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Overview

The ongoing progress in the realization of smaller and smaller electronic devices has

brought about a deep interest in the study of electrical transport at the nanoscale. Per-

forming transport measurements in systems such as ultra-small junctions, quantum dots,

single molecules and similar nanoscale devices, unravels the quantum nature of electrons and

its influence on various physical properties such as the conductance and the corresponding

current-noise statistics. This is intriguing not only from the point of view of applications

but also for the more fundamental and theoretical interest of actually seeing quantum me-

chanics at play at a macroscopic scale, where macroscopic is to be intended here in the

sense more-than-atomic. The possible macroscopic manifestations of quantum mechanics

propose a major experimental challenge, and striking breakthroughs as the first experiments

of ground-state cooling nanomechanical resonators have been recently achieved [1, 2].

Particularly interesting possibilities arise in this context when external electromagnetic

fields influence the electron transport and enable selective electronic excitations. Time-

dependent effects can be eventually used in this case to induce, drive, steer and in general

control currents through mesoscopic and nanoscopic conductors, at a tolerable, also con-

trollable current-noise level. Thanks to a large amount of theoretical efforts in the field

of mesoscopic transport (for just a partial theoretical glimpse see for example Refs. [3–6]),

a number of electron transport control schemes can be successfully designed and operated

nowadays, from photon-assisted tunneling [7–9] to electron pumping [10–19].

Grasping some of the quantum transport mechanisms which can induce controllable cur-

rents in nanoscale systems is the leitmotiv of this dissertation. We will be considering two

kinds of systems in which an intriguing mechanism of coupling between excitations by ex-

ternal fields and electron transport is at play. In the first part we will tackle a problem

which falls into the category of quantum pumping: we choose a basic three-site model in a

ring configuration to analyze the possibility of inducing a direct circulating current in the

presence of dissipation and with a time-dependent driving which can also be nonadiabatic.

The system is in principle insulating and the current arises as the DC response to a cyclic

(AC) perturbation: understanding and controlling this induced current in arbitrary driving

regimes is of essential and general interest for applications, for example to quantum dot cir-

cuitry. We indeed find an analytical solution for our dissipative model, characterizing the
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Figure 0.1: Pumping versus SETOs, ‘opposite’ phenomena.

differences between adiabatic and antiadiabatic regimes and clarifying the dependence of the

obtained direct current on the driving frequency. This pumped current will very interestingly

turn out to be nonmonotonic for increasing frequency, displaying a temperature-dependent

optimal value.

The second part of the dissertation will be instead devoted to a problem which is in some

sense the inverse of electron pumping [see the scheme in Fig. 0.1]. Here a time-dependent

effect, an almost periodic tunneling of single electrons, will arise in fact through a tunnel

junction circuit as a consequence of a DC bias: this phenomenon is known as single-electron

tunneling oscillations (SETOs). It is well-established among the single-electron effects and

has been widely studied since the 1980s, but it deserves a renewed interest in view of the recent

progresses in measuring high-frequencies current noise [20–23]. We will study the charge and

current noise spectrum of a tunnel junction in different resistive environments with the aim

of determining the boundaries of the SETOs regime and of quantifying their accuracy in

terms of periodicity. The possibility of controlling and optimizing the SETOs would provide

in practice a one-electron source, with consequent possible applications to nanoscale circuits.

The zero-temperature, ideally current-biased case will constitute the bulk of our analysis, but

also the extension to finite temperature and to more realistic environments with quantum

fluctuations at play will be discussed.

An additional common point of the two parts of the dissertation is the use of the same kind

of technical tool. Specifically, in both cases we are considering an open quantum system and

we need an equation for the reduced density matrix of the relevant degrees of freedom. We will

thus resort to a Master Equation (ME) approach to describe both systems. ME techniques

are the state of the art to treat in a simple and convenient way the coupling of quantum

systems to a large number of degrees of freedom representing the environment, among which

the non-relevant ones can be eliminated. In the first part, the ME for the density matrix will

be the very starting point to treat the dissipative coupling of the three-site system with an

external bath (the environment). In the second part the ME will be fundamental to treat

the finite-temperature case and to address a more realistic environment including effects of

quantum fluctuations.
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Part I

Quantum pumping in the presence

of dissipation in a nonadiabatic

regime
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Introduction

In this first part of the dissertation we study an interesting nanoscale electronic problem

in the presence of dissipation, which can be classified in the category of quantum pumping.

In a broad sense, one can refer to quantum pumping whenever a direct current is obtained by

driving quantum particles through a system with a cyclic modulation of some of the system

parameters. More precisely, in contexts like the one considered in the following, where the

pumping involves a ring topology, the effect is also known as quantum stirring. In the

case of electronic systems, pumping can involve unpaired electrons as well as Cooper pairs

[24,25]. Here we will consider a system of electrons within a three-site model, where the net

direct current component is generated through a ‘peristaltic’ modulation of the transmission

amplitudes and gate voltages [26–33]. When the modulation is adiabatic, i.e. when the

pumping period is much longer than the intrinsic time-scale of the system, it has long been

recognized that the charge pumped over a period has a geometric nature [34–36] and it is in

many cases quantized, as we will briefly introduce in chapter 1. These geometrical aspects

survive even in the presence of a coupling between the electrons and an external phonon

bath, despite the obvious source of inelastic effects [24, 25, 37]. Like in classical pumps, the

current in this slow adiabatic regime increases proportionally to the driving frequency ω/2π,

as long as ~ω is much smaller than all intrinsic energy scales of the system. The opposite

antiadiabatic case of fast driving is on the other hand less predictable, especially in the

presence of dissipation, and will be found displaying the most interesting features.

A simple three-level model is here considered: three sites in a triangular setup, under the

action of a cyclic potential designed to pump current through the ring. Our aim is to focus

specifically on the crossover from adiabatic to antiadiabatic quantum pumping [35, 38, 39]

analyzing the kind and magnitude of the differences in the two cases: what is the behavior of

the DC output as the frequency crosses over beyond the adiabatic and into the antiadiabatic

ω → ∞ regime? For a particular but reasonable choice of coupling to the bath, we find

that the dissipative model admits a full analytical solution for the steady state current valid

at arbitrary frequency. Through that solution we can analyze and understand the main

features of the dependence of the DC response on the pumping frequency. At low frequencies

the pumped current tracks the known adiabatic result, namely the direct current increases

linearly with frequency, and the pumped charge is as expected geometric in nature (albeit

not quantized). However, and this is a surprising outcome, the pumped direct current turns
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nonmonotonic for increasing ω, going through a temperature dependent optimal value and

then dropping eventually as ω−1 for ω →∞.

The plan of this part is the following: Chapter 1 gives a brief introduction to pumping.

In chapter 2 we present two physical systems which can be described by a three-site model.

