extremely complex and difficult to
understand, we use this minimal diameter to compute the evaporation chamber diameters and
design the mist eliminator. Therefore, the droplet diameter is derived from the surface tension
of the product and the pressure gradient between the saturation pressure of the product
entering the chamber and the vapour inside the chamber:

d = 4'03 11.2.2
P (T,)= Pa(T) (-2.2)

Most of the droplets must fall to the bottom of the chambers to be extracted with the liquid
phase. Therefore, the diameter of the chambers is calculated by considering the application of
Newton’s second law to the equilibrium between the Earth’s gravity, buoyancy and friction
force applied to a droplet. This gives the following equation, taking into account the




properties of the vapour carrying the droplets out of the chamber and the gravity moving the
droplets down to the bottom of the chamber:

_ 7200, [y,
Aoy = . 11.2.3
\/g m)v |jh[l]jdr |:qpv_pp) ( )

The thicknesses of the chambers are calculated using the European directives for the
construction of pressure apparatus. The volumes and masses of the evaporation chambers are
derived from these thicknesses and diameters. Finally, the dimensions of the float separating
the evaporation stages are determined from the balance between the forces applied to this
component. These forces result from the pressure difference between the two evaporation
stages, buoyancy forces due to the accumulation of cooled product in the bottom of the high
pressure stage and its weight.

The masses of piping, condensers and holding structure are assessed from manufacturers’
data. The mass of the entire system is then determined from the masses of all the parts,
including the pumps, valves and sensors for which masses are provided by suppliers.

Defining the main characteristics of some of the components is equivalent to a
dimensioning process. These components are purchased and their dimensions directly derive
from some of their characteristics, such as the power and flow rate of a pump. As an
illustration, the vacuum pump electrical power is calculated from the downstream to upstream
pressure gradient (close to 1bar), volume flow rate and efficiency:

,P — viacp [q Pf PI) (|||24)

vacp

n vacp

The volume flow rate is assessed from the volume of the system (flash evaporator), initial and
final concentration of air inside this volume and expected discharge time, which is 10
minutes:

QV — Vsys qu - Wai )

= , W, =0.98, = 0.01, = 600 [.2.5
e tvac |]/vai []Naf Dh (1_ Wai) N \Mf \IHC ( )

1.3 Environmental model

Facing with the emergence of environmental constraints in the agricultural field, the
environmental impact of the flash evaporation process must be also considered as a design
objective. Two main trends have emerged from studies on the environmental impact of
systems. Those centred on post-evaluation of emissions in order to highlight solutions for
improving the environmental efficiency of systems a posteriori and those oriented towards
knowledge management for eco-design. Several aspects are considered through eco-design
analysis [Sweatman 1996]:

= Optimization of energy efficiency and reduction of impacts,

=  Optimization of production techniques,

= Selection of materials with lower impacts,

* Reduction of the amount of material used,

= Optimization of the system packaging, transportation and distribution,
= Optimization of the life cycle,

= Optimization of the end-of-life and recycling phases.

Since the environmental impact of the flash evaporation process is mainly due to its high
consumption of energy, materials and fluids, the main aspects of eco-design considered in this
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study are concerned with the optimization of energy efficiency, reduction of impacts during
the system functioning, optimization of production techniques and reduction of the amount of
material used.

In this study, the material consumption of the system is mainly based on the amount of
materials used for manufacturing the tank, that is to say, steel sheets for the shell and
Rockwool for the insulation of the buffer tank. Since the dimensions of the tank are related to
the operating conditions, material consumption modelling is also adapted to the evolution of
those operating conditions. Based on the Ecolndicator99 methodology [Goedkoop 2000], the
relative impact corresponding to one ton of steel is quantified and the related damages
coefficients (environment, human health, resources) are derived.
El =(a,+ a,+ a) OM,

material —

1.3.1
a, =19 (environment), = 13233 (human health)= 2 3 (ressource ( )

This score characterizes the environmental impact on resources, fuels and minerals of the
manufacturing process and material recycling. Similarly, we evaluate the damages
coefficients associated to the consumptions of 10kWh and 1m3 of water. Finally, a global
score El is derived from the impacts of material, energy and water consumptions.

EI = Elmaterial+ EI elec+ EI
with,
Elelec = (b1+ b2+ b3) |:Celec'

Elyer = (C1+ €+ C)) [T

water —

water

b= 0145 p= 00139, .00271 (111.3.2)

c= 00187,c= .000204,% . 000

water?

The energy consumption calculation is based on the power required to supply the different

pumps, mixer and fan. The water consumption corresponds to the volume of water used by
the cooling tower to cool the water at the outlet of the LP condenser. The mass flow rate of

coolant required for the high pressure condenser is higher than the low pressure one.

