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Abstract 

In order to converge as soon as possible toward the most preferable design solution, taking 
robust decisions appears as a topical issue to ensure the best choices in engineering design. In 
particular, started from a selected concept, embodiment design consists in determining the 
main dimensioning and monitoring parameters of the system while meeting the design 
requirements. The continuity of the design process between the preliminary and detailed 
phases strongly depends on the efficiency of the embodiment design phase in providing 
embodied solutions with a validated physical behaviour and an optimized functional structure. 
Embodiment design problems are thus generally turned toward numerical optimization. This 
requires an accurate modelling of embodiment design problems, and in particular, 
investigation of large design spaces, representation and evaluation of candidate solutions and 
a priori formalization of preferences are topical issues. 

Research works presented in this thesis deal with the development of methodologies and 
tools to support decision making during embodiment design of industrial systems and 
machines. In particular, it aims to provide designers with a convenient way to structure 
objectives functions for optimization in embodiment design. This approach consists in linking 
the physical behaviour of the system to be designed, with the design criteria and objectives 
through the modelling of designer’s preferences according to observation, interpretation and 
aggregation steps. Based on the concept of desirability, this modelling procedure is used to 
formulate design objectives and to quantify the overall level of satisfaction achieved by 
candidate solutions. In the scope of robust design, this method is applied first to formulate 
design objectives related to performances, and then, to formulate design objectives related to 
the sensitivity of performances. Robust design problems are thus tackled as a trade-off 
between these two design objectives. Measurement methods for performance dispersion and 
original trade-off function specific to robust design are proposed.  

Finally, an application of the modelling methodology through the embodiment design of a 
two-staged flash evaporator for must concentration in the wine industry is presented. 
Objective is to find robust design solutions, i.e. configurations with simultaneously a 
desirable level of performance, including the quality of the vintage, the transportability of the 
system and the costs of ownership, and a low sensitivity of some performances, namely the 
temperature of the outlet product and the final alcoholic strength. 
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Résumé  

Afin de déterminer le plus tôt possible dans le processus de conception, les solutions les plus 
pertinentes, la prise de décisions robuste apparait comme fondamentale pour garantir les 
meilleurs choix. A partir de solutions conceptuelles, l’étape de conception architecturale, dite 
de pré-dimensionnement, vise à déterminer les principales grandeurs dimensionnantes et 
pilotantes du système à concevoir, tout en satisfaisant l’ensemble des exigences du cahier des 
charges. La continuité du processus de conception entre les phases préliminaires et détaillées 
dépend alors de l’efficacité de la phase de conception architecturale à fournir des solutions 
avec un comportement physique validé et une architecture fonctionnelle optimisée. Les 
activités de pré-dimensionnement sont donc fortement tournées vers l’optimisation 
numérique. L’utilisation de ces techniques requiert une modélisation précise du problème de 
conception architecturale. En particulier, l’exploration de vastes espaces de conception, la 
représentation et l’évaluation de solutions candidates, ainsi que la formulation a priori des 
préférences sont des enjeux majeurs. 

Les travaux de recherche présentés dans cette thèse concernent le développement de 
méthodologies et la proposition d’outils pour l’aide à la décision en conception architecturale 
des produits et des machines. Plus précisément, l’ensemble de ces travaux vise à fournir aux 
concepteurs une démarche adaptée pour structurer et formuler des fonctions objectifs lorsque 
l’activité de conception est abordée par l’optimisation. Notre approche consiste à relier par la 
modélisation de préférences, le comportement physique du système à concevoir avec les 
critères et les objectifs de conception, selon des étapes d’observation, d’interprétation et 
d’agrégation. A partir du concept de désirabilité, cette méthode de modélisation est utilisée 
pour formuler les objectifs de conceptions et pour quantifier le niveau de satisfaction global 
atteint par les solutions candidates. Cette approche est utilisée pour aborder les problèmes de 
conception robuste où les objectifs de performance et de sensibilité sont mis en balance. Dans 
cette perspective, des mesures de dispersion des performances, ainsi qu’une fonction de 
compromis spécifique au problème de conception robuste en ingénierie, sont proposés. 

Enfin, l’application de ces méthodes et outils est illustrée au travers du pré-
dimensionnement d’un évaporateur flash bi-étagé, utilisé pour le traitement des moûts dans 
l’industrie viticole. L’objectif est alors de trouver des solutions de conception robustes, c'est-
à-dire, des architectures présentant à la fois un niveau de performance globale satisfaisant, 
incluant la qualité du produit, la transportabilité de la machine ou les coûts, et une faible 
sensibilités de la température de sortie du produit, ainsi que de son titre alcoolémique. 

Mots clés 

Conception architectural, Conception Robuste, Désirabilité, Modélisation des Préférences, 
Optimisation, Aide à la décision 
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CHAPTER 

CHAPTER 1 Introduction 

Un problème sans solution est un problème mal posé. 

Albert Einstein, Conscience 

1.1 Context 

1.1.1 Introduction to engineering design 

Design is a fundamental human and goal-directed activity. Whatever the field of endeavour, 
design is directed toward the fulfilment of human needs. All design activities involve 
creativity (the generation of alternative solutions) and decision (selection among those 
alternatives). Although it is difficult to give an exhaustive definition, engineering design can 
be considered as an applied science, using various techniques and scientific principles to 
determine relevant solutions, and define systems in sufficient detail for their physical 
realization. 

Engineering design differs from other fields of design by the intensive use of techniques 
and scientific principles, calculation and mathematical analysis. During preliminary design 
stages, there is generation, analysis, refinement of alternatives, and finally, decision among a 
set of candidate solutions. Although the generation of concepts and alternatives may remain 
informal, the intensive use of modelling and calculation formalizes their evaluation. It follows 
that decision making can be potentially be made formal as well.  

Moreover, engineering design also differs from natural sciences as the resulting solution is 
a compromise satisfying in unequal way the design requirements. Actually, the development 
of real products or processes rarely involves one objective, but several conflicting objectives 
which must be traded-off. For example, costs are often traded-off against system effectiveness 
in system engineering, since highly effective systems are often expensive. Actually, trade 
studies and negotiations are intrinsic to the design process, involving judgment, perception, 
and finally, decision. 

 
Figure 1. Illustration of the design process 

Engineering design as a process can be defined as the transformation of the information from 
demands, requirements and constraints (functions) into a description of a technical system and 
a set of instructions for its manufacturing. However, this sequential view of design is not 
applicable in real life. In fact, designing as a process is iterative. No design problem is simple 
enough to fit with the mental limitations of short-term human memory. The final design 
solution which will be manufactured and put on the market is most often an alternative which 
was not considered at the beginning of the process. 
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A classical view of design processes consists in an iterative sequence of steps aiming at 
clarifying the design tasks, conceptualizing, embodying and detailing solutions. This 
arrangement is represented on figure 1. The clarification of tasks leads to design specification 
and requirements. Conceptual design produces abstract models of the system to be designed, 
for the generation of framework and outlines. From conceptual solutions, embodiment design 
aims to provide preliminary and/or dimensional layouts, components configurations and 
parameterization of the system. Although there are still disagreements, it can be considered 
that both conceptual and embodiment stages are involved within the scope of preliminary 
design activities. The final stage of detailing consists in performing advanced simulations and 
calculations to provide complete manufacturing information. 

The scope of this thesis concerns computer aided design for embodying activities. In 
particular, we are interested in supporting embodiment design stages of industrial products 
and machines. 

1.1.2 Embodiment design of industrial products 

Early stages of design processes are inherently imprecise and are of major economic 
importance. Preliminary decisions which are often informal and based on imprecise 
information, can impact up to 70% of the life-cycle costs [Berliner 1987]. Consequently, 
supporting decision making during preliminary design activities is of main interest to 
converge as soon as possible toward the most preferred design solutions. In particular, from a 
selected concept, embodiment design aims at determining the main dimensioning and 
monitoring parameters of the system in respect with design requirements. While conceptual 
design aims to discriminate concepts, the purpose of embodiment design consists in the 
discrimination of physical quantities. Therefore, the continuity of design processes between 
preliminary and detailed phases mainly depends on the ability of embodiment design phases 
to provide embodied solutions with validated physical behaviours and optimized functional 
structures. 

From a practical point of view, the existence of embodying steps mainly depends on the 
type of products to be designed. In general, the design of consumer products or “low-tech” 
items involves minimal science and knowledge, and low development costs. Consequently, 
embodiment design is not necessary and conceptual solutions can be directly provided with 
dimensional layouts. However, the design of industrial products and machines which can 
perform complex functions, such as gas turbine engines for aircraft propulsion, implies 
important development costs and risks tend to be critical. Design problems related to these 
systems are often complex, multidisciplinary and multiobjective. Requirements include 
extreme demands for improvement of performances, reliability and robustness, ease and 
flexibility of manufacturing for different production processes. Thus, the phases of generating 
preliminary design proposals for cost and performance estimating are extensive, and need 
substantial time and financial expenditures. A careful analysis of requirements by every 
expert involved in the whole system development is also required to adjust the design 
specification to the customer's specific needs. Due to progressive increase in the amount of 
knowledge for the design of systems, changes often occur during designing and 
manufacturing machinery. 

Therefore, the generation of embodied solutions of industrial systems enables to compute 
first estimates of performances and feasibility. This guides designers toward relevant design 
alternatives during initial stages of the design process. The integration of complex physical 
behaviours and objectives in embodiment design improves the efficiency of the whole design 
process by reducing the number of iterations between preliminary and detailed phases. 
Embodiment design also limits the intensive use of time consuming computational tools such 
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as CAD or CAE systems. Simulation models involved at this stage of the process are often 
predictive, parsimonious, but precise enough to carry out the decision-making process. 

1.2 Challenges in embodiment design 

Embodiment design problems mainly differ from other kinds of design problems by the 
inherent uncertainty and imprecision related to the prior lack of knowledge about the system 
to be designed. Consequently, the determination of relevant embodied design solutions cannot 
rely only on objective knowledge derived from physical or technical laws. Designing is a 
human activity and embodiment problems necessary require subjective knowledge related to 
designer’s preferences and judgement. At this stage of the design process, most of dimensions 
and component arrangements remain unknown. In many cases, the main dimensioning and 
monitoring parameters are determined a priori according to designers’ past experience and 
through “trial and error” approaches. This provides embodiment design problems with many 
degrees of liberty which tends to complicate the search for optimal embodied solutions. 

In particular, embodiment design problems involve high numbers of design variables, each 
one being related to a range of acceptable values. Therefore, designers have to deal with vast 
design spaces within which the most preferred solution must be identified. These variables are 
related to physical units (dimensions, temperature, pressure, etc.), types of materials, 
alternatives of standard components, but they can also be linked to enumeration or logic 
values (number of rivets on planes’ wings or the presence of air jet impact on warm parts of 
turbomachinery). Consequently, they can be continuous (interval) and discrete variables (list, 
table or constructor data). As combinations of design variable values results in different 
design solutions, the combinatory possibilities are almost limitless, making thus difficult any 
exhaustive evaluation of the design space. 

 
Figure 2. Challenges in engineering design 

Evaluation and comparison of design solutions are based on estimates of their ability to 
satisfy every design requirements. Requirements are based on physical, manufacturing, 
economical or environmental considerations and are expressed as criteria or objectives. 
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Design criteria are constraints which are related to performances (satisfaction levels), and thus 
define feasible domains within the design search space. However, the interpretation of design 
criteria in the strict mathematical way does not make sense in embodiment design. In such 
imprecise context, designers can consider as relevant solutions which slightly violate some 
criteria. Therefore, it is of main interests to be able to rank not only desirable solutions, but 
also weak satisfactory candidates. 

Moreover, embodiment design problems are also characterized by the presence of decision 
phases involving trade studies between the satisfactions of objectives. Whereas constraints are 
functional or technical requirements that the system must satisfy, design objectives are 
specific tasks or goals that the system should meet. Due to antagonist phenomena and 
coupling effects between variables, these objectives are conflicting and must be traded-off. 
For example, trades-off between effectiveness and costs are often expected in most industrial 
problems.  

The research works presented in this thesis fall within the scope of methodologies in 
design engineering aiming at modelling design activities in a formal way to be processed by 
artificial intelligence systems. In this way, embodiment design problems are turned toward 
numerical optimization. They consist in investigating a design space to determine the best 
combination of design variables values, i.e. the solution which simultaneously optimizes 
every objective and satisfies the set of design criteria. The automation of such a process by 
optimization techniques requires an accurate modelling of design problems with all their 
specificities. This is represented on figure 2. The main challenges in modelling such kind of 
problems deal with: 

� How to represent the set of all feasible design solutions? 
� How to manage and investigate large design spaces? 
� How to generate candidates based on that representation? 
� How to evaluate the quality of each candidate? 
� How to guide the search for better solutions? 

The representation and evaluation of candidate solutions are salient points of this thesis. Due 
to conflicting objectives, a unique optimal solution is rarely met, but instead, the designer has 
to cope with a set of equivalent solutions. While the visualization of design solutions has been 
widely studied in decision-making for problems involving two or three objectives, since 2-D 
and 3-D graphical means can be used to visualize the solution space, difficulties comes from 
trading-off hundreds or thousands of design candidates while more than three objectives are 
considered.  

The generation of candidates and guidelines for the search of better solutions concerns 
numerical techniques used to solve the optimization problem. Research spaces involved by 
optimization problems in engineering design are discontinuous and present numerous local 
extrema making difficult the implementation of deterministic methods, such as conjugate 
gradient, since their efficiency mainly depends on the determination of a started point. 
Moreover, the accurate determination of the true global optimum has not sense in 
embodiment design due to the inherent imprecision. This may lead to expensive 
computational time and waste of resources.  

1.3 Contributions and structure of the thesis 

The main contribution of this thesis is the development of methodologies and the proposition 
of tools to support decision making during embodiment design of industrial systems and 
machines. In particular, it aims to provide designers with a convenient way to structure 
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objectives functions for optimization in embodiment design. The initial multiobjective 
embodiment design problem is modelled as a mono objective optimization problem using a 
priori articulation of preferences. The choice of an a priori modelling of preferences enables 
designers to provide additional information to fully reflect their own preferences and 
intentions. Moreover, this approach can generate only relevant portions of the whole set of 
solutions and thus avoids additional efforts. 

Although, many design methodologies and methods have been proposed in the literature, 
the development of a formal approach dedicated to the design of whole systems and machines 
(involving the management of high number of variables, criteria and complex objectives), is 
innovative. Designers are neither mathematicians nor programmers, but they know how to 
design and manufacture machines. One objective of this thesis consists in remaining close to 
designers’ activity and following their reasoning facing design problems. This consists in first 
observing, then interpreting and finally synthesizing design information to enable the decision 
making. 

Compared to other approaches, in this thesis, embodiment design problem modelling is not 
only limited to the physical behaviour of the system, but it also includes objectives. This leads 
to model both physics linked to machine functioning and socio-economic relations related to 
their environment. 

Another contribution of this thesis is the development of an original approach to tackle 
robust design problems. In this methodology, robustness of system performances and 
robustness of the choice are both considered. The main idea here consists in formulating two 
design objectives, one related to the overall performance and another linked to performances 
sensitivity facing uncertainties, which are then traded-off according to designer’s preferences. 
In this way, a new trade-off function dedicated to robust design problems is proposed. 
Objective measures of performances dispersion are also proposed. 

Facing the lack of a clear framework of desirability in engineering design, a chief 
contribution of this thesis is the proper definition of desirability and its implications in 
engineering. In particular, ambiguity between the notions of desirability and utility is intended 
to be lifted by analyzing their meaning in different research fields. 

A further contribution of this thesis concerns the development of metaheuristics, mainly 
genetic algorithms and particle swarm algorithms [Quirante 2011b], to solve optimization 
problems in embodiment design. Metaheuristics are iterative optimization algorithms, 
generally based on stochastic techniques, developed to solve non-trivial optimization 
problems. Facing specificities of response surfaces in embodiment design problems, the 
choice of metaheuristics appears as relevant. Although the selection of a particular 
metaheuristic for a specific class of design problem is not addressed here, recent research 
works presented by Collignan [Collignan 2012b] deal with such issues.  

The structure of this thesis is as follows: Chapter 2 provides a general research context. It 
depicts a general and suitable framework to situate the research works presented here. Some 
of the priors work, future challenges and topical issues falling into the scope of this thesis are 
also described. Fundamental notions and concepts are introduced and defined. Chapter 3 is a 
review of preference assessments. Two methodologies to express preferences in engineering 
design, namely the utility theory and the method of imprecision (MoI), are presented and 
compared. The concept of desirability and desirability functions are then introduced. Benefits 
of using this approach for embodiment problems are highlighted and discussed. Chapter 4 and 
chapter 5 concern the modelling methodology proposed in this thesis. Chapter 4 explains how 
to structure design problems through the formulation of design objectives. In particular, the 
formulation of objectives related to robust design problems is presented. Chapter 5 deals with 
the modelling issues related to the trade-off between objectives. Most of concepts used in 
these chapters have been introduced and defined through chapter 2 and chapter 3. Finally, 
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chapter 6 deals with the embodiment design of a whole machine, namely a two-staged flash 
evaporator for must concentration in the wine industry. The modelling methodology and some 
results of this thesis are illustrated through this example. The robustness and the selection of 
the most preferred design solution is discussed according to different trade-off strategies and 
scenarios. 
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CHAPTER 

CHAPTER 2 State of the Art 

The development of methodologies for supporting decision-making in embodiment design is 
based on several fields of research including design theory, decision theory and optimization. 
This chapter presents the general framework of our research work. The fundamental notions 
and concepts covered in this thesis are introduced and defined. Some of the topical issues, 
priors work and future challenges in engineering design are also presented in this chapter. 

2.1 Design Theory and Methodology 

2.1.1 Overview of design theories and methodologies 

The field of Design Theory and Methodology (DTM) is a rich collection of advances and 
knowledge resulting from studies and experiments on design processes and activities. 
Although there is still no consensus on a formal definition of DTM, many design theories and 
methodologies have been proposed and developed in the past few years. Although all these 
methodologies and theories have not yet succeeded in covering all the aspects of designing, 
many observations from individual design cases have led to develop the foundations for 
rationalizing the design process. 

In 1989, Finger and Dixon [Finger 1989a, Finger 1989b] have proposed a classification of 
DTM into six categories. This classification is represented in table 1. Although the intention 
of authors was not to be exhaustive, this classification is currently incomplete, since many 
important theories, such as TRIZ and Quality Function Deployment (QFD) are missing. 

DTM categories Example 

1) Descriptive models of 
design processes 

Protocol studies [Ullman 1988], cognitive models [Gero 1985], case studies 
[Wallace 1987], and so-called German school of design methodologies [Hubka 
1989, Pahl 2006] 

2) Prescriptive model for 
design 

Canonical design process [Asimow 1962, French 1971], morphological analysis 
[Pahl 2006] and prescriptive models of the design artefacts, General Design 
Theory (GDT) [Reich 1995, Tomiyama 1987, Yoshikawa 1981, Yoshikawa 
1985] , Suh's Axiomatic Design (AD) and Taguchi Method 

3) Computer-based models 
of design processes 

Parametric design, configuration design, AI-based methods for conceptual 
design [Gero 1985, Sriram 1987, Sriram 1997], distributed agent-based design 
[Cutkosky 1993] 

4) Languages, representation 
and environment for 
design 

Geometric modelling, shape grammars, behaviour and function modelling 
[Umeda 1997], feature-based modelling [Dong 1991], product modelling 
[Krause 1993] integrated design support environment 

5) Analysis to support design 
decisions 

Optimization methods [Roy 2008], interfaces for finite element analysis or 
CAE, decision-making support 

6) Design for manufacturing 
and other life cycle issues 
such as reliability 

Concurrent engineering, DfX, tolerances [Farmer 1986, Tichkiewitch 2007], 
life cycle engineering [Curran 1996, Hauschild 1998] 

Table 1. Classification of DTM adapted from Finger and Dixon [Finger 1989a, Finger 1989b] and completed 

Recently, intensive research works have made DTM to evolve toward more abstract and 
general principles. While the ultimate goal of research in DTM would be to propose a 
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universal theory of design (general and abstract), there is still a need in the development of 
general theories and methodologies for concrete applications. Design methodologies concerns 
applied design procedures about processes and activities (sometimes denoted as prescriptive 
theory [Finger 1989a]), and must be distinguished from design methods which deal with the 
design of a specific class of product such as turbomachines [Gorla 2003] or heat exchangers 
[Shah 2003]. Design methodologies involve a model of the design process which can be used 
to develop product specifications. Although there are notable differences between models, in 
particular in regards to the scope and the use of iterations, they all present similarities in 
describing a progression through a sequence of logical steps. 

In 1997, Tomiyama [Tomiyama 1997] has proposed a classification based on the scope of 
applicability (concrete/abstract) and level of abstraction (general/individual) of DTM. This 
classification is given in table 2. Except for abstract design theories, most of these DTM are 
either a generalisation of design methods, and thus, can be applicable to a wide range of 
products, or computational methods which are applicable only to a specific class of products. 
An overview of these DTM is presented by Tomiyama [Tomiyama 2006]. 

 General Individual 

Abstract Design theory 
Abstract Design Theory (ADT) [Kakuda 2001], General Design Theory 
(GDT) [Yoshikawa 1981, Yoshikawa 1985], Universal Design Theory 
(UDT) [Grabowski 1998, Grabowski 2000] 

Math-based methods 
Axiomatic Design, 
Optimization, Taguchi 
method [Taguchi 2004], 
Computer programs 

Concrete Design methodology 
Adaptable Design [Gu 2004], Characteristics-Properties Modelling 
(CPM) [Weber 2005, Weber 2007, Weber 2008], Contact and Channel 
Model (C&CM) [Albers 2003], Design Structure Matrix (DSM) 
[Browning 2001], Emergent Synthesis [Ueda 2001, Ueda 2007], Hansen 
[Hansen 1974], Hubka and Eder [Hubka  1989, Hubka 1996], Integrated 
Product Development [Andreasen 1987, Andreasen 1994], Pahl and 
Beitz [Pahl 2006], TRIZ [Altshuller 1984, Altshuller 1999], Ullman 
[Ullman 2002], Ulrich and Eppinger [Ulrich 1999] 

Design methods 

 Methodology to achieve concrete goals 
Axiomatic Design (AD) [Suh 1990, Suh 2001], Design for X (DfX) 
[Huang 1996], Design Decision-Making Methods [Lewis 2006], Failure 
mode and Effects Analysis (FMEA) [Beauregard 1996], Quality 
Function Deployment (QFD) [Mizuno 1993], Total Design of Pugh 
[Pugh 1991] 

 

 Process methodologies 
Concurrent Engineering [Sohlenius 1992], DSM 

 

Table 2. Classification of DTM adapted from Tomiyama [Tomiyama 1997] 

However, as discussed in [Finger 1989a, Finger 1989b, Horváth 2004], design research 
cannot be limited to DTM. Many other practices and techniques are used in industry, such as 
the so-called Toyota product development method [Sobek 1999, Morgan 2006]. In 
multidisciplinary product development, V-models of systems engineering is a widespread 
development approach used in many industrial areas [VDI 2004]. For example, in 
mechatronics systems, mechanical engineering, electronics, control engineering and softer 
engineering are both integrated to achieve superior functions. Therefore, the concurrent 
execution of the different domains, and the simultaneous resolution of conflicts among them 
become a topical issue. 

Furthermore, computational techniques and Information Communication Technology 
(ICT) have changed the way in which product development is addressed. Current product 
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development often requires technical information systems, such as Computer-Aided Design 
(CAD), Computer-Aided Engineering (CAE), and Product Data Management (PDM). During 
production and further life cycle phases, it is also suitable to use digital engineering systems 
[Bernard 2005, Bernard 2007] such as Computer Aided Manufacturing (CAM), Enterprise 
Resource Planning (ERP), Custom Relation Management (CRM), and Product Life Cycle 
(PLM). Function modelling and knowledge management [Tichkiewitch 2007] are also topical 
issues in design methodologies. 

2.1.2 General Design Theory framework 

General Design Theory (GDT) is a theory of design knowledge developed by Yoshikawa 
[Yoshikawa 1981, Yoshikawa 1985, Tomiyama 1987, Reich 1995] which has inspired lots of 
researchers, and has resulted for example, in Kakuda's ABT and Grabowski's UDT. GDT is 
mainly based on Suh's axiomatic set theory [Suh 1990] in which design is defined as: 

“... the creation of a synthesized solution in the form of product, processes or systems that 
satisfy perceived needs though mapping between the functional requirements (FRs) in the 
functional domain and the design parameters (DPs) of the physical domain, though proper 
selection of the DPs that satisfy the FRs.” 

GDT's major achievement is to propose a mathematical formulation of design processes. GDT 
deals with concepts that only exist in our mental recognition and tries to explain how design is 
conceptually performed with knowledge manipulation based on axiomatic set theory. In this 
sense GDT is not a design theory but an abstract theory about (design) knowledge and its 
operation as well. It is based on the statement that our reasoning and knowledge can be 
mathematically formalized and operated. Three axioms define knowledge as a topology, and 
reasoning as a set of mathematical operations. Products to be designed perform functions 
through a set of attributes (properties). The design process is then regarded as a mapping from 
the function space to the attribute space. Figure 3 illustrates the design process in the GDT's 
framework. 

 
Figure 3. Design process in ideal knowledge [Tomiyama 2009] 

According to this representation, Tomiyama [Tomiyama 2006] has proposed a rational 
classification of DTM into three major categories: DTM to generate a new design solution, 
DTM to enrich functional and attributive information of design solutions and DTM to manage 
design and to represent design knowledge [Tomiyama 2009]. Embodiment design falls into 
the second category. Once one conceptual solution has been selected in respect of functional 
requirements, analysis of neighbour solutions is required to look for an optimal solution 
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(improvement of the overall satisfaction), not only within the attribute space, but also in the 
functional space. This leads to the improvement of the performance and the generation of 
additional information for the physical realization of the product. 

2.1.3 John Gero's Function-Behaviour-Structure ontology 

From the GDT framework, descriptive models of design processes have been derived in the 
past few years. In particular, John Gero [Gero 1990a, Gero 1990b] has proposed his Function-
Behaviour-Structure (FBS) ontological model of designing. John Gero's FBS ontology 
extends GDT by covering the notion of interactions between designer (design agent) and its 
environment through actions such as observation and interpretation. Fundamental relations 
between physical structure of a product, functions and expected behaviour are established. 
Consequently, most of design processes can be modelled within the FBS framework, in 
particular optimization processes. 

The basis of Gero's FBS ontology is made of three classes of variables describing different 
aspects of a design object (also called artefact): Function (F) variables, Behaviour (B) 
variables and Structure variables (S). According to Gero, designers establish connections 
between functions, behaviour and structure through experience. In particular, designers link 
function to behaviour and derive behaviour from structure. However, a direct connection 
between function and structure is not established. 

 

Figure 4. John Gero's FBS framework [Gero 2004] 

The FBS framework represents the design process as a set of elementary design steps in 
which function, behaviour and structure are linked together. Figure 4 shows the FBS 
framework as described in [Gero 2004]. Eight elementary steps common to every designing 
activity are considered. Five of them are sequential and transform the expressed functions into 
design description. The first step is called formulation step (1) and transforms the design 
problem expressed as functions (F), into behaviour (Be) which is expected to perform these 
functions. Secondly, the expected behaviour is transformed by a synthesis step (2) into a 
solution structure (S) intending to achieve the desired behaviour (Be). In a third step, the 
actual behaviour (Bs) is derived from the analysis (3) of the synthesis structure (S). Fourthly, 
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this actual behaviour (Bs) is evaluated (4) and compared with the desired behaviour (Be). If 
the evaluation is satisfactory, a design description D is documented (5) for manufacturing the 
product. Otherwise designers have to go back to previous steps in the sequence. This defines 
three elementary loop-back steps, turning designing into an iterative procedure [Gero 2004]. 
Reformulation steps (6, 7, 8) address changes in the design state space in terms of structure 
variables (S'), behaviour variables (Be'), function variables (F') and ranges of values. 

Gero's FBS ontology presents a fundamental difference with other approaches of designing 
within the notion of Situatedness [Gero 2004]. According to Gero, designing is an activity in 
which designers perform actions to interact and change the environment, by carrying out 
observation and interpretation on the results of their actions. This also covers the notion of 
constructive memory, since designers' concepts may change according to their own past 
experience and the phenomena they observe. 

 

 

(a) (b) 

Figure 5. Situatedness as the interaction of three worlds [Gero 2004]: (a) general model, (b) specialized model 
for design representation 

The model of Situatedness proposed by Gero and Kannengiesser [Gero 2004], represented in 
figure 5a, is based on the interaction of three different worlds (including the designer's 
internal and external world). In this model, designer's internal world is subdivided into an 
interpreted world and an expected world. These two worlds are linked by a process of concept 
definition in the interpreted world, and using them as goals (design objectives) located in the 
expected world. Goals are used to inform actions changing the external world.  

The notion of interaction appears as fundamental in the framework proposed by Gero. 
According to situatedness, changes can impact every entity involved in one particular 
interaction. Another important aspect linked to situatedness is the notion of interpretation, 
which is regarded as being more than a simple flow of information; it is a kind of designer's 
action coming from both external and internal environment, and resulting in changes in the 
internal world. 

From the general model of Situatedness, it is derived a specialized model for design 
representation purpose (see figure 5b) [Gero 2004]. According to this model, designers are 
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situated within the external world and the different design representations belong to the other 
layers of the model. The design space (i.e. the space of all possible design solutions that 
satisfy the set of requirements) corresponds to the set of expected design representation (Xei). 
The explicit integration of an expected world into a model of interaction accounts for situated 
designing, as changes in the internal and external world provides the basis for further changes 
of the current design process via reformulations of the design space. 

In 2006, from its original FBS framework and situatedness model, Gero has proposed a 
framework for situated design optimization [Gero 2006]. The three fundamental processes in 
optimization are identified. They refer to synthesis, analysis and evaluation. This framework 
involves changes in all relevant aspects of situated optimization such as changes in design 
space, changes in designer's experience and changes in external design representation. 

2.2 Optimization techniques in engineering design 

2.2.1 Introduction 

Designing is a goal-directed activity. Whatever the field of application, a product is designed 
to satisfy human needs. To improve customer satisfaction, designers try to determine the 
solution which satisfies every requirement in the best way. This process refers to 
optimization. However, the terms optimization and optimum are often used in very loose 
senses without necessarily referring to the use of specific optimization techniques. For 
example, in engineering design, optimization often refers to "trial and error" approaches, i.e. 
iterative processes where the final solution is improved step-by-step. These approaches are 
often manual and time consuming. Moreover, optimal solutions are rarely achieved since such 
approaches do not allow a global exploration of the design research space. 

In a highly competitive and technology-driven industry, it is necessary to develop suitable 
methods to automate engineering design optimization and design systems which satisfy 
human needs in the most effective manner. This has motivated many research works in design 
optimization for the purpose of developing efficient techniques for engineering problems 
[Ray 1995, Sobieszczanski 1997, Dornberger 2000, Murawski 2000, Costa 2008, Schiffmann 
2010]. 