In chapter 3 we obtain the analytical solution for the isolated three-site model under a

harmonic time-dependent perturbation. In chapter 4 we introduce a thermal bath of harmonic

oscillators to account for dissipation, finding an analytical solution for the associated Born-

Markov Master Equation. We then briefly present the numerical results obtained in Ref. [40]

and comment about feasibility and quantitative estimates of the proposed model. The results

of this part have been published in Ref. [41].
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Chapter 1

A brief introduction to quantum

pumping

Before plunging into our specific dissipative quantum pumping problem in a three-site

model, we want to put it a little bit into context providing a brief introduction to the broad

field of pumping. The analogy between electric current and the flow of water is the most

natural way to introduce the concept of pumping [42]: to move water (charge) between two

pools (reservoirs) one can either exploit potential difference between the two reservoirs so as

to make the water flow through a pipe (wire), or operate a pumping device at some location

along the pipe (the scattering region). The ‘pumping’ is precisely this possibility of moving

charge without creating a potential difference. More specifically, quantum pumping differs

from classical pumping since it exploits quantum coherent effects to generate a direct current

as a response to a cyclic (AC) driving of some external potential.

There are different mechanisms which can lead to this kind of transport. Historically, the

idea of quantum pumping has been around since the 1980s, beginning with the preliminary

works of Thouless [43] and Niu [44], when it was first realized that a slow cyclic parametric

deformation of the confining potential of a mesoscopic system connected to electron reservoirs

could lead to a net charge transport. Thouless theoretical argument is fairly clear and allows

us to grasp some very basic concepts behind pumping, we refer in the following to the nice

summary of Ref. [45]. For simplicity, spinless electron in a 1D channel are considered, sub-

jected to a periodic potential U(x, t) = U(x+a, t); if the number of electrons per period is an

integer N , the N lowest energy bands of the spectrum are full and the higher ones are empty.

By letting the potential move with a small velocity U(x, t) = U(x− vt), each point in space

sees a periodically varying potential: if the electrons follow adiabatically the variation of the

potential, a net current I = Nev/a is induced and over a period T = a/v a net quantized

charge Q = IT = Ne is transferred. The Thouless pump can be seen as the electron analog

of an Archimedean screw, as shown in Fig. 1.1, taken from Ref. [45]. This very simple idea

is at the basis of the adiabatic pumping mechanism: take a phase coherent metallic system
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Figure 1.1: Analogy between a Thouless adiabatic electron pump (A) and

an Archimedean screw (B).

coupled to reservoirs at the same chemical potentials; the distribution of charge is determined

by the eigenmodes of the Hamiltonian and is a represented by a standing wavefunction very

sensitive to the configuration of the confining potential. Shape changes in this potential will

thus affect the interference pattern of the coherent electrons (thus the name ‘interference

pumping’ sometimes encountered in the literature for this basic kind of pumping): by sub-

jecting the potential landscape to a sufficiently slow parametrical perturbation, the electronic

distribution will follow adiabatically, the charge will be redistributed and a total net transfer

between the reservoirs becomes possible even if they have the same chemical potential. It is

to be noted that the parametrical changes have to involve at least two parameters for the

pumping to occur. The reason is deeply related to geometrical considerations, as the work

of Berry [46] demonstrated. Let us focus on the Thouless pump for simplicity: after each

cycle every potential minimum of the traveling wave U(x − vt) gets shifted by one period

a. A single standing wave perturbation would not do the trick, at least two are needed, and

U(x − vt) can be seen indeed as a superposition of two standing waves. For example with

U(x) = U0 sin(2πx/a) a good traveling-wave perturbation able to pump the charge would

be U(x− vt) = U1(t) sin(2πx/a) + U2(t) cos(2πx/a) with U1,2(t) = U0 cos(2πt/T + ϕ1,2) and

ϕ1,2 = {0, 2π}. The trajectory of the time evolution of the potential in the plane of the

parameters U1 and U2, call it ∂U , is in this case a circle. The pumping condition can now

be stated in general geometrical terms which extend beyond the specific case of the Thouless

pumps: taken two arbitrary adiabatic perturbations U(x, t) = U1(t)f1(x) + U2(t)f2(t) with

nonzero phase difference, the pumping can occur if the trajectory ∂U encircles a nonvanishing

area in the parameter space. The pumped charge is determined by the size and the shape

of ∂U and can be seen as a ‘magnetic flux’ of some effective magnetic field defined in the

parameter space. It is moreover related also to another kind of magnetic flux, a phase (the

Berry phase) acquired by the system wavefunction after an adiabatic cycle of evolution of the

parameters Ui(t). This is the exact geometric analogous of the Aharonov-Bohm effect: a par-

ticle in a magnetic field following a closed trajectory acquires a phase equal to the magnetic

flux through the trajectory in units of h/e. For this reason this kind of adiabatic pumping is

often referred to also as ‘geometric magnetism’.
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A vast amount of theoretical development sprouted from Thouless seminal paper can be

found in the literature, we are not interested in giving further details here, we refer for example

to the early papers in Refs. [34,45,47–49]. In Ref. [34] the total charge adiabatically pumped

in a phase-coherent system during a cycle of perturbation of the potential landscape was for

the first time directly related to the scattering matrix, with a formula which is the pumping

equivalent of the Landauer formula for the conductance. The scattering-based approach has

been developed and generalized later for example in Ref. [27] and Ref. [28]. In recent years,

thanks to a well-established formalism and more sophisticated theoretical insight, a variety of

pumping-related phenomena have been explored, from mesoscopic fluctuations of the pumped

current [50,51], to noise [52,53] and dissipation [53], to symmetry properties in the presence

of magnetic fields [54].

In the adiabatic pumping so far illustrated electron-electron interactions are weak and

can be neglected. Other pumping mechanisms exist which on the other hand do require to

account for interacting electrons and involve systems such as quantum dots, tunnel junctions

and single-electron transistors. Photon-assisted tunneling for example has been investigated

in Refs. [55, 56]. The most widely studied pumping approach for these systems is however

based on the Coulomb blockade. We refer to the literature for the details, see for example

Refs. [57–59]. Single-electron transport in a Coulomb blockaded system will be also studied

in part II of this dissertation, but focusing on a phenomenon in some sense opposite to

pumping, an AC effect triggered by a DC bias, as sketched in the general overview. From

the experimental point of view, nanoscale pumps have been efficiently realized in systems

exhibiting strong Coulomb effects [11–15]. In Refs. [16–18] a clever driving scheme which

exploits surface acoustic waves was designed to build a single-electron pump. On the other

hand, evidence for pumping in the absence of Coulomb blockade has been more elusive

so far. The pioneering experiment of Ref. [10] evidenced the difficulty of modulating in

time the properties of an open mesoscopic conductor at cryogenic temperatures without

side effects due to stray capacitances [60, 61]. One possible solution to this problem is to

exploit the AC Josephson effect and use the phases of the superconducting order parameter in

superconducting contacts as pumping parameters [62]. Recently in Ref. [19] the experimental

detection of a pumped-charge flow in a (SQUID-embedded) unbiased InAs nanowire has been

reported: pumping is obtained via the cyclic modulation of the phase of the order parameter

of different superconducting electrodes.

This brief outline was intended to provide a general picture of the pumping literature.