Nevertheless, the required coolant inlet temperature is higher in the high pressure condenser
than in the low pressure one, so the system is structured so that the heated outlet coolant flow
of the low pressure condenser is sent to the inlet of the high pressure condenser where
additional fresh coolant is added to reach the required flow rate of the LP condenser:

C = Qe * Goronp (11.3.3)

Mechanical draft cooling towers consume water in three major ways [Leeper 1981].
Evaporation rate (€ is approximately 1% of the water flow rate@er each 10°F<6.5°C)

of the cooling range. Drift (§) is approximately 0.2% of the water flow rate, and refers to the
water which leaves the cooling tower carried out with the exiting air. In order to prevent
concentration of solid and chemical particles in the cooling water resulting from the
evaporation, blowdown (£} is the volume of water removed from the system and replaced by
fresh water. It is usually 20% of the evaporation rate.
C —(Poweg;ixe,+ Powef, + > Pow,ggps)Dog

elec

Cyaer = (Ce+ Cp+ Cy) [t

water

(11.3.4)

The electrical consumption and water consumption are respectively expressed in kWh and
m3/h. They are estimated over a perigg) @f 20 years with an average operating time of 10
hours a day during 2 months (duration of the harvest period).



1.4 Economical model

The development of flash détente processes in the wine area is also hampered by the initial
cost of investment. The economical analysis of the flash evaporator aims at modelling
manufacturing costs (material purchase and forming) of tanks, and purchasing costs of other
parts of the flash evaporation system (condensers, pumps, etc.). The global purchasing cost of
the system is calculated by adding these manufacturing and purchasing costs for each part of
the system.

Manufacturing costs of the buffer tank, evaporation chambers and purchasing costs of the
condensers, piping and mist eliminator have been estimated from mass calculation and
updated prices given by manufacturers. The purchasing cost of the system is calculated by
adding together these manufacturing and purchasing costs for each part of the system. This
total is then multiplied by the Lang factor ¢ Ltaking into account installation costs,
transportation costs and various costs such as insurance [Rehfeldt 1997]. The resulting cost is
the investment cost of the process:

Einv = £f [qachb +Epumps+a cnd+E diver) Wlth Lf =31 (l“.4.1)
and,

Cenb = CchbHP + CcthP+ C chbbuf™ C

Coum=C,, +C, . +C . FC

vacp extp cdstp tankp (I 1.4 2)
Ccnd = CcndHP+CcndLP

Civ =C...+C. . +C

mist tubes struct

floa

Some of these costs are related to components (pumps, condensers and mist eliminator)
purchased and installed in the system without any modification, whereas other components
must be dimensioned and manufactured from basic materials (sheets, tubes, linking elements).
Costs of purchased components are calculated from some of their overall characteristics. For
instance, high and low condensers are thermal exchangers (plate condensers) whose costs are
assessed from their exchange surface area. Thus:

Cong (A)= 37890A%467 (n.4.3)

In the same way, the main overall dimension taken into account in calculating the cost of a
mist eliminator is its vapour inlet section. The cost of waved strip droplet separators is derived
from:

Crist (S) = 34480872 (111.4.4)

The main overall characteristic that is relevant for assessing the purchase costs of the pumps
is their electric power. The purchase cost of the liquid ring vacuum pump, for instance, is
calculated from:

Coaep (P )= 57790P + 228 (1.4.5)

Other purchased components such as the tubes connecting the tank, chambers and pumps of
the flash evaporator are computed from their mass. The cost of steel tubes is estimated
through:

Cube (M )= 4.95210M +0.248: (111.4.6)

Some other components are more specific to the evaporator flash and must be dimensioned
and design for this particular application. Therefore, we use models of material and
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manufacturing costs. For instance, the buffer tank is made of a rolled steel sheet, a layer of
Rockwool and a thin layer of aluminium. The costs of the metals are derived from their mass:

Coeet(M )= 4.7450M+4.7715, Cae.( M) = 20.09 N°*°% (11.4.7)

sheet
whereas the cost of the Rockwool layer is derived from its thickness (e) and its surface (S),

¢ e,S) =(30.440e+8.8)0 (111.4.8)

rockwool(

From the investment cost of the system, we derive the maintenance cost which is assessed as
2.5% of the investment cost, and the total discounting cost of the system which is estimated
from the coefficient of discounting evaluated over a period of twenty years:

Emaint = O-OZE]E’inV

Edisc:(a"' 0.023@"“, , o 1 = E 2 (|||48)
(1+7)
The overall operating cosic(,) over this period is derived from the electricity and water

consumption costs calculated according to the peak charges applied by EDF (0.1275€/kWh)
and the average price of water distributed in France (3.3981r2011.

Finally, the overall cost of ownershifCga) is calculated by adding the overall costs of
discounting and the operating cost of the system:

Etot = Einv + Eop (|”49)