2.2.2 Design evaluation model 

Design optimization problems require the formulation of a design (evaluation) model to 
evaluate candidate solutions. This model depends on the design stage, and thus, differs from 
preliminary design to detailed design. The complexity and efforts provided to solve design 
problems depend on the nature of the relations and variables involved in the design evaluation 
model. As a general rule, a design evaluation model requires the definition of design variables 
(x) and their domain of values (Ω), performance variables (y), objectives (f), design criteria 
and design parameters (constants). Then, the simulation model of the physical behaviour of 
the system links the independent and dependent variables. Thus, a design solution is defined 
from a set of design variables and is evaluated according to its ability in satisfying every 
design criterion and objective. Depending on authors, the decomposition into design 
performances and objectives seems not to be systematic. Sometimes the expression of design 
performances is implicit to the criteria formulation, such as there is a mapping between the 
design space (domain of design variables) and the objective space (domain of design 
objectives). 
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Figure 6. Design evaluation model represented as “black-box” system 

Classically in optimization, one or several objective functions are expected to be minimized, 
or maximized, subjected to a set of constraints. In general, the design evaluation model 
corresponds to the objective function(s). According to automatics, the design evaluation 
model can be regarded as a “black-box” system in which physical models are encapsulated in 
such a way that designers can only control inputs (design variables) and observe outputs 
(performance measurement or objectives). A “black-box” representation of the design 
evaluation model is given by figure 6. According to this figure, design criteria can be 
regarded as filter acting on the performance measurements, discriminating feasible from 
unfeasible solutions. This process serves as basis for the evaluation process. 

2.2.3 Classification of engineering design optimization problems 

In 2008, Roy [Roy 2008] has proposed a classification of engineering design optimization 
problems into five categories and two points of view. While categories refer to design 
variables, constraints, objective functions, problem domains, and environment of the design, 
the two points of view concern the design evaluation complexity and the degrees of freedom 
of the design problem. According to Roy, the number of design variables, their nature (static 
or dynamic) and admissible values (integer, continuous or mixed) and dependence among 
design variables deeply impact the overall complexity of the optimization problem. Here, 
complexity is defined as the amount of effort required to formulate the optimization problem 
and identify the optimal solution(s). 

Moreover, the presence of constraints impacts the optimization techniques used to solve 
the design problem [Coello 2002a]. Constraints can be linear or non-linear, expressed in 
equality or inequality forms and are separable or not. Number of constraints and constraints 
modelling directly affects computational times of optimization processes. Recent advances in 
constraint programming techniques (programming paradigm in which relations between 
variables are stated in the form of constraints) results in promising perspectives to deal with 
multicriteria optimization problems [Rossi 2006]. 

As previously mentioned, objective functions are used in optimization to evaluate design 
solutions. Quantitative objective functions are related to simulation-based (FEA, CFD), 
analytical (linear or non-linear mathematical model) and empirical techniques, whereas 
qualitative objective functions concerns issues like manufacturability or aesthetics. Number of 
objective functions, their (non-linear, continuous or discontinuous) nature and dependency 
also impacts the complexity of the optimization problem. In particular, Corne [Corne 2007] 
considers that the complexity of multiobjective optimization problems strongly increases from 
the minimum of ten objectives (large scale multiobjective problems). One of the major 
challenges in engineering design optimization is to deal with computationally expensive 
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objective functions. Moreover, the existence of numerous local optimums often makes 
difficult the determination of the global optimum. 

Engineering design optimization 
approaches 

Examples 

Expert-based optimization Knowledge based, Simulation based 

Design of Experiment based 
optimization 

Taguchi's approach, Experiment arrays based methods 

Algorithmic optimization  

Dealing with increasing 
complexity of design problems 

Constrained (Lagrange-multiplier, gradient projection, generalized 
gradient projection, feasible direction, evolutionary algorithm, genetic 
algorithm, direct search method, leap-frog method and penalty function, 
linearised search method, simulated annealing, swarm intelligence, ant 
colony algorithm, co-evolutionary approach); 
Multiobjective (evolutionary algorithm, genetic algorithm, goal 
programming, fuzzy set theory, heuristic, immunity based, swarm 
intelligence, Tabu search); 
Multi-modal (Evolutionary algorithm, immunity based, random search 
algorithm, simulated annealing, swarm intelligence); 
Multi-disciplinary 

Dealing with real life design 
requirements 

Reliability-based (discrete optimization technique, evolutionary algorithm, 
inverse reliability strategy, analysis of variance) 
Robust (Mathematical programming, Monte-Carlo simulations based, 
analysis of variance , deterministic approach, evolutionary algorithm) 
Uncertain environment (evolutionary algorithm, sequential approximate 
optimization, deterministic algorithm, method of imprecision) 

Increasing designer confidence Interactive (Mathematical programming, evolutionary algorithm, fuzzy set 
theory) 
Qualitative (evolutionary algorithm, evidence theory) 

Hybrid, Other  

Table 3. Engineering design optimization approaches: current trends and challenges (adapted from [Roy 2008]) 

The two last categories identified by Roy concern the problem domains and optimization 
environment. While the problem domain is related to the physics of the problem and multi-
disciplinary approaches used to solve it (mechanics, thermofluids, electromagnetic), 
optimization environment concern uncertainties (robust and reliability-based approaches) 
[Wood 1989, Beyer 2007, Schueller 2008], existing knowledge about the problem 
(imprecision, incomplete data) [Wood 1989, Antonsson 1995], levels of confidence 
(qualitative or interactive evaluation) [Collignan 2012a, Collignan 2012b] and nature of the 
environment (static or dynamic). 

In [Roy 2008], another classification based on current trends and challenges in design 
optimization techniques (Expert-based optimization, Design of Experiment based 
optimization, Algorithmic optimization) is proposed. This classification is presented in table 
3. According to this table, it appears that the automation of engineering design optimization 
process has motivated the development of a vast range of algorithms in the past few years. 

2.2.4 Challenges in engineering design optimization 

Facing real application problems, major design challenges in engineering design optimization 
arise in the past few years. In [Roy 2008], Roy highlights that these challenges concern: 

� Global exploration of design spaces 
� Identification of robust solution areas 
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� Identification of the largest set of satisfying solutions 
� Interactions and coupling effects between design variables 
� Analysis, modelling and propagation of uncertainties 
� Reduction of computational costs of the evaluation models 
� Modelling of human knowledge and preference 
� CAD systems interfacing feature-based parametric CAD models and optimization models 

This thesis tackles some of these issues. In particular, we propose techniques to investigate 
large design spaces and determine relevant robust design solutions. Difficulties in 
investigating design spaces of real design engineering problems arise from the presence of 
multiple mixed design variables, nonlinear constraints, discontinuities and pitfalls. Thus, as 
these design models are often non-differentiable, classical optimization techniques based on 
gradient and hessian matrices computation cannot be implemented. Moreover, the global 
optimum should also be robust, i.e. it is desirable that optimal solution presents a low 
sensitivity to uncertainties [Beyer 2007, Arvidsson 2008]. A design is thus said robust if it 
maintains the same level of performance facing with design variable variations. Global 
optimum, local optimum and robust optimum are represented on figure 7a. 

   

(a) (b) (c) 

Figure 7. Representation of optimal solutions in design engineering optimization from [Roy 2008]: (a) global, 
local and robust optimal solutions, (b) multi-modal optimization problem, (c) Pareto frontier in multiobjective 
optimization problem 

The search for robust solutions has led to analyze and model uncertainties due to 
manufacturing dispersions, environmental parameters variations and error modelling. These 
uncertainties can be aleatory or epistemic by nature [Oberkampf 2004]. In the past few years, 
many approaches have been developed to deal with uncertainty such as robust design 
methodology (RDM) [Messac 2002a], utility function optimization [Chen 1999] and 
reliability-based design optimization (RBDO) [Samson 2009b]. Major challenges linked to 
uncertainty in design engineering concern the reduction of computational costs and the 
establishment of a mathematical criterion to identify deep "valleys" [Shan 2008, Samson 
2009a]. 

Furthermore, many design problems involve more than one admissible solution (multi-
modal optimization) as shown on figure 7b. In multiobjective optimization, this refers to the 
identification of Pareto optimal solutions (for details see section 2.3.2). Pareto frontier has 
been represented on figure 7c. The definition of Pareto optimal solutions enables to filter the 
whole set of feasible solutions and thus to reduce the set of candidates. As real engineering 
design problems often involve multiple conflicting objectives which must be traded-off, the 
expression of designer's preferences is required to select the final solution. Thus, the 
formulation of expert knowledge and preferences in a formal way to be used by artificial 
systems [Oduguwa 2007] create major challenges in engineering design and partly explains 
why optimization techniques have difficulties to be applied in industry. The next section 

f1(x)

f2(x)

Pareto frontier



 

30 
 

further details multiobjective optimization problems and presents some insights and issues 
linked to their implications in design engineering. 

2.3 Multiobjective optimization methods for engineering design 

problems 

2.3.1 Introduction 

Initially, multiobjective optimization (MO) techniques have been developed within the fields 
of economic equilibrium and welfare theories, game theory [Vincent 1983], and mathematics 
[Stadler 1988]. These techniques intend to accurately model the decision-makers' preferences, 
for ranking or filtering alternatives. For this reason, many terms and concepts such as 
preference, utility and trade-off, are derived from economics and decision-making theory 
[Lewis 2006]. However, the terminology must be adapted according to the domain of study. 
For example, in engineering applications, the so-called decision-maker may be identified as 
the designer or teams of persons belonging to design departments. In the same way, design 
variables in engineering design are denoted as decision variables in decisions theories. 

Fundamental basis of MO are presented by Coello [Coello 2002a, Coello 2002b] and 
Miettinen [Miettinen 1999]. The general MO problem is usually expressed as: 
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 (2.3.1.1) 

where x is a vector of n decision variables. The vectorial function f(x) is composed by the k 
objective functions (also denoted as criteria, payoff or costs functions) to be jointly 
minimized. The functions gi and hi refer respectively to the m inequality and p equality 
constraints to be satisfied. In this thesis, the design search space (Ω) is defined as the union of 
the design variables domain of value as: 

n

i i i i i
i 1

x x x x x, ,− + − +

=

 Ω = ≤ ≤ ∪  (2.3.1.2) 

Figure 8 illustrates the mapping between the design space and the objective space, for a bi-
objective maximization problem, with two design variables and two design criteria. Design 
constraints shear the design space in two distinct domains. The feasible design/decision space 
(X) is defined as the set of solutions which satisfy the set of constraints (g): 

( )={ 0}| , g∈ Ω ≥X x x x  (2.3.1.3) 

Inversely, the unfeasible domain represents the set of solutions which do not verify at least 
one of the constraints. Then, the feasible criterion space Z (also called attainable set) is 
defined as the set: 

( )={ }f | ∈Z x x X  (2.3.1.4) 

The terms feasible criterion and attainable set are both used in the literature to describe the 
objective space. However, feasibility implies that no constraint is violated, whereas 
attainability means that a point in the criterion space maps to a point in the design space. 
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While every point in the design space maps to a single point in the criteria space, the opposite 
can be false, and thus, every point in the criteria space is not necessary attained. 

 
Figure 8. Mapping between design space and objectives space for a bi-objective minimization problem with two 
design variables (x) and two design criteria (g) 

The mapping relation between the design research space and the objective space is 
represented on figure 8. Within the feasible design space, there is a particular sub-set of 
solutions denoted as Pareto frontier or non-dominated set, which is often expected in design 
optimization. The determination of the Pareto frontier is particularly relevant in engineering 
since it represents the set of solutions such as there are no others solutions which are better 
simultaneously on every objective. The notion of Pareto optimality and domination, defined 
in the next section, are fundamental for solving MO problems. 

2.3.2 Pareto optimality and relations of domination 

Principles of MO are different from classical mono-objective approaches. While mono-
objective optimization consists in determining the global optimum, i.e. the solution which 
minimizes (or maximizes) a single objective function, MO problems deals with the 
determination of a set of equivalent solutions which must be traded-off. Consequently, the 
classical concept of optimum is no longer appropriate, and the concept of Pareto optimality 
(or efficiency) is used instead. 

Definition: 1) For minimization problems, a solution point * ∈x X  is Pareto optimal if there 
is no other point ∈x X  such that ( ) ( )≤f x f x* , and i i( ) ( )<x xf f *  for at least one objective 

function. The set of all Pareto optimal solutions defines the so-called Pareto frontier. 
 2) For maximization problems, a solution point * ∈x X  is Pareto optimal if there 
is no other point ∈x X  such that ( ) ( )*≥f x f x , and i i( ) ( )f f *>x x  for at least one objective 

function. The set of all Pareto optimal solutions defines the so-called Pareto frontier. 

All Pareto optimal points lie within the feasible criterion space Z [Athan 1996]. Some 
methods for determining Pareto optimality are described in [Miettinen 1999]. Although Pareto 
optimal solutions are often relevant in engineering design, Pareto optimality is not 
systematically expected. In fact, many algorithms provide solutions satisfying other criteria 
and making them relevant for practical applications. From these considerations, it is derived 
the concept of weak Pareto optimality. 
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Definition:  1) For minimization problems, a solution point * ∈x X  is weakly Pareto optimal 
if there is no other point ∈x X  such as ( ) ( )<f x f x* . 

 2) For maximization problems, a solution point * ∈x X  is weakly Pareto optimal 
if there is no other point ∈x X  such as ( ) ( )*>f x f x . 

A solution is weakly Pareto optimal if there is no other solution which improves all objectives 
of the objective functions simultaneously. In contrast, a solution is Pareto optimal if there is 
no other point improving at least one objective function. The notion of proper Pareto 
optimality had also been introduced [Geoffrion 1968, Miettinen 1999] as a trade-off 
expressed by the ratio between the increment in one objective function and the resulting 
decrement in another objective function.  

Whatever the MO problem, the resulting Pareto optimal set can involve an infinite number 
of relevant solutions. Therefore, MO techniques and methods must be distinguished according 
to they provide the whole Pareto set, some parts (filtering), or a single solution point. 

In [Steuer 1999], the Pareto optimality criterion is introduced using the notion of 
domination. While Pareto optimality concerns a vector of design variables in the design 
space, relations of domination between solutions refers to a functional vector in the criteria 
space. 

Definition:  1) For minimization problems, a vector of objective functions ( )∈f x Z*  is non-
dominated if there is no other vector ( )∈f x Z  such as ( ) ( )≤f x f x* , with at least one.  

 2) For maximization problems, a vector of objective functions ( )∈f x Z*  is non-
dominated if there is no other vector ( )∈f x Z  such as ( ) ( )*≥f x f x , with at least one. 

Let us consider the two solutions B and C represented on figure 9. These solutions are such as 
that f2(C) > f2(B) and f1(C) > f1(B). Therefore, B dominates C, and C is dominated by B. 
According to the domination criterion, B is preferred to C, which is noted B C≻ . Let us 
consider now, solutions A and B which are two non-dominated solutions and belongs to the 
non-dominated set. Consequently, it is impossible to operate a rational choice between these 
two solutions. They are regarded as equivalent or equally preferred. In this case, we note this 
equivalence as A B∼ . The domination in the whole set of candidate solutions results in the 
definition of the Pareto frontier and multiple sub-Pareto fronts, which is equivalent to rank 
solutions. Many MO techniques, such as the non-dominated sorting genetic algorithm 
NGSAII [Deb 2002], are based on the principle of domination to generate the Pareto frontier 
in the best way. 
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Figure 9. Pareto frontier and relations of domination for a bi-objective minimization problem 

A survey of necessary and sufficient conditions for objective functions to generate Pareto 
optimal solutions can be found in [Miettinen 1999]. On the one side, objective functions 
based on a necessary condition formulation of Pareto optimality, imply that every Pareto 
optimal solution is attainable, performing some adjustments on the function parameters 
(weights, exponents, etc). If a point is attainable using a particular objective function, then 
this point is said to be capturable by the function [Messac 2000a, Messac 2000b]. However, 
this formulation may provide solutions which are not Pareto optimal. On the other side, 
objective functions based on a sufficient condition formulation of Pareto optimality, ensure 
that every captured solution is Pareto optimal, although it is noticeable that certain Pareto 
optimal points are unattainable. 

2.3.3 Convex and non-convex set of points 

The convexity property of the Pareto set is of main interest for designer and their practical 
applications. In general, solutions located in the concave parts of the Pareto frontier are of low 
interest for designers. In fact, the compromise represented by these solutions, i.e. the 
increment of one objective compared to the decrement of another one, can be improved by 
considering solutions located in the convex parts. 

Formally, a convex Pareto set (S) implies that for every point A and B taken in S, the 
segment [AB] completely lies within the boundaries of S. 

Definition: A set of points S is said convex iff [ ] ( )A B S 0 1 A 1 B S, , , ,∀ ∈ ∀λ ∈ λ + − λ ∈  

Figure 10 represents a non-convex Pareto set for a bi-objective minimization problem. Points 
A and C are located on the convex parts of the Pareto frontier, whereas point B lies on a 
concave part. The dashed line between solutions A and C represents the convex hull of the 
Pareto set. We define the gain and the loss on one objective respectively as the decrement and 
the increment of this objective. To illustrate the relevancy of convex Pareto solutions, suppose 
that point A represents a solution of reference, and that solutions B and C are alternative 
choices. The trade-off represented by the selection of B or C is expressed by the ratio 
“gain/loss” defined as: 

Pareto frontier
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According to figure 10, it is obvious that T(C)>T(B), since the selection of B implies an 
important loss on objective f1 for a small gain on objective f2, whereas the selection of C 
implies equivalent levels of gain and loss on the two objectives. Therefore, solution C is 
regarded as a better alternative to solution A than solution B. 

 
Figure 10. Non-convex Pareto frontier for a bi-objective minimization problem 

2.3.4 Ability of objective functions to generate Pareto optimal solutions 

In engineering design, the notion of Pareto optimality is used to support the selection of the 
most preferred design alternatives by filtering the whole set of solutions. As every Pareto 
point is potentially of interest for the designer, each point should be capturable by the 
objective function. But, as previously explained, certain portions of the Pareto frontier are of 
low interest for designers. For example, non-convex parts usually correspond to areas of 
unattractive trades-off. Therefore, challenges for the selection of suitable objective functions 
in MO are mainly concerned with modelling designers’ intentions. In particular, mathematical 
behaviour of functions must reflect designer’s preferences in the best way. 

In this thesis, we are mainly interested in the formulation of preferences within the 
objective functions, and thus, we focus on aggregated objective functions (AOF). For 
scalarization methods (or global criterion approach), Sadler has proposed that the 
minimization of the global objective function (i.e. the AOF) is a sufficient condition for 
Pareto optimality if the global objective function increases monotonically in respect to each 
aggregated objective function [Stadler 1988]. This implies that the Hessian of the objective 
function in respect to aggregated objective functions must be negative definite [Athan 1996]. 
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Moreover, for every Pareto optimal point, there is an AOF satisfying the previous 
requirements and captures each point of the front [Messac 2000a]. 

In [Messac 2000b], Messac tackles the issue related to the ability of AOF to generate 
points lying on non-convex parts of Pareto frontiers. He distinguishes locally capturable 
points, which correspond to local minima of a given AOF specified with a particular 
parameterization, from globally capturable points which are global minima. Messac provides 
a sufficient and necessary condition that must be verify by AOF for local capturability of 
points lying on non-convex Pareto frontier. In particular, he shows that a solution is locally 
capturable by weighted sum AOF if this solution lies on convex parts of Pareto frontiers. 
Although globally capturable points are locally capturable too, the reverse is not true, and 
locally capturable points are not necessary globally capturable. 

 
Figure 11. Illustration of globally and locally capturable points by minimization of the weighted sum AOF 

Figure 11 shows the non-convex Pareto frontier of a bi-objective minimization problem. 
Points A and D lie on the convex parts of the Pareto frontier. These points are globally 
capturable since they correspond respectively to global minima of the objective function. 
Points B and C lie on convex parts of the Pareto frontier too and correspond to local minima 
of the objective function. Thus, points B and C are only locally capturable. Points located on 
the concave part of the Pareto frontier (segment BC) are not capturable. Consequently, in a 
MO context, using the weighted sum AOF doesn’t enable to detect the solutions located on 
the segment AD of the front. This illustrates why the weighted sum aggregation approach 
suffers from serious drawbacks [Das 1997] for preferences assessment. In particular, in 
engineering design, it excludes vast areas of solutions which may be considered as relevant 
for designers. 

2.3.5 Classification of the MO methodologies according to the articulation of 

preferences 

As previously mentioned, the main issues in MO are related to the accurate modelling of 
designers’ preferences. In decision theory, preference refers to the decision-maker opinion 
about solution points within the criteria space (or objective space). Preference functions are 
defined as abstract functions in the mind of decision-makers which integrate criteria, 
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objectives and preferences. Preference assessment aims to reflect preference functions in the 
best way in order to select the most preferred solutions among a set of plausible alternatives. 
As presented in table 4, most of MO methodologies and techniques can be classified 
according to a priori or a posteriori preferences modelling [Marler 2004]. 

In this research work, we are mainly interested in techniques based on a priori articulation 
of preferences. Table 4 presents some of these methods. They are based on models of 
decision-makers’ judgment and perception before computing design solutions. Preferences are 
express within the objective function(s) and are formulated as goals, trade-offs or relative 
importance relations between objectives (priorities). These methods are based on the 
specification of a set of parameters (coefficients or weights, exponents, constraint limits, 
utopia point) whose values enable to accurately model the designers’ preferences within the 
decision model. Since multiple objectives introduce degree of freedom within the 
design/decision MO problem, the expression of preferences provides additional constraints to 
the problem, and consequently, the initial MO problem can be turned into a mono-objective 
optimization problem. It can be noticed that, depending on methods, continuous modifications 
of parameters enable the generation of the whole Pareto set or just some parts of this set. 
Therefore, the selection of a particular MO technique based on a priori articulation of 
preferences depends on its ability in modelling designers' preferences within a given context. 
Finally, a priori articulation of preference requires additional efforts in modelling processes to 
formalize much more knowledge about the design problem. 

Articulation of 
preference 

Methodologies and techniques 

A priori formulation  Weighted Global Criterion method and its extensions (including utopia point 
method) [Yu 1974, Zeleny 1981, Wierzbicki 1982, Chankong 1983, Miettinen 1999] 

 Weighted Sum method [Zadeh 1963, Steuer 1989, Chankong 1983, Athan 1996, 
Das 1997, Koski 2005] 

 Weighted Min-Max method (or Tchebycheff method) [Miettinen 1999, Messac 
2000a, Messac 2000b] 

 Weighted Product method [Bridgman 1922] 

 Exponential Weighted method [Athan 1996] 

 Lexicographic method [Stadler 1988] 

 Goal Programming method [Charnes 1977, Tamiz 1998] 

 Bounded objective method (ε-constraint approach) [Haimes 1971, Hwang 1979] 

 Physical Programming [Messac 1996, Messac 2002a] 

A posteriori formulation  Physical Programming [Messac 2002b] 

 Normal Boundary Intersection (NBI) method [Das 1998] 

 Normal Constraint (NC) method [Messac 2003] 

Table 4. Classification of MO methodologies and techniques according to a priori or posteriori formulation of 
preferences 

However, preferences are sometime so complex that it is difficult to express them in a formal 
way. Therefore, it is suitable to allow designers to select the most preferred solution among a 
set of effective solutions (in general the Pareto set). Therefore, methods based on a posteriori 
articulation of preferences imply the development of algorithms for generating and 
representing the set of Pareto optimal solutions in the best way. In general, the final solution 
is very close to the expected preference function. Some of methods involving a posteriori 
formulation of preferences are given in table 4. These methods are in general coupled with 
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visualization techniques to support the representation of design solutions, which is obviously 
relevant while the number of objectives doesn’t exceed three. 

Finally, some methods with no articulation of preference, called mixed methods or 
interactive methods, allow designers to adjust the optimal solution according to their 
preferences after each iteration of the optimization process [Steuer 1983, Xiao 2007, Jeong 
2009]. This approach enables to integrate the designer within the optimization loop and 
provides guidelines to orient the search of relevant solutions. 

2.3.6 Genetic algorithms 

Recently, a particular class of algorithms, called genetic algorithms (GA), has received 
increased interests to solve MO problems. As GA do not require gradient computations, they 
are efficient to deal with non trivial optimization problems, independently of the nature of the 
objective function(s) (continuous/discontinuous, non differentiable) and constraints 
(equality/inequality, linear/nonlinear). These algorithms are efficient as global optimization 
algorithms and hybridation techniques with classical approaches can be used for local 
optimization. Although computing costs are often expensive while optimizing design 
problems, parallelization computing and clustering techniques can be used to cover this issue 
and increase the performance of GA [Deb 1989, Cantú-Paz 2000, Bonham 2004]. Finally, in 
an industrial context, benefits of using GA come from their ease of implementation as “black-
box” systems, making them popular in many areas of application. 

 
Figure 12. Principles of Genetic Algorithms 
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GA use stochastic optimization techniques to simulate the natural selection process of 
individuals in selective environments. The concept of survival of the fittest [Goldberg 1996] 
states that within a population, the most adapted individuals tend to live long enough to breed 
whereas the weakest individuals tend to disappear. By analogy with this natural evolution 
rules, GA consists in making a population of individuals evolve toward the optimum of the 
optimization problem. Each individual corresponds to a candidate solution represented by a 
set of design variables values. Individuals are evaluated and ranked according to their fitness, 
i.e. their ability in optimizing the objective function. 

Figure 12 represents the principles of GA in graph form. The best individuals of the current 
population are first selected by comparison of their fitness scores, and then, a new population 
of solutions is created for the next generation by tournament selection, crossover and mutation 
operators. This process is performed generation after generation, until termination criteria are 
reached (the maximum number of iterations for example). Each generation corresponds to one 
iteration. Further details on GA mechanisms are given in the literature [Srinivas 1994, 
Goldberg 1996, Oduguwa 2005, Chiong 2009]. 

According to Deb [Deb 1999], one of the major challenge in the development of such 
algorithms for MO is to ensure the convergence toward the Pareto frontier taking into account 
the uniformity of the repartition of the non-dominated solutions. In 1985, Schaffer presents 
the first GA for MO problems, called VEGA (Vector Evaluated Genetic Algorithm) [Schaffer 
1985]. In 2002, Deb proposed his NSGA-II (Non Dominated Sorting Genetic Algorithm) 
[Deb 2002] which is currently regarded as a reference evolutionary MO. The algorithm 
NGSA-II is very effective in generating the Pareto set with a high accuracy and a high 
converge speed. Due to the elitist approach, it preserves the best individuals from one 
generation to another (acting as a memory). It uses a selection procedure, based on the non-
domination principle, and a comparison operator using the computation of crowding distance. 

 
Figure 13. Illustration of the NGSA-II principles [Deb 2002] 

Principles of NGSA-II are represented on figure 13. A parent population Pt and a children 
population Qt composed by N individuals are gathered into a population Rt of 2N individuals. 
This operation enables to apply the elitist strategy. Individual of the resulting population Rt 
are sorted according to a non-domination criterion to identify the different frontiers (Fi). A 
rank is assigned to every individual of the population based on the front on which they lie. 
The best individuals belong to the first frontier (fitness value of 1). In addition to the fitness 
value, a crowding distance is calculated for each individual with respect to the others. The 
crowding is computed from the perimeter formed by every closest individual’s neighbour and 
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for each objective. Large average crowding distance results in better diversity within the 
population. Parents are selected from the population by using binary tournament selection 
based on the rank and crowding distance. A new children population is then created by 
genetic operators (crossover and mutation). Simulated Binary Crossover (SBX) and 
Polynomial Mutation were also proposed for real-coded GA operators [Deb 1995]. 

2.4 Design optimization methodologies under uncertainties 

2.4.1 Introduction 

Design optimization methodologies under uncertainties aim to develop systems satisfying a 
certain level of performance during their lifetime. In most cases, models and optimization 
techniques are deterministic. Consequently, variations of design variables, tolerances on 
dimensions, dispersion of materials properties, fluctuation of environmental parameters or 
modelling errors are either not taken into account, or introduced in the design process by 
simplifying assumptions (worst-case based design, application of safety factors). These 
assumptions often penalize the performances of systems by increasing their dimensions, 
which increases material costs and costs of production. 

Moreover, classical optimization techniques tend to push design toward admissible 
domains boundaries while performances are expected to be improved, leading to optimal 
design solutions with a low level of reliability and robustness, since a slight variation of 
design variables, or changes in the environmental parameters, may cause violation of 
constraints or deep degradation of performances.  

Due to recent advances in high-speed computing, optimization techniques considering 
uncertainty have received increasing interests while designing systems. Figure 14 represents 
the different types of uncertainty which are classically identified in engineering design. They 
can be classified into four categories listed as: 

� Fluctuations of environmental and operational parameters 
� Variations of design variables such as manufacturing tolerances and actuator imprecision 
� Modelling errors and imprecision 
� Uncertainty related to constraints satisfaction 

The first source of uncertainty refers to fluctuations of environmental and operational 
parameters such as humidity, operating temperature or pressure. They are considered as noise 
factors or uncontrollable parameters, and refer to Type I variations according to Chen [Chen 
1996]. It is modelled by introducing an additional parameter (α) in the simulation model. The 
second type of uncertainty is linked to variations of design variables, such as manufacturing 
tolerances and actuator imprecision. In mechanical design, dimensions can be realized only 
with a certain degree of accuracy, which introduces dimensional dispersions. This kind of 
uncertainty is regarded as control factor and refers to Type II variations [Chen 1996]. This 
type of uncertainty is introduced in the evaluation model using a perturbation vector (δ) 
related to the design variables (x). For example, δ =εx may model the relative uncertainty of 
measurements provided for materials Young modulus or mechanical strength estimations. 
Uncertainty in performances predictions can also results from modelling errors and inherent 
imprecision. This type of uncertainty is caused by modelling assumptions, measurements 
errors or experimental correlations, which can be modelled as a random function of the 
nominal performance (y). The last type of uncertainty to be taken into account is related to the 
constraints satisfaction and concerns the uncertainty reflecting the designer choices. Methods 
to deal with this kind of uncertainty are presented in chapter 3. 
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Figure 14. Representation of uncertainty in engineering design 

However, uncertainty can be also classified into aleatory and epistemic uncertainty 
[Oberkampf 2004, Samson 2009b]. While aleatory uncertainties are linked to the intrinsic 
stochastic nature of physical phenomena (humidity, temperature, pressure or material 
parameters), and so, cannot be removed or reduced by design parameters, epistemic 
uncertainties reflect the lack of knowledge about the design problem and .can be reduced by 
increased efforts. This kind of uncertainty also includes uncertainties about the model used to 
describe the system behaviour, its boundaries and operating conditions, and the errors linked 
to the numerical solving methods (such as discretization, convergence, approximation). 
Discrete/continuous interval and fuzzy sets are suitable to model this type of uncertainty, 
whereas probability distributions are suitable to model aleatory uncertainty due to their 
probabilistic nature. 

2.4.2 Uncertainty modelling 

The simulation of the performance variations, while design variables and parameters are 
moved from their nominal values, requires the development of methodologies for uncertainty 
modelling and methods for uncertainty propagation through evaluation models. These 
challenges have motivated many research works in the past few years [Du 2000a, Padulo 
2007, Lee 2009]. 

In general, the easiest way to deal with uncertainty is to use Monte Carlo simulation 
method, Taylor series expansion or orthogonal arrays based simulation [Shyam 2002] to 
introduced stochastic variations within evaluation models as follows: 

ɶ � ɶ( ) ɶ, , = = +
 

y x α x x δµ µ  (2.4.2) 

where ɶx , ɶy, and �µ  represent respectively the vector of disturbed design variables, the vector 
of disturbed performances and a random function simulating inherent errors within simulation 
models. Parameters α and δ model uncertainties linked to fluctuations of environmental 
parameters and manufacturing dispersions. They define interval of variations around the 
nominal value, which is equivalent to define a neighbourhood of solutions around the nominal  
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value. The dispersion of the performances is then observed in the performance space (or 
criteria space) as represented on figure 15. 