The adiabatic ‘interference’ pumping and the Coulomb-blockade-based pumping have been

distinguished as the main pumping mechanisms, to roughly classify the possible different

approaches. As explained in the introduction, in this part of the thesis we will be interested in

a quantum stirring problem in a three-site system, which therefore falls in the first category,

with the important difference that we will not stick to the already well-known adiabatic

picture, but the nonadiabatic regime will be explored, and also the presence of a dissipative

environment, as has only very recently started to be considered [24,25,39,63].
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Chapter 2

Quantum pumping in a three-site

system

We consider a three-site model in a ring configuration, see Fig. 2.1. We will focus on two

categories of systems which can be reduced to this basic structure. The first one is represented

by molecular trimers such as H3, Li3 and Na3 [64–66] and it was studied in Ref. [67]. The

valence electronic states of these molecules are subjected to degenerate electron-vibration

interaction of Jahn-Teller e ⊗ E type [68] and the driving, i.e. the pumping, in this case

is realized by the excitation of rotating vibrational modes which then act on the electronic

structure through this degeneracy. A realistical and simple electronic picture can be obtained

in a standard tight-binding (TB) model [69] by considering a basis set consisting only of s-

type orbitals on the vertices of a triangle. The corresponding 3 × 3 Hamiltonian is in the

form

H0 =






ǫa −γab −γ∗ac
−γ∗ab ǫb −γbc
−γac −γ∗bc ǫc




 , (2.1)

ǫc

ǫa

ǫb

γacγab

γbc

Figure 2.1: Scheme of the three-site model.

9



where ǫi labels the on-site energies and γij the TB hopping integrals. A trimer of equal

atoms as the molecules here considered has equal on-site energies, which can be taken at

zero without loss of generality: ǫa = ǫb = ǫc = 0. In the equilateral geometry the hopping

integrals are identical γij = γ0 and the Hamiltonian can be easily diagonalized giving a ground

state |0〉 = (|a〉 + |b〉+ |c〉)/
√
3 with energy −2γ0 and a doublet of degenerate excited states

with energy γ0, whose 2× 2 subspace is spanned for example by the basis

|x〉 = |b〉 − |c〉√
2

|y〉 =2|a〉 − |b〉 − |c〉√
6

.

(2.2)

Under molecular distortion however the hopping terms change, and it can be assumed their

dependence on the displacement to be

γij ≃ γ0e−k(dij−u0) , (2.3)

where dij is the instantaneous distance between atoms i and j and u0 is the equilibrium

separation in the equilateral geometry (k is a coupling constant). Specifically, such time-

dependent overlaps are obtained when the molecule is distorted by the excitation of the

vibrational modes. Of the three normal modes of the system one is just an uniform dilation,

which fully preserves the D3 group of the equilateral geometry and can be ignored in studying

the coupling to electronic states since it does not split the degeneracy. The other two modes

are degenerate and lead to the deformations of the triangle sketched in Fig. 2.2. The displaced

atomic positions can be written in terms of the normal coordinates Qx and Qy as:







Ra = (0, 1) u0√
3
+
(

1√
3
, 0
)

Qx +
(

0, 1√
3

)

Qy

Rb = −(
√
3
2 ,

1
2 )

u0√
3
−
(

1
2
√
3
, 12

)

Qx +
(
1
2 ,− 1

2
√
3

)

Qy

Rc = (
√
3
2 ,−1

2)
u0√
3
+
(

− 1
2
√
3
, 12

)

Qx −
(
1
2 ,

1
2
√
3

)

Qy

. (2.4)

The modified hopping integrals are obtained by taking dij = |Ri−Rj | in Eq. (2.3). Consider-

ing small excitation, we can linearize for small Qi and obtain the linearized electron-vibration

coupling, with overlaps given by:







γab ≃ γ0
(

1− k
√
3
2 Qx − k 1

2Qy

)

γbc ≃ γ0 (1 + kQy)

γac ≃ γ0
(

1 + k
√
3
2 Qx − k 1

2Qy

)

. (2.5)
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c

a

b

x

y

u0√
3u0

0

Qx Qy

Figure 2.2: Sketch of the vibrational modes of the trimer.

The Hamiltonian for this small perturbation reads in the |0〉, |x〉, |y〉 basis:

Hlin = γ0






−2 1√
2
kQx

1√
2
kQy

1√
2
kQx 1 + kQy kQx

1√
2
kQy kQx 1− kQy




 . (2.6)

The perturbation being small with respect to the gap 3γ0 between the unperturbed ground

state and the doublet, we can safely discard admixtures with the |0〉 state and restrict to

the |x〉, |y〉 subspace, where, ignoring the trivial diagonal shift γ0, the linearized Hamiltonian

takes the form:

H2×2
lin = kγ0

(

Qy Qx

Qx −Qy

)

. (2.7)

The pumping (or stirring) of the system can then be realized by choosing a rotating combi-

nation of the perturbing vibrations with amplitudes:







Qx = ~∆
2kγ0

sin(ωt)

Qy = ~∆
2kγ0

cos(ωt)

, (2.8)

with the parameter ∆ representing the coupling strength. ~∆ determines the splitting be-

tween |x〉 and |y〉. The resulting pumping Hamiltonian can be written in terms of the Pauli

matrices as

HS(t) =
~∆

2
(cos(ωt)σz + sin(ωt)σx) . (2.9)

A second straightforward system described by the three-site model is a triple quantum

dot with all the dots connected in a ring structure. The experimental implementation of this

kind of geometry has been proven realizable [70, 71]. Considering each site to be a single-

orbital dot and indicating as ǫi the external bias applied to each dot i and as γij the hopping

11



amplitude for an electron to jump between sites i and j, the Hamiltonian of the system is

exactly as in Eq. (2.1). In the fully symmetric case ǫa = ǫb = ǫb = 0 and γij = γ0 we get the

same ground state and doublet of degenerate states as for the trimer and we can use the |0〉,
|x〉, |y〉 basis. When three electrons occupy the three dots two of them fill the state |0〉 and
the third one moves in the |x〉, |y〉 subspace which is then again the one relevant for transport

and pumping processes. To split the degeneracy an experimentally feasible way is to perturb

the bias ǫi. We consider the following perturbing Hamiltonian in the |0〉, |x〉, |y〉 basis:

Hbias =






0 1√
6
(ǫb − ǫc) 1√

2
ǫa

1√
6
(ǫb − ǫc) −1

2ǫa
1

2
√
3
(ǫc − ǫb)

1√
2
ǫa

1
2
√
3
(ǫc − ǫb) 1

2ǫa




 . (2.10)

For small perturbations we can again restrict to the doublet subspace:

H2×2
bias = −

1

2
√
3

( √
3ǫa ǫb − ǫc

ǫb − ǫc −
√
3ǫa

)

. (2.11)

The pumping is in this case realized by cycling the external potentials as follows:






ǫa(t) = −~∆cos
(
ωt
)

ǫb(t) = −~∆cos
(
ωt− 2π

3

)

ǫc(t) = −~∆cos
(
ωt+ 2π

3

)

, (2.12)

and the Hamiltonian reduces precisely to Eq. (2.9).

To study the pumping we need at this point to estimate the current circulating in the ring.

The simplest possible way to define a current operator is to consider the transfer of electrons

between pairs of sites. The current between e.g. sites a and b is then given by (see Ref. [67])

Iab = −iqγab
(

c†bca − c†acb
)

, (2.13)

where c†i and ci are the creation and annihilation operators of an electron at site i and q is

the charge. In the basis |0〉, |x〉, |y〉 it reads:

Iab = iqγab






0 1√
6

1√
2

− 1√
6

0 − 1√
3

− 1√
2

1√
3

0




 , (2.14)

which for uniform hoppings γ0 and restricted to the |x〉, |y〉 subspace simply reduces to:

Iab =
qγ0√
3

(

0 −i
i 0

)

= I0σ
y , (2.15)

with I0 = qγ0/
√
3. The quantity 〈σy(t)〉 will thus estimate the current pumped in the system.
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Chapter 3

Solution for the isolated system

A clever change of basis [40] leads to the solution of the Hamiltonian (2.9) in an elegant

and simple way. We consider a rotation of frequency ω around the y axis:

Rt = e−iωtσy/2 = 1 cos(ωt/2) − iσy sin(ωt/2) , (3.1)

and apply it to Eq. (2.9), obtaining a new time-independent Hamiltonian:

H̃S = R−1
t HS(t)Rt =

~∆

2
σz . (3.2)

The rotated states |ψ̃(t)〉 = R−1
t |ψ(t)〉 obey now a modified Schrödinger equation with the

effective Hamiltonian

H̃eff = H̃S −
~ω

2
σy =

~∆

2
σz − ~ω

2
σy =

~ω′

2
n̂ · ~σ , (3.3)

which represents in practice a time-independent field pointing in the direction

n̂ = (0,−ω/ω′,∆/ω′) , (3.4)

with associated Larmor frequency ω′ =
√
∆2 + ω2. The eigenstates are then simply ‘spin’

states directed along ±n̂: H̃eff |±n̂〉 = ±~ω′/2|±n̂〉. The current operator σy being parallel to
the rotation axis it is not affected by the rotation and remains time-independent in the rotated

frame; the current keeps the form I(t) = I0〈ψ̃(t)|σy |ψ̃(t)〉. The current on the eigenstates is

straightforwardly obtained:

〈±n̂|σy| ± n̂〉 = ∓ ω
ω′ . (3.5)

Let us choose the initial state at t = 0 as for example the ground state of the initial

Hamiltonian (2.9), that is | − ẑ〉:

|ψ̃(0)〉 = | − ẑ〉 = sin

(
θ

2

)

|+ n̂〉+ cos

(
θ

2

)

| − n̂〉 , (3.6)
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Figure 3.1: The trajectory of a spin initially in | − ẑ〉 in the Bloch sphere.

The current I(t) is measured by the instantaneous y-projection of the spin

state. The thick circle represents the spin precession around −n̂ in the

absence of dissipation. The thin spiral curve represents the relaxing tra-

jectory in the presence of a weak dissipation, which we will introduce in

chapter 4.

with θ = arccos(∆/ω′) (which is the angle between the initial state and the eigenstate). Fol-

lowing the evolution the initial state will then make Rabi oscillations between the eigenstates

| ± n̂〉 and the current as a function of time is given by:

I(t)

I0
= 〈 ˜ψ(t)|σy| ˜ψ(t)〉 = sin2

(
θ

2

)

〈+n̂|σy|+ n̂〉+ cos2
(
θ

2

)

〈−n̂|σy| − n̂〉+

− sin

(
θ

2

)

cos

(
θ

2

)(

e−iω′t〈+n̂|σy| − n̂〉+ h.c.
)

.

(3.7)

Expression (3.7) has a constant and an oscillating part: being interested in the DC pumping

we focus then on the former [i.e. the first two terms in Eq. (3.7)], and by defining J ≡
I(t)/I0 = 〈ψ̃(t)|σy|ψ̃(t)〉 we get:

J =
ω

ω′ cos(θ) =
ω

ω′
∆

ω′ , (3.8)

which is just the current on the eigenstate |n̂〉 times the cosinus of the angle between the

initial state and the eigenstate. In other words, a spin initially in | − ẑ〉 precesses around the

−n̂ axis (see the circle in Fig. 3.1), with a projection ∆/ω′ along this axis and as a result,

the precessing spin carries an oscillating current proportional to its y component.

As shown in Fig. 3.2, the current as a function of the pumping frequency displays a

maximum for ω = ∆. The presence of the maximum is due to the competition of two effects:
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Figure 3.2: Direct current as a function of the pumping frequency as given

by Eq. (3.8).

for increasing frequency, n̂ gets closer to the y direction and the current on the eigenstate

ω/ω′ increases, but at the same time the overlap with the chosen initial state |− ẑ〉 decreases.
A different choice of initial condition could lead up to the maximum theoretical current ω/ω′.

We can sum up and say that in the absence of any coupling with the environment, any time

dependence of the current is in practice determined only by the initial conditions: each of the

two eigenvectors of Heff produces a pure DC output, while any other initial condition gives

also an AC contribution. The DC component can be expressed in terms of the projection of

the spin over the eigenstates of Heff :

I = I0P
ω

ω′ = −I0Tr(n̂ · ~σρ̃S)
ω

ω′ , (3.9)

with P = −Tr(n̂ · ~σρ̃S) the spin polarization in terms of the density matrix in the rotating

frame ρ̃S . This notation will be clearer in the next section, where we handle explicitly the

density matrix of the system.

The same result could be derived also in a different formalism, considering the point of

view of the standard quantum pumping literature: the details can be found in Ref. [40], where

Eq. (3.8) is shown to be exactly retrievable in the same framework as Ref. [35].
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Chapter 4

Coupling to an environment

The solution for the isolated case provides us with a clear understanding of the basics of

the pumping mechanism at play in the three-site system. A real physical system however can

be hardly considered decoupled from an environment. A minimal interaction with external

degrees of freedom is always present and causes an irreversible energy transfer from the system

to the environment, which on the other hand exerts a fluctuating force leading to fluctuations

of the system observables. A realistic model of a quantum system needs therefore to deal

with dissipation and fluctuations. The standard way to proceed is to think the system in

contact with a reservoir which has in principle an infinite number of degrees of freedom

and has the characteristics of a heat bath. This dissipative medium can be modeled in the

simplest effective way as a bosonic environment by introducing an infinite number of harmonic

oscillators, as has been proven in the seminal works of Feynman & Vernon and Caldeira &

Leggett [72,73].

We consider thus here the Hamiltonian (2.9) in the presence of dissipation by introducing

a bosonic environment as follows:

H =

HS
︷ ︸︸ ︷

~∆

2
(cos(ωt)σz + sin(ωt)σx)+

+
∑

ξ=z,x

∑

ν

(

p2ξ,ν
2m

+
mω2

νq
2
ξ,ν

2

)

︸ ︷︷ ︸

HB

+
∑

ξ=z,x

∑

ν

√

2mων

~
λξ,νqξ,νσ

ξ

︸ ︷︷ ︸

HSB

,
(4.0.1)

where the sum over ξ accounts for two noninteracting baths of harmonic oscillators, labeled

z and x and coupled via σz and σx respectively, with q, p, m and ω the position, momentum,

mass and frequency of the oscillators, and λ the coupling constant. In modeling the environ-

ment it is customary (see for example Ref. [74]) to go the the continuum limit for the bath,

i.e. the description in terms of individual oscillators with discrete frequencies and masses is

replaced by a spectral density J(ω) corresponding to a continuous spectrum of environmental

frequencies. The frequency dependence of J(ω) is assumed to follow a power-law dependence
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of the form J(ω) ∼ ωs . The most common choice for the exponent s is the so-called ‘Ohmic’

one, i.e. s = 1, such that J(ω) increases linearly with ω. We therefore take Ohmic baths

characterized by the following explicit form of the spectral density (see Ref. [40]):