 
Figure 15. Representation of nominal and disturbed points while uncertainty is stochastically modelled 

2.4.3 Reliability-based optimization 

The most commonly used methods to deal with uncertainty refer to reliability-based 
optimization (RBDO). RBDO methods are based on probability distributions to describe 
variability of design variables and model parameters. Variations are represented by standard 
deviations (typically assumed to be constant). Mean performance measures are then optimized 
subjected to a set of probabilistic constraints (failure probabilities and expected values), i.e. 
with an associated reliability. As the improvement of reliability of systems often leads to 
penalize its performances (in particular increasing of overall dimensions and costs), RBDO 
methods intend to achieve systems with an acceptable level of reliability and a satisfying level 
of performance. Classical RBDO problems are formulated as follows: 
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 (2.4.3) 

where d is the vector of deterministic design variables, X is the vector of random design 
variables and P is the vector of random design parameters. The objective function f represents 
the performance to be minimized (costs for example). A solution is said reliable if the 
probability of satisfying each constraint is greater than a specified reliability (confidence) 
level R. Reliable and performance optima are both represented on figure 16. The performance 
optimum (C) appears as non-reliable since the performance constraint is violated while design 
variables (x) are disturbed. The reliable optimum (A) satisfies the constraint whatever the 
value of x within its domain of variation. However, this implies a slight performance 
decrement. 

� ɶ( ), 
 

x αµ µ

ɶy

ɶx



 

42 
 

In mechanical design, RBDO approaches are particularly effective to increase the 
confidence of designers toward a design solution in regards to safety criteria (mechanical 
strength of bridges facing to wind vibrations for example) [Enevoldsen 1994, Gasser 1997, 
Youn 2004, Jensen 2005, Samson 2009b]. Two class of RBDO methods are commonly used 
to solve the problem (2.4.2). The first class consists in decoupling the RBDO process into a 
sequence of deterministic design optimizations which are followed by a set of reliability 
assessments loops [Royset 2001, Du 2004]. The deterministic and reliability loops are 
iteratively repeated until convergence. The second class of RBDO methods converts the 
problem into an equivalent single-loop deterministic optimization [Liang 2008], leading to 
significant computational efficiency improvements. The reliability assessment can be 
performed according to the reliability index approach (RIA) or the performance measure 
approaches (PMA). Every time the optimization loops call for a constraint evaluation, 
estimates on the failure probability are based on first-order or second-order reliability 
methods (FORM and SORM) [Ditlevsen 1996] in order to determine the so-called most 
probable point (MPP) of failure. 

2.4.4 Robust design optimization  

While RBDO methods concern the probability of constraints satisfaction facing aleatory 
uncertainly, robust design optimization (RDO) aims at minimizing the variations of the 
performance under epistemic uncertainty (no distributions on the input variables). Although 
there is still not a clear definition of robustness in engineering, most of the authors agree to 
say that robust design aims at sizing systems which are intrinsically low sensitive to all 
sources of uncertainty, rather than trying to reduce or control them [Park 2006, Beyer 2007]. 
Concepts of robustness and RDO have been developed simultaneously in the fields of 
operational research (OR) [Mulvey 1995] and engineering design. 

In engineering, robust design has been initiated by G. Taguchi in quality engineering 
[Taguchi 1984, Taguchi 2004]. The methodology proposed by Taguchi is divided into three 
steps. In particular, the phase of parameter design aims at optimizing design parameters in 
respect with the variations of performances under noise factors. Taguchi introduces a “signal-
to-noise” ratio (SNR) to evaluate the robustness of a selected configuration. This ratio is 
generally expressed as follows: 

y
SNR 10log

 
= −  σ 

 (2.4.4.1) 

where y represents the mean performance and σ represents the standard deviation. However, 
the methodology proposed by Taguchi doesn't really use an automated optimization process to 
maximize the SNR since he suggests the use of design of experiments (DOE) for designing 
evaluation of design solutions robustness. This approach is therefore limited by the number of 
alternatives and the number of design variables. Controversial debates about the Taguchi 
methods are summarized in [Nair 1992]. 

According to figure 16, point B corresponds to a robust optimal solution. However, the 
selection of this solution implies the decreasing of the performance. Although in this case, the 
robust optimum solution is also reliable, in general, robustness doesn't imply reliability, and 
inversely, reliability doesn't mean robustness. Robust solutions closed to the bounds of the 
feasible domain may present slight performance variations around their nominal values, and 
then, fall beyond the admissible limits. On the contrary, reliable optimal solutions may 
present important performance variations while remaining within the feasible domain. 
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Figure 16. Representation of different optimal solutions achieved by optimization methods under uncertainties: 
(A) Reliable-based design optimization, (B) Robust design optimization and (C) Deterministic optimization 

Reviews of existing RDO methodologies and methods are presented in [Beyer 2007, 
Arvidsson 2008, Schueller 2008]. While many RDO techniques developed in the past few 
years are based on the computation of the mean performance and standard deviation [Brotchie 
1997, Parkinson 1997, Du 2000b, Ardakani 2009], some of them have proposed to tackle 
robust design as MO problems [Chen 1996, Chen 1999, Greiner 2011]. In fact, using the MO 
formulation (2.3.1.1), RDO problems can be formulated as follows: 
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where Vf is a variation measure of the performance f. It is equivalent to trade performance 
against variability. Although, trade-off between performance and variability has already been 
tackled in some recent studies [Chen 1999, Du 2004], this approach seems to be still not 
extensively applied in industry. 

2.5 Summary 

Fundamental notions and concepts related to formal design theories and methodologies are 
introduced in this chapter. The FBS ontology proposed by John Gero offers a suitable 
framework to link real and expected behaviour in design and thus enables to situate 
optimization in engineering design. Some of the topical issues, priors work and future 
challenges related to address engineering problems with optimization techniques are also 
presented through this chapter. In particular, it highlights that most of these techniques have 
not meet yet designer’s needs in industry. The development of suitable tools dedicated to 
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support decision making in embodiment design is thus required to improve the whole design 
process of machines.  

The research work presented in this thesis uses the Gero’s FBS framework to develop a 
modelling methodology for embodiment design problems. In particular, we propose a 
preference model to link physical behaviour, design criteria and objectives, with an 
observation, interpretation and aggregation decomposition. While design optimization 
involves generation and evaluation of solutions, we focus here on how candidate solutions can 
be evaluated and ranked according to the design requirements and designers’ intentions. 
Finally, as optimal solutions are often disturbed by inherent uncertainty, it is obvious that they 
must also be robust. Two levels of robustness are considered here. While the first level of 
robustness concerns the sensitivity of systems performances facing physical uncertainty, the 
second level of robustness deals with uncertainty of the choice and tackle trade-off between 
two design objectives, namely (1) the improvement of the overall performance and (2) the 
minimization of the performances' variability. Therefore, a more relevant definition of 
robustness in engineering may be that a robust design solution is a solution whose 
performance is desirable in regards to its sensitivity under uncertainty. The formulation of 
these two types of robustness within a global robust design approach is one of the salient 
points developed in this thesis. 
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CHAPTER 

CHAPTER 3 Preference modelling in 

Engineering Design 

Preference modelling has a central role in engineering design to support decision-making and 
guide designers toward the most preferred solutions. As the selection of a particular 
methodology can impact the outcomes of decision-making, different approaches result in 
different final solutions for the same set of preferences. Thus, the best fit for a given design 
problem mainly depends on the ability of methodologies to reflect the intentions of the 
designer through the set of assumptions on which methodologies are based. Facing with 
multiple criteria, one possibility for preference assessment is to determine individual 
preference functions, and then, generate adequate aggregation strategies to form a single 
global criterion, used as a metric for alternatives evaluation. This chapter aims to introduce 
the main concepts and issues related to preference modelling in engineering design. Three 
different approaches, namely utility theory, method of imprecision and desirability index, are 
presented and discussed according to their ability in modelling preferences in engineering 
design. 

3.1 Concepts and definitions 

3.1.1 Alternative and attribute 

Any formal methods developed in decision theory aims to model and compare the 
acceptability of different alternatives. In economics, alternatives are usually regarded as 
bundles of goods, and are often represented as vectors, in which each position represents a 
specific good. The scalar value associated to this position denotes the number of units of this 
goods. In engineering design, the definition of alternatives depends on the stage of the design 
process. In conceptual design, alternatives are often abstraction of products, represented as 
whole artefacts, whereas in embodiment and detailed design, alternatives designate 
combinations of design variables values describing products. 

Definition:  In embodiment design, a design alternative X is represented as a vector of 
controllable design variables x=[x1, x2,…,xn]

T

 
whose scalar values quantify the main 

characteristics of the system to be designed and enable to differentiate two alternatives 
between them. 

Alternatives evaluation is based on their attributes which refer to some properties of the 
system, performance measures or objective achievement indicators. 

3.1.2 Preferences and order of relation 

The basic concept in ranking alternatives is the simple comparison. This comparison involves 
no association of numbers with alternatives, but only the idea that an alternative A is preferred 
to an alternative B. A ranking method involving a simple comparison between two 
alternatives A and B is a weak order of relation. 
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Definition: A weak order of relation among a set of alternatives X is a binary transitive 
relation ≻ such that A B,∀ ∈ X , A B≻  (A is at least as preferable as B), or A B≺  (B is at 
least as preferable as A). The indifference relation A B∼  is obtained when A B≻  and A B≺ . 
In this case, A and B are equally preferred and it is impossible to perform a direct rational 
choice. Inversely, the strict preference relation A B≻  (A is strictly preferred to B) is 

equivalent to A B≻  and A≺B. 

A weak order ranking is an ordinal ranking. Alternatives are ranked alternatives without 
assigning any numerical scalar quantities. However, any computational method in decision-
making requires the definition of an interpretable numerical scale of value to sort alternatives 
according to a cardinal ranking. 

3.1.3 Value functions 

Cardinal ranking of alternatives consists in interpreting preferences in term of value. Value is 
commonly defined as a numerical quantity used to illustrate the goodness of the attributes of 
alternatives. Utility, desirability and level of acceptability are common value used to measure 
preference. A value function designates the mapping between the weak ordered set of 
alternatives and the scale of value. 

Definition:  A value function v is an assignment of scalar values to alternatives such as the 
weak order of acceptability among these alternative is preserved. It allows the construction of 
a model of preference such as ( ) ( )A B iff A Bv v≥≻ . In general, a value functions maps the 

levels of alternatives' attributes onto the interval [0,1]. 

While it is always possible to derive a value function from a weak order relation [Krantz 
1971], there is nothing inherent in the definition of value function for the quantification of the 
level of acceptability or degree of satisfaction achieved by alternatives. In other words, 
beyond a set of alternative, there is a possible interpretation of the relative value. Therefore, 
preference modelling requires additional information about the structure of value functions. 

  

(a) (b) 

Figure 17. Two basic value functions: (a) “bound low values is better” and (b) “close to a target value is better” 
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The selection of a particular structure for a value function should reflect the designer's 
interpretation of preferences. Value functions used in engineering design often models three 
major intentions which can be expressed as follows: “bounding low values is better”, the 
“bounding high values is better” and “close to a target value is better”. A value equal to one 
means that design attributes completely meet the designer's expectations, whereas a value 
equal to zero reflects the inadequacy of design attributes with design requirements. Between 
these extreme values, the behaviour of the value function intends to model variations of 
designer's preferences according to attributes values. 

Figure 17 represents two basic value functions. On figure 17a, the value function in crisp 
form (plotted in dashed line) implies that a property with a value y=5+ε (ε→0) is completely 
satisfying, whereas the same property with a value y=5–ε (ε→0) is regarded as completely 
unsatisfying. This is obviously not suitable to model preference since extremely close 
property values result in two extreme different values. Change of preference value is actually 
progressive with the gain of value of the property. A more convenient model is represented by 
the function plotted in solid line on figure 17. This function indicates a progressive transition 
of the preference from the not satisfying property value v(y)=0 to the most satisfying property 
value v(y)=1. 

In the following, we present three different value functions for preference modelling in 
engineering design, namely multiattribute utility functions, preference functions of the 
method of imprecision and desirability functions. 

3.2 Utility theory 

3.2.1 Introduction 

Utility theory is an analytical method based on a probabilistic model to support multicriteria 
decision-making under risk and uncertainty. Utility is defined as a numerical quantity lying in 
the range [0,1] which is used to illustrate the goodness of alternatives’ attributes under 
uncertainty. Originally developed in economics, utility theory has been extensively used in 
the past few years to design products and systems [Hazelrigg 1996, Lewis 2006]. 

Utility theory fundamentals consist in a set of axioms restricting the way by which 
designers can express preferential judgments among a set of alternatives facing risk and 
uncertainty. Under these assumptions, utility theory is the only way to provide consistent 
outcomes with designers’ preferences. In this approach, preference modelling is based on 
lottery assessments from which single-preference utility functions u(y) and scaling constant 
are derived. 

3.2.2 Assessment of utility functions 

According to the von Neumann-Morgenstern axioms [Von Neumann 1947], a single-attribute 
function (SAU) can be derived from designer's judgment facing a lottery assessment. SAUs 
are defined as monotonic function with a utility ubest=1 for the most preferred attribute value, 
and with a utility uworst=0 for the less preferred attribute value. These functions model 
designers’ compromises between the best and worst cases according to the priority orders 
derived from the lottery assessment [Keeney 1993]. 

The definition of SAUs is based on the notion of certainty equivalent. A certainty value 
can be regarded as a guaranteed outcome facing a lottery between the two extreme values, in 
which there is a probability p0 for obtaining the best value and a probability 1–p0 for obtaining 
the worst value. A probability p0=1 results in the selection of the lottery, whereas a 
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probability of p0=0 results in the selection of the certainty. The value of the indifference 
probability p0 corresponds to the utility of the certainty equivalent which is equal to the 
mathematical expectation of the lottery outcome. While lottery questions are necessary to 
describe the implications of attributes between them, analytical function formulations (linear, 
exponential) are required to describe the preference structure of SAUs. 

 
Figure 18. Typical lottery assessment [Krishnamurty 2006] 

As an example, figure 18 illustrates a typical lottery assessment for the cross-section of an I-
beam [Krishnamurty 2006]. In this case, a cross-section area of 500cm² represents a 
guaranteed result (certainty) compared to the two lottery outcomes in which there is a 
probability p0 of obtaining the best value of 250cm² and a probability (1-p0) of obtaining the 
worst value of 900cm². Here, the best value (250cm²) may refer to the lowest admissible 
cross-section area according to safety criteria, whereas the highest value (900cm²) can be 
determined from costs considerations. Therefore, the utility of the certainty equivalent 
(500cm²) corresponds to the mathematical expectation of the lottery which is expressed as 
follows: 

( ) ( ) ( ) ( )2 2 2
0 0500cm p 250cm 1 p 900cmu u u= ⋅ + − ⋅  (3.2.2.1) 

While decision problems involve multiple attributes, it is necessary to define a multiattribute 
(MAU) function to evaluate the alternatives overall utility. The overall utility over a set of n 
attributes values u(y1, y2,…,yn) can be either directly estimated over the values of the n 
attributes, or computed from the mathematical combination of n SAUs functions ui(yi) 
through some scaling constants. The structure of MAU functions can be provided with 
additive, multilinear or multiplicative formulations. Due to its relative simplicity, additive 
formulation is the most popular form. In this case, the MAU to be maximized is expressed as: 

( ) ( )
n

1 2 n i i i
i 1

y y y k u yu , , ,
=

… = ⋅∑  (3.2.2.2) 

where ki refer to scaling constants (weights). These constants reflect the designer's 
preferences about attributes. They can be determined by evaluating the marginal rate of 
substitution of one objective in term of another or by lottery assessment. 

3.2.3 Why does utility theory partly fail to meet designers' needs in engineering 

design? 

According to Scott [Scott 1999], utility theory intends to treat decision-making problems 
under probabilistic uncertainty or risk, rather than intend to define solutions of multicriteria 
decision problem. Although the lottery assessment seems to be suitable to derive numerical 
scale of value for preference assessment facing risk and uncertainty, engineering design may 
not fall into these assumptions, and consequently, the definition of SAUs are no longer 
relevant. 
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Indeed, utility theory had been initially developed to deal with a particular range of 
problems, in which the estimation of expectation for each alternative is regarded as the most 
relevant information. For example, in production stages, it can be suitable to use utility theory 
to deal with the probability distributions linked to manufacturing tolerances. However, early 
stages of the design process differ from classical decision problems by the existence of 
epistemic uncertainties, incomplete data and high degree of imprecision due to a lack of 
knowledge about the design. Thus, design variables and performance measures (attributes) 
values change without any probability distribution, falling out of the scope of utility theory. 

Moreover, while engineering design is a goal-directed activity in which multiple 
preferences are expressed from different experts involved in the design process, the 
assumptions of utility theory make difficult any interpersonal comparison of utility 
(preference) between multiple attributes. 

Finally, according to Keeney [Keeney 1993], the additive form used in MAU fails to 
completely capture designers' intentions in engineering design. Additive formulation implies 
that any decrement of the overall preference (utility) caused by any changes of one 
performance variable value, is always compensated by an increment of any other performance 
variable value. This reflects for example the behaviour of a designer who wishes to 
compensate an increase of the overall mass of the system by an appropriate decrease in costs. 
Although the notion of compensatory is inherent in design, the compensatory situation 
modelled by the additive form of utility does not always map the intentions of designers. 
Others trade-off strategies can be expected by designers. For example, in engineering design, 
alternatives are often considered as unacceptable if at least one of the attributes doesn’t meet 
design criteria. Such a situation is modelled in the method of imprecision (MoI) through the 
axiom of Annihilation, and thus, represents a fundamental difference between these two 
approaches. 

3.3 The Method of Imprecision 

The Method of Imprecision (MoI) was initiated by Anthonsson and Wood [Wood 1989] to 
deal with the inherent levels of imprecision in preliminary design. It is based on the 
assumption that the imprecise information in engineering design can be handled and modelled 
by formal methods. In the past few years, the MoI has been developed through many research 
works [Otto 1991, Antonsson 1995, Scott 1998, Scott 1999, Scott 2000] which are 
synthesized in [Anthonsson 2001]. 

Preferences of MoI are modelled by mapping the design space (or the performance space) 
onto the interval [0,1]. They are expressed on an absolute scale of value where a preference 
p=1 indicates a completely acceptable value, and a preference µ=0 indicates a completely 
unacceptable value. Preference function of the MoI does not express vagueness like in fuzzy 
set theory, but the wish of designers to use a particular value within the admissible range. 
Unlike utility theory, the notions of acceptability and desirability are here fundamentals. 

Preference functions concern the performance, expressing some requirements for potential 
performance values or the design space, modelling some non-formalized considerations about 
design variables. While the definition of performance preference functions is partly objective, 
since it is based on design requirements, the specification of design preference functions 
depends on the subjectivity of designers. For example, they can be derived from interpolation 
between data points.  

However, the MoI does not provide guidelines, or methods, about how the designer should 
specify an individual preference function for a specific performance measure or design 
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variable. In particular, the method suffers from a lack of some effective techniques to handle 
and interpret the degree of constraint satisfaction. 

The MoI rather focuses on the combination of the individual preferences into an overall 
preference. As it is often impossible to maximize simultaneously every individual preference, 
the MoI is interested in the definition of appropriate aggregation operators to model trade-off 
strategies in engineering design. Overall preference involves all individual preferences and is 
expressed as [Scott 1998]: 

( )1 n 1 np p p w w n *, , ; , , ,= ∈… … ℕP  (3.3.1) 

where the overall preference p results from the combination of the n individual preferences pi 
through the aggregation function P and the weighting parameters wi. However, all aggregate 

operators are not suitable to model rational decisions. A fundamental result of the MoI is the 
definition of relevant aggregation function for preference modelling in engineering design. 

3.3.1 Axioms of the MoI 

The development of the MoI as a formal theory intends to formalize the intuitive notions of 
the rational human behaviour within a set of axioms that aggregation functions must satisfy. 
These axioms form a consistent basis to set restrictions on any preference aggregation 
function for rational preference modelling in engineering design [Otto 1992]. The axioms of 
the MoI are illustrated in table 5 and are detailed in [Scott 1998].  

For example, the Continuity axiom implies that an increase of preference on a particular 
attribute should never result in a decrease of the overall preference, while the Symmetry axiom 
indicates that the overall preference should only depend on the assigned individual 
preferences, independently of the order in which they are expressed. 

Axioms Formulation 

Monotonicity 
( )( ) ( )( ) ( ) ( )
( )( ) ( )( ) ( ) ( ) ( ) ( )

1 2 1 2 1 2 1 2 2 2

1 2 1 2 1 2 1 2 2 2 1 2

w w p w w

w w w w w w

' '

' '

P p , p ; , P p , ; , p p

P p , p ; , P p , p ; , ; p p

≤ ∀ ≤

≤ ∀ ≤ <

x x x x

x x x x x x
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Continuity 
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Idempotency ( )( ) ( )1 2 1 2w w w w 0P p, p; , p= ∀ + >x x  

Annihilation ( )( )1 2 20 w w 0 w 0P p, ; , = ∀ ≠x  

Self-scaling weights ( )( ) ( )( )1 2 1 2 1 2 1 2 1 2w t w t w w w w t 0P p , p ; , P p , p ; , , ,⋅ ⋅ = ∀ + >x x  

Zero weights ( )( ) ( )1 2 1 1w 0 w 01P p , p ; , p= ∀ ≠x x  

Table 5. Axioms of the MoI for design appropriate aggregation functions 

Axioms of Idempotency and Annihilation are specific to engineering design and differentiate 
MoI from other approaches in multicriteria decision-making. The Idempotency axiom refers 
to the notion of rational behaviour and states that if several identical individual preferences 
are combined, then the resulted overall preference must be equal to the individual preferences. 
This axiom has major implications for the specification of consistent preference functions 
through the simultaneous comparison of attributes. As previously mentioned, the axiom of 
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Annihilation implies that if one individual preference is equal to zero (unacceptable attribute 
value), then the resulted overall preference should be equal to zero too (unacceptable 
alternative). This differentiates engineering design from most of classical decision-making 
problems where objectives can always be traded-off. 

3.3.2 Design-appropriate aggregation functions 

According to Scott [Scott 1991], an aggregation function is said to be design-appropriate if it 
satisfies every axioms of the MoI. In particular, Scott suggests the class of weighted means as 
a family of aggregation functions in engineering design, and shows that any weighted mean 
satisfying the Annihilation axiom is design-appropriate. The general form of the weighted 
mean aggregation functions can be expressed as follows: 

( )
1

s s s
1 1 2 2

s 1 2 1 2
1 2

w w
w w s

w w

p p
P p , p ; , ,

 += ∈ + 
ℝ  (3.3.2.1) 

where s is the trade-off strategy parameter, also called compensatory level parameter. From 
this general expression, changes of the parameter s values results in the generation of 
weighted mean aggregation functions. In particular: 

� the min aggregation function Pmin while s→–∞ 
� the weighted geometric mean (or weighted product) aggregation function P0 for s=0 
� the weighted arithmetic mean (or weighted sum) aggregation function P1 for s=1 
� the max aggregation function Pmax while s→+∞ 

Further details are provided in Annex 1. According to the Annihilation axiom, design-
appropriate aggregation functions correspond to the set of weighted means generated while 
s≤0. In particular, the min aggregation (s→–∞) and the weighted geometric mean aggregation 
functions (s=0) are both design appropriate. The weighted sum aggregation obtained for s=1 
is therefore considered as not design appropriate within the MoI framework. 

 
Figure 19. Representation of the weighted mean aggregation functions continuum 

Figure 19 illustrates the continuum of weighted mean aggregation functions generated while 
the value of the parameter s is spanning its domain of values. Actually, it is not a real 
continuum since there is a discontinuity for s=0. The compensatory level of the aggregation 
function increases progressively with the value of s. Aggregation functions can be thus 
classified into non-compensatory, compensatory and super-compensatory aggregation 
functions. Super-compensatory aggregation functions are generated while s>1 and thus, are 
not design appropriate. 
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In particular, the weighted geometric mean aggregation (s=0) is compensatory. It is 
denoted as aggressive strategy by Otto [Otto 1991] since it traduces the intention of 
improving the overall preference by worsening the lowest individual preference. Indeed, 
design optimization is often hampered by one criterion which is more difficult to satisfy than 
the others. On the contrary, the min aggregation is non-compensatory. It is denoted as 
conservative strategy by Otto, since in this case, designers expect to improve the lowest 
individual preference against a decrement of the overall preference. 

3.4 Desirability approach in engineering design 

3.4.1 Desirability and Utility 

Desirability is a preference measurement which reflects the level of satisfaction achieved by 
design alternatives’ properties according to designers’ point of view. Since Harrington has 
introduced the concept of desirability and desirability functions to deal with multicriteria 
optimization in quality engineering [Harrington 1965], this approach has been massively used 
to tackle MO problems in a large range of scientific areas including engineering design 
[Derringer 1980, Derringer 1994, Kim 2000, Réthy 2004, Trautmann 2005, Trautmann 2009, 
Kruisselbrink 2009, Chen 2011]. However, the basis and implications of the desirability 
concept in engineering design are still unclear. 

In fact, there is some ambiguity between the notions of desirability and utility in 
engineering design, and the “desirability” of an alternative often refers to its utility value 
[Keeney 1993]: 

“Expected utility theory ... can provide a normative analytical method for obtaining the 
utility value ("desirability") of a design ...” Krishnamurty, 2006 

“A natural measure of the desirability of choice ... is the expected maximum utility”, 
Kenneth, 2006 

Facing the lack of clear definition of desirability in engineering design, we intend to cover 
this issue in the following by proposing definitions of desirability and utility in different fields 
of science and insights on how they are closely related. 

a. Desirability/Utility in economic sciences 

In economics, Fischer [Fischer 1906] discusses utility and desirability of goods where 
“goods” refer to any services, properties or wealth. According to his point of view, utility is 
linked to the satisfaction of the desire rather to the desire itself. Utility requires experience 
and duration in time for its existence, whereas desirability is defined rather as the intensity or 
the strength of individuals’ desire for goods under certain conditions. Desirability merely 
reflects the state of individuals’ mind at a particular moment. However, the concepts of utility 
and desirability are closely linked since the desirability of goods represents the current esteem 
on which future satisfactions are based. 

Moreover, the term “utility” in economics also covers technical meaning and often refers 
to money. Utility is a financial compensation resulting from a monetary exchange. For 
example, diamonds are commonly considered as ornamental artefacts, and thus, are useless by 
definition, whereas in economics, they are regarded as useful. 

Finally, it can be useful to distinguish total desirability which is defined as the desirability 
of an entire group of goods, from the marginal desirability which is the desirability associated 
to the loss or the gain of one more good within the group. 
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b. Desirability/Utility i
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In UX, desirability is required to make attractive product in regards of what is commonly 
admitted as desirable in the society. It is a measure of the desire intensity for a product. 
However, focusing on the desirability aspect may results in unintuitive or excessive products. 
On the contrary, utility is of practical implications. It implies that systems do what they are 
expected to do. In return, systems may require additional efforts for control or use. 

d. Summary 

According to the different views of desirability and utility met in different fields of science, it 
appears that desirability and utility are considered as two separate and distinct concepts which 
are closely linked. Therefore, the same distinction should be made in engineering design. 

Desirability doesn’t express preference under risk or uncertainty like utility, but rather 
intend to model experts knowledge and designers’ judgment about how should be designed. It 
reflects the level of satisfaction (or the desire intensity) of designers for particular design 
property values. Desirability links objective and subjective knowledge about the system to be 
designed in respect with requirements and designers’ past experiences. 

Through desirability functions, designers can express their so-called “feel for design” 
[Hubka 1975] which refers to the ability in estimating appropriate dimensions, forms, 
temperatures or performances of a design, without any calculations. This subjective 
knowledge is developed through past experiences and is generally formulated as experts' 
rules, heuristic advises or guidelines. For example, larger dimensions and smooth transitions 
favour the mechanical strength in the higher stressed areas of mechanical systems. In the 
same way, progressive changes of pipe cross-sections with the largest possible channel radius 
are suitable for fluid flowing. Such expert knowledge is fundamental to tackle any design 
problem. It provides additional non-formalized information (i.e. more constraints and less 
degrees of freedom). This enables to distinguish early undesirable design solutions and to 
converge quickly toward the most desirable ones. 

Therefore, desirability enables to model preferences related to the true knowledge of 
designers about design. It is not concerned neither with risk, nor imprecision, but with the 
level of satisfaction resulting from the adequation between the real behaviour of alternatives 
and the expected behaviour expressed by designers. 

3.4.2 Desirability functions 

Desirability functions are value functions which express the level of satisfaction of designers 
for attributes values according to the design requirements and his expectations. They are non-
dimensional, monotonous, or piecewise monotonous functions, whose values are ranged in 
the interval [0, 1]. A desirability d=0 represents an unacceptable property value, whereas a 
desirability d=1 represents a completely acceptable property value such as slight 
improvements of this property will not further change its level of satisfaction. In particular, 
desirability functions can be used to model the degree of satisfaction associated to one 
particular design criteria. Two classes of desirability functions, namely Harrington's 
desirability functions and Derringer's desirability functions are usually used in multicriteria 
optimization problems. 

a. Harrington's desirability functions 

In 1965, Harrington [Harrington 1965] proposed two types of continuous desirability 
functions to deal with MO problem. While the one-sided formulation is suitable to reflect 
“bounding low values is better” and “bounding high values is better”, the two-sided 
formulation is used to express that “closer to a particular target value is better”. The general 
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Harrington's one-sided desirability function for bounding low values (minimization) is 
expressed as: 
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where the parameters AC and SL refer respectively to an absolute constraint and a soft limit 
such as SL<AC. This function is represented on figure 21. In the same way, the Harrington's 
one-sided desirability function for bounding high values (maximization) is expressed as: 
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 (3.4.2.2) 

where the parameters AC and SL are such as AC<SL. In general, the desirability levels 
associated to the desirability function parameters are such as dH(AC)=0.01 and dH(SL)=0.99. 
But, other desirability values can be assigned to the AC and SL bounds according to design 
requirements and designers’ intentions. While AC bounds correspond to the strict satisfaction 
of design criteria, SL bounds are related to the flexibility of design requirements. 

 
Figure 21. Representation of the one-sided Harrington's desirability function 

As an example, figure 21 represents the desirability function associated to the mass 
requirements of the two-staged flash evaporator described in chapter 6. This system has been 
designed for must concentration in the wine industry. As the evaporator must be transportable 
from a production site to another, the mass requirements has been derived from the 
dimensions and maximal carrying capacities of medium-sized flat bed trucks (PTAC<7.5t). 
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Moreover, as explained in section 6.4.1, existing evaporators proposed by competing 
constructors can be used to define reference systems with a mass of intermediate desirability 
dH(Massref)=0.5 with Massref=5.3t. From these considerations, the preferences related to the 
mass of the two-staged flash evaporator are modelled by specifying the Harrington’s 
desirability with AC=7.5t, SL=5.3t, d(AC)=0.01 and d(SL)=0.5. The basic value function 
associated to these constraints has also been plotted in dashed line. Compared to this basic 
modelling, Harrington’s function presents progressive desirability variations approaching the 
bounds. As a consequence, the desirability of alternatives with a mass of 7.5t+ε (with ε→0) is 
very low but not null. This actually models the preference of designers facing alternatives 
which are closed to the admissible limits of the design problem. Although these alternatives 
do not satisfy constraints, they can remain relevant for designers, and therefore, their level of 
desirability should not be null. 