Jξ(ω) =
∑

ν

λ2ξ,νδ(ω − ων) = ~
2 αξ

ωs

ωs−1
c

e−ω/ωc = ~
2αξωe

−ω/ωc , (4.0.2)

with ωc a cutoff frequency to prevent the distribution of environmental frequencies to grow

without bound (which would be physically unreasonable). The coupling αξ to the bath

is assumed to be weak. In terms of the spectral density (4.0.2) the bath autocorrelation

functions C(t), which will be rigorously defined in the following, can be expressed as (see [40]

for details):

C(t) =
∫ ∞

0
dωJ(ω) cos(ωt) coth

(
β~ω

2

)

− i
∫ ∞

0
dωJ(ω) sin(ωt) . (4.0.3)

Since we saw in the previous section that the Hamiltonian of the system is fairly easy to

handle in the rotating frame of reference defined by (3.1), we will also adopt the same frame

of reference for the total Hamiltonian (4.0.1), which becomes

H̃ = H̃eff +HB + H̃SB(t) (4.0.4)

with the first term given by Eq. (3.3) and the last one displaying the rotated spin operators:

σ̃z(t) =R−1
t σzRt = σz cos(ωt)− σx sin(ωt)

σ̃x(t) =R−1
t σxRt = σx cos(ωt) + σz sin(ωt) .

(4.0.5)

In the following the tildes will be dropped to keep the notation light but all operators are to be

intended in the rotated frame of reference. We will approach this system with the standard

Master Equation formalism of the quantum dissipation literature: we will first derive the

general Master Equation in the Born-Markov approximation and then specialize it to our

system.

4.1 The derivation of the Master Equation

We present here a brief derivation of the standard Master Equation (ME) for a quantum

dissipative system, following mainly the book of Schlosshauer [74]. We consider an Hamilto-

nian in the form (4.0.1):

H = HS +HB +HSB . (4.1.1)

The system–bath Hamiltonian can be factorized in the two system and bath contributions

separately 1

HSB =
∑

α

Sα ⊗Bα . (4.1.2)

1. it is always possible to write an arbitrary interaction Hamiltonian in the form of a diagonal decomposition

of (unitary but not necessarily Hermitian) system and environment operators [74].
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We will work in interaction representation with respect to H0 = HS +HB, with the corre-

spondent evolution operator given by:

U0(t, 0) = T exp

(

− i
~

∫ t

0
dt′H0(t

′)

)

= US
0 (t, 0) ⊗ UB

0 (t, 0) . (4.1.3)

Given ρ(t) the density matrix of the system, the evolution equation for its interaction repre-

sentation ρI(t) = U †
0(t, 0)ρ(t)U0(t, 0) reads then:

i~
d

dt
ρI(t) =

[
HI

SB(t), ρ
I(t)

]
, (4.1.4)

where HI
SB(t) = U †

0 (t, 0)HSBU0(t, 0) is the system–bath Hamiltonian part in interaction

representation. Integration of (4.1.4) gives

ρI(t) = ρI(0) +
1

i~

∫ t

0

dt′
[
HI

SB(t
′), ρI(t′)

]
, (4.1.5)

and inserting this expression back into the right-hand side of (4.1.4) leads to

i~
d

dt
ρI(t) =

[

HI
SB(t) , ρ

I(0) +
1

i~

∫ t

0

dt′
[
HI

SB(t
′), ρI(t′)

]

]

=

=
[
HI

SB(t), ρ
I(0)

]
+

1

i~

∫ t

0

dt′
[
HI

SB(t),
[
HI

SB(t
′), ρI(t′)

]]
.

(4.1.6)

To get rid of the explicit dependence on the bath degrees of freedom we trace them out and

obtain Eq. (4.1.6) for the reduced density matrix ρIS(t) = TrB
{
ρI(t)

}
:

i~
d

dt
ρIS(t) = TrB

[
HI

SB(t), ρ
I(0)

]
+

1

i~

∫ t

0

dt′TrB
[
HI

SB(t),
[
HI

SB(t
′), ρI(t′)

]]
. (4.1.7)

Without loss of generality we can assume TrB
[
HI

SB(t), ρ
I(0)

]
= 0 (this can always be achieved

by a formal redefinition of the Hamiltonian HI
SB), thus

i~
d

dt
ρIS(t) =

1

i~

∫ t

0

dt′TrB
[
HI

SB(t),
[
HI

SB(t
′), ρI(t′)

]]
. (4.1.8)

In order to eliminate any terms pertaining to a time-dependent state of the environment

[i.e. express our Master Equation entirely in terms of the reduced density operator ρIS(t)]

and also to eliminate any dependences of the change of ρIS(t) at time t on ρIS(t
′) evaluated

at times t′ < t, we will perform now the Born and Markov approximations on Eq. (4.1.8).

The former assumes that the system–environment coupling is sufficiently weak and the en-

vironment large for the changes of the density operator of the environment to be negligible

and the system–environment state to remain in an approximate product state at all times:

ρ(t) ≈ ρS(t) ⊗ ρB . The latter states that memory effects of the environment are negligible,

that is any self-correlations within the environment created by the coupling to the system
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decay rapidly compared to the characteristic timescale over which the state of the system

varies noticeably. Using the Born approximation in interaction picture

ρI(t) ≈ ρIS(t)⊗ ρB ∀ t ≥ 0 , (4.1.9)

we can rewrite Eq. (4.1.8) as:

i~
d

dt
ρIS(t) ≈

1

i~

∫ t

0

dt′ TrB
[
HI

SB(t),
[
HI

SB(t
′), ρIS(t

′)⊗ ρB
]]
. (4.1.10)

We now proceed by exploiting the diagonal form (4.1.2) of the system–bath Hamiltonian in

interaction picture:

HI
SB(t) =U

†
0(t, 0)HSBU0(t, 0) =

=
∑

α

(

US†
0(t, 0)SαU

S
0 (t, 0)

)

⊗
(

UB†
0(t, 0)BαU

B
0 (t, 0)

)

=

=
∑

α

Sα(t)⊗Bα(t) ,

(4.1.11)

obtaining:

i~
d

dt
ρIS(t) ≈

1

i~

∫ t

0

dt′
∑

αβ

TrB
[
Sα(t)⊗Bα(t),

[
Sβ(t

′)⊗Bβ(t
′), ρIS(t

′)⊗ ρB
]]
. (4.1.12)

We now define the bath autocorrelation functions:

Cαβ(t, t′) = TrB
{
Bα(t)Bβ(t

′)ρB
}
= 〈Bα(t)Bβ(t

′)〉 . (4.1.13)

Assuming that the bath is in equilibrium, i.e. [HB , ρB ] = 0, we have

Cαβ(t, t′) = TrB
{
Bα(t− t′)BβρB

}
≡ Cαβ(t− t′) , (4.1.14)

which substituted back in Eq. (4.1.12) leads to:

i~
d

dt
ρIS(t) ≈

1

i~

∫ t

0

dt′
∑

αβ

{

Cαβ(t− t′)
(

Sα(t)Sβ(t
′)ρIS(t

′)− Sβ(t′)ρIS(t′)Sα(t)
)

+

+ Cβα(t′ − t)
(

ρIS(t
′)Sβ(t

′)Sα(t)− Sα(t)ρIS(t′)Sβ(t′)
)}

.