The Harrington's two-sided desirability functions are specified with four parameters, 
namely: a lower absolute constraint (ACL), a lower soft limit (SLL), an upper soft limit (SLU) 
and an upper absolute constraint (ACU). The general form of the Harrington's two-sided 
desirability functions is expressed as follows: 
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However, the initial formulation proposed by Harrington doesn't support non-symmetric 
boundaries. There are three possibilities to make symmetric boundaries: (1) use absolute 
constraints boundaries and use a soft limit to determine n, (2) use soft limits boundaries and 
use a constraint limit to determine n, or (3) use an average value between absolute constraints 
and soft limits boundaries, and then use a constraint limit to determine n. 

 
Figure 22. Representation of the two-sided Harrington's desirability function 
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Figure 22 represents the two-sided Harrington's desirability function associated to the 
temperature requirements for the vintage at the outlet of the previous two-staged flash 
evaporator. As it is explained in chapter 6, the continuity and efficiency of the fermentation 
process is ensured for temperatures comprised 25°C and 30°C. Therefore, the related 
desirability function has been specified with ACL=20°C, SLL=25°C, SLU=30°C and 
ACU=35°C. The basic value function associated to these constraints has been plotted in 
dashed line. The different curves plotted in solid line correspond to the two-sided Harrington's 
desirability functions specified with the three types of symmetric boundaries given in the 
relation (3.4.2.3). 

b. Derringer's desirability functions 

In 1980, Derringer [Derringer 1980] has proposed another class of desirability functions to 
balance multiple responses in quality engineering. He used a modified formula of the 
Harrington’s desirability functions combined with a response surface methodology to form a 
so-called Desirability Optimization methodology (DOM). Unlike Harrington's desirability 
functions, Derringer's desirability functions are discontinuous and piecewise-defined 
functions. The general form of the Derringer's one-sided desirability function for bounding 
low values (minimization) is expressed as: 
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where the parameters U and L refer designate respectively the upper and lower bounds such 
as L<U (see figure 23). In the same way, the Derringer’s one-sided desirability function for 
bounding high values (maximization) is expressed as: 
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The parameter l is used to modify the variations of desirability between the bounds. Assigning 
different values of this parameter modifies the shape of the desirability function and thus, 
enables to fit the designer’s preferences. Figure 23 represents the Derringer's desirability 
function related to the mass requirements of the two-staged flash evaporator. In this example, 
from the relation (3.4.2.4), the Derringer's desirability function with a lower bound of L=4.5t 
and an upper bound U=7.5t. The value of the parameter l has been determined according to 
the mass of the reference system with an the intermediate desirability dD(5.3t)=0.5. From 
relation (3.4.2.3), it follows that: 

( ) 5 3 7 5
l 2 2.2348

4 5 7 5

. .
log / log

. .

− = − = − 
 (3.4.2.6) 

It can be noticed that the basic desirability function is obtained for l=1. However, unlike the 
formulation proposed by Harrington, the use of Derringer’s desirability functions implies that 
every solution with a mass lower than 4.5t are equally preferred, since dD(Mass≤4.5t)=1, and, 
in the same way, every solution with a mass higher than 7.5t are undesirable since 
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dD(Mass≥7.5t)=0. Therefore, the existence of such threshold values does not enable to rank 
neither completely satisfying solutions between them, nor undesirable solutions between 
them. 

 
Figure 23. Representation of the one-sided Derringer’s desirability function 

For target problems, the formulation of the Derringer's two-sided desirability function 
requires the specification of five parameters. Two parameters are required to set the lower and 
upper bounds, another specifies the target values, and finally, the two last parameters are used 
to adjust the slope of the function on both sides of the target value. The general form of the 
Derringer's two-sided desirability functions is expressed as follows: 
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where T represents the target value. The parameters (l, u) can be set independently to 
approach the target value in different way from both sides. Figure 24 represents the target 
temperature requirements linked to the design of the previous flash evaporator. The two-sided 
Derringer's desirability functions have been specified with L=20°C, T=27.5°C and U=30°C, 
and have been plotted for different values of (l,u). The three functions model different 
designer’s intentions, in particular in regards to the variations of preferences approaching the 
bounds and the target value. According to this modelling, only solutions presenting an outlet 
temperature equal to the target, i.e. 37.5°C, achieve a desirability value equal to one. 
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Figure 24. Representation of the two-sided Derringer’s desirability function 

c. Summary on desirability functions 

Although the specification of Derringer’s desirability function is easier than Harrington’s, 
they are less suitable to accurately express designers’ preferences. Due to the threshold 
values, Derringer's formula don’t differentiate the most satisfying design solutions between 
them (d=1) and unacceptable design solutions between them (d=0). Therefore, a ranking 
between “good” (or “bad”) cannot be established. 

On the contrary, due to their exponential form, Harrington's desirability functions allow 
progressive desirability variations approaching the bounds, and consequently, assign different 
desirability scores to every design performance value. Consequently, using Harrington’s 
desirability functions in design problem are used to rank the whole set of solutions, including 
acceptable and unacceptable solutions. 

According to the example illustrated on figure 21, it may happen that there is no solution 
satisfying the absolute constraint of 7.5 tons. Harrington's desirability functions overcome this 
difficulty by providing a soft formulation of constraints. Due to the monotonicity of the 
functions; even if the absolute constraint has been violated, the desirability value of the 
performance measure remains very low but not null. Consequently, a design solution with a 
performance value equal to 7.5 t+ε will remain relatively desirable, and the design problem 
can be solved.  

To conclude, Harrington's desirability functions appear to be relevant functions to interpret 
properties values and model preference based on design requirements and designers’ 
expectation. Once individual desirability functions have been specified on every property, 
they are then aggregated into single global criterion called Desirability Index (DI). This 
criterion represents the overall level of desirability achieved by design solutions and is used as 
a metric for their evaluations. 
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3.4.3 Desirability Index 

Derringer proposed to aggregate individual desirability function into a single Desirability 
Index (DI) using a weighted geometric mean aggregation [Derringer 1960]. As a function, the 
DI is expressed as follows: 

( ) ( ) i
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i i i
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y   with   w 1DI d
==

= =∑∏y  (3.4.3.1) 

where wi represents the numerical weight assigned to the ith desirability function. Numerical 
weights reflect the relative importance of properties between them. DI corresponds to the 
overall desirability of a design solution over all its properties. As it is still a desirability level, 
it lies in the interval [0,1]. The formulation of the DI as the average of the individual 
desirability scores enables synthesizing the set of preferences expressed on the design. This 
reduces the number of criteria and consequently, allows a direct comparison of alternatives. 
Derringer has proposed a weighted geometric mean to aggregate the desirability functions 
into a single desirability value. This proposition results from the statement that during most of 
product development processes, a single property with an unacceptable value makes the 
product useless (Annihilation axiom of the MoI). 

 
Figure 25. Representation of the Desirability Index for different weight assignments 

Figure 25 illustrates the influence of the weights on the DI values for an aggregation of two 
individual Harrington’s desirability functions, namely d1(y) and d2(y). According to the 
relation (3.4.2.1), the desirability function d1 has been specified with SL=0.4 (d1(SL)=0.99) 
and AC=0.6 (d1(AC)=0.01) using the relation (3.4.2.2). The desirability function d2 has been 
specified with AC=0.1 (d2(AC)=0.01) and SL=0.9 (d2(SL)=0.99). The weight w2 is expressed 
as w2=1-w1, and the weight w1 is decreased from 1 to 0 with a step of 0.25 to generate the 
different DI functions. When w1=1, it results that w2=0 and DI1(y)=d1(y). Inversely, when 
w1=0, it comes that w2=1 and DI0(y)=d2(y). Decreasing the value of w1 makes DI(y) to 
deviate from d1(y) and it tends toward d2(y). As DI(y) is expected to be maximized, another 
interesting point concerns the variations of the optimum with the weights. According to this 
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figure, points A, B, C, D and E correspond respectively to the optimum of the functions 
DIw1=1, DIw1=0.75, DIw1=0.5, DIw1=0.25 and DIw1=0. These points correspond to the optimal solutions 
resulting from the optimization of the DI functions. The DI scores linked to these solutions 
are such as: 

( ) ( ) ( ) ( ) ( )
1 1 1 1 1w 0 25 w 0 5 w 0 75 w 1 w 0

D C B A E
. . .

DI DI DI DI DI
= = = = =

< < < =  (3.4.3.2) 

However, the relation (3.4.3.2) does not induce a preference relation order between these 
solutions. In fact, these solutions correspond to different optimization problems, and thus, 
cannot be directly compared. Therefore, the ranking of solutions resulting from the 
optimization of DI functions is possible only for a given set of weights. For example, for 
w1=0.5, the comparison of the solutions B and C requires the computation of DI(B)w1=0.5 and 
DI(C)w1=0.5. In chapter 5, it is explained that variations of weight combinations enables to 
determine optimal solutions along the Pareto frontier. 

Later, another approach is proposed by Kim and Lin [Kim 2000] to avoid the use of 
numerical weights. They suggest an aggregation function based on the minimum of the 
individual desirability scores. The DI is then expressed as follows: 

( ) ( )( )i i
i 1 k

yDI min d
=

=y
…

 (3.4.3.3) 

While the optimization of the aggregation function proposed by Derringer (weighted 
geometric mean) enables to improve the DI value by worsening the lowest individual 
desirability score, the aggregation formula suggested by Kim and Lin aims to improve the 
lowest individual desirability against a decrement of the overall desirability (DI value). 
According to the axioms of the MoI, these two aggregation functions are design appropriate, 
and thus, are suitable to model preference in engineering design (for details see section 3.3). 
Consequently, we propose here to combine the concept of desirability with the concept of 
design appropriate aggregation functions. The formulation of the DI is thus extended to the 
class of weighted means as follows: 
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As it is explained in section 3.3, only aggregation functions generated with s≤0 are design 
appropriate. Figure 26 illustrates the impact of the parameter s (s≤0) on the DI values for an 
aggregation of the two previous desirability functions d1(y) and d2(y) according to the relation 
(3.4.3.4). The weights are set such as w1=w2=0.5. The formulations proposed by Derringer 
and Kim correspond respectively to DIs=0 and DIs→–∞. Decreasing the value of s causes a 
decrement of the compensatory level between the two desirability functions. For high 
negative values (s<–10), the generated aggregation functions tend quickly toward the min 
aggregation function (DIs→–∞). On the interval [0;0.5], the min aggregation function leads to 
DI(y)s→–∞=d2(y), whereas on the interval [0.5,1], it leads to DI(y)s→–∞=d1(y). Like weight 
assignment, variations of the trade-off parameter value also modify the optimum of the DI 
function. Each value of s corresponds to a particular trade-off strategy and leads to a specific 
type of solution. This is further discussed in chapter 5 where a procedure to determine 
consistent values of s according to designers’ preferences is presented. 
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Figure 26. Illustration of the Desirability Index for different values of trade-off strategy parameter (s) 

3.5 Summary 

As design is a human activity, embodiment design problems differentiate themselves from 
others kinds of problems by the expression and the formulation of designer’s preferences. 
Facing multiple criteria, preference assessments can be tackled by determining individual 
preference functions, and generating adequate aggregation strategy to form a single global 
criterion used as a metric for alternatives evaluation. This chapter 3 introduces the main 
concepts and issues related to preference modelling in engineering design. Three different 
approaches, namely utility theory, method of imprecision and desirability index, are presented 
and discussed according to their ability in modelling preferences in engineering design. The 
desirability approach appears as the most relevant to reflect designers’ intention in 
embodiment design. Desirability enables to model preferences related to the true knowledge 
of designers about design. It is not concerned neither whit risk, nor imprecision, but with the 
level of satisfaction resulting from the adequation between the real behaviour of alternatives 
and the expected behaviour expressed by designers. In particular, Harrington's desirability 
functions appear as relevant functions to interpret properties values and model preference 
based on design requirements and designers’ expectation. Due to their exponential form, 
Harrington’s desirability functions allow progressive desirability variations approaching the 
bounds, and consequently, enable to rank the whole set of solutions, including acceptable and 
unacceptable solutions. Moreover this class of desirability functions provides the design 
problem with a soft formulation of constraints which reflects better the designer’s behaviour 
evaluating design candidates. Individual desirability functions are then aggregated into 
desirability index according to the general weighted mean. The concept of desirability index 
has been extended here in respect with the definition of design appropriate aggregation 
functions proposed by the MoI. This enables to express different trade-off and compensatory 
levels between objectives. 
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CHAPTER 

CHAPTER 4 Methodology for design 

problem modelling based on 

observation, interpretation and 

aggregation 

From a selected concept, embodiment design purpose consists in determining the main 
dimensions and monitoring parameters of the system to provide designers with embodied 
solutions with validated physical behaviours and optimized functional structures. 
Consequently, embodiment design problems are naturally oriented toward numerical 
optimization. The automation of this optimization process using artificial systems requires 
suitable methods to reach the most preferred design solutions. In particular, models in 
engineering design should involve not only objective knowledge, derived from physical and 
technical laws, but also subjective knowledge related to designers’ preferences. In this 
chapter, we propose a modelling methodology for design problems, based on observation, 
interpretation and aggregation models, linking physical behaviours with functional constraints 
and design objectives. This methodology is then applied for modelling robust design 
problems. 

4.1 Design definitions 

4.1.1 Design variables 

Design solutions are formally represented by vectors of design variable (x). Design variables 
define the main dimensioning and monitoring elements of the system and their values enable 
to distinguish design solutions between them. A vector of design variables is expressed as: 

[ ]1 2 nx x x n
T *, , , , ,= ∈ ∈Ωx x… ℕ  (4.1.1) 

In embodiment and detailed design, design variables often concern physical and technical 
units. They can be continuous (length, flow rate, temperature) or discrete (type of material, 
standard component). Each design variables is related to a minimum (xi

–) and a maximum 
(xi

+) bound defining its range of admissible values (value domain). The union of the design 
variables domains of value forms the so-called design space (Ω) (or research space) as 
defined by the relation 2.3.1.2. 

4.1.2 Observation variables 

Observation variables (y) are quantitative measures of system effectiveness, performance or 
technical attributes (mass, cost, efficiency, temperature). These variables are also denoted as 
performance variables, criteria variables or outcome variables in the literature. They are 
closely related to the definition of goals and objectives, and thus can be derived from 
functional analysis steps. Observation variables are expressed as: 
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[ ]T

1 2 m y y y m *, , , ,= ∈y … ℕ  (4.1.2) 

Observation variables (y) are dependent of the design variables (x), and possibly some other 
model parameters. Moreover, these performance measures are also associated to a set of 
design criteria. Observation of performances through the filter of design criteria forms the 
basis for the evaluation and comparison of design solutions. 

4.1.3 Design criteria 

Design criteria are physical or technical requirements that design solutions must satisfy to be 
considered as acceptable. They are equality or inequality relations between observation 
variables and a set of threshold values. Criteria are expressed as constraints, defining its 
physical or functional limits. They are expressed as logic relations or interval ranges. Design 
criteria can be formulated as functions of design variables as follows: 

( )
( )

i

j

0 i 1 2 m m

0 j 1 2 p p

g , , ,

h , , ,

≥ = ∈

= = ∈

x

x

… ℕ

… ℕ
 (4.1.3) 

For example, facing the requirement of transportability linked to the design of sized system 
constraints the mass (M) to be lower than the maximum permissible weight in charge of a flat 
bed truck (Mmax) such as M(x)<Mmax. According to economical stakes, the development costs 
are often constrained by budgeted amount such as C(x)<Cmax. In manufacturing, a tolerance 
(ε) on a dimension (L) is often expressed as the following inequality constraint                  
Lmax–ε≤L(x)≤Lmax+ε.  

However, the constraint satisfaction in the strict mathematical sense fails in reflecting the 
preferences of designers who may consider solutions as acceptable if some of constraints are 
slightly violated. As a general rule, constraints in engineering design can be more or less 
satisfied, and consequently, they need to be expressed with a soft formulation. In our 
approach, this issue is addressed by using Harrington’s desirability functions  

4.1.4 Design objectives 

Design objectives (or goals) are task specific requirements, or desired performance 
characteristics, that the system should meet. In general, they are linked to functions of 
systems and can be identified by performing functional analysis at each stage of the life cycle 
of the system. Unlike design criteria, design objectives are evaluated by designers in a 
qualitative way and cannot be directly estimated from the simulation model of the physical 
behaviour of the system. Design objectives can be more or less satisfied by design candidates. 
The achievement of particular design objectives is the purpose of "design for X" approaches. 
The reduction of manufacturing costs, minimization of environmental impacts, improvement 
of the transportability and robustness of the system are classical design objectives in industrial 
applications. In classical MO methodologies, the set of objectives to be optimized is 
expressed as follows: 

( ) ( ) ( ) ( )1 2 k k
T

f , f , , f ,= ∈  f x x x x… ℕ  (4.1.4) 

As design engineering problems involve design objectives which cannot be satisfied in the 
same way, they must be traded-off. A typical trade study process is described in the NASA 
engineering handbook [NASA 1995]. Trade studies and decision analysis must be performed 
jointly by designers and every expert involved in the design or life cycle of the system. Such 
studies require the application of human experience, judgment and perception, and result in 
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the expression of preferences, priorities and compromises among design solutions. The 
modelling of design objectives and trade-off is one of the major issues tackled in this thesis. 

4.2 Overview of the modelling methodology 

The modelling methodology proposed here aims to support the decision making process to 
guide designer toward the selection of the best design solutions. These solutions correspond to 
different configurations of the system to be designed and are modelled through a vector of 
design variables (x). From this representation and using an optimization approach, the 
modelling methodology presented in this thesis provides designers with a sequence of logical 
steps to build relevant objective functions in regards to design requirements and preferences. 

This methodology is inspired from the natural process used by humans to make judgment 
and operative choices. This process is based first on the observation and interpretation of 
performances in regards to design criteria and designers’ expectations, and then, on the 
synthesis of the resulting design information. It results in a design model composed by three 
kinds of model: 

1. The observation model (µ), 
2. The interpretation model (δ), 
3. The aggregation model (ζ). 

The first layer of the model structure is the observation model (µ). From a set of design 
variables (x), it consists in observing relevant properties or performance measures (mass, cost, 
strength, etc) through a set of observation variables (y). The second layer of the model 
concerns the interpretation model (δ). It qualifies the degree of acceptability achieved by 
every observation variables in regards to the design constraints and designers’ expectations. It 
results in a set of interpretation variables (z) which can be regarded as individual preferences 
set on the design criteria. The last layer of the design structure concerns the aggregation 
model (ζ) and consists in aggregating together all the interpretation variables participating to 
the achievement of the same design objective. According to this modelling methodology, the 
preferences are expressed inside the interpretation and aggregation models to link the physical 
behavior with the functional constraints and design objectives. From this priori expression of 
preferences, it results an overall preference (p) expressed as: 

( ) ( )p ϕ ξ δ µ= =x x
 
  (4.2.1) 

This general expression of the preference is enhanced by using the concept of desirability. It 
follows that interpretation functions are desirability functions (and interpretation variable 
values are desirability values) which are aggregated successively into multiple design 
objective indices (DOI) and one single global desirability index (GDI). The whole preference 
model is represented in graph form on figure 27. 
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Figure 27. Observation, interpretation and aggregation models using desirability functions 

The global formulation of the single criterion GDI corresponds to the objective function (φ) to 
be maximized, and consequently, the initial MO design problem (see relation 2.3.1.1) related 
to the performances optimization is synthesised as: 

maximize GDI

subject to ∈Ωx
 (4.2.2) 

According to this formulation, design objectives and constraints are no longer explicitly 
expressed in the design problem formulation, but now, are intrinsic to its definition through 
desirability functions. In the following, the proposed design model is situated within the 
framework of the Gero’s FBS ontology and its structure is detailed. The methodology is 
applied first to model preferences linked to the performance of the system. It is then extended 
to robust design problems by modelling the preferences related to the robustness of design 
solutions. 

4.3 Structure of the design model 

4.3.1 Situatedness of the design model within the FBS framework 

The design model presented here may be mapped onto the FBS ontological model proposed 
by John Gero (see section 2.1.3). In this framework, the system to be designed is three 
fundamental concepts: function, behaviour and structure. The real behaviour of the system 
(BS) depends on its structure (S). The function (F) is linked to the expected behaviour of the 
system (Be) and represents the designer’s expectations. Gero emphasizes that the main 
difficulty in modelling design problems consists in linking observable and expected 
behaviours of systems. According to the design model proposed in this thesis, the structure of 
the system (S) is associated to the set of design variables (x). The function (F) is represented 
by the satisfaction of design objectives which are quantified by the overall preference (p). The 
real behaviour (Bs) of the system is observed through the observation variables (y), whereas 
the expected behaviour (Be) corresponds to the interpretation of the observation variables (z) 
in regards to the functional constraints.  

As previously mentioned, the satisfaction of one specific design objective corresponds to 
the achievement of one particular function. To ensure the consistence of the global design 
model, the main idea here is to derive its structure from the functional analysis of the system. 
In preliminary design, function analysis describes the functions of the system and indicates 
their mutual relations for a given life cycle situation. It is on the assumption that a function 
structure can be defined from a limited number of elementary functions. Functions are 
abstractions characterizing what the system is expected to do. Once the main function has 
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been identified (satisfaction of the global need), the auxiliary functions must be determined 
for each situation of the system life cycle. Functions are usually classified into two categories: 

� The “service” functions link two components of the system environment 
� The “constraint” functions are requirements imposed by the environment 

In our approach, the achievement of a particular function is associated to the satisfaction of a 
specific design objective, and so, to a specific DOI. It can be noticed that “constraint” 
functions are expressed through design criteria which are tuned into objectives by 
interpretation functions. Consequently, from the decomposition of the systems into functions 
and sub-functions, we derive a preference model structure composed by design objective 
indices, interpretation variables and observation variables. In this way, the consistency of the 
design model is guaranteed, in particular in regards to the aggregation model. 

 
Figure 28. Observation, interpretation and aggregation models within the FBS framework 

Figure 28 represents the design model developed in this thesis situated within the FBS 
framework. This model intends to formalize the implicit and explicit relations existing 
between function and structure through a set of variables and functions. In particular, it links 
the physical behavior of the system to be designed with the satisfaction of functional 
constraints and design objectives (expected behavior), using a priori modelling of preferences. 
According to this figure, two processes are highlighted, namely the “formulation” and the 
“simulation” process. On the one side, the “formulation” process enables to build the whole 
design model from the definition of functions (design objectives) to the characterization of the 
structure (design variables). On the other side, the “simulation” process computes numerical 
values for the overall preference p from a set of design variable values. This process is used 
by the optimization algorithm to evaluate candidate solutions (computation of the fitness 
scores). Although the “formulation” process is the convenient way to build the global design 
model, in the following, we detail the structure of the model following the “simulation” 
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process, i.e. we begin with the description of the observation model, followed by the 
description of the interpretation and aggregation models. 

4.3.2 Observation of performances 

In real world, observation is the first thing that enables designers to apply their own judgment. 
Performances of systems to be designed are observed through measurements methods 
previously defined by designers. They are measures of relevant characteristics required to 
support the decision-making process. Within the modelling methodology developed in this 
chapter, performances are observed through a set of observation variables (y) as follows: 

( )=y xµ  (4.3.2.1) 

The observation model (µ) is a simulation model of the system behaviour. It can be composed 
by physical, technical, economical and environmental models. Therefore, the simulation 
model of the system behaviour can be regarded as a vector of m equations, each one resulting 
in a particular observation variable such as: 

( ) ( ) ( ) ( ) T

1 2 m m *, , , ,= ∈  x x x x… ℕµ µ µ µ  (4.3.2.2) 

Figure 29 represents the structure of the observation model. The level l concerns the 
definition of the design variables. It constitutes the basic actions required to instantiate all the 
other variables. Each actions of the group Al-1 necessarily involves a unique observation 
variable and a behavioural model linked to a set of design variables. 

 
Figure 29. Observation model structure 

As, by definition, such predictive models are abstractions of reality, compromises must be 
made in modelling phases according to designers’ requirements. Models used in design 
applications are qualified by Vernat [Vernat 2010] through four intrinsic characteristics: 
Precision, Exactness, Parsimony and Specialization (PEPS). Simulation models used in 
preliminary design, must be mainly predictive, involving the strict minimum of variables, but 
enough detailed to enable designers to perform a quick evaluation and comparison between 
design solutions. Consequently, trades-off between precision, exactness, parsimony and 
specialization must be performed according to designer's requirements. 
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4.3.3 Interpretation of the satisfaction levels of design criteria 

As design is a goal-directed activity responding to some human needs, designers have to 
interpret the value of each observation variable according to requirements. In other words, 
they have to estimate if a candidate solution is acceptable or not facing with design 
constraints, design objectives and also their own expertise (confidence). For a given design 
problem, the acceptability of a design solution mainly depends on its ability in satisfying 
every design criterion. These criteria are often expressed in different units making difficult a 
direct comparison between them. The interpretation of observation variables consists in 
defining a scale of value (design scale according to Messac [Messac 1996]) to bring every 
criterion onto a same scale of comparison. Thus, interpretation functions are value functions 
taking observation variables as parameters: 

( )i i i iz y , with z [0,1]= ∈   δ  (4.3.3.1) 

where zi is the interpretation variable associated to the ith observation variable. Interpretation 
variables reflect the ability of design solutions to meet designer’s expectations for every 
criterion in a given context. Therefore, they also correspond to individual preference 
measurements which have been set on the performances of the system. Figure 30 represents 
the interpretation model structure. It can be noticed that each interpretation variable 
corresponds to one particular observation variable. 

 
Figure 30. Interpretation model structure 

The vectorial interpretation function δ is bijective, monotonous or piecewise monotonous, and 
computes values lying in the interval [0,1]. In section 3.4.2, we conclude that Harrington’s 
desirability functions are relevant for preference modelling in engineering design. 
Consequently, observation variables are turned into desirability values and relation (4.3.3.1) 
becomes: 

( ) [ ]H
i i i id y with d 0 1d ,= ∈   (4.3.3.2) 

where di is the desirability value resulted from the Harrington desirability function dH
i. 

Advantages and benefits of Harrington’s desirability functions for preference modelling in 
engineering have already been discussed in details in section 3.4.2. Finally, it can be noticed 
that design variables can also be interpreted by desirability functions. In this case, they are 
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regarded as both design and observation variables. This is equivalent to express some 
preferences inside the design space. 

4.3.4 Aggregation into design objectives indices 

As previously mentioned, design objective indices (DOI) qualifies the level of achievement of 
a particular function. As a general rule, every observation variable and hence, every 
interpretation variable, can be linked to one or more design objectives. We state that the 
satisfaction of one particular design objective can be derived from the interpretation of the 
observation variables participating to the achievement of this objective. For example, the 
objective linked to the reduction of the environmental impact of a mechanical draft cooling 
tower depends on the energy supply including electricity, pumps and fans and water 
consumption. From these considerations and the desirability index proposed by Derringer, we 
introduce the Design Objective Index (DOI) [Sebastian 2010]. It is a desirability values 
reflecting the level of achievement of design objectives achievement reached by candidate 
solutions. The values of the DOI are computed from the aggregation of individual desirability 
functions as follows: 

( )j jDOI j 1 k, ,= =d …ζ  (4.3.4.1) 

where d is a vector of the p observation variables involved in the jth design objective 
satisfaction. As explained in section 3.3, aggregation function (ζ) for preference modelling in 
engineering design problems are required to be design appropriate. Consequently, as 
suggested in section 3.4.3, the DOI can be expressed according to a general weighted mean 
aggregation function. In this case, relation (4.2.4.1) becomes: 

( ) ( ) j
j

1
p pss

j j j i j i i i j
i 1 i 1

DOI s w y   with   w 1    j 1 k, ,, , d , ,ζ
= =

 
= = ⋅ = = 

 
∑ ∑d w …  (4.3.4.2) 

where wj and sj represent respectively the weights vector and the trade-off strategy parameter 
associated to the definition of the jth DOI. The normalized weights vector wj  is used to adjust 
the relative importance of satisfaction criteria between them; strong weights result in high 
priorities. In the following, we note: 

( ) ( )j j js  j 1 k, , ,= =d d w …ζ ζ  (4.3.4.3) 

While observation variables and criteria are identified from the preliminary steps of the 
design process, the non-physical meaning of weights makes difficult the assignment of 
numerical values [Saary 2006]. In the fields of operational research and decision theory, 
methodologies related to analytic hierarchy process (AHP) initiated by Saaty [Saaty 2008], 
have received increasing interest to deal with such an issue. Principles of this approach are 
first based on the decomposition of the initial multicriteria problem into a hierarchy of sub-
criteria problems, and then, on the statement of normalized priorities derived from pairwise 
comparisons. In [Semassou 2011], the AHP is coupled with the failure mode, effects, and 
criticality analysis (FMECA). The FMECA is used to classify design objectives according to 
their level of criticity, making thus easier the pairwise comparison between objectives. In 
chapter 6, the AHP method is used for the design of a two staged-flash evaporator. In section 
5.3, a procedure to determine consistent values for the trade-off strategy parameter (s) is 
presented. 

Definition: Design Objective Index (DOI) measures the ability of a candidate solution in 
satisfying one particular design objective (function). It is expressed as a desirability level and 
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thus, its value lies in the range [0,1]. The set of the DOIs to be jointly optimized is noted 
DOI=[DOI1,DOI2,…,DOIk]

T with k∈ℕ . The definition of a DOI requires the specification of 
the following variables and parameters: 
 1. the set of observation variables (y) and criteria participating to its achievement 
 2. the weights (w) reflecting priority orders between aggregated desirability functions 
 3. the trade-off strategy parameter (s) expressing the compensatory level between 

aggregated desirability functions 

The definition and formulation of the DOIs is a fundamental result of this thesis since DOIs 
enhance the original design model with a preference modelling structure. Figure 31 represents 
the aggregation model structure derived from the definition of DOIs. According to this figure, 
the interpretation variables (zi) are aggregated into DOIs. The aggregation process into DOI 
must involve at least one interpretation variables. According to figure 31, the computation of 
DOI1 is performed from the interpretation variables z1 and zi, whereas the computation of 
DOIk is performed from the interpretation variable zm. For example, the design objective 
linked to the transportability of systems may depend on both their masses and floor areas. In 
the same way, one particular interpretation variable (and so one particular observation 
variable) may participate to the achievement of multiple design objectives. For example, the 
mass may be taken into account for the achievement of the transportability objective and may 
also participate to an improvement of the environmental impact objective. The total amount of 
material used to manufacture a mechanical system increases its weight and its environmental 
impact.  

 
Figure 31. Aggregation model structure 

Aggregation models aim at synthesizing design information to reduce the number of variables 
and criteria, and make easier the direct comparison of candidate solutions. Therefore, a part of 
the initial information is lost during the aggregation process. Preference aggregation models 
are thus filters which discriminate the less relevant candidates among the whole set of feasible 
solutions. 
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a. Global desirability index 

In the same way, design objectives participate to the achievement of a global design objective, 
reflecting the overall satisfaction of the designer for a candidate design. Therefore, we 
introduce the Global Desirability Index (GDI) as result of the DOIs aggregation. 

Definition:  The Global Desirability Index (GDI) is a measure of the overall ability of 
candidate solutions in meeting designers’ expectations. It is expressed as a desirability value 
and its value lies in the range [0,1]. GDI measures the overall preference for candidate 
solutions and is used to compare them. 