(4.1.15)

We are now ready to use Markov approximation as stated before, meaning practically that

the environment self-correlations functions Cαβ(t − t′) are assumed sharply peaked around

(t− t′) = 0 and decay on a timescale much shorter than the timescale set by the changes of

ρIS(t). This is equivalent to saying that ρIS(t) changes only insignificantly during the typical

time interval over which the environment self-correlations functions vanish, so that we can

replace ρIS(t
′) by ρIS(t) in Eq. (4.1.15). Moreover it implies also that we can safely extend the
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lower limit of the integration to −∞. With the definition τ ≡ t− t′ the final Master Equation

reads:

i~
d

dt
ρIS(t) ≈

1

i~

∫ ∞

0

dτ
∑

αβ

{

Cαβ(τ)
(

Sα(t)Sβ(t− τ)ρIS(t)− Sβ(t− τ)ρIS(t)Sα(t)
)

+

+ Cβα(−τ)
(

ρIS(t)Sβ(t− τ)Sα(t)− Sα(t)ρIS(t)Sβ(t− τ)
)}

. (4.1.16)

To transform back to the Schrödinger picture we remind:

ρIS(t) = US
0
†
(t, 0)ρS(t)U

S
0 (t, 0)

i~
d

dt
ρIS(t) = −

[
HS, ρ

I
S(t)

]
+ US

0
†
(t, 0)

(

i~
d

dt
ρS(t)

)

US
0 (t, 0)

i~
d

dt
ρS(t) = [HS , ρS(t)] + US

0 (t, 0)

(

i~
d

dt
ρIS(t)

)

US
0
†
(t, 0) ,

(4.1.17)

which we use to handle the interaction-picture Master Equation, getting:

i~
d

dt
ρS(t) ≈ [HS, ρS(t)] +

1

i~

∫ ∞

0

dτ
∑

αβ

{

Cαβ(τ)
(

SαSβ(−τ)ρS(t)− Sβ(−τ)ρS(t)Sα
)

+

+Cβα(−τ)
(

ρS(t)Sβ(−τ)Sα − SαρS(t)Sβ(−τ)
)}

. (4.1.18)

4.2 The ME approach applied to our system

Eq. (4.1.18) specialized to our Hamiltonian [given in Eq. (4.0.4)] reads:

∂

∂t
ρS(t) ≈ −i [Heff , ρS(t)]−

1

~2

∫ ∞

0

dτ
∑

ξη

{

Cξη(τ)
[

σξ, U †(−τ)ση(t− τ)U(−τ)ρS(t)
]

+

+C∗ξη(−τ)
[

ρS(t)U
†(−τ)ση(t− τ)U(−τ), σξ(t)

]}

. (4.2.1)

Note that there are two kinds of time-dependence in the system operators: one given by

the rotation Rt (σ
ξ(t)) and one given by the ME [ U †(−τ)ση(t − τ)U(−τ) ], here explicitly

outlined by the presence of the operator U(t) = exp{iω′n̂ · ~σt/2}.

The baths being independent and identical we have Cξη(τ) = δξ,ηC(τ), with C(τ) defined

in Eq. (4.0.3). To introduce a convenient notation we list the following useful integrals:

Ccc =

∫ ∞

0
dτ C(τ) cos(−ωτ) cos(−ω′τ)

Csc =

∫ ∞

0
dτ C(τ) sin(−ωτ) cos(−ω′τ)

Ccs =

∫ ∞

0
dτ C(τ) cos(−ωτ) sin(−ω′τ)
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Css =

∫ ∞

0
dτ C(τ) sin(−ωτ) sin(−ω′τ)

Cc0 =

∫ ∞

0
dτ C(τ) cos(−ωτ)

Cs0 =

∫ ∞

0
dτ C(τ) sin(−ωτ) . (4.2.2)

We also define a new basis for the spin operators in the rotated frame of reference, ori-

ented along the axes x̂ = (1, 0, 0), n̂ = (0,−ω/ω′,∆/ω′) and, perpendicular to both, m̂ =

(0,∆/ω′, ω/ω′):

σx = x̂ · ~σ
σm = m̂ · ~σ (4.2.3)

σn = n̂ · ~σ .

In terms of these quantities the ME (4.2.1) reads:

∂

∂t
ρS(t) = −i

ω′

2
[σn, ρS ]−

[

T1 , T2ρS

]

+ c.c. +
[

T3 , T4ρS

]

+ c.c. , (4.2.4)

where

T1 = +cos(ωt)σx + sin(ωt)

(
∆

ω′σ
n +

ω

ω′σ
m

)

T3 = − sin(ωt)σx + cos(ωt)

(
∆

ω′σ
n +

ω

ω′σ
m

)

, (4.2.5)

and

T2 =
∆

ω

(

sin(ωt)Cc0 + cos(ωt)Cs0

)

σn+

+
(

cos(ωt)Ccc − sin(ωt)Csc +
ω

ω′ sin(ωt)Ccs +
ω

ω′ cos(ωt)Css

)

σx+

+
(

sin(ωt)Css − cos(ωt)Ccs +
ω

ω′ sin(ωt)Ccc +
ω

ω′ cos(ωt)Csc

)

σm ,

T4 =
∆

ω

(

cos(ωt)Cc0 + sin(ωt)Cs0

)

σn+

+
(

− sin(ωt)Ccc − cos(ωt)Csc +
ω

ω′ cos(ωt)Ccs −
ω

ω′ sin(ωt)Css

)

σx+

+
(

sin(ωt)Ccs + cos(ωt)Css +
ω

ω′ cos(ωt)Ccc −
ω

ω′ sin(ωt)Csc

)

σm .

(4.2.6)

We consider now the density matrix to be in the generic form

ρ̄S =
1

2
(1+ aσx + bσm + cσn) , (4.2.7)

and after straightforward manipulations we get Eq. (3.40) of [40]:

∂

∂t
ρ̄S(t) = −2

{(
∆2

ω′2Re{Cc0}+
ω

ω′Re{Css}+
ω2

ω′2Re{Ccc}
)

a+
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+

(
ω′

4
+
ω

ω′Re{Csc} −
ω

ω′2Re{Ccs}
)

b+

+
∆

ω′

(

Re{Csc} −
ω

ω′Re{Ccs}
)

c+

+
∆

ω′

(

− ω
ω′Im{Cc0}+ Im{Css}+

ω

ω′Im{Ccc}
)}

σx+

−2
{(

−ω
′

4
− ω

ω′Re{Csc}+Re{Ccs}
)

a+

+

(
∆2

ω′2Re{Cc0}+Re{Ccc}+
ω

ω′Re{Css}
)

b+

−∆

ω′

( ω

ω′Re{Ccc}+Re{Css}
)

c+

+
∆

ω′

(

Im{Cs0}+ Im{Csc} −
ω

ω′Im{Ccs}
)}

σm+

−2
{

− ∆

ω′Re{Cs0}a−
ω

ω′
∆

ω′Re{Cc0}b+

+

(

ω2 + ω′2

ω′2 Re{Ccc}+ 2
ω

ω′Re{Css}
)

c+

+

(

−2 ω
ω′Im{Csc}+

ω2 + ω′2

ω′2 Im{Ccs}
)}

σn . (4.2.8)