The global desirability index GDI is a particular DOI responding to global designers’ need 
and which can be formulated as follows: 

( ) ( )0 0 0GDI s, ,ζ ζ= =DOI DOI w  (4.3.4.4) 

The numerical weights w0 enable to deal with priorities of conflicting design objectives. 
Assigning a strong weight to a one particular DOI favours its maximization during the 
optimization process, and thus, enables the designer to carry out "Design for X" approaches 
(see chapter 6). 

 
Figure 32. Aggregation of design objective indices into global desirability index 

Figure 32 illustrates the aggregation of objective indices into a global desirability index. The 
satisfaction of the global design objective is the first goal of the designer and adds another 
layer to the preference model. It synthesizes the whole information about the design from the 
design variables to the design objectives. However, multiple intermediate aggregation steps 
can be inserted between the definition of the GDI and DOIs. 

b. Multi-level aggregation 

Each design objective can be decomposed into multiple sub-objectives. The division of global 
objectives into sub-objectives results from the functional analysis. It is equivalent to 
decompose the overall preference into smaller groups of individual preferences which are 
obviously easier to evaluate. This improves the preference modelling while respecting the 
design problem structure. The aggregation model can be enhanced with several aggregation 
steps as follows: 

( ) ( )j j j 1 j 2 j qDOI j 1 k, , , , ,ζ ζ ζ ζ= = =d d
 …
 …  (4.3.4.5) 



 

73 CHAPTER 4 Methodology for design problem modelling based on 
observation, interpretation and aggregation 

 

The decomposition of design objectives into sub-objectives and the whole extended 
aggregation model are represented on figure 33. Each aggregation level constitutes a synthesis 
of the information provided by the lower levels, and thus, gradually filters the whole set of 
feasible solutions. Weights and trade-off parameter values introduce information related to 
priority relative levels between sub-objectives. 

 
Figure 33. Decomposition of the aggregation model 

However, these successive aggregation operations, called hierarchical aggregation by Otto 
and Scott [Otto 1993, Scott 1999], present some issues which must be highlighted. First, if the 
aggregative functions (ζj,i) involved in the aggregation process are design appropriate and the 
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same values are used for the trade-off strategies parameters (s), then the resulted aggregation 
function (ζj) is still design appropriate. On the contrary, different values for the trade-off 
strategies parameters (s) will result in a non-design appropriate global aggregation function 
(although some axioms of the MoI are still satisfied). 

For weighted geometric mean aggregation, Trautmann [Trautmann 1994] has shown that 
optimizing these objective functions leads to Pareto optimal solutions. In the same way, it can 
be shown that the weighted aggregation mean also computes Pareto optimal solutions for s≤0 
(see Annexe 2 for details). However, Trautmann [Trautmann 1994] has also proved that the 
min aggregation function may lead to solutions which are not Pareto optimal (see Annexe 2 
for details). To conclude, the Pareto optimality of solutions is guaranteed only if the minimum 
aggregation function is not used in the different aggregation steps. However, the property of 
Pareto optimality is not always expected the designers and the relevance of the final solution 
is justified by the structure of the preference model. 

c. Summary on the aggregation model 

From interpretation variables (individual desirability function), the aggregation model enables 
to derive a global indicator (GDI) to quantity the overall desirability of solutions. The GDI 
reflects the adequation between design solutions and the global need derive from the design 
problem. It can be regarded as a synthesis of the whole design information. Based on function 
analysis and the decomposition of the system into functions and sub-functions, objectives can 
be divided into a hierarchy of many sub-design objectives whose levels of satisfaction are 
assessed by DOIs. Such decomposition structures the design problem by setting intermediate 
preference modelling steps and guarantees the consistency of the whole design model. 

In the same way, DOIs express the capability of candidates to satisfy design objectives. 
The definition of the DOIs is a fundamental result of this thesis. They enhance the initial 
design model with a preference modelling structure, and enable the formulation of an overall 
preference from both objective and subjective knowledge. According to the DOI formulation 
(4.2.4.2), aggregation functions must specified with s≤0 (trade-off strategy parameter) to be 
design appropriate. Different trade-off strategies can be used to fit designers’ preferences in 
the best way. In particular, weighted geometric mean and minimum aggregation functions 
refer respectively to aggressive and conservative strategies. Moreover, suitable weights 
assignment enables to deal with the priority orders between objectives. Finally, we suggest 
some existing techniques to help designers in building aggregation models, namely functional 
analysis, continuum of design appropriate aggregation functions, and using AHP to derive 
numerical weight assignment. 

4.3.5 Conclusion on the design model structure 

The design model structure developed in the previous sections enables to assess the overall 
desirability level of candidate solutions by the computation of a GDI. From a set of design 
variables (x), the general formula of the GDI related to performance is expressed as: 

( ) ( )perfoGDI = =x x
 
ϕ ζ δ µ  (4.3.5) 

where µ is the observation model, δ refers to the interpretation model and ζ designates the 
aggregation model. The resulted function φ corresponds to the objective function to be 
optimized. In this case, the GDI value is expected to be maximized. Figure 34 represents the 
full design model structure. According to this figure, the modelling methodology suggests the 
decomposition of the design problem into a formal structure starting from the identification of 
global design objectives to the selection of design variables. Based on the decomposition of 
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the system into functions and sub-functions, the “formulation” process allows an easier 
identification of design objectives and criteria and ensures the consistency of the whole model 
structure. The modelling methodology presented here can be summed up into a sequence of 
logical steps as follows: 

1. Decomposition of the design problem into a hierarchy sub-objectives, 
2. Determination of the trade-off strategy (w,s) for each aggregation stage 
3. Specification of the individual interpretation function, 
4. Determination of the observation variables, 
5. Representation of the design solutions (design variables) 

However, the “simulation” process follows the reverse order and starts from a candidate 
solution (design variables) to compute the GDI as follows: 

1. Definition of a candidate solution (design variable values) 
2. Computation of the observation variables through the behaviour model 
3. Computation of the individual desirability functions 
4. Computation of the multiple DOIs 
5. Computation of the GDI 

In the next section, the modelling methodology is used to tackle robust design problems. 
According to the observation, interpretation and aggregation models, the purpose is to model 
an objective linked to the sensitivity of the performances which will be traded-off with 
another objective related to the overall level of performance. While uncertainly are simulated, 
the observation model must compute an estimate of the performance dispersion. Two 
measurement methods are proposed. These measures are then interpreted and finally 
aggregated into a global desirability index linked to the sensitivity of the performances.  
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Figure 34. Full structure of the design model 
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4.4 Robust design problem modelling 

4.4.1 Introduction 

As highlighted in section 2.4.4, most of robust design methodologies are based on the 
formulation of a ratio between two objective measurements, namely the mean performance 
and the standard deviation of the performance. The optimization of such a robustness 
indicator does not allow designers to express independently the satisfaction levels expected 
for these two measurements. Obviously, a design solution can be preferred to another due to 
its high overall performance. Inversely, design solutions with an extreme low sensitivity to 
uncertainty can be relevant in some contexts. In this case, design solutions often achieve poor 
levels of performances. The improvement of the overall performance and the reduction of the 
performance sensitivity facing uncertainty are two design objectives which must be traded- 
off according to the designer’s preferences. 

Definition: A candidate solution is said robust if it achieves a desirable level of overall 
performance compared to the level of sensitivity of its performances under uncertainties. 

In other words, robust solutions achieve desirable trade-offs between performance and 
sensitivity and must be evaluated simultaneously on these two objectives. Performance and 
sensitivity objectives are formulated according to the modelling methodology developed in 
this chapter. 

 
Figure 35. Computation process of GDI related to the performances sensitivity 

The performance objective results from the nominal evaluation of design solutions (i.e. 
without taking into account uncertainties). The ability of candidates to achieve this objective 
is quantified by a desirability score GDIperfo expressed by the relation (4.2.5). The same 
modelling structure is used to formulate the sensitivity objective. It is represented on figure 
35.  

The formulation of the sensitivity objective results in a desirability score GDIsens which 
quantifies the ability of candidate solutions to keep low performance variations while the 
design variables are disturbed. The observation of the performance dispersion around the 
nominal value requires the evaluation of the neighbourhood of the solution. This is addressed 
by introducing variability according to the relation (2.4.2). We propose two measures for the 
performances dispersion, namely: the bandwidth of variation and the tolerance to nominal. 

Facing epistemic uncertainties and non-Gaussian distributions of aleatory uncertainty, no 
assessment on the noise factors distributions is made. This contributes to the generalization of 
the methodology to a vast range of robust design problems. 

�x �y
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4.4.2 Observation of the performances dispersion 

From a normal distribution, it is known that 68% of the values are within one standard 
deviation σ away from the mean; about 95% of the values lie within two standard deviations; 
and about 99.7% are within three standard deviations. However, this is no longer true for non-
Gaussian distributions, and the interpretation of the average and standard deviation values 
becomes more difficult. To overcome this difficulty, we propose two other measures for the 
performance dispersion. They are respectively the bandwidth of variation (α) and the 
tolerance to nominal (β). Each measure is applied to the observation variables neighbourhood 
while design variables and model parameters are numerically disturbed according to equation 
(2.4.2). 

a. Bandwidth of variation 

The bandwidth of variation (α) is the distance between the extreme values achieved for the 
observation variable disturbing design variables. It traduces the maximum range of variation 
to be expected for the performance. This measure is expected to be minimized and is defined 
as: 

�( ) �( )max mini i i= −α y y  (4.3.2.1) 

This measure is equivalent to define an interval of confidence around the target value to be 
satisfied. However, this does not provide any information about the dispersion of the 
performance around its nominal value. Consequently, a second measure denoted “tolerance to 
nominal” is proposed. 

b. Tolerance to nominal 

The tolerance to nominal (β) measures the relative eccentricity of the nominal from the set of 
tested points (neighbourhood). This measure aims to achieve solutions with dispersions of 
performance which are uniformly distributed around the centre of gravity of the 
neighbourhood (see figure 36). This measure is also submitted to minimization and is 
expressed as: 

�( )i i i i iy y , y mean y= − =β  (4.3.2.2) 

Figure 36 represents the sensitivity measures α and β for three observation variables. The 
convex hull formed by the set of tested points is also represented. The sensitivity measures are 
evaluated through a set of constraints which is equivalent to the definition of a volume of 
control around the nominal performance. Thus, the objective is to keep the performance 
dispersion within this volume of control. These two measurement methods are used in section 
6 for the robust design of flash evaporators. 
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Figure 36. Representation of the performance sensitivity measures 

4.4.3  Interpretation and aggregation of the sensitivity measures 

The performance sensitivity parameters are then interpreted through Harrington’s desirability 
functions. The one-sided Harrington's desirability function is suitable to interpret both 
measures of bandwidth of variation and tolerance to nominal. The resulted interpretation 
variables are then aggregated into DOIs according to the procedure presented in the previous 
section. These DOIs linked reflect the ability of candidate solution to minimize the variations 
of performances while uncertainties are taken into account. Sub-design objectives can also 
been identified according to the needs of the designer. 

 
Figure 37. Reliability-based approach by taking the minimum of the desirability scores 

For example, reliability-based approach consists in keeping performance variations within the 
range of admissible values. As represented on figure 37, the sub-design objective (γ) called 
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“minimum performance value” may be directly formulated by taking the minimum of the 
desirability scores among the neighbourhood of the nominal performance: 

�( )( )i min d=γ iy  (5.2.2) 

Obviously, the nominal performance of a solution can be close to the bounds of the 
admissible domain and thus small variations may result in the non-satisfaction of the 
constraints. Therefore, this design objective favours design solutions whose maximal 
variation remains close to the admissible domain. This objective is used in section 6 for the 
robust design of flash evaporators. 

4.5 Summary 

The design modelling structure proposed in this chapter intends to enhance classical design 
models with a preference model involving the concept of desirability. Preference modelling is 
used to link the physical behaviour of the system to be designed with constraints and design 
objectives. While physical behaviour is intrinsic to candidate solutions, depending on physical 
laws and objective knowledge, their ability to satisfy design constraint and objectives depends 
on designers’ expectations, and so on a subjective considerations. Consequently, the 
observation model is concerned with objective knowledge whereas interpretation and 
aggregation models deal with the subjectivity of the design activity. According to the FBS 
framework, this natural and intuitive decomposition enables to model designers’ reasoning 
and express preferences. This makes a significant difference from other methodologies such 
as the utility theory or MoI. 

In particular, the definition of DOIs allows a synthesis of the whole design information at 
different levels of the problem decomposition and acts as filters on the initial set of admissible 
candidate solutions. The aggregation of the different desirability scores using design 
appropriate functions, such as the general weight mean while s≤0, and weights assignments, 
allow different trade-off strategies between objectives, and thus, are suitable to reflect the 
designer's preferences. The formulation of DOIs can be applied to robust design problems.  

In this thesis, we consider two levels of robustness. While the first level of robustness 
concerns the physical sensitivity of the system performance, the second level of robustness 
deals with uncertainty in the expression of preference, and thus, aims to take robust decisions. 
This second aspect of robustness consists in decreasing the sensitivity of the selected solution 
facing with the uncertainty of choices. This can be regarded as a trade-off between two design 
objectives, namely the improvement of the performance and the reduction of the performance 
variability. 

Due to its proximity with the designers’ reasoning and its simplicity of its implementation, 
the developed model is applied and extended to a large scope of engineering problems. The 
methodology has been initially applied and validated with the preliminary design of a two-
staged flash evaporator [Ho Kon Tiat 2010, Sebastian 2010] (see chapter 6). Later, the 
approach has been applied to the design of aeronautic structures and a design objective of 
confidence has been introduced using an arc-elasticity measure [Sebastian 2012, Collignan 
2012a, Collignan 2012b]. In the field of turbo-machinery, the model has been integrated to 
the design methodology of a high pressure distributor [Girardeau 2012]. Moreover, recent 
works in energetic system design [Semassou 2011] and building engineering [Valderrama 
Ulloa 2012] have also shown promising results in this research area.  
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CHAPTER 

CHAPTER 5 Aggregation and trade-off 

strategy modelling for robust decision 

making 

As mentioned in the previous chapters, engineering design problems involve multiple 
conflicting objectives which must be traded-off. In this context, trade studies attempt to 
determine design solutions which meet every design objectives in the best ways in regards to 
admissible compromises. The design modelling methodology proposed in this thesis suggests 
three distinct inputs by which designers can express their preferences, namely specification of 
individual desirability functions, weighs assignment and selection of aggregation strategies. 
Trade-off is mainly concerned with the selection of weights and suitable trade-off parameter 
values. Different trade-off specifications can lead to final solutions with equivalent overall 
preference levels. Therefore, trade-off modelling by aggregation functions is a critical part of 
the preference assessment process. In particular, designers must be aware of the zones of 
design points which can be captured using a particular aggregation strategy. 

5.1 Introduction 

In engineering design, trading-off is a process in which designers have to degrade one 
performance for improving another factor. This supposes decision-making with a full 
comprehension of the positive and negative aspects of one particular choice. In economics the 
term “opportunity cost” is used, referring to the most preferred alternative given up. Trades-
off also involves the notion of sacrifice that must be made to obtain a certain product, rather 
than other products that can be made using the same required resources. 

In political economy, Karl Marx introduces the notion of exchange value to represent, not 
the price of a product, but the amount of others goods that will be exchanged for it, if it is 
traded. For example, consider a trade-off between two products A and B. Then, the notion of 
exchange value states that X amount of the product A is equivalent to Y amount of product B. 
In design engineering, exchange value can be expressed as “an increment of X on the 
performance A is equivalent to a decrement of Y on the performance B”. In other words, 
designers accept a decrement of Y on the performance B for gaining an increment of X on the 
performance A. In general, this notion refers indirectly to the price paid for the improvement 
(or the worsening) of the property.  

This compromise is not always linear, but can vary according to the level of the property. 
In fact, the trade-off can be expressed as “an increment of X on the performance A is 
equivalent to a decrement of Y on the performance B for a particular level of A, but an 
increment of X on the performance A is equivalent to a decrement of Y' on the performance B 
for another level of A”. This kind of complex trade-off must also be handled and modelled. 

Trade studies are mainly related to decision-making problems. In the FAA Systems 
Handbook [FAA 2004], the decision analysis matrix (Pugh's method) is proposed to support 
trade studies, but this method fails to deal with uncertainty, the management of both 
quantitative and qualitative information or the management of teams. To manage uncertainty 
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or teams decisions, the NASA Systems Engineering Handbook [NASA 1995] suggests using 
the multi-attribute utility theory (MAUT) and the Analytic Hierarchy Process (AHP). 

5.2 An introductive example 

To illustrate trade-off issues, we present an example tackled by Scott in his own thesis [Scott 
1999]. This example deals with a company producing two types of products which differ from 
their returns in profit and balance of trade. For example, the product #1 yields $2 profit but 
requires $1 in imports, whereas the product #2 can be exported for $2 revenue but makes only 
$1 profit. The problem consists in determining the best production schedule to achieve high 
profit and a favourable balance of trade. The decision variables are the number of product #1 
to be manufactured (x1) and the number of product #2 to be manufactured (x2). The balance of 
trade (z1) and the profit (z2) are the two objectives to be maximized and are expressed as 
follows: 

1 1 2

2 1 2

z x 2x

z 2x x

= − +
= +

 (5.2.1) 

The production schedule is subjected to capacity constraints modelled as follows: 

1 2

1 2

1 2

1 2

1

2

C1: x 3x 21

C2: x 3x 27

C3: 4x 3x 45

C4: 3x x 30

C5: x 0

C6: x 0

− + ≤
+ ≤
+ ≤
+ ≤

≥
≥

 (5.2.2) 

As decision variables represent amounts of products, they can be considered here as discrete. 
The set of non dominated solutions is given in table 6. The decision and objective spaces are 
represented in figure 38. Constraints from C1 to C4 have been plotted in dashed lines on 
figure 38a. The Pareto frontier and the non-dominated points have been reported on figure 
38b. to illustrate the notion of domination a white circle is used to represent the dominated 
point x=(1,7). This point gets z1=13 and z2=9. In particular, according to table 6, it is 
dominated by the point x=(3,8) since z1(x=(3,8))=13, and z2(x=(3,8))=14. The decision space 
and the objective space are represented on figure 38. 

x=(x1,x2) z1 z2 

(0,7) 14 7 

(3,8) 13 14 

(4,7) 10 15 

(5,7) 9 17 

(6,7) 8 19 

(8,4) 0 20 

(9,3) -3 21 

Table 6. Set of non-dominated solutions 
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According to the approach developed in the previous chapters, the first step of the preference 
assessment concerns the interpretation of the variables z1 and z2, i.e. the determination of 
preference levels for each one of the two objectives. For sake of simplicity, we assume here 
that the preference related to the balance of trade objective increases linearly from p1(x)=0 for 
z1(x)=–3, to p1(x)=1 for z1(x)=14. In the same way, the preference related to the profit 
objective varies linearly from p2(x)=0 for z2(x)=7, to p2(x)=1 for z2(x)=21. The interpreted 
space is represented on figure 40. One can notice that the points x=(0,7) and x=(9,3), i.e. the 
extremes of the Pareto frontiers, are now considered as dominated points since their overall 
preference equals zero (axiom of annihilation). 

(a) (b) 

Figure 38. Representation of the decision space (a) and the objective space (b) 

The overall level of preference Ps is then computed by aggregating the individual preferences 

p1 and p2 as follows: 

( ) ( )1 sS S
s 1 2 1 1 2 2 1 2p p w p w p with w w 1

/
P , = ⋅ + ⋅ + =  (5.2.3) 

In this example, weights are supposed to be equal and (w1,w2)=(0.5,0.5). Different values of 
the trade-off parameter (s) corresponds to different trade-off strategies, and so, lead to 
different final solutions. This is illustrated through figure 39 and figure 40. Figure 39 shows 
the overall preference Ps of some decision points when the value of the parameter s varies in 
the range   [–10,10] with a step of one. According to this figure, it appears that the point 
x=(5,7) maximizes the overall preference for s∈[–10,–6] since in this interval: 

( )( ) ( )( ) ( )( ) ( )( )s s s s5 7 6 7 3 8 1 7P , P , P , P ,= > = > = > =x x x x  (5.2.4) 

In this case, the point x=(5,7) represents the most preferred solution. In the same way, when 
s∈]–6,2], the point x=(6,7) becomes the optimal solution since Ps(x=(6,7))> Ps(x=(5,7)). 
Finally, for s∈]2,10], the point x=(3,8) gets the highest overall preference. However, it can be 
notice that the point x=(1,7), which was previously considered as dominated by the point 
x=(3,8), approaches it asymptotically in preference while the compensation level increases. 
This is a consequence of using supercompensatory functions (s>1). Therefore, for high values 
of s, the optimization of the overall preference Ps can return dominated solutions.  
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Figure 39. Evolution of the overall preference Ps of some decision points according to the values of the trade-off 

parameter 

These observations can also be visualized on figure 40. This figure shows the interpreted 
space and the iso-preference curves when s varies in the range [-10,10]. For a given value of 
Ps, the iso-preference curve represents the set of points with the same overall preference Ps. 
From relation (5.2.4), the equation of the iso-preference curve can be expressed as a function 
of p1 and Ps such as: 

( )
1 sS S

s 1 1
2 1 s

2

w

w

/
P p

p p ,P
 − ⋅=  
 

 (5.2.5) 

where Ps, s, w1 and w2 are constant. Thus, the optimal solution is determined by the point at 
the intersection between the iso-preference curve and the Pareto frontier. This points is then 
said to be captured by the objective function since there is a combination of values (w,s) 
making it optimal. For example, as previously explained, for s=–9, the point x=(5,7) is the 
optimal solution and the corresponding point (0.70,0.71) within the interpreted space is 
captured. The resulted overall preference is Ps(x=(5,7))=0.71. According to figure 40, the iso-
preference curve defined by p2(p1, Ps=0.71) passes through the point (0.70,0.71). While the 
value of s increases from –10 to 10, the points x=(5,7), x=(6,7) and x=(3,8) are successively 
captured by the objective function. 
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Figure 40. Capturability of the most preferred solutions according to different trade-off parameter values 

The specification of a particular combination (w,s) enables to express a particular trade-off 
between objectives and thus, leads to a unique solution. Difficulties arise from the 
interpretation of the trade-off associated to the specific couple (w,s). In particular, designers 
should be able to interpret these trade-offs in term of gain in one preference against a loss in 
another one. Inversely, once exchange values are determined, designers should derive 
consistent values for (w,s). According figure 40, it appears that the point associated to x=(4,7) 
is not captured. Consequently, it is of main interest to find if there is a tuple (w,s) making it 
capturable (or optimal), and in this case, to determine the associated trade-off. 

Trades-offs modelled by weighted arithmetic mean aggregation (s=1) enables to easily 
overcome this difficulty since the compromise is linear. For example, consider that the 
decision-maker decides that he is willing to lose 1$ in the balance of trade objective to gain 
2$ in the profit objective. Therefore, the points x=(5,7) and x=(6,7) are equivalent, and thus, 
they must reach the same level of overall preference. These solutions reach respectively 
z=(9,17) and z=(8,19) (see table 6). This implies that: 

( )( ) ( )( )( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 1 1 2 25 7 6 7 9 17 8 19, P , w p w p w p w p= = = ⇔ ⋅ + ⋅ = ⋅ + ⋅x xP  (5.2.6) 

And we get: 

( ) ( )
( ) ( )

2 21

2 1 1

19 17 0 8564 0 7326 0 1238
1 8478

9 8 0 715 0 648 0 067

p pw . . .
.

w p p . . .

− −= = = =
− −  (5.2.7) 

Finally, it follows that w1=0.3511 and w2=6489. The overall preference Ps can be then 
express as follows: 

1 20 3511 0 6489P . p . p= ⋅ + ⋅  (5.2.8) 
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However, the weighted arithmetic mean aggregation is non design appropriate. It is not well 
adapted to treat preliminary design problems. The same kind of approach can be used for 
design appropriate aggregation function (s<1), but requires the specification of three points of 
equivalence. In fact, the trade-off is non linear and the level of compromise changes with the 
objectives values. For the weighted geometric mean aggregation (s=0), the compromise varies 
according to a logarithm law with the objectives. In the following, a procedure based on the 
specification of indifference points is presented to assign consistent values for (w,s) with the 
preferences of the designer. 

5.3 Trade-offs using equivalent points 

5.3.1 Description of the methodology 

The main advantage of the preference aggregation method proposed hereafter is that it enables 
designers to directly specify the correct trade-off strategy and weights assignment according 
to their objectives. In the framework of the MoI, Scott [Scott 1999, Scott 2000] has proposed 
a method based on the definition of indifference points, to determine simultaneously a unique 
value for the trade-off strategy and for the weight ratio. In the following, we describe this 
method for the bi-objective case. The same procedure can be applied to deal with 
multiobjective cases. We note b=w1/w2 the weight ratio. Then, from equation (5.2.3), the 
overall preference p is expressed as: 

( )
1 ss s

1 2 2
s 1 2

1

p b p w
b s p p b s with b

1 b w

/

, , P , ; ,+  + ⋅∀ ∈ ∀ ∈ = = + 
ℝ ℝ  (5.3.1.1) 

According to designers, two candidate solutions are considered indifferent if they get the 
same overall preference pref. This overall preference is also achieved by a third equivalent 
point associated to the individual preferences (pref,pref). In fact, from idempotency, we have: 

( )ref s ref refb s p p p b s, , P , ; ,+∀ ∈ ∀ ∈ =ℝ ℝ  (5.3.1.2) 

Figure 41 illustrates the principle of using three equivalent points. According to this figure, 
points A, B and C are considered as equivalent since they get the same overall preference pref. 
The point C gets the same value for the two preferences (pref,pref). As a consequence, the three 
points belong to the same iso-preference curve and verify Ps(p1,p2;b,s)=pref. From this solution 
of reference, the value of s and b can be determined using the following relation: 

( ) ( ) ( )s 1 s 2 s ref ref refa 1 b s 1 a b s p p b s pP , ; , P , ; , P , ; ,= = =  (5.3.1.3) 

where a1=p1(x1) and a2=p2(x2) are two values provided by the designer for the individual 
preferences p1 and p2. From a design solution of reference, with an overall preference pref 
satisfying the relation (5.3.1.2), the value a1 is determined by considering that an increment of 
the second preference from pref to 1, makes the first preference to decrease from pref to a1. In 
the same way, from the same reference, the value a2 is determined by considering that an 
increment of the first preference from pref to 1, makes the second preference to decrease from 
pref to a2. Consequently, the solution of reference and the solutions represented by x1 and x2, 
are considered as equivalent. Sometimes it is suitable to think in term of design variables and 
then to compute first the observation variables, and then, the associated preferences. 
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Figure 41. Illustration of three equivalent points evaluated on two preferences 

In practice, it is suitable to take pref=0.5. This represents the overall preference of a system of 
average. From equation (5.3.1.3), it follows: 

( ) [ ] ( )
1 s 1 ss s

2 1 2
1 2

a b 1 b a
a a 0 0 5 b s 0 5

1 b 1 b

/ /

, , . , , , .+    + +∀ ∈ ∃ ∈ × = =   + +   
ℝ ℝ  (5.3.1.4) 

Depending on the values of (a1,a2), equation (5.3.1.4) can be solved in different ways. First, if 
a1=a2, then b=1, and: 

a) If a1=0.5, then s→–∞ 
b) If a1=0.25, then s=0 
c) If a1>0.25, then s∈]–∞,0[, and if a1<0.25, then s∈]0,+ ∞ [. From equation (5.3.1.4), the 

value of s is then computed by solving a1
s+1=2(0.5)2. 

If a1≠a2, then b≠1. If s=0, we can show that: 

( )1
1 0 51

1 2 20 5 0 5alog .m ma . a a .
−−= = ⇒ =  (5.3.1.5) 

And then, it follows that: 

d) If 
( )1

1 0 5

2 0 5alog .
a .

− =  then s=0, and ( )( ) ( )
1 1

1 0 5 0 5a ab log . / log .= −  

e) If 
( )1

1 0 5

2 0 5alog .
a .

− >  then s<0, and if 
( )1

1 0 5

2 0 5alog .
a .

− <  then s>0. From equation (5.3.1.4), the 

value of s is then computed by solving the following equation: 

( )( ) ( )2s s s s s
1 2a 0 5 a 0 5 1 0 5. . .− − = −  (5.3.1.6) 

Proof: 

a) If a1=0.5 then Ps(0.5,1)=Ps(1,0.5)=0.5, then the only aggregation function which can 
verify the relation is the min aggregation function (s→–∞). 

b) If a1=0.25, then it comes from equation (5.3.4) that: 

s s 2

s s

1 1 1 1
1 2 2 1 0

4 2 2 2
       + = ⇔ − + =       
       

 

p 1
=p 2

=p re
f

( )1 sS S
1 1 2 2 refw p w p p

/
⋅ + ⋅ =
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Setting 
s

1
X

2
= , it comes that X=1=2s, and finally, s=0. 

If s=0 the aggregation function is the weighted geometric mean and thus, the equivalent point 
(a1,1) must verify a1

m=0.5. In the same way, the equivalent point (1,a2) must satisfy  
1 m
2a 0.5− = . Thus, taking the logarithm form leads to: 

( ) ( ) ( )
( ) ( )

11 a
1

log 0.5
mlog a log 0.5 m log 0.5

log a
= ⇔ = =  

And finally, we get 
( )a1

1 log 0.5

2a 0.5
− = . 

Once equation (5.3.6) is numerically solved, then b can be determined with the following 
relation derived from equation (5.3.1.4): 

s
1
s
2

1 a
b

1 a

−=
−

 (5.3.1.7) 

5.3.2 Discussion about the equivalent points methods 

The preceding procedure is suitable to generate design appropriate functions since it never 
returns results such as s>1. However, the procedure can compute values of s in the range 
[0,1]. Some precautions are required while equation (5.3.1.6) is solved from numerical 
computation and the results are numerical approximations. In fact, whatever the value of 
(a1,a2), the solution s=0 is always solution to equation (5.3.1.6). Moreover, parameters (s,b) 
become very sensitive to the variations of a1 and a2 while either a1 or a2 are close to zero. This 
also makes difficult the process of the numerical solving of equation (5.3.1.6). It has been 
observed that this procedure returns consistent results while s∈[-10,0]. For s<–10, it can be 
assume that s→–∞, and thus, the related aggregation function is the min operator. It is also 
noticeable that this procedure can be used with another starting point than (0.5,0.5). 



 

89 CHAPTER 5 Aggregation and trade-off strategy modelling for robust decision 
making 

 

 
Figure 42. Representation of the indifference points method 

Figure 42 represents the indifference point method in graph form taking the preference point 
(0.5,0.5) as reference. The shaded lower triangular area represents the space of the 
supercompensatory functions. Since (a1,a2) ∈[0,0.5], it appears that any values of a1 or a2 can 
lead to supercompensatory situations. The weighted arithmetic aggregation (s=1) represents 
the frontier between the two domains. It is reached while either a1=0 or a2=0. The shaded 
upper right square area represents situations where there are no trade-off. In this case, the two 
preferences should increase simultaneously and correspond to a “win-win” configuration. 
This is impossible in practice since, due to antagonist physical phenomena, the optimization 
of one objective is always hampered by some others.  

For a1=a2=0.25, the generated aggregation function is the geometric weighted mean. It is 
plotted by the dashed curved line in blue through the three points (0.25,1), (0.5,0.5) and 
(1,0.25). While a1=a2=0.5, the generated aggregation function corresponds to the min 
aggregation function. It is plotted by the line passing through the three points (0.5,1), (0.5,0.5) 
and (1,0.5). Compared to the geometric weighted mean, this aggregation function no longer 
corresponds to smooth curve but to a crisp line. 
An interesting case appears while the equivalent preference points are (0.5,1) and (1,a2) with 
a2<0.5. According to equation (5.3.1.4), the aggregation function must satisfy the following 
relation: 

( ) ( )20 5 1 1 0 5p . , p ,a .= =  (5.3.2.1) 
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This configuration is represented in dashed line. In this case, the procedure proposed by Scott 
doesn't enable to compute a consistent value for s. Looking at figure 42, it appears that in this 
configuration, there is no functions (derived from the general weighted mean) which can be 
plotted through the three points (0.5, 1), (0.5, 0.5) and (1,a2). The only way to achieve the 
equality (5.3.2.1) is to use the Tchebycheff aggregation method. This method is a weighted 
minimum aggregation of the individual preference values. Thus, it follows: 

( ) ( )2
2

1
0 5 1 0 5 0 5

2
min . ,b min ,b a . b .

a
= ⋅ = ⇒ = >  (5.3.2.2) 

As b>0.5 (since a2∈[0,0.5]), we have also min(0.5,b)=0.5, and so, the equality (5.3.2.1) is 
satisfied. However, the Tchebycheff aggregation is not derived from the general weighted 
mean. It is a particular case of the procedure proposed by Scott. Although Tchebycheff 
aggregation method enables to capture the whole Pareto frontier, including solutions located 
in the non-convex parts (for every Pareto optimal point, there is a unique combination of 
weights such as this point is captured [Miettinen 1999, Messac 2000a, Messac 2000b]), its 
interpretation in term of preference remains difficult. 

 
Figure 43. Screenshot of the GUI implementing the equivalent point method in a Matlab© environment 

For a better understanding of practical implications and limits of the procedure proposed by 
Scott, a demonstrator had been implemented in the Matlab© environment. Figure 43 is a 
screenshot of the GUI allowing the computation of the trade-off strategy and weights ratio 
according to the equivalent points method. The left side of the GUI is related to the 
representation of the decision problem whereas the right side of the GUI concerns the 
management of the trade-off. On the right side, the objective space and the set of Pareto 
solutions to be traded are presented. In this example, the Pareto frontier being investigated is 
non-convex. The left side is dedicated to the interactions with designers. Cursors on the top 
are used to assign the reference value of the overall preference of (pref=0.5) and the preference 
values of equivalent points (a1=0.1 and a2=0.45). The positions of the reference and 
equivalent points are updated simultaneously on the graph located at the right bottom of the 
screen. The checkbox enables to set a1=a2. Once these three parameters have been specified, 
trade-off strategy parameter and weights ratio can be computed. In this example, the 
equivalent points are specified with pref=0.5, a1=0.1 and a2=0.45. This leads to s=-0.65312 and 
b=5.11111. The related aggregation function is plotted both on the graph at the right bottom 
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of the screen, and on the objective space at the left of the screen. The final solution is the one 
which maximizes the objective function, i.e. the one which is located on the aggregation 
function curve. 

The equivalent points method proposed by Scott seems relevant to manage trade-offs and 
support decision making in engineering design. This approach can be completely integrated 
within the design modelling methodology that we proposed in this thesis. 

5.4 Trade-off function for robust decision making in engineering 

design 

5.4.1 Preliminary considerations 

It is considered here that robust design approaches in engineering design involves two kinds 
of robustness. The first level of robustness concerns the physical sensitivity of the system 
performance whereas the second level of robustness deals with uncertainty of the choice. The 
later consists in determining solutions such as slight variations of their performances will not 
further alter the decision of designers. In chapter 4, we have proposed to tackle robust design 
problems as a trade-off process between two design objectives, namely the improvement of 
the overall performance and the minimization of the performance sensitivity due to 
uncertainty. These two objectives have been formulated through the design modelling 
methodology proposed in chapter 4. 

In this chapter, we propose an original function to operate trade-off among candidate 
solutions using indifference levels. The development of a trade-off function for robust design 
problems stems from the observation that designers often expect to achieve first the 
performance of a system and then, its robustness. The objective linked to the improvement of 
the performance is often of higher priority than the objective of sensitivity reduction. From a 
solution with a high level of performance, the developed approach consists in investigating 
the neighbourhood of the nominal solution to find solutions with a quite similar level of 
performance but less sensitive to uncertainty. In this section, we denote respectively by u and 
v the preferences related to the satisfaction of the performance objective and sensitivity 
objective. 
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Figure 44. Ranking of candidate solutions according to their belonging to iso trade-off curves 

A set of candidate solutions is reported on figure 44. The Pareto dominant solutions are 
represented by black squares. Let us consider the alternative B with a very high level of 
performance (uB=1) and an extreme variability (vB=0). Although, such a solution is not 
robust, but remains relevant for the designer since the objective of performance is maximized 
with this solution. To improve its robustness, and select another alternative, designers should 
evaluate the admissible compromise between performance loss and robustness gain. This 
compromise is represented by the solution of reference A with uA=k and vA=1. The two 
solutions A and B are thus equivalent and designers can choose indifferently one of them. 
Actually, every alternatives belonging to the level curve defined by A and B is equally 
preferred. This curve (line) is called iso trade-off curve. 

5.4.2 Order of relations and iso trade-off curves 

The trade-off function developed in this section is mainly based on iso-trade-off curves. An 
iso-trade-off curve corresponds to the alternatives considered as equally preferred by 
decision-makers. Let us consider a set of candidates evaluated on the two preferences u and v, 
such that the tuple (u,v) belongs to the interval [0,1]2. Typically, the ideal decision concerns 
the solution which achieves the best preferences for both u and v. Such cases are rare in real 
design problems. Designers often face compensatory situations in which the weak value of 
one preference is compensated by the high value of another. 

Our approach enables them to operate selections by quantifying a trade-off when one of the 
two preferences is favoured. If the preference u is constrained to keep a minimal value, then 
the compromise between u and v can be expressed as the maximal degradation allowed by 
designers to improve the preference v. Let’s consider a solution for which the preference u 
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equals one and the preference v equals zero. Then the iso-trade-off curve indicates the 
minimal admissible value for u to increase v from zero to one. 

According to figure 44, the indifference relation states that two alternatives A(uA,vA) and 
B(uB,vB) are equivalent provided that it is impossible to operate a rational choice between 
them. The two solutions are thus equally preferred, and we note A~B. The specification of the 
two hypothetic solutions defines an initial level of iso-trade-off, and also a value for the 
sensitivity of choice defined as follows: 

A B
AB

A B

v v

u u

 −χ = − 
 (5.4.2.1) 

The set of alternatives N(u,v) equivalent to A and B, belongs to the iso trade-off curve (AB), 
and each candidate solutions must verify: 

B A B

B A B

v v v v

u u u u

   − −=   − −   
 (5.4.2.2) 

However, in order to allow designers to express more complex initial compromises, we 
introduce the parameter n in relation (5.4.2.2): 

n n n n
*B A B

n n n n
B A B

v v v v
n

u u u u +

   − −= ∈   − −   
ℝ  (5.4.2.3) 

Finally, substituting the components of A and B by their own values, the equation of the 
initial iso-trade off curve is: 

( )
[ ]

n n n

*

1 u v 1 k 0

u k, k 0,1
with

n +

− − − =

 > ∈
 ∈ ℝ

 (5.4.2.4) 

where k and n are the two specification parameters used to adjust the shape of the function to 
designers’ specifications. Parameter k gives the minimal admissible value reached by 
preference u to increase the value of preference v from zero to one. The parameter n is used to 
refine the expression of the compromise expected between the two preferences. Increasing the 
value of n makes the compromise more restrictive on the minimal admissible value on u. This 
parameter value is determined by considering a third point of indifference to specify the 
compromise, and is then numerically computed by solving the equation (5.4.2.4). 

Different compromises can be expressed through the specification of these two parameters. 
Figure 45 presents three iso-trade-off functions specified with different values of parameters. 
The iso trade-off function represented in solid line (1) is the least restrictive. It states that 
preference u can be decreased from 1 to 0.5 to improve preference v from zero to one. Both 
candidate solutions A and B verify equation (5.4.2.4) and thus are considered as equally 
preferred. In other words, it is equivalent to choose either alternative B or alternative A, if 
preference v is expected to be improved. The iso-trade-off function plotted in dotted line (2) 
considers that alternatives C, D and F are considered as equally preferred. By increasing the 
value of n, designers agree to decrease preference u only if the gain in preference v is 
important. Solutions F or C can be selected. The compromise is therefore more restrictive 
than the previous one, since solutions A and C achieve the same preference u. The same 
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remarks can be done with the iso-trade-off function in dashed line (3), which allows very 
small loss on the preference u, since k=0.8 and n=3. 

 
Figure 45. Representation of iso trade-off curves for different parameter values 

Similar analyses can be made with solutions represented on figure 44. In this case, it appears 
that an equivalent choice to both A and B is the alternative C. However, solution D is very 
close to solution C in regards to the performance but presents a much better level of 
insensitivity. Thus, we get uC≈uD and vC<<vD. This leads to C D≺ . Consequently, the 
alternative D achieves a better compromise than the one initially specified (level 0), and thus, 
constitute a better choice than C. According to equation (5.4.2.4), the compromise achieved 
by D satisfies: 

( )n n n
D D D1 u v 1 k 0, with k u , n 1− − − ≤ < =  (5.4.2.5) 

The alternative D belongs to another iso trade-off curve (level 1) and, as the value of v for D 
and E remains the same, it follows that D~E. Consequently, the solutions can be gathered and 
ranked according to their membership to the different iso trade-off levels (curves). The 
quantification of the iso trade-off levels is the purpose of the trade-off function developed in 
the next section. 

5.4.3 Trade-off function and robustness indicator 

The trade-off function assigns numerical values to the iso trade-off levels. From equation 
(5.4.2.4), the trade-off function T(u,v) is formulated as a piecewise function defined as: 

[ ] [ ] ( )n n n0 1 11
with (u,v) 1 u 1 k v

(u,v) (u,v)

, ,
T :

 → − = − − −
α⋅ +β ֏

Φ
Φ

 (5.4.3.1) 
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where k and n are the specification parameters of the iso trade-off curves. The coefficients α 
and β are determined as follows: 

( ) ( )
( )

( )

n

1
1 0 if u k  and  (u,v) 0

1 k

2 1 0            if u k  and  (u,v) 0

u u k
3    if u k  and (u,v) 0

k k

,

,

,

 α = − β = ≥ ≤ −

 α = − β = ≥ >
 − α = − β = < ≤


Φ

Φ

Φ

 (5.4.3.2) 

From equations (5.4.3.1) and (5.4.3.2), we introduce the robustness indicator RI expressed as 
RI=T(u,v). This indicator to be maximised, quantifies the trade-off achieve by candidate 
solutions between the performance and the robustness. 

 
Figure 46. Trade-off function specified with k=0.5 and n=3 

Figure 46 represents a trade-off function specified with k=0.5 and n=3. The initial iso-trade-
off curve have been plotted and corresponds to T(u,v)=0. Every points of this curve get the 
same robustness indicator value. The three parts of the trade-off function have also been 
identified according to relation (5.4.3.2). Considering that for a set of alternatives, the initial 
iso-trade-off curve corresponds to RI=0, positive values of RI traduce the improvement of the 
trade-off, whereas negative values of RI imply the degradation of the trade-off. This is 
illustrated on figure 47. According to this figure, alternatives A and B correspond to 
compensatory configurations for which any rational decision could be taken. The first 
example (1) deals with trade-off improvement. Alternative C is equivalent to alternative A in 
regards to the preference v (robustness), but is also better in regards to the preference u 
(performance). Compared to alternative B, alternative C is equivalent in regards to the 
preference u, but is better in regards to the preference v. Therefore alternative C constitutes a 
better choice than both A and B. The second example (2) deals with the conservation of the 
trade-off. According to the preference values, it is not possible for the decision-makers to 
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operate a rational choice between alternatives A, B and D, considered as equivalent. The last 
example (3) refers to the degradation of the trade-off indicator. As solution E is less preferred 
than both alternatives A and B for u and v, it represents the worst compromise compared to 
examples (1) and (2). Therefore, the trade-off function enables to rank design solutions 
according to their ability to improve or worsen the initial compromise specified by designers. 

 
Figure 47. Iso trade-off functions and robustness indicator behaviour 

On figure 46, the trade-off values T(k,v) have been reported. This corresponds to the set of 
solutions such as u=k. It appears that for a given value of u (performance objective), the trade-
off function ranks the solutions by increasing value of v (sensitivity objective). Conversely, 
for a given value of v, the solutions are ranked by increasing level of u. From relations 
(5.4.3.1) and (5.4.3.2), it can be shown that: 

( ) [ ]2

v u

T T
u,v 0,1 , 0 and 0

u v

∂ ∂   ∀ ∈ ≥ ≥   ∂ ∂   
 (5.4.3.3) 

In other words, the trade-off function computes consistent ranks even if all the alternatives 
achieve the same level for preference u or v, or for both of them. Consider the robustness 
indicators RIA and RIB related respectively to the alternatives A(uA,vA) and B(uB,vB). From 
relations (5.4.3.1) and (5.4.3.2), the difference between these indicators can be expressed as: 

( )( ) ( )( )
( ) ( )( )

n n n n n n
A B A A B B

n n n n n
A B B A

RI RI 1 u 1 k v 1 u 1 k v

u u 1 k v v

   − = α − − − +β − α − − − +β
   

= α − + α − −
 (5.4.3.4) 

Alternative A is preferred to alternative B if RIA>RIB, and: 

( ) ( )( )n n n n n
A B A B B ARI RI 0 u u 1 k v v 0− ≥ ⇔ α − + α − − ≥  (5.4.3.5) 
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As α<0, if both alternatives A and B achieve the same preference u=uA=uB, it follows from 
relation (5.4.3.5) that: 

( ) ( ) ( )n n
A B A Bu cst u cst

RI RI 0 v v 0
= =

− ≥ ⇔ − ≥  (5.4.3.6) 

Thus, alternatives A and B are ranked according to preference v. In the same way, if the two 
alternatives reach the same preference v, then they are ranked according to the preference u. it 
can be shown that: 

( ) ( ) ( )n n
A B A Bv cst v cst

RI RI 0 u u 0
= =

− ≥ ⇔ − ≥  (5.4.3.8) 

Finally, if all the alternatives get the same values for both preferences u and v, then the 
alternatives cannot be ordered, since all candidates achieve equivalent trade-off indicators. 
Consequently, they all verify the equation of the same iso-trade-off function, and are 
considered as equally preferred. 

5.5 Summary 

Major difficulties in engineering design problems come from the balancing act between many 
design criteria and objectives. Modelling such a trade-off is of main interest in design 
optimization to compute optimal solutions. Trade-off can be expressed as a compromise 
allowing increments of one performance against decrements of some others. However, trade-
off in engineering design is often complex and requires the definition of compromises for 
different levels of performances. 

In this chapter, we present two approaches to manage trade-off in engineering design. The 
first methodology proposed by Scott uses equivalent point to determine consistent trade-off 
parameters values and weights assignment for preference aggregation. This enables to model 
compromises evolving with several levels of preference. However the weights and trade-off 
parameter are highly sensitive while preferences values are close to extreme bounds (p=0 and 
p=1). Consequently, it is suggested to take s∈[-10,0] for the generation of consistent design 
appropriate aggregation functions. Such an approach can be easily implemented within 
systems to support decision-making in engineering design. Some applications of the 
equivalent points method are presented in [Scott 1999, Mourelatos 2006]. 

As the trade-off between performances against their variability is specific to robust design 
problems, we propose a suitable trade-off function to model designers’ preferences facing 
with these two objectives. The trade-off function has been designed to evaluate the relative 
sensitivity of choice among a set of alternatives. This is done by quantifying the improvement 
or the degradation of the compromise between two preferences when one of them is favoured. 
In the framework of robust design, the improvement of the overall performance is traded-off 
against the reduction of the performance sensitivity. It results in an objective function to be 
maximized. Recently, the trade-off function has been applied to improve the robustness of car 
structure for crashworthiness of vehicle side impact [Quirante 2011b]. In another research 
work [Quirante 2012], the trade-off function is used to tackle the robust design of a truss 
structure. 
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CHAPTER 

CHAPTER 6 Design of two-staged flash 

evaporators for must concentration 

applications in the wine industry 

In the past few years, flash evaporation processes have received an increased attention in the 
wine industry for must concentration applications. Specific constraints related to the wine 
industry area had led to many improvements of flash evaporators. Preliminary design of 
evaporators must deal with many design objectives specific to this area of application. In 
particular, the robustness of these vinification processes is of main interest since the variations 
of temperatures and flow rates of liquids at the inlet of the process can deeply impact the 
quality of the product at the system outlet. The methodology developed in this thesis is 
applied to achieve robust design of flash evaporators. Each step of the design modelling 
methodology is described and illustrated with concrete examples. Design objectives are 
formulated with a preference aggregation method. The selection of the optimal design 
solution is discussed according to different trade-off strategies. The generation of the Pareto 
set is addressed by the non dominated sorting genetic algorithm NGSAII. The study 
developed in this chapter is mainly based on recent publications [Ho Kon Tiat 2010, 
Sebastian 2010, Quirante 2010, Quirante 2011a]. 

NOMENCLATURE  

Physical variables and parameters Decision variables and parameters 

 C energy consumption 

C costs 
 Cx rate of concentration 
 D alcoholic strength 
 EI environmental impact 
 k heat transfer coefficient 
 M mass 
 N number of plates within the condensers 
 P pressure 
 q mass flow rate 
 S floor area 
 T temperature 
 t  time 

 d desirability score 
ɶd  desirability score related to the sensitivity objective 
 DOI design objective index 
�DOI  design objective index of the sensitivity objective 
 GDI global desirability index 
 x vector of design variables 
ɶx  disturbed design variables vector 
 y vector of observation variables 
ɶ

iy  disturbed vector for the ith observation variable 

iy   average of the ith observation variable values 

 w vector of numerical weights 

Greek symbols Subscripts 

Ω design space 
α measure of the bandwidth of variation 
β measure of the tolerance to nominal 
γ measure of the minimum admissible value 
∆x variation of control factors 
ε  variation of noise factors 
σ standard deviation 
φ flash evaporator simulation model 

cl coolant liquid 
elec electric 
invest investment 
LP/VLP low pressure/very low pressure 
op operating 
perfo performance 
pi/po inlet product/outlet product 
sens sensitivity 
sys system 
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6.1 Introduction 

Due to a drop of the table wine consumption and changes of consumer tastes, there is a 
growing interest in using flash evaporation processes in the wine industry. Indeed, according 
to recent studies in the pre-treatment of grapes by flash-release (or flash détente), benefits 
come from considerable improvements of the wine quality and enhancement of its gustative 
properties [Ageron 1995, Escudier 1995, Escudier 1998]. In particular, the final content of 
polyphenol in the wine (chemical agent in the berries skin tissues responsible for the colour 
and flavour of red wines) is at least 50% higher compared to wines obtained from traditional 
production techniques [Vinsonneau 2002]. Figure 48 shows the must concentration process by 
flash evaporation through the wine production process. This operation aims to increase the 
alcoholic strength of the must until the final desired value is reached. As a general rule, an 
enrichment of 1% by volume is obtained by evaporating of 10% of the vintage volume. 
Grapes are usually first heated at temperatures ranging between 70°C to 90°C [Celotti 1998]. 
The vintage is then suddenly cooled by flash evaporation to temperatures ranging between 
25°C to 30°C which may cause the fermentation of the vintage. The word “flash” comes from 
the phenomena of quasi-instantaneous and partial vaporization of the vintage when it is 
subjected to a sudden drop of pressure below its saturation pressure [Miyatake 1973]. As a 
consequence, the liquid temperature drops to the saturation temperature corresponding to the 
lowered pressure. Additionally, due to this abrupt change of pressure, sudden mechanical 
constraints appear inside the berry skin tissues, enhancing the release of many different 
substances such as tannins, and thus, improve the colour and some gustative properties of 
wines. 

 
Figure 48. Must concentration by flash evaporation through the wine production process 

In practical terms, specific constraints related to the wine industry area had lead to many 
improvements of flash evaporators initially designed for seawater desalination [Miyatake 
2001] and flavours extraction [Sebastian 2002] applications. Typical flash evaporators must 
be designed to treat at least 10 tons of grapes per hour which corresponds to the treatment of 
the whole harvest of an average vineyard of 19 ha, with a production efficiency of 50 hl/ha in 
the region of Bordeaux [Agreste 2010], during a working day (~10 hours). This requirement 
often leads to oversized systems whereas flash evaporators are required to be transportable 
from a wine production site to another during the harvest period. But the main weakness of 
flash evaporators is their high energetic consumption, impacting the environment and 
increasing the operating costs, and consequently, the price of the wine (given in €/litre of 
wine). Indeed, thermal and electrical energy (defined in kWh/hl of wine) are required 
respectively to heat the vintage at the inlet of the evaporator, and to supply pumps for liquids 
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circulation and fan for the air 
consumption of the system (given in 
of the water required to condensate the 
the cooling tower. 

(a) 

Figure 49. Two-stage flash evaporator: CAD model of the industrial system (a) and its corresponding 
experimental prototype (b) 

Based on these requirements, the system designed by Sebastian et al. [Cadiot 2002, Sebastian 
2002] is based on the development of a two
compact condensers and mist eliminators. A CAD view and the corresponding exp
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and flow rates of liquids (must and water) at the inlet of the process can dramatically impact 
the quality of the product at the system outlet. In particular, deviations fro
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two properties are decisive for the final wine quality and thus, their variations must be 
controlled. Facing this issue, we proposed in a recen
sensitivity of the design as a particular design objective to be traded
approach doesn’t allow designers to express a compromise between the performance and the 
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expectations. 
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of temperature and alcoholic strength can lead to a severe degradation of the vintage. These 
two properties are decisive for the final wine quality and thus, their variations must be 

t study [Quirante 2011] to formulate the 
-off. However, this 

approach doesn’t allow designers to express a compromise between the performance and the 
must be obviously balanced according to the designers’ 
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6.2 Two-staged flash evaporation processes 

The two-staged flash evaporator represented in diagram form on figure 50 has been designed 
to treat about 10 tons/h of grapes. The vintage is initially heated at temperatures ranging 
between 70°C to 90°C under atmospheric conditions, and stored in the buffer tank (1) where it 
is stirred by a mixer (2) to maintain a uniform temperature. The system is put under vacuum 
conditions due to the action of a vacuum pump (4a) coupled with an air ejector (4b). A pump 
makes the fluid to be sucked up at the low-pressure stage of the evaporation chamber. As 
soon as the product enters in the low pressure (LP) expansion chamber (6a), a part of the 
liquid phase is suddenly vaporized, and the level of the remaining fluid rises and activates the 
float (8) to maintain the pressure difference between the stages. Entering in the very-low 
pressure (VLP) stage (6b) of the evaporation chamber, the fluid is then once again partially 
vaporized. The remaining part of the fluid is extracted by the extraction pump (5) which is an 
eccentric rotor pump of the Archimedes screw type. This type of pump is well adapted for 
moving fluids containing solid particles such as grapes. The vapour created by the fluid 
evaporation is condensed through two condensers, one for each stage (3a,3b), to maintain the 
system under low pressure conditions. Condensates are stored in a tank from where they are 
extracted by a condensate pump (9). As the vaporization at the low-pressure stage is very 
violent, droplets are formed and carried out with the vapour. Therefore, a mist eliminator (7) 
is added to ensure the droplet recovery. The cooling of vapours inside the condensers is 
performed by the joint action of a mechanical draft cooling tower (11) coupled with a 
centrifugal pump (12). 

 
Figure 50. Illustration of the two-staged flash evaporator principles 
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6.3 Preliminary design of flash evaporators 

6.3.1 Design requirements 

From the life-cycle analysis of flash evaporators, we have identified four major design 
objectives of performance to be satisfied. They concern: 

� the improvement of the product quality (DOI1), 
� the improvement of the transportability (DOI2), 
� the minimization of the environmental impact (DOI3), 
� the minimization of the overall costs of ownership (DOI4) 

Initially, the design objective performance related to the cooling power of the evaporator was 
taken into account [Sebastian 2010, Quirante 2011]. However, it appeared that this design 
objective is actually not relevant for must concentration applications in the wine industry. 
Flash evaporator design is often constrained by the evaporative capacity of the system to 
reach an objective of alcoholic strength and improve the quality of the vintage product. 

a. Product quality 

Due to the necessity of preserving the gustative properties of wine while meeting international 
and regional legislations of wine-making practices, the improvement of the product quality 
(i.e. grapes and must) at the outlet of the flash evaporator is a crucial design objective to be 
considered by wine producers. The quality of the product depends both on the temperature, 
the level of final alcoholic strength and the rate of polyphenol of grapes at the outlet of the 
system. The temperature of the product at the outlet of the flash evaporator (Tpo) is equal to 
the saturation temperature of the vapour inside the VLP stage of the evaporation chamber. 
Depending on the type of wine expected, the desired target temperature can slightly vary from 
a producer to another. But, in general, the continuity and efficiency of the fermentation 
process is ensured for temperatures comprised between 10°C (below the temperature is too 
low to trigger the alcoholic fermentation) and 35°C (stuck of the alcoholic fermentation). The 
rate of concentration (Cx) of the product is the ratio between the volume of water eliminated 
during the process and the initial volume of product: 

( )pi povapor

pi pi

q qq
Cx

q q

−
= =  (6.3.1.1) 

where qpi and qpo are respectively the input and output product flow rate, qvapour is the volume 
of water eliminated during the process. The rate of concentration determines the evaporative 
capacity of the system. The volume of water to be eliminated, and so, the rate of 
concentration, are constrained by the desired final alcoholic strength of the must. In general, it 
is estimated using the following formula [Jacquet 2002]: 

pi
vapor pi po po pi

po

D
q q q with q q

D
= − = ⋅  (6.3.1.2) 

where Dpi and Dpo are respectively the initial and final alcoholic strength of the must. In this 
study, we are mainly interested in increasing the alcoholic strength from 11% to 12% of 
100hL/h of must (≈10tons/h). This implies a vaporization of 12hl/h of water. More to the 
point, as the release of tannins and polyphenol mainly depends on the drop of pressure in the 
expansion chambers, and according to the results presented in [Vinsonneau 2002], we 
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considered here that the pressure inside the very low pressure chamber must be at least of 94 
mbar. 

b. Transportability 

As mentioned in the introduction, the transportability of the system is a significant design 
objective since it must be moved from a wine production site to another during the harvest 
period. The transportability depends both on the floor area (Ssys) and the overall mass (Msys) 
of the system which must not exceed a limit defined by the standard maximal capacities of 
flat bed trucks. It is estimated by calculating the mass and size of tanks (expansion chambers, 
buffer and condensates tanks), condensers and pumps which are the biggest and heaviest 
components of the system. The total mass of the system also involves the weight of the 
metallic structure used to support the flash evaporator. 

sys tanks condensers pumps structure

sys tanks condensers

M M M M M

S S S

= + + +

= +
 (6.3.1.3) 

c. Environmental impact 

Facing with the emergence of environmental constraints in the agricultural field, the 
environmental impact of the flash evaporation process must be also considered as a design 
objective. One of the main inconvenient of flash evaporation processes is their high 
consumption of energy, materials and fluids. In this study, the material consumption of the 
system is mainly based on the total amount of steel used for manufacturing the tanks. Based 
on the EcoIndicator99 methodology [Goedkoop 2000], the relative impact corresponding to 
one ton of steel is quantified and the related damages coefficients (environment, human 
health, resources) are derived from this impact: 

( )material 1 2 3 sys

1 2 3

EI a a a M

a 1 9 (environment), a 13 233 (human health), a 2 3 (ressources)

= + + ⋅

= = =. .
 (6.3.1.4) 

Similarly, we evaluate the damages coefficients associated to the consumptions of 10kWh and 
1m3 of water. Finally, a global score EI is derived from the impacts of material, energy and 
water consumptions. 

( )
( )

99 material elec water

elec 1 2 3 elec 1 2 3

water 1 2 3 water 1 2 3

EI EI EI EI

with

EI b b b C ,  b 0 145, b 0 0139, b 0 0271

EI c c c C ,  c 0 0187, c 0 00204 , c 0 00607

,

. . .

. . .

= + +

= + + ⋅ = = =

= + + ⋅ = = =

 (6.3.1.5) 

The energy consumption calculation is based on the power required to supply the different 
pumps, mixer and fan. The water consumption corresponds to the volume of water used by 
the cooling tower. Mechanical draft cooling towers consume water in three major ways 
[Leeper 1981]. Evaporation rate (CE) is approximately of 1% of the water flow rate per each 
10°F (≈5.5°C) of the cooling range. Drift (CD) is approximately 0.2% of the water flow rate, 
and refers to the water which leaves the cooling tower carried out with the exiting air. In order 
to prevent concentration of solid and chemical particles in the cooling water resulting from 
the evaporation, the blowdown (CB) is the volume of water removed from the system and 
replaced by fresh water. It is generally assumed that CB equals 20% of the evaporation rate. 
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 (6.3.1.6) 

The electrical consumption and water consumption are respectively expressed in kWh and 
m3/h. They are estimated over a period (top) of 20 years with an average operating time of 10 
hours per day during 2 months (duration of the harvest period). 

d. Overall costs of ownership 

The development of “flash détente” processes in the wine area is also hampered by the initial 
cost of investment. The economical analysis of the flash evaporator aims at modelling 
manufacturing costs (material purchase and forming) of tanks, and purchasing costs of other 
parts of the flash evaporation system (condensers, pumps, etc.). The global purchasing cost of 
the system is calculated by adding these manufacturing and purchasing costs for each part of 
the system. 

The total investment (investC ) cost of the process results from this global purchasing cost 
multiplied by the Lang factor to take into account installation costs, transportation costs and 
various costs such as insurance costs [Rehfeldt 1997]. From this investment cost, we derive 
the maintenance cost which is assessed as 2.5% of the investment cost, and the total 
discounting cost of the system which is estimated from the coefficient of discounting 
evaluated over a period of twenty years. The overall operating cost (opC ) over this period is 
derived from the electricity and water consumption costs calculated from the peak charges 
applied by EDF (0.1275€/kWh) and the average price of water distributed in France 
(3.39€/m3) in 2011. Finally, the overall cost of ownership (totalC ) is calculated by adding the 
overall costs of discounting and the operating cost of the system. 

6.3.2 Measures of performance, observation variables and design criteria 

From these requirements, we derive eight observation variables to evaluate the performances 
of the two-staged flash evaporator. These variables refer to: 

� Outlet product temperature, 
� Alcoholic strength, 
� Pressure within the VLP stage, 
� Mass of the system, 
� Floor area of the system, 
� Eco-indicator, 
� Total costs of investment, 
� Operating costs 

Each observation variable is related to one design criterion, expressed as equality/inequality 
constraints which must be satisfied. Moreover, every criterion (and so, observation variable) 
can be associated to the achievement of one of the four design objectives of performance 
identified in section 6.4.1. The definition of the observation variables and design criteria are 
summarized in table 7. 
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Observation variables Design criteria 

[ ]T

1 2 8y y y, , ,=y …  name unit  

y1 - Outlet product temperature Tpo (°C) 25°C≤Tpo≤30°C 

y2 - Alcoholic strength Dpo (%) Dpo ≈12% 

y3 - Pressure within the VLP stage PLP (mbar) PVLP < 94mbar 

y4 - Mass of the system Msys (tons) Msys < 7.5tons 

y5 - Floor area of the system Ssys (m2) Ssys < 16m² 

y6 - Eco-indicator EI99 (-) EI99 < 50 000 

y7 – Total cost of investment investC  (k€) investC 465k€<  

y8 - Operating costs opC  (k€) opC 153k€<  

Table 7. Definition of the observation variables and design criteria 

6.3.3 Design variables 

The observation variables are computed from a set of design variables. They are the main 
dimensioning and monitoring parameters required to completely define the system (regarded 
as a candidate solution) and its functioning environment (vintage and coolant liquid). The 
preliminary design of two-staged flash evaporators involves six design variables (x): 

� inlet temperature of the product (must and grapes), 
� inlet temperature and flow rate of the coolant liquid (water), 
� flow rate of the coolant added to the LP condenser, 
� number of plates in the low-pressure and very low-pressure condensers 

Condensers can be composed of 250 plates which represents a maximal heat surface exchange 
of 40m² per condenser. As the flash evaporator is supposed to be designed for treating 10 
tons/h of grapes, the inlet product flow rate is considered here as a constant parameter of the 
design model. The ranges of admissible design variables values are provided in table 8. As a 
set of design variable values characterizes one particular candidate solution, different 
combinations of design variables values lead to flash evaporator configurations with different 
levels of performance. 