The equilibrium state of the system is found by setting the time derivative to zero: since the

theory is valid in the weak coupling limit αξ → 0 [where αξ → is the coupling appearing in

Eq. (4.0.2)], and all the C’s are of order α, only the term with the c coefficient in Eq. (4.2.7)

goes to a finite value:

ceq =
(ω′ − ω)2J(ω′ + ω) + (ω′ + ω)2J(ω′ − ω)

(ω′ − ω)2J(ω′ + ω) coth
(
~(ω′+ω)
2kBT

)

+ (ω′ + ω)2J(ω′ − ω) coth
(
~(ω′−ω)
2kBT

) . (4.2.9)

The current is then given by projecting this state over the y direction, which adds a factor

ω/ω′, and multiplying by the I0 prefactor to get a proper charge current: I = I0J = I0ceqω/ω
′.

In terms of the formalism of Eq. (3.9), we see that ceq is exactly the spin polarization P =

−Tr(n̂ · ~σρ̃S).

We will now analyze the behavior of the system in different limits, finding that it is

actually quite simple. For T → 0, with any value of ω/∆ and any form of the spectral

density, the stationary result of the ME is a projector onto the ground state | − n̂〉 of Heff

and we get the (maximum) current given by Eq. (3.5). This extends the result of Ref. [24]

to the nonadiabatic limit. For finite temperature we distinguish between the low-frequency,

adiabatic limit ω ≪ ∆ and the high-frequency antiadiabatic one ω ≫ ∆. In the former

pumping effects should be minimal and we correctly find the appropriate result for thermal

equilibrium

J ≃ ω

ω′ tanh

(
~∆

2kBT

)

, (4.2.10)
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Figure 4.2.1: The DC component J as a function of the pumping fre-

quency ω for T = 0 (solid line), as obtained from Eq. (3.5), and for several

temperatures (dashed and dot-dashed lines), as obtained by Eq. (4.2.9) .

while in the latter we find

J ≃ ω

ω′ tanh

(
~(ω′ − ω)
2kBT

)

. (4.2.11)

Eq. (4.2.11) states that for fast driving the result is again the thermal equilibrium of a static

spin Hamiltonian but this time with the effective frequency

(ω′ − ω) = ∆

[

∆

2ω
+O

(
∆

ω

)3
]

, (4.2.12)

vanishing for large ω. As Fig. 4.2.1 shows, at any finite T the current decays for large enough

drive. Increasing the driving frequency ω at finite temperature at first increases the pumped

current up to ω ≃ ~∆2/kBT , but then for faster driving thermal fluctuations eventually cause

the pumped current to drop.

4.3 Numerical simulations

To test the generality of the obtained analytical results the ME (4.2.4) has been solved

numerically in Ref. [40] by means of Runge-Kutta integration to obtain ρS(t) and from

that I(t) = I0Tr[σ
yρS(t)]. It has been first of all checked that the numerical simulations

actually lead to the predicted analytic asymptotic state. Fig. 4.3.1 shows a very good match
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Figure 4.3.1: Asymptotic current J resulting from numerical simulations

(points) compared to the analytical results of Eq. (4.2.9) (curves), already

showed in Fig. 4.2.1.

between simulations and the analytical results. Secondly, the numerical approach has allowed

us to explore the transient approach to the stationary state. Fig. 4.3.2 shows the full time

evolution of the current compared to the pure quantum evolution in the absence of dissipation.

The presence of the baths leads to damped oscillations towards the asymptotic state. The

relaxation time needed to reach it is decreasing with α, but also depends on the temperature,

with baths at lower temperature taking a longer time to equilibrate the system.

Finally, the effect of unequal environments in the x and z directions, in which case the

simplifications leading to Eq. (4.2.9) do not hold, has been investigated thanks to the numer-

ical simulations. In particular, the case αx 6= αz (by symmetry, it does not matter which one

is larger) has been considered. At finite (but small) αξ the solution is no longer stationary

even in the rotating reference frame chosen, and small oscillations of the density matrix and

of the current at frequency 2ω remain undamped in the long-time limit. Nevertheless for

αξ → 0, the amplitude of these oscillating density-matrix terms vanishes linearly with αξ,

and the constant part of the density matrix at low temperature converges to the symmetric-

environment case. In particular at T = 0 J again saturates to ω/ω′. In this asymmetric

case the behavior for αξ → 0 can be recovered also analytically by applying a rotating wave

approximation to the asymmetric equivalent of Eq. (4.2.4), i.e. by neglecting all the terms

oscillating with frequency ω or ω′. Remarkably, the resulting equation again coincides with-

out approximations with the one appropriate to the symmetric environment. We can thus

conclude that the results obtained for the symmetric environment are indeed representative
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Figure 4.3.2: Time evolution of the current I(t) = I0Tr[σ
yρS(t)] for

ω = 2∆, in the dissipationless case (α = 0, solid curve), and in the transient

induced by weak dissipation (α = 0.005), at low (dashed) and intermedi-

ate temperature (dot-dashed), starting from the initial |−ẑ〉 state. Inset:

temperature dependence of the steady-state DC output I.

of those expected in the more general asymmetric coupling case, provided the limit of weak

coupling to the environment holds. In particular, Eq. (4.2.9) remains valid.

4.4 Feasibility and conclusions

Triple quantum dot systems have been recently realized experimentally [70,75], and could

be used to implement the pumping effect proposed. In Fig. 4.4.1 we reproduce for exam-

ple the setup of Ref. [70]. To assess typical values for the pumped current, we adopt the

parameters characteristic of a triple quantum dot arrangement realized experimentally as

described in Ref. [70]. Hopping amplitudes between neighboring dots were in the 10−70 µeV

range: we assume a more symmetric arrangement with all hopping amplitudes γ0 ≃ 50 µeV,

and with gate electrodes apt to control the bias ǫi of each individual dot. The electric

potentials of such electrodes are to be changed cyclically at frequency ω/(2π), with the

appropriate phase relations, as described after Eq. (2.11). Provided that temperature is

much smaller than the splitting scale ~∆/kB, our theory predicts an optimal current close to

I0 = 0.05 meV e/(
√
3~) ≃ 8.0 10−24 J× 1.6 10−19 C / (1.8 10−34 J s) ≃ 7.0 nA. Such a current

is not especially small, and it should be possible to detect it, e.g. by means of the magnetic

field it generates. The setup of Ref. [70] had the three quantum dots scattered over a region
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Figure 4.4.1: Experimental setup of a triple quantum dot, taken from

Ref. [70].

of linear size ∼0.3 µm. We assume that the tunneling current circulating around a similar

dot-ring arrangement could produce the same magnetic field as if in a ring wire of effective ra-

dius reff ≃ 0.2 µm. With this simplification, we solve the equations of magnetism to compute

the magnetic field flux intercepted by a detecting ring placed above the plane containing the

quantum dots and parallel to it. We find that a ring-shaped SQUID of 5µm radius placed

∼ 5µm above the quantum dots intercepts a flux of order 0.02Φ0 (here Φ0 = π~/e is the flux

quantum), a value routinely detectable.