Design variables Domain (Ω) 

[ ]T

1 2 6x x x= …, , ,x  name unit range nature 

x1-Inlet product temperature Tpi (°C) [70.0; 90.0] continuous 

x2-Inlet coolant temperature Tcl (°C) [15.0; 25.0] continuous 

x3-Inlet coolant flow rate qcl (m3/h) [10.0; 20.0] continuous 

x4-Flow rate of the coolant added to the LP condenser qcl+ (m3/h) [1.00; 25.0] continuous 

x5-Number of plates in the low-pressure condenser NLP (-) {6,...,250} discrete 

x6-Number of plates in the very low-pressure condenser  NVLP (-) {6,...,250} discrete 

Table 8. Definition of the design variables and design space 
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6.3.4 Uncertainty and performance variations 

In functioning phases, variations in liquids (must and water) temperatures and flow rates at 
the inlet of the process can dramatically impact the quality of the product at the system outlet. 
In particular, deviations of the temperature and alcoholic strength from their target values may 
lead to severe degradations of the vintage quality. Therefore, the robust design of the two-
staged flash evaporator concerns the minimization of the variation of the following 
performance variables: 

� the outlet product temperature (y1), 
� the final alcoholic strength (y2), 
� the pressure within the VLP stage (y3) 

The variations of these variables are observed through the two measures described in section 
4.3.2, namely the bandwidth of variation (α) and the tolerance to nominal (β). Moreover, the 
minimum admissible value criterion (γ) is used to contain the performance dispersion within a 
desirable domain. 

Uncertainties type Uncertain variables/parameters  Variations range 

  name unit  

Control factors (δ) Inlet product temperature (x1) Tpi (°C) ±1°C 

Inlet coolant temperature (x2) Tcl (°C) ±1°C 

Noise factors (α) Input product mass flow rate Qpi (tons) ±1 ton/h 

heat transfer coefficient for the LP condenser kLP (W/m².K) ±1% 

heat transfer coefficient for the VLP condenser kVLP (W/m².K) ±1% 

Table 9. Definition of uncertainties parameters 

We consider the uncertainty associated to the variability of operating conditions and the 
uncertainty linked to modelling errors. They are considered as random uncertainties without 
any assessment on their distributions. Variations of uncertain variables and parameters used in 
this study are given in table 9. 

Exp. Factors 

# Tpi (°C) Tcl (°C) qpi (ton/h) kLP (%) kVLP (%) 

1-4 ±1 ±1 0 0 0 

5-8 0 0 ±1 ±1 0 

9-12 0 ±1 0 0 ±1 

13-16 ±1 0 ±1 0 0 

17-20 0 0 0 ±1 ±1 

21-24 0 ±1 ±1 0 0 

25-28 ±1 0 0 ±1 0 

29-32 0 0 ±1 0 ±1 

33-36 0 ±1 0 ±1 0 

37-40 0 ±1 0 ±1 0 

41 0 0 0 0 0 

Table 10. Box-Behnken design (5 factors, 3 levels) 



 

108 
 

Fluctuations during operating phases of flash evaporators are due to variations of inlet 
temperatures and mass flow rates of liquids (product and coolant) which can dramatically 
impact the quality of vintage by modifying its nominal output temperature and final alcoholic 
strength from the target value. The temperature variations of the must and coolant are 
supposed to be up to ±1°C around their nominal values. As the flash evaporator was initially 
designed to concentrate 10tons/h of must, the inlet product flow rate can vary of ±1ton/h from 
the initial value depending on the size of the vineyard. 

Moreover, heat transfer coefficients values are derived from experimental correlations 
which are highly sensitive to physical phenomena and with values which are difficult to 
estimate. Due to their predominant role in the heat transfer within the condensers, modelling 
errors affecting heat transfer coefficients may cause significant inaccuracies in the predictions 
of the nominal performances. We add two other variables (kLP and kVLP) to assign a variability 
of ±1% on these parameters. 

Uncertainties are introduced through stochastic variables (α,δ) during the evaluation of 
candidate solutions (see section 2.4.2 for further details) which is equivalent to define and 
evaluate a neighbourhood around the nominal design configuration: 

ɶ ɶ( ) ɶµ , ,= = +y x α x x δ  (6.3.4) 

where ɶy  is the vector of disturbed observation variables computed from the vector of design 
variables x submitted to the variations of noise factors α and control factors δ. In nominal 
evaluation, each combination of design variables results in a unique set of performances. The 
variability is propagated through the behaviour model of the flash evaporator towards 
observation variables, and results in a set of different functioning states which are 
characteristic of one particular candidate solution. 

As suggested in section 2.4.2, we use a Box-Behnken design of experiment method 
(5factors, 3 levels) to sample the domain of noise and control factors as shown in table 10. 
Box-Behnken design is an economical fractionalized design which is useful when numerical 
experimentations are high time consuming. Here, only 41 experiments are required to 
evaluate the dispersion of the performance. The choice of a fractional design enables to 
achieve a homogenous repartition of the experiments around the nominal, and thus, a suitable 
representation of the observation variables excentration. Although, design of experiments is 
usually used to derive a numerical model of the behaviour of the system, it is not the purpose 
of our approach. Here, we use design of experiments to define a set of points to be evaluated. 

6.4 Preference modelling 

6.4.1 Formulation of the objective of performance 

Observation variables are first interpreted through Harrington’s desirability functions in 
respect with design criteria and designers’ preferences. The desirability functions are 
specified with desirability levels related to an absolute constraint (AC) and a soft limit (SL) 
(see section 3.4.2 for further details). The two-sided Harrington’s desirability functions have 
been parameterized using average values between the absolute constraints and soft limits 
boundaries. Criteria and desirability function parameters are given in table 11. 
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Design criteria Desirability functions Parameters 

   AC d(AC) SL d(SL) 

25°C≤Tpo≤30°C d1 two-sided 
20 
35 

0.05 
0.05 

25 
30 

0.9 
0.9 

Dpo ≈12% d2 two-sided 
11 
13 

0.05 
0.05 

11.8 
12.2 

0.9 
0.9 

PVLP < 94mbar d3 one-sided 97 0.01 94 0.9 

Msys < 7.5tons d4 one-sided 7.5 0.01 5.3 0.5 

Ssys < 16m² d5 one-sided 16 0.01 10 0.5 

EI99 < 50 000 d6 one-sided 50000 0.01 1000 0.99 

investC 465k€<  d7 one-sided 465 0.01 141 0.5 

opC 153k€<  d8 one-sided 153 0.01 84 0.5 

Table 11. Desirability function related to the performances 

As the specification of the parameters must be consistent with the physical behaviour of the 
system, it is suitable to define a system of reference of intermediate performance. This system 
is characterized by a global desirability value equal to 0.5 (GDI=0.5). Since aggregation 
functions are design appropriate, all desirability values should be equal to 0.5 (di=0.5). In this 
study, the system of reference is a mono-stage evaporator from the society “Entropie SAS” 
(see figure 51). It concentrates 10tons/h of product from 11% to 12% by volume which 
corresponds to an evaporative capacity of 1000l/h of water. From the constructor data, we 
evaluate the weight and floor occupation of this system respectively equal to 5.3tons and 
10m², for an estimated cost of investment close to 141k€. As an example, the SL parameter 
value related to the mass of the system is determined such as d(Massref)=0.5 with 
Massref=5.3t. As the evaporator must be transportable from a production site to another, the 
AC parameter is derived from the dimensions and maximal carrying capacities of medium-
sized flat bed trucks (PTAC<7.5t). The desirability functions associated to the mass is 
represented on figure 21 in section 3.4.2. From the reference system and the requirements 
enounced in section 6.3.1, the parameter values of the eight desirability functions are 
determined. 

 
Figure 51. Must concentrator ENTROPY MTA 300 (evaporative capacity: 300l/h) 
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From the life cycle analysis and functional analysis of the system, four design objectives have 
been identified. They concern the improvement of the product quality (DOI1), the 
improvement of the transportability of the system (DOI2), the minimization of the 
environmental impact (DOI3) and the reduction of total costs of ownership (DOI4). Each 
objective is intrinsically linked to the satisfaction of at least one functional goal. It is then 
possible to identify the observation variables and constraints linked to the achievement of 
each goal. The output temperature, final alcoholic strength and pressure in the VLP stage 
impact the product quality. The mass and the overall floor area of the system are related to the 
improvement of the system transportability. The minimization of the system environmental 
impact is achieved by the satisfaction of the Eco-Indicator 99 criteria whereas the 
minimization of the overall costs of ownership takes into account costs of investment and 
operating costs. The desirability functions are then aggregated into four design objectives 
indices (DOIs) using a weighted geometric mean aggregation (s=0). At this stage of the 
aggregation process, the number of aggregated components does not exceed three and it is 
thus possible to assign directly numerical weights. Furthermore, it is assumed here that the 
priorities between sub-objectives are equal. Thus, the DOIs are expressed as follows: 

1/3 1/3 1/3 1/2 1/2
1 1 2 3 2 4 5

1 1/2 1/2
3 6 4 7 8

DOI d d d                 DOI d d

DOI d                                    DOI d d

= ⋅ ⋅ = ⋅

= = ⋅
 (6.4.1) 

The DOIs are then aggregated into a global desirability index of performance GDIperfo using a 
weighted geometric mean (s=0). The GDI related to the performance is thus expressed as 
follows: 

[ ]i

4
Tw

perfo i
i 1

GDI DOI with 0.5660, 0.2647, 0.0399, 0.1267
=

= =∏ w  (6.4.2) 

As it is suggested in chapter 4 and 5, the assignment of the numerical weights w is performed 
using the AHP method [Saaty 2008]. From a relative scale of importance ranging from 1 to 9 
which corresponds respectively to equal importance and extreme importance, a judgment 
matrix is defined from pairwise comparisons between objectives. The judgment matrix is 
positive and symmetrical. The validity of the judgment is qualified through a consistency ratio 
CR. According to Saaty, consistency ratio values between 1% and 10% validate the 
consistency of the results computed by the AHP method. In [Semassou 2011], AHP is 
coupled with to the failure mode, effects, and criticality analysis (FMECA), and the values of 
the relative scale of importance correspond to the degrees of criticity of the objectives. 

“Design for improving 
the product quality” 

Imp. of the 
product quality 

Imp. of the 
transportability 
of the system 

Reduction of 
the env. impact 

Min. of the total 
cost of 

ownership 
w 

Imp. of the product quality 1 3 9 5 0.5660 

Imp. of the transportability 
of the system 

1/3 1 7 3 0.2674 

Reduction of the env. 
impact 

1/9 1/7 1/ 1/5 0.0399 

Min. of the total cost of 
ownership 

1/5 1/3 1/5 1 0.1267 

CR=0.0513      

Table 12. Judgment matrix for the scenario “Design for improving the product quality” 
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The AHP method enables to define different scenario in respect to the relative importance of 
objectives between them (Design for X approach). As the main service function of the two 
staged-flash evaporator concern the must concentration, the satisfaction of the product quality 
objective is crucial. The transportability of the system is another important objective to be 
satisfied. Finally, the objectives related to the environmental impact and total costs of 
ownership are considered as secondary. However, it is considered that the minimization of 
costs is preferred to the reduction of the environmental impact. Table 12 shows the 4x4 
judgment matrix related to a two-stage flash evaporator designed for improving the quality of 
wine. In this case for instance, the relative importance of the product quality objective is 
regarded as extreme (value of 9) compared to the environmental objective, whereas the cost is 
considered as a minor objective (value of 5). The computation of the eigenvector of the matrix 
provides the normalized values of weights of the aggregation functions. These weights are 
reported in the right column of the table 12. For this judgment matrix, the CR is equal to 
5.13%. The numerical values of the weights computed by the AHP method are thus consistent 
with the relative order of importance between the objectives satisfaction. 

 
Figure 52. Structure of the preferences aggregation model for the performance 

To sum up, the whole structure of the preference aggregation model for the performance is 
represented in graph form on figure 52. The weights related to each objective have been 
reported in bold. The design criteria are first interpreted and turned into objectives using 
Harrington’s desirability functions. The desirability function parameters are derived from the 
requirements and from the definition of a reference system of intermediate desirability. The 
eight individual desirability functions are then aggregated into four design objective indexes 
using the weighted geometric mean. At the stage of the process aggregated sub-objective are 
supposed to be of same priority. Finally, the DOIs are aggregated into a global desirability 
index of performance using the weighted geometric mean. As the number of objectives now 
being used is higher, the weigh assignment is performed using the AHP method. 
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6.4.2 Formulation of the objective of performances sensitivity 

The objective of design sensitivity is based on the observation of the dispersion of the output 
temperature (y1) of the must, the final alcoholic strength (y2) and the pressure in the low 
pressure chamber (y3). During the functioning phase, flash evaporator users expect uniform 
juice temperatures at the system outlet to ensure the quality of the product. More to the point, 
variations of alcoholic strength and pressure in the low pressure chamber can also impact the 
vintage. As proposed in section 4.3.2, the bandwidth of variation, the limitation of the 
distance between the nominal value and the centre of gravity of the neighbourhood, and the 
satisfaction of the minimum admissible value are used to observe the dispersion y1, y2 and y3 
when the system is disturbed according to equation (6.3.4). The criteria and desirability 
function parameters are defined in table 13. 

Observation variables Desirability functions Parameters 

 name unit   AC d(AC) SL d(SL) 

Bandwidth of variation for:         

Output temperature �( )1y  α1 (°C) �
1d  one-sided 1 0.01 6 0.9 

Alcoholic strength 
( )2y  α2 (%) 

2d  one-sided 1 0.01 4 0.9 

Pressure 
( )2y  α3 (mbar) �
3d  one-sided 10 0.01 40 0.9 

Tolerance to nominal for:         

Output temperature β1 (°C) 

4d  one-sided 0.25 0.01 2.5 0.9 

Alcoholic strength β2 (%) �
5d  one-sided 0.05 0.01 1.25 0.9 

Pressure β3 (mbar) 

6d  one-sided 5 0.01 20 0.5 

Minimum admissible for:         

Output temperature γ1 (°C) 

7d  two-sided 

20 
35 

0.05 
0.05 

25 
30 

0.9 
0.9 

Alcoholic strength γ2 (%) �
8d  two-sided 

11 
13 

0.05 
0.05 

11.8 
12.2 

0.9 
0.9 

Pressure γ3 (mbar) 

9d  one-sided 97 0.01 94 0.9 

Table 13. Desirability functions parameters for the objective linked to the performance sensitivity  

The first step of the aggregation model consists in aggregating individual desirability 
functions using the min aggregation function (non-compensatory aggregation strategy). The 
DOIs are expressed as follows: 

� ɶ ( )
� ɶ ( )
�

1 ii 1 3 j
j 1 3

2 ii 4 6 j
j 1 3

3 i 7 9 j
j 1 3

DOI min d

DOI min d

DOI min

=
=

=
=

=
=

= α

= β

= γ

…
…

…
…

…
…

 (6.4.2.1) 

As mentioned in section 4.3.2, the measure of the minimum admissible value (γ) already 
corresponds to a desirability value. The min aggregation function enables the improvement of 
the lowest desirability value against the expense of the global desirability level of the design 
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solution. No weights are used in this formulation. The DOIs are then aggregated into a global 
desirability index of sensitivity GDIsens. This index is expected to be maximized to reduce to 
sensitivity of the performance under uncertainty. The selected aggregation function is the 
geometric mean and GDIsens is computed as: 

� i

T3 v
isens

i 1

4 4 2
GDI DOI with v , ,

10 10 10=

 = =   
∏  (6.4.2.2) 

Using the weighted geometric mean aggregation tends to improve the global level of 
desirability by worsening the lowest desirability value. Weights have been determined by 
considering that the minimization of the objectives linked to the bandwidth of variation and to 
the tolerance to nominal are of equal importance. The global formulation of the sensitivity 
objective is summarized in graph form on figure 53. 

 
Figure 53. Structure of the preferences aggregation model for the performances sensitivity  
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6.5 Robust design optimization 

6.5.1 Formulation of the optimization problem 

A design solution is robust as soon as it achieves a good level of performance while 
maintaining a low level of variability under uncertainty. This is expressed mathematically by 
equation (2.3.1.1) in which objectives functions are GDIperfo and GDIsens: 

( ) ( ) T

perfo sensmaximize 

subject to:

GDI ,GDI  

∈ Ω

x x

x
 (6.5.1) 

Due to the discontinuity of the response surface and numerous local extrema created by 
weighted aggregations, classical gradient-based optimization approaches are inefficient for 
solving this numerical problem. Consequently, this MO problem is numerically solved using a 
genetic algorithm which enables a global investigation of the design space. 

6.5.2 Numerical solving 

The robust design problem (6.5.1) has been addressed by NGSAII with a population of 250 
individuals and a limit criterion of 200 generations. The reader could refer to section 2.3.6 for 
further details. We use the real-coded GA operator with a distribution index of 20. The fitness 
computation procedure is presented in flow chart in figure 54. The results are presented and 
discussed in the following section. 

 
Figure 54. Fitness computation procedure 
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6.6 Results and discussion 

6.6.1 Results 

Results are summarized from figure 55 to figure 59. The Pareto set (GDIperfo,GDIsens) is 
represented on figure 55. It is composed of 250 robust design solutions and appears to be non-
convex. The two extremities of the frontier correspond respectively to the design solutions 
with the lowest sensitivity (solution #250) and with the highest level of performance (solution 
#1). Therefore, the main challenge consist here in determining which one of the Pareto 
optimal solution is the most relevant for the final design of the two- staged flash evaporator. 
In the following, the design variables, observation variables and desirability levels have been 
plotted according to the GDIperfo achieved by the candidate solutions. This is equivalent to 
represent the evolution of the design properties along the Pareto frontier. 

 
Figure 55. Pareto set for the robust design problem of flash evaporator 

The design variables having an impact on the robustness of design solutions are the input 
product temperature (Tpi), the coolant liquid temperature (Tcl) and the number of plates in the 
LP condenser (NLP). The evolution of these three design variables in function of GDIperfo 
values are reported on figure 56a, figure 56b and figure 56c. The coolant liquid flow rate has a 
minor influence on the robustness and keep a constant value of 12.5 l/h of water (qc=5.55l/h, 
qcl+=6.94l/h). The same remark can be done for the number of plates of the VLP condenser 
which keeps a constant value of 23 plates (NVLP). The evaporative capacity (expressed in litre 
of evaporated water per hour) has been also reported on figure 56d. Discontinuities on figure 
56 are due to the variation of the number of plates in the LP condensers (NLP) which is a 
discrete variable. Two kinds of flash evaporator design can be defined. The first one presents 
a global heat transfer area of 41.87m² which corresponds to a LP condenser composed by 248 
plates. The second one gets a global heat transfer area of 41.71m² and involves a LP 
condenser composed by 247 plates. Consequently, a decrement of the heat transfer area of the 
LP condenser increases the evaporative capacity of the system (improvement of the cooling 
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power of the system). As the global desirability index of performance mainly depends on the 
objective linked to the product quality, this leads to the improvement of the overall 
performance. To the contrary, the evaporative capacity should be slightly decreased to reduce 
the variability of the product quality. This means that such a system will be able to cool 
vintage at a lower inlet temperature (decreasing of the cooling power of the system). 

 
Figure 56. Evolution of design variables along the Pareto frontier 

Observation variables and their interpretation into desirability scores are presented on figure 
57. The desirability scale is on the right axis. As the achievement of the product quality 
objective is highly prioritized (numerical weight of 0.5) in the geometric mean aggregation, 
the performance optimization is mainly driven by the output product temperature (Tpo), the 
final alcoholic strength (Dpo) and the pressure inside the VLP stage (PVLP). Consequently, 
these three performance measures get very high desirability levels (higher than 0.95). The 
satisfaction of the final alcoholic strength criterion is linked to the evaporative capacity of the 
system from the relation (6.3.1.2). The reduction of the variability of the product quality 
implies a decrement of the system overall performance. Its evaporative capacity is lower, and 
consequently the design solution moves away from the target objective being realized. The 
high prioritization of the quality objective also requires an increment of the cooling power of 
the system, and therefore, an increase of the dimensions. Thus, the reduction of the 
performance variability leads to design solutions which are more transportable. As a 
consequence, the energetical consumptions and overall costs are reduced. These results 
strongly depend on the weight assignment values used in the aggregation formula. The 
evolution of the design objectives indexes with the GDIperfo are represented on figure 59. 
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Figure 57. Evolution of the observation variables and desirability levels along the Pareto frontier 

Measurements related to the design sensitivity (αi, βi, γi) are presented on figure 58. The 
desirability scores associated to αi and βi have also been represented (γi is already expressed 
as a desirability value). According to figure 58c, figure 58f and figure 58i, the variation of the 
pressure inside the VLP chamber is not significant and remains acceptable. However, the 
dispersions of the output temperature and final alcoholic strength are significant. From the 
variability of the inlet flow rates and temperatures, it results a bandwidth of variation of 3.4°C 
for the outlet product temperature (α1) and 2.48% for the final alcoholic strength (α2). 
According to the measure β, it appears that the dispersion of these two variables remains close 
to the nominal value. Finally, the minimum admissible value (γ) shows that the variability of 
the final alcoholic strength can lead to undesirable results, i.e. solutions with a desirability 
level lower than 10-2. The variability of Tpo and Dpo tends to be reduced by design solutions 
with a lower level of performances. The design objective indexes related to the design 
sensitivity are represented on figure 59. 
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Figure 58. Evolution of the design sensitivity measures along the Pareto frontier 

According to the robust design problem definition, the sensitivity of the product quality facing 
with external uncertainty can be slightly reduced by performing some compromises on the 
performance. In particular, the cooling power and the evaporative capacity of the system are 
lower. However, the design objectives linked to the transportability, environmental impact 
and costs are improved. The purpose of the following section deals with the selection of the 
optimal solution in the Pareto set by performing different trade-off strategies. 

 
Figure 59. Evolution of the design objective indexes along the Pareto frontier 
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6.6.2 Decision and trade-off strategy 

In the following, we discuss the selection of the optimal solutions for the design of the two-
staged flash evaporator the weighted sum aggregation, weighted geometric aggregation and 
min aggregation functions are used. The selected solutions are reported in table 14. Figure 60 
represents the iso-preference functions (see section 5.2) and the selection of the optimal 
solution for the different trade-off strategies  

Aggregation 
function 

Weights 
Selected 
solution 

GDI values Design variables 

wperfo wsens GDIperfo GDIsens 
Tpi 

(°C) 
Tcl 

(°C) 
qcl 

(m3/h) 
qcl+ 

(m3/h) 
NLP NVLP 

Weighted sum 
(s=1) 

0.95 0.05 #237 0.9234 0.3790 70.83 18.88 5.55 6.94 248 23 

0.98 0.02 #56 0.9239 0.3643 71.81 18.66 5.55 6.94 247 23 

0.99 0.01 #27 0.9240 0.3612 72.06 18.66 5.55 6.94 247 23 

Weighted 
product (s=0) 

0.95 0.05 #249 0.9234 0.3796 70.79 18.88 5.55 6.94 248 23 

0.98 0.02 #226 0.9234 0.3783 70.89 18.88 5.55 6.94 248 23 

0.99 0.01 #70 0.9239 0.3659 71.69 18.66 5.55 6.94 247 23 

Min (s→–∞)   #250 0.9234 0.3797 70.79 18.89 5.55 6.94 248 23 

Table 14. Optimal design solutions selected with different trade-off strategies 

It is well known that the weighted sum (WS) aggregation suffers from serious drawbacks due 
to its inability to detect solutions in the non-convex parts of the Pareto frontier. Here, the 
Pareto frontier is non-convex. Consequently, many relevant solutions cannot be selected. 
According to figure 60a, it appears that the WS aggregation function results in 50 selected 
solutions among 250 (20% of recovery) with a step of discretization of 5e-6 for the weights. 
For each detectable point, there is a couple of weights such as this point can be captured 
[Scott 1995]. Thus, designers can filter Pareto frontiers by adjusting weight values according 
to their preferences, but many solutions cannot be selected. Assigning the values 0.95, 0.98 
and 0.99 to the weight wperfo, leads successively to select the solutions #237, #56 and #27. 
When the value of the weight wperfo increases, the performance objective is favoured and the 
solutions tend to be less robust. It can be notice that for wperfo<0.95, the low sensitivity 
optimum (solution #250) is selected. 

The weighted geometric mean (WG) aggregation is more effective than the WS 
aggregation for the detection of solutions lying in the non-convex parts of the Pareto frontier. 
However, the selection of optimal solutions is often hampered by the high sensitivity of the 
weights approaching the extremities of the frontier. On figure 60b, it appears that 52 solutions 
are selected among 250 (20.8%) with the same discretization step. However, increasing the 
discretization step of the weights leads to capture a high number of solutions. Assigning the 
values 0.95, 0.98 and 0.99 to the weight wperfo, leads successively to select the solutions #249, 
#226 and #70. These solutions are different from the ones captured with the WS aggregation 
function. 

Finally, figure 60c has been obtained using the non-compensatory strategy. As the 
selection is based on the minimum of the GDI values, the low sensitivity optimum (solution 
#250) belongs to the selected solution. For wperfo<0.95, the WS or WG aggregation functions 
lead to the same result. 
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Figure 60. Selection of the optimal design solution for different trade-off strategies 
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6.6.3 Recommendations 

From the previous analysis, we derive some recommendations about the robust design of flash 
evaporators. First, it appears that the gain in sensitivity compared to the loss of performance is 
low. For wperfo<0.95, only the low sensitivity optimum is selected with the WS or the WG 
aggregation function. This traduces an important difference between the two GDI scores and 
that the low values of GDIsens is compensated by the high value of GDIperfo. Therefore, the 
selection of the high performance optimum requires very high values for wperfo (close to one). 
As the development of flash evaporators for must concentration applications is mainly 
concerned with the quality of the product at the system outlet, the evaporative capacity 
criterion must be fulfilled and thus highly prioritized. The weak values of the design 
sensitivity objectives are mainly due to the high sensitivity of the final alcoholic strength. 
Consequently, in the context of this study, we prove that a system having a high evaporative 
capacity is able to increase of the alcoholic strength of 1% avoiding the degradation of the 
product quality when the evaporator is moved from an exploitation site to another. 

6.7 Conclusion 

In this chapter, a methodology for computing robust optimal solutions of flash evaporators for 
the wine industry has been presented. The approach tackles the robust design problem as a 
trade-off between two main objectives: (1) improve the overall level of performance including 
the quality of the vintage, the transportability of the system and the costs of ownership; (2) 
reduce the sensitivity of some performances, namely the temperature of the outlet product and 
the final alcoholic strength, under epistemic uncertainty. One of the originality of the method 
is to consider uncertainties without probabilistic distributions. Three measures to observe the 
dispersion of the performances are also suggested. They concern the bandwidth of variation, 
the tolerance to nominal and the minimum admissible value. A preference aggregation 
method is used to formulate the two design objectives. The design objective of performance is 
based on weighted geometric mean aggregations whereas the sensitivity objective involves 
min aggregations function. These two aggregation strategies are considered as design 
appropriate, and thus, are relevant to reflect the intentions of designers. The Pareto set of the 
optimal design solutions is generated by the non-dominated sorting genetic algorithm 
NGSAII. Finally, the selection of the best solution according to different trade-off strategies 
has been discussed. 

From the robust design formulation and criteria definitions, the methodology proves that 
the variability of the product quality, in particular the vintage output temperature and final 
alcoholic strength, can be reduced by performing some compromises on the other 
performance indicators. These two observations variables are crucial for the wine quality and 
their variations must be controlled. In this way, the quality product objective has been highly 
prioritized. Such a strategy coupled with a geometric mean aggregation leads to small 
improvements of the other objectives. Finally, in the last section, the selection of the most 
preferred design solutions is modelled by a class of function which is more or less 
compensatory. Designer must express trade-offs between the gain in performance and the 
reduction of the performance sensitivity. This salient point can be overcome by using 
equivalent point method or the trade-off function presented in chapter 5. 
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CHAPTER 

CHAPTER 7 Conclusions 

This thesis is mainly concerned with the development of suitable methodologies and tools to 
support designers in machines embodiment design. In this context, investigation of large 
design spaces, representation and evaluation of candidate solutions, and a priori formalization 
of preferences are topical issues. In order to converge as soon as possible toward the most 
preferable design solution, taking robust decisions appears as a topical issue to ensure the best 
choices in engineering design. In particular, starting from a selected concept, embodiment 
design consists in determining the main dimensioning and monitoring parameters of the 
system while meeting the design requirements. The continuity of the design process between 
the preliminary and detailed phases strongly depends on the efficiency of the embodiment 
design phase in providing embodied solutions with a validated physical behaviour and an 
optimized functional structure. Embodiment design problems in engineering are thus 
generally oriented toward numerical optimization. Indeed, they consist in investigating a 
research space, also defined as design space, to find the best combination of design variable 
values, i.e. the solution which optimizes at least one objective function while satisfying a set 
of constraints derived from the design requirements.  

Fundamental notions and concepts related to formal design theories and methodologies are 
introduced by chapter 2. In particular, the FBS ontology proposed by John Gero offers a 
suitable framework to link real and expected behaviour in design and thus enables to situate 
optimization in engineering design. Some of the topical issues, priors work and future 
challenges related to address engineering problems with optimization techniques are also 
presented through this chapter. In particular, it highlights that most of these techniques have 
not meet yet designer’s needs in industry. The development of suitable tools dedicated to 
support decision making in embodiment design is thus required to improve the whole design 
process of machines.  

As design is a human activity, embodiment design problems differentiate themselves from 
other kinds of problems by the expression and the formulation of designer’s preferences. 
Facing multiple criteria, preference assessments can be tackled by determining individual 
preference functions, and generating adequate aggregation strategies to form a single global 
criterion used as a metric for alternatives evaluation. Chapter 3 introduces the main concepts 
and issues related to preference modelling in engineering design. Three different approaches, 
namely utility theory, method of imprecision and desirability index, are presented and 
discussed according to their ability in modelling preferences in engineering design. The 
desirability approach appears as the most relevant to reflect designers’ intentions in 
embodiment design. Desirability enables to model preferences related to the true knowledge 
of designers about design. It is not concerned neither with risk, nor imprecision, but with the 
level of satisfaction resulting from the adequation between the real behaviour of alternatives 
and the expected behaviour expressed by designers. In particular, Harrington's desirability 
functions appear as relevant functions to interpret properties values and model preference 
based on design requirements and designers’ expectation. Due to their exponential form, 
Harrington’s desirability functions allow progressive desirability variations approaching the 
bounds, and consequently, enable to rank the whole set of solutions, including acceptable and 
unacceptable solutions. Moreover this class of desirability functions provides the design 
problem with a soft formulation of constraints which reflects better designer’s behaviour 
evaluating design candidates. Individual desirability functions are then aggregated into 
desirability index according to the general weighted mean. The concept of desirability index 
has been extended here in respect with the definition of design appropriate aggregation 
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functions proposed by the MoI. This enables designers to model different trade-off and 
compensatory levels between objectives. 

From the FBS ontology and the concept of desirability, chapter 4 presents a modelling 
methodology for embodiment design problems, based on observation, interpretation and 
aggregation models, linking physical behaviour with functional constraints and design 
objectives. Such natural and intuitive decomposition enables to model designers’ reasoning 
and express its experience and “feeling” about the design. This makes a significant difference 
from other methodologies such as the utility theory or MoI. In particular, the definition of 
DOIs allows a synthesis of the whole design information at different level of the problem 
decomposition and acts as filters on the initial set of admissible candidate. The aggregation of 
the different desirability scores using design appropriate functions and weights assignments, 
allow to apply different trade-off strategies between objectives, and thus, to reflect in the best 
ways the designer's preferences. This approach can be applied to robust design problems 
through the formulation of two design objectives, namely the improvement of the 
performance and the reduction of the performances variability, which must be traded-off. 

This methodology aims to provide designers with convenient ways to structure objectives 
functions for optimization in embodiment design. The initial multiobjective embodiment 
design problem is modelled as a mono objective optimization problem using a priori 
articulation of preferences. The choice of an a priori articulation of preferences enables 
designers to provide additional information to fully reflect their own preferences and 
intentions. Moreover, such an approach generates only relevant portions of the whole set of 
solutions and thus avoids additional efforts. 

As engineering design problems involve multiple conflicting objectives which must be 
traded-off, the determination of design solutions which meet every design objectives in the 
best ways in regards to admissible compromises is a topical issue. The design modelling 
methodology proposed in this thesis suggests three distinct inputs by which designers can 
express their preferences, namely specification of individual desirability functions, weights 
assignment and selection of aggregation strategies. Trade-off is mainly concerned with the 
selection of weights and suitable trade-off parameter values. Different trade-off specifications 
can lead to final solutions with equivalent overall preference levels. Therefore, trade-off 
modelling by aggregation functions is a critical part of the preference assessment process. In 
particular, designers must be aware of the areas of design points which can be captured using 
a particular aggregation strategy. Chapter 5 presents two approaches to manage trade-off in 
engineering design. The first methodology proposed by Scott uses equivalent point to 
determine consistent trade-off parameter values and weights assignment for preference 
aggregation in engineering design. This models compromises evolving with levels of 
preference.  

Since the trade-off between performances against their variability is specific to robust 
design problems, we propose a suitable trade-off function to model designers’ preferences 
facing these two objectives. This trade-off function has been designed to provide a suitable 
measurement for the relative sensitivity of a choice from a set of alternatives, by quantifying 
the improvement or degradation in the compromise between two preferences when one of 
them is favoured. It enables to guide the selection between nominal optimality and robustness 
according to acceptable compromises. It results in an objective function to be maximized, 
involving not only the optimality and sensitivity of the solution, but also the trade-off 
expected by the designer. 

Finally, chapter 6 shows application of the modelling methodology through the 
embodiment design of a whole machine: a two-staged flash evaporator for must concentration 
in the wine industry. In particular, it is expected to achieve robust design configurations. The 
robust design problem is tackled as a trade-off between the improvement of the overall level 
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of performance including the quality of the vintage, the transportability of the system, the 
costs of ownership and the reduction of the sensitivity of some performances, namely the 
temperature of the outlet product and the final alcoholic strength, under epistemic uncertainty. 
An originality of this approach is to consider uncertainties without any probabilistic 
distributions. The design objective of performance is based on weighted geometric mean 
aggregations whereas the sensitivity objective involves min aggregation steps. These two 
aggregation strategies are considered as design appropriate, and thus, reflects accurately the 
intentions of the designer. The Pareto set of the optimal design solutions is generated by the 
non-dominated sorting genetic algorithm NGSAII. Finally, the selection of the most preferred 
solution according to different trade-off strategies has been discussed. 

From the robust design formulation and criteria definitions, this modelling methodology 
enables to show that the variability of the product quality, in particular the vintage output 
temperature and final alcoholic strength, can be reduced by performing some compromises on 
the performances. These two observations variables are decisive for the wine quality and their 
variations must be controlled. In this way, the quality product objective has been highly 
prioritized. Such a strategy coupled with a geometric mean aggregation leads to small 
improvements of the other objectives. But, another assignment of weight values may lead to 
different system configurations which can be more robust. 

During these three past years, I presented most of the research work described in this thesis 
through several international journal [Quirante 2012, Quirante 2011a, Sebastian 2010] and 
international conferences publications [Quirante 2011b, Quirante 2010]. This enabled to 
identify salient points of the developed methodology which required more effort to meet 
designers’ needs. As our work tackles various transverse topics including design theory, 
knowledge modelling and cognition, or decision-making theory, numerous remarks from all 
these fields have been discussed and integrated in the modelling methodology to improve it.  

The research work presented here presents fundaments of the methodology that we propose 
to model embodiment design problems. It defines and formalizes concept and basis used in 
our approach, and therefore, represents solid basis for further developments. Results of this 
work are of practical implications and can be used to develop and implement numerical tools 
to help designers in embodiment design of machines. The application of the modelling 
methodology to the robust design of flash evaporators suggests the achievement of better 
design. This work does not pretend to provide miracle solution to solve every engineering 
design problems, but instead, it proposes some guidelines and tools to structure embodiment 
design problems and support decisions making processes. Due to the desire to remain close to 
designers’ activities, the methodology have been successfully applied to some concrete 
industrial cases [Collignan 2011b, Girardeau 2012] and extended to meet building 
engineering purpose [Valderrama Ulloa 2012]. 

Short-term prospects concern further studies about the coupling effects between weights, 
trade-off strategy parameters and performance variables. In particular, it may be interesting to 
derive these parameters from physical or technical relations, and to reach a better 
understanding about their implications in the improvement of the design solution. Moreover, 
the analysis of the trade-off strategy parameter for the n-dimensional case is also of main 
interests. In this thesis, performance and robustness of design solutions are traded-off. 
However others global objectives may be relevant for the designer. In [Collignan 2011b], the 
level of confidence of a design solution is proposed as a third objective to be balance against 
performance and robustness. Broader prospects mainly consist in applying the methodology 
developed here to link life cycle analysis with embodiment design. Life cycle analysis derives 
impact factors by using aggregation functions which are not design appropriates. Main 
challenges aim to developed a global methodology to model the whole design process with 
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design appropriate aggregation functions, and thus, remain consistent with the preferences of 
designers. 
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ANNEXE I Generation of design 

appropriate aggregation functions 

The family of design appropriate aggregation functions proposed in the scope of the MoI is 
derived from the formulation of the general weighted mean. Changes of the trade-off 
parameters s enables to generate aggregation functions which are more or less compensatory. 
However, design-appropriate aggregation functions correspond to the set of weighted means 
generated while s≤0. This annex presents the generation of some particular aggregation 
functions, namely: the weighted sum, the weighted product and the min-max aggregation. 

I.1 Generation of the weighted sum aggregation function 

For the bi-objective case, the general weighted mean formulation is expressed as: 

( )
1

s s s
1 1 2 2

s 1 2 1 2
1 2

w w
w w s

w w
, ; , ,

 += ∈ + 
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µ µµ µP  (I.1.1) 

where s is the trade-off parameter and eh weights (w1,w2) are such as w1+w2=1. For s=1, it is 
obvious that the resulted aggregation function is the weighted sum (or weighted arithmetic 
mean) and: 

( ) 1 1 2 2
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I.2 Generation of the weighted product aggregation function 

For the bi-objective case, the weighted product aggregation function corresponds to s=0. For 
s=0, the relation (I.1.1) leads to: 
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The logarithm form of expression (7.2.1=) leads to: 
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If we define f(s) such as: 
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It follows that: 
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Finally, the weighted geometric mean aggregation function is expressed as: 
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I.3 Generation of the min-max aggregation function 

For the bi-objective case, the min aggregation function corresponds to s→–∞. For s→–∞, the 
relation (I.1.1) leads to: 
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Taking t=–s leads to: 
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If µ2≤ µ1, then: 
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Conversely, if µ1< µ2, then: 
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Therefore, it follows that: 
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In the same way, while s→+∞, the relation (I.3.1) leads to: 
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If µ2≤ µ1, then: 
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Conversely, if µ1< µ2, then: 
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Therefore, it follows that: 
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ANNEXE II Pareto optimality and 

desirability index 

In [Steuer 1999], the property of Pareto optimality is introduced using the concept of 
domination. For maximization problem, a vector of observation variables y=[y1,...,yk]

T is 
defined as Pareto optimal if there is no other vector y* which dominates y. The vector y* 
dominates the vector y if yj*≥ yj with j=1,...,k and yi*>y i for i∈{1,...,k}. Therefore, a Pareto 
optimal solution cannot be improved without a degradation of one the criterion. As 
observation variables are computed from a set of design variables such as y(x), if y is Pareto 
optimal in the observation space, then x=[x1,...,xk]

T is Pareto optimal is the design space. In 
this annexe, the Pareto optimality criterion resulting from the maximization of the desirability 
index is analysed and discussed. 

II.1  Pareto optimality criterion for desirability index resulting from 

the weighted geometric mean aggregation 

Consider a design problem characterised by k observation variables y=[y1,...,yk]
T resulting 

from n design variables x=[x1,...,xn]
T and interpreted through k desirability functions di 

(i=1,...,k). Suppose that the optimal solution xopt=[ x1
opt,...,xn

opt]T has been determined by 
maximizing the desirability index DI defined by: 

( ) ( ) [ ] [ ]i
k w
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=

= = ∈ ∈∏  (II.1.1) 

Consider now that the solution xopt is not Pareto optimal. This means that there exists a 
solution x* which dominates xopt. It follows that: 
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This result is in contradiction with the assumption that xopt maximizes the DI. Therefore xopt 
must be Pareto optimal. To conclude, the maximization of the DI computed by the weighted 
geometric mean aggregation leads to Pareto optimal solutions. 

II.2  Pareto optimality criterion for desirability index resulting from 

the min aggregation 

Consider a design problem characterised by k observation variables y=[y1,...,yk]
T resulting 

from n design variables x=[x1,...,xn]
T and interpreted through k desirability functions di 

(i=1,...,k). Suppose that the optimal solution xopt=[ x1
opt,...,xn

opt]T has been determined by 
maximizing the desirability index DI expressed as: 

{ } ( )i i i i i
i 1 k

DI d with d y x  
, ,

min d |
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= =
…

 (II.2.1) 

The desirability value DIopt related to the optimal solution is xopt is such as: 
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Consider now that the solution xopt is not Pareto optimal. This means that there exists a 
solution x* which dominates xopt. It follows that: 
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According to the values of dp and ds, three cases can be identified: dp=dt, dp≠dt and (yp|x
opt)≠ 

(yp|x
*), dp≠dt and (yp|x

opt)=(yp|x
*). 

Case 1:dp=dt 

From relations (7.2.2) and (7.2.3), it follows that: 
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This result is in contradiction with the assumption that xopt maximizes the DI. Therefore, for 
dp=dt, x

opt must be Pareto optimal. 

Case 2: dp≠dt and (yp|x
opt)≠(yp|x

*) 

In this case, the Pareto optimality criterion depends on the monotonicity of the desirability 
function dp. If the function dp is strictly monotonic, it follows from relation (II.2.3) that: 
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p p p p p p

opt

y y y y
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* *
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⇒ >

x x x x
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This result is in contradiction with the assumption that xopt maximizes the DI and thus xopt 
must be Pareto optimal. For non-strictly monotonic functions, such as Derringer’s desirability 
functions (see section 3.4.2), the situations dp=1 and dp=0 may append. In particular, for dp=1, 



 

 

the situation dt(yt|x
opt)=dp(yp|x

opt) may arise and lead to non Pareto optimal solutions. Non-
monotonic desirability functions are thus non suitable for preference modelling in engineering 
design. This partly explains why Harrington’s desirability functions are preferred to 
Derringer’s desirability functions. 

Case 3: dp≠dt and (yp|x
opt)=(yp|x

*) 

Using the relation (II.2.3), it comes: 
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p p p p p p
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Therefore, the assumption that xopt maximizes the DI is true, and thus, the solution xopt is 
Pareto optimal. 

To conclude, the computation of the DI by the min aggregation function may lead to non 
Pareto optimal solutions. Designers have to be aware of this non-Pareto optimality when they 
select the min aggregation strategy. This can be seen as a disadvantage for problems in which 
the Pareto optimality criterion is required.  

II.3  Pareto optimality criterion for desirability index resulting from 

the general weighted mean aggregation 

Consider a design problem characterised by k observation variables y=[y1,...,yk]
T resulting 

from n design variables x=[x1,...,xn]
T and interpreted through k desirability functions di 

(i=1,...,k). Suppose that the optimal solution xopt=[ x1
opt,...,xn

opt]T has been determined by 
maximizing the desirability index DI defined by: 

( ) [ ] [ ]
1 sk k

s
i i i i i i i i

i 1 i 1

DI w d with d y x 0 1 , w 0 1  and w 1
/

d | , ,
= =

 = ⋅ = ∈ ∈ = 
 
∑ ∑  (II.3.1) 

Consider now that the solution xopt is not Pareto optimal. This means that there exists a 
solution x* which dominates xopt. It follows that: 

( ) ( ) { }
( ) ( )

opt
t t t t

opt
j j j j

y y for t 1 k

y y for j 1 k; j t

*

*

d | d | , ,

d | d | , ,

 > ∈
 ≥ = ≠

x x
x x

…

…
 (II.3.2) 

The Pareto optimality criterion must be analysis according to the values of the trade-off 
strategy parameter s. For s=0, the aggregation function is the weighted geometric mean and in 
this case, the Pareto optimality criterion has been disused in section II.1. For s>0, the relation 
(II.3.2) leads to: 
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This result is in contradiction with the assumption that xopt maximizes the DI. Therefore, for 
s>0, xopt must be Pareto optimal. For s<0, the relation (II.3.2) leads to: 
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 (II.3.4) 

This result is also in contradiction with the assumption that xopt maximizes the DI. Therefore, 
for s<0, xopt must be Pareto optimal. To conclude, the maximization of the DI computed by 
the general weighted mean aggregation, leads to Pareto optimal solutions. 



 

 

ANNEXE III Design model of two-staged 

flash evaporators 

Transfer, dimensional, environmental and economical models contributing to the design 
model of the flash evaporation process are briefly described in the following, but the reader 
could refer to Annexe 3 and to the publications [Bouchama 2003b, Ho Kon Tiat 2008b] for 
further explanations. 

III.1  Heat and mass transfer model 

The physical model is mainly based on heat and mass transfer balances inside the evaporation 
chambers and condensers. This is an equilibrium model since, even with the flash 
phenomenon, the steam is close to saturation state in the entire system and the working fluid 
is cooled at this saturation temperature. The mass flow rate of the steam generated in the 
evaporation chambers is derived from this equilibrium hypothesis. It is calculated from the 
following equation, where subscripts i and o refer to the inlet and outlet of the stage being 
considered: 

( )pi pi pi po vsat

vapor
evap

q Cp T Cp T
q

h

⋅ ⋅ − ⋅
=

∆
 (III.1.1) 

The outlet temperature of the product is also equal to the steam saturation temperature. 
Therefore, this outlet temperature transferred through the flash evaporator is the saturation 
temperature of the vapour inside the low-pressure evaporation chamber: 

po vsatLPT T=  (III.1.2) 

The cooling power of the flash evaporator is derived from: 

cool pi pi pi po po poq Cp T q Cp T= ⋅ ⋅ − ⋅ ⋅P  (III.1.3) 

The evaluation of this mass flow rate is used to estimate the mass flow rates of the 
condensates flowing out of the condensers. Indeed, the condensate mass flow rate depends 
directly on the inlet and outlet steam mass flow rates in the condenser. The outlet mass flow 
rate of steam flows towards the air ejector coupled with the vacuum pump and due to this 
configuration, the steam outlet mass flow rate is roughly constant. Consequently, the 
condensate mass flow rate can be expressed as a function of the steam mass flow rate, as 
shown in equation (III.1.4), where a and b are equal to 0.7163 and 0.0027 respectively for the 
high pressure stage condenser, and 0.8025 and -0.0025 for the low pressure stage one. From 
experimental measurements, it has been observed that the coefficients of determination 
corresponding to these parameters are 91% for the high pressure and 67% for the low pressure 
condenser: 

cdst vq a q b= ⋅ +  (III.1.4) 

The mass flow rates of the condensates are used to calculate the steam side heat transfer 
coefficient, given by equation (III.1.5), based on Nusselt’s theory. The adaptation coefficient 
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A has been derived from experimental measurements and is equal to 0.58 for the high 
pressure condenser and 0.45 for the low pressure condenser. 

( ) ( )

1/3
2

1/4 1/2 cdst
cd cdst cdst cdst

cdst cdst v

h A 0.023 Re Pr
g

−
 µ= ⋅ ⋅ ⋅ ⋅λ ⋅  ρ ⋅ ρ − ρ ⋅ 

 (III.1.5) 

In the same way, the coolant side heat transfer coefficient is calculated using equation 6.2.2.6 
derived from supplier data. In this equation, the adaptation parameter B is equal to 0.031 and 
0.034 for the high pressure condenser and low pressure condensers respectively. 

0.2 2 /3
cl cl cl cl clh B G Cp Re Pr− −= ⋅ ⋅ ⋅ ⋅  (III.1.6) 

The global heat transfer coefficient is then estimated using equation (III.1.7), considering that 
the thermal resistance of the wall, with a thickness of about 1.5mm, is negligible compared to 
the two other coefficients. 

cd cl

cd cl

h h
k

h h

⋅=
+

 (III.1.7) 

Bouchama [Bouchama 2003a] has shown that the physical behaviour of the condensers can be 
modelled using a NTU-Efficiency model, by considering the energy balance of a volumetric 
cell of condensers and heat transfer laws. This model is based on the hypothesis of laminar 
flow of the condensates, saturation of the steam, adiabatic heat exchange between the coolant 
and the steam, incomplete condensation inside the condenser (no sub-cooling) and immaterial 
pressure losses inside of the condensers. Thus, the global heat transfer coefficient has been 
introduced in equation (III.1.8)to calculate the Number of Transfer Units, and then evaluate 
the heat efficiency of the condensation through the following equation: 

p p

cl cl

k N A
NTU

q Cp

⋅ ⋅
=

⋅
 (III.1.8) 

In this relation, the exchange surface of the plate-type condensers has been divided into N 
plates, each with an exchange surface of Ap. The thermal efficiency of the condensers is 
derived from: 

NTU1 e−ε = −  (III.1.9) 

Finally, the outlet temperature of the working fluid is calculated using the definition equation 
of the thermal efficiency: 

( )clo cli
po vsat

T 1 T
T T

+ ε − ⋅
= =

ε
 (III.1.10) 

The outlet temperature of the coolant liquid Tclo is calculated through an energy balance 
inside the condensers, considering an adiabatic heat exchange between the coolant and the 
steam/condensate flow: 

v evap
clo cli

cl cl

q h
T T

q Cp

⋅ ∆
= +

⋅
 (III.1.11) 

The assumption of adiabatic heat exchange has been experimentally verified by a comparison 
between the vapour side and coolant side thermal powers. The pressures inside the 
evaporation stages are then calculated using the correlation of Clapeyron linking pressure and 
saturation temperature. 
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The design model of the flash evaporation process has been developed around this physical 
model, so that the global definition of the system can be adapted to the operative parameters. 
Dimensional, economical and environmental models complete the heat and mass transfer 
model. 

III.2  Dimensional model 

The dimensional model is used to compute the overall dimensions and mass of the system. 
This model is also related to the definition of the main characteristics of some components, 
which is equivalent to their dimensioning. The size and the mass of the evaporator are mainly 
calculated according to the buffer tank, evaporation chambers and condensers dimensions, 
which are the biggest and heaviest components of the system. 

The volume of the buffer tank is calculated from the mass flow rate of the product and the 
filling time of the tank: 

fill p
chbbuf

p

t q
V

⋅
=

ρ
 (III.2.1) 

Since this tank is supposed to be cylindrical in shape, the height and diameter are calculated 
by fixing one of these two parameters and calculating the other from the volume of a cylinder. 
The thickness of the buffer tank is estimated using the relation given by the European 
directives concerning pressure equipment (CODAP). In order to limit calorific energy losses 
and ensure staff safety, the buffer tank is insulated. The thickness of the insulation layer is 
calculated from a heat transfer balance between the product and the surrounding air. The 
insulation layer is covered with a thin external layer of aluminium. The buffer tank is also 
equipped with a mixer to ensure uniform temperature throughout the product. The mass of 
each of these elements is considered in the mass model of the buffer tank. 

The dimensions of the high and low pressure evaporation chambers are determined by 
considering the droplet carry-over phenomenon inside the chambers due to the flow of steam. 
Most of the droplets are generated by the sudden expansion of the liquid phase at the inlet of 
the chambers. The minimal diameter of the droplets is assessed assuming thermodynamic 
equilibrium between the liquid and vapour phases at the surface of the liquid inside the 
chambers. Minimizing droplet diameter is the most unfavourable case regarding the system 
dimensioning. Since the droplet generation phenomenon is extremely complex and difficult to 
understand, we use this minimal diameter to compute the evaporation chamber diameters and 
design the mist eliminator. Therefore, the droplet diameter is derived from the surface tension 
of the product and the pressure gradient between the saturation pressure of the product 
entering the chamber and the vapour inside the chamber: 

s
dr

sat pi sat v

4.
  d

P (T ) P (T )

σ=
−

 (III.2.2) 

Most of the droplets must fall to the bottom of the chambers to be extracted with the liquid 
phase. Therefore, the diameter of the chambers is calculated by considering the application of 
Newton’s second law to the equilibrium between the Earth’s gravity, buoyancy and friction 
force applied to a droplet. This gives the following equation, taking into account the 
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properties of the vapour carrying the droplets out of the chamber and the gravity moving the 
droplets down to the bottom of the chamber: 

( )
v v

chb 2
v dr v p

72 q
d  

g d

⋅µ ⋅=
⋅ρ ⋅π⋅ ⋅ ρ − ρ

 (III.2.3) 

The thicknesses of the chambers are calculated using the European directives for the 
construction of pressure apparatus. The volumes and masses of the evaporation chambers are 
derived from these thicknesses and diameters. Finally, the dimensions of the float separating 
the evaporation stages are determined from the balance between the forces applied to this 
component. These forces result from the pressure difference between the two evaporation 
stages, buoyancy forces due to the accumulation of cooled product in the bottom of the high 
pressure stage and its weight. 

The masses of piping, condensers and holding structure are assessed from manufacturers’ 
data. The mass of the entire system is then determined from the masses of all the parts, 
including the pumps, valves and sensors for which masses are provided by suppliers. 

Defining the main characteristics of some of the components is equivalent to a 
dimensioning process. These components are purchased and their dimensions directly derive 
from some of their characteristics, such as the power and flow rate of a pump. As an 
illustration, the vacuum pump electrical power is calculated from the downstream to upstream 
pressure gradient (close to 1bar), volume flow rate and efficiency: 

( )vacp f i
vacp

vacp

Qv P P⋅ −
=

η
P  (III.2.4) 

The volume flow rate is assessed from the volume of the system (flash evaporator), initial and 
final concentration of air inside this volume and expected discharge time, which is 10 
minutes: 

( )
( )

sys ai
vacp ai af vac

vac ai af ai

V 1 W
Qv , W 0.98, W 0.01, t 600 s

t W W ln 1 W

⋅ −
= = = =

⋅ ⋅ ⋅ −
 (III.2.5) 

III.3  Environmental model 

Facing with the emergence of environmental constraints in the agricultural field, the 
environmental impact of the flash evaporation process must be also considered as a design 
objective. Two main trends have emerged from studies on the environmental impact of 
systems. Those centred on post-evaluation of emissions in order to highlight solutions for 
improving the environmental efficiency of systems a posteriori and those oriented towards 
knowledge management for eco-design. Several aspects are considered through eco-design 
analysis [Sweatman 1996]: 

� Optimization of energy efficiency and reduction of impacts, 
� Optimization of production techniques, 
� Selection of materials with lower impacts, 
� Reduction of the amount of material used, 
� Optimization of the system packaging, transportation and distribution, 
� Optimization of the life cycle, 
� Optimization of the end-of-life and recycling phases. 

Since the environmental impact of the flash evaporation process is mainly due to its high 
consumption of energy, materials and fluids, the main aspects of eco-design considered in this 



 

 

study are concerned with the optimization of energy efficiency, reduction of impacts during 
the system functioning, optimization of production techniques and reduction of the amount of 
material used. 

In this study, the material consumption of the system is mainly based on the amount of 
materials used for manufacturing the tank, that is to say, steel sheets for the shell and 
Rockwool for the insulation of the buffer tank. Since the dimensions of the tank are related to 
the operating conditions, material consumption modelling is also adapted to the evolution of 
those operating conditions. Based on the EcoIndicator99 methodology [Goedkoop 2000], the 
relative impact corresponding to one ton of steel is quantified and the related damages 
coefficients (environment, human health, resources) are derived. 

( )material 1 2 3 sys

1 2 3

EI a a a M

a 1 9 (environment), a 13 233 (human health), a 2 3 (ressources)

= + + ⋅

= = =. .
 (III.3.1) 

This score characterizes the environmental impact on resources, fuels and minerals of the 
manufacturing process and material recycling. Similarly, we evaluate the damages 
coefficients associated to the consumptions of 10kWh and 1m3 of water. Finally, a global 
score EI is derived from the impacts of material, energy and water consumptions. 

( )
( )

material elec water

elec 1 2 3 elec 1 2 3

water 1 2 3 water 1 2 3

EI EI EI EI

with

EI b b b C ,  b 0 145, b 0 0139, b 0 0271

EI c c c C ,  c 0 0187, c 0 00204 , c 0 00607

= + +

= + + ⋅ = = =

= + + ⋅ = = =

,

. . .

. . .

 (III.3.2) 

The energy consumption calculation is based on the power required to supply the different 
pumps, mixer and fan. The water consumption corresponds to the volume of water used by 
the cooling tower to cool the water at the outlet of the LP condenser. The mass flow rate of 
coolant required for the high pressure condenser is higher than the low pressure one. 
Nevertheless, the required coolant inlet temperature is higher in the high pressure condenser 
than in the low pressure one, so the system is structured so that the heated outlet coolant flow 
of the low pressure condenser is sent to the inlet of the high pressure condenser where 
additional fresh coolant is added to reach the required flow rate of the LP condenser: 

f cl LP cl HPC q q += +  (III.3.3) 

Mechanical draft cooling towers consume water in three major ways [Leeper 1981]. 
Evaporation rate (CE) is approximately 1% of the water flow rate (Cf) per each 10°F (≈5.5°C) 
of the cooling range. Drift (CD) is approximately 0.2% of the water flow rate, and refers to the 
water which leaves the cooling tower carried out with the exiting air. In order to prevent 
concentration of solid and chemical particles in the cooling water resulting from the 
evaporation, blowdown (CB) is the volume of water removed from the system and replaced by 
fresh water. It is usually 20% of the evaporation rate. 

( )
( )

elec mixer fan pumps op

water E D B op

C Power Power Power t

C C C C t

= + + ⋅

= + + ⋅
∑

 (III.3.4) 

The electrical consumption and water consumption are respectively expressed in kWh and 
m3/h. They are estimated over a period (top) of 20 years with an average operating time of 10 
hours a day during 2 months (duration of the harvest period). 
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III.4  Economical model 

The development of flash détente processes in the wine area is also hampered by the initial 
cost of investment. The economical analysis of the flash evaporator aims at modelling 
manufacturing costs (material purchase and forming) of tanks, and purchasing costs of other 
parts of the flash evaporation system (condensers, pumps, etc.). The global purchasing cost of 
the system is calculated by adding these manufacturing and purchasing costs for each part of 
the system.  

Manufacturing costs of the buffer tank, evaporation chambers and purchasing costs of the 
condensers, piping and mist eliminator have been estimated from mass calculation and 
updated prices given by manufacturers. The purchasing cost of the system is calculated by 
adding together these manufacturing and purchasing costs for each part of the system. This 
total is then multiplied by the Lang factor (Lf) taking into account installation costs, 
transportation costs and various costs such as insurance [Rehfeldt 1997]. The resulting cost is 
the investment cost of the process: 

( )inv chb pumps cnd diversf fwith L 3.1= ⋅ + + + =C L C C C C  (III.4.1) 
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 (III.4.2) 

Some of these costs are related to components (pumps, condensers and mist eliminator) 
purchased and installed in the system without any modification, whereas other components 
must be dimensioned and manufactured from basic materials (sheets, tubes, linking elements). 
Costs of purchased components are calculated from some of their overall characteristics. For 
instance, high and low condensers are thermal exchangers (plate condensers) whose costs are 
assessed from their exchange surface area. Thus: 

( ) 0.4678
cnd A = 3789 A⋅C  (III.4.3) 

In the same way, the main overall dimension taken into account in calculating the cost of a 
mist eliminator is its vapour inlet section. The cost of waved strip droplet separators is derived 
from: 

( ) 0,7817
mist S = 3448 S⋅C  (III.4.4) 

The main overall characteristic that is relevant for assessing the purchase costs of the pumps 
is their electric power. The purchase cost of the liquid ring vacuum pump, for instance, is 
calculated from: 

( )vacp =  5779 228⋅ +C P P  (III.4.5) 

Other purchased components such as the tubes connecting the tank, chambers and pumps of 
the flash evaporator are computed from their mass. The cost of steel tubes is estimated 
through: 

( )tube M = 4.9521 M +0.2482⋅C  (III.4.6) 

Some other components are more specific to the evaporator flash and must be dimensioned 
and design for this particular application. Therefore, we use models of material and 



 

 

manufacturing costs. For instance, the buffer tank is made of a rolled steel sheet, a layer of 
Rockwool and a thin layer of aluminium. The costs of the metals are derived from their mass: 

( ) ( )steel alu 0.6605
sheet sheetM = 4.745 M +4.7715, M = 20.09 M⋅ ⋅C C  (III.4.7) 

whereas the cost of the Rockwool layer is derived from its thickness (e) and its surface (S), 

( ) ( )rockwool e,S = 30.44 e+8.87 S⋅ ⋅C  (III.4.8) 

From the investment cost of the system, we derive the maintenance cost which is assessed as 
2.5% of the investment cost, and the total discounting cost of the system which is estimated 
from the coefficient of discounting evaluated over a period of twenty years: 

( )
( )

maint inv

disc inv n

0.025

1
a 0.025 , a , n 20

1 r

= ⋅

= + ⋅ = =
+

C C

C C
 (III.4.8) 

The overall operating cost (opC ) over this period is derived from the electricity and water 
consumption costs calculated according to the peak charges applied by EDF (0.1275€/kWh) 
and the average price of water distributed in France (3.39€/m3) in 2011. 
Finally, the overall cost of ownership (totalC ) is calculated by adding the overall costs of 
discounting and the operating cost of the system: 

tot inv op= +C C C  (III.4.9) 

 