The frequency and temperature regions where nonadiabatic effects on current could be

detected are determined by the energy scale ~∆ of the effective spin-1/2 model, which in turn

is the amplitude of the oscillating gate potentials acting on the dots, and is therefore under

experimental control. However, the effective 2-level model is meaningful only for ~∆ ≪ γ0
(otherwise all three states should be included in the calculation). Assuming ∆ ≃ 0.1γ0/~ ≃
8 GHz, the predicted frequency-dependent dissipative effects on current should be observed

near and mainly above this resonant angular frequency at temperature T . 0.2~∆/kB. For

the assumed parameters in the three-dot setup, this temperature amounts to T . 10 mK,

which is reachable e.g. by continuous-cycle dilution refrigerators.

There are actually even more promising steps on the way of a possible experimental re-

alization. Unpublished work [71] reveals that a perfectly symmetric and controllable triple

quantum dot setup can be fabricated. Thanks to a private communication with Y. Chung we

can reproduce Fig. 4.4.2, which shows a SEM image of a symmetric triangular triple quantum

dot on a GaAs/AlGaAs 2DEG wafer, where the interdot tunneling is controlled by coupling

gates (M1, M2 and M3 in the figure) and each dot is coupled (via the gates QPC1, QPC2 and

QPC3) to a reservoir in the tunneling regime. Differently to Ref. [70], hopping amplitudes in

Ref. [71] are effectively symmetric with γ0 ≃ 60 µeV, and the dots are scattered over a larger

region ∼0.65 µm. For such a setup, the possibility of variating cyclically the gate potentials

with the suitable phases as proposed in chapter 2 and a SQUID-based measurement of the

induced current should be straightforwardly available.

In summary, we presented an analytical solution for the time-dependent pumping of direct
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Figure 4.4.2: Experimental setup of a perfectly symmetric triple quantum

dot, courtesy of Y. Chun, unpublished [71].

current in a quantum model with dissipation, valid in the weak dissipation limit. The solution

fully covers the crossover from the well-known adiabatic limit to the antiadiabatic regime. In

Ref. [24] an investigation was attempted of nonadiabaticity, with numerical evidence that a

stronger dissipation might somehow compensate for the weak-coupling nonadiabatic current

reduction relative to the geometric value of the adiabatic limit. Our exact solution clarifies

that nonadiabaticity is fundamentally associated to such a radical current suppression that

eventually, for large frequency, the charge pumped in one period drops as the frequency to

the power of −2. The method introduced in a very recent work [25] also can deal with

the nonadiabatic regime and represents a more general approach to pumping problems in the

presence of weak dissipation. However in that work intermediate frequencies were studied only

in the absence of dissipation: the present model seems unique in affording an explicit analytic

expression for the density matrix and current in the presence of dissipation for arbitrarily

high frequency. The main physical surprise of our results is that the frequency dependence

of current is nonmonotonic, with an optimal value that moves from ∆ upwards to infinity as

temperature is reduced. This effect, on the whole reminiscent of magnetic-resonance physics,

appears to be directly detectable for example in proven experimentally realizable multi-dot

arrangements.
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Single-electron tunneling

oscillations
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Introduction

Tunnel junctions and single-electron effects have been widely studied over the last four

decades since a seminal paper by Averin and Likharev [76], who developed a perturbation

theory to describe single-electron tunneling in a current-biased tunnel junction. The first

famous experimental work on the observability of single-electron charging effects by Fulton

and Dolan [77] boosted a large amount of both experimental and theoretical interest. A good

summary of the main achievements is for example the collection of review articles titled Single

Charge Tunneling [78], and notably the one by Nazarov and Ingold describing the theory of

single-electron tunneling under the influence of an electromagnetic environment, to which we

will often refer in the following.

This part is devoted to the study of one of the most appealing single-charge effect ap-

pearing in a normal-metal tunnel junction, namely the single-electron tunneling oscillations

(SETOs), predicted in the 1980s [76,79–81]. They manifest as an almost periodic fluctuation

of the charge at the junction due to the interplay between the tunneling of electrons and

the continuous biasing of the junction; in this sense they can be considered as an AC effect

induced by a DC bias. Referring explicitly to the original paper by Averin and Likharev [76],

we will focus on the junction charge-noise spectrum as a mean to trace and quantify the

SETOs. The general plan is as follows: after a brief introduction on charging-effects and the

so-called ‘orthodox theory’ of transport in small tunnel junctions, chapter 1 will present the

bulk of our work, which has been devoted to the analytical and numerical study of SETOs

at zero temperature and in absence of quantum fluctuations. In chapters 2 and 3 we will

extend the analysis to thermal and quantum fluctuations effects respectively, considering the

environment from a more general point of view via the so-called ‘P (E) theory’.

Here we want to provide a brief introductory explanation about this phenomenon: what

are in practice SETOs? Consider a tunnel junction with tunneling resistance Rt ≫ RQ

and capacitance C (typically ∼pF) placed in an environment with resistance R and biased

with voltage Vb. As we will discuss in Sec. 1.1, it has been shown that if R is larger than

the quantum of resistance RQ the current is suppressed for bias voltage Vb smaller than

the Coulomb gap e/2C associated with the capacitance, and this effect can be visible for

temperatures lower than the Coulomb charging energy e2/2C. The idea behind SETOs

can be understood in the simplest way in the limit R,Vb → ∞ with Vb/R = Ib, i.e. the
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purely current-biased junction regime. The current slowly charges the capacitance. When

the voltage at the junction V = Q/C reaches the threshold e/2C one electron crosses the

junction. If Ib ≪ e/RtC this will happen just after V has reached the threshold. The charge

on the capacitance after the tunneling event will be Q = −e/2, and Q will start to increase

slowly again. A time e/Ib is needed before a new electron can cross the junction and the

sequence can start again. The voltage at the junction will thus be periodically modulated at

a tunable frequency Ib/e.

In practice, realizing a high-impedance environment with a flat frequency response till

frequencies of the order of e2/2C~ is a challenging experimental problem, as discussed in

detail in chapter 3. Most experimental observations of Coulomb blockade phenomena in single

tunnel junctions have actually been done in an intermediate-impedance situation (R ∼ RQ),

which leads at least to clearly nonlinear characteristics of the junction, see for example

Refs. [82,83]. Nevertheless, it is feasible to realize impedances of the order of some hundreds

of kΩ; for instance in Ref. [84] a resistance R ∼ 0.4 MΩ has been realized. For these values

not only the suppression of the current at low-bias voltage, but also SETOs should be visible.

Interestingly, in Ref. [85] a resistive environment yielding to Coulomb blockade has been

obtained by exploiting weak localization in a multiwalled carbon nanotube.

Observation of SETOs remains however experimentally challenging. The implementation

of the required strong-impedance environment has been realized by different authors using

for example on-chip resistors [86–91]. To avoid heating problems an alternative approach

has also been tried by designing the environment with tunnel-junction arrays [92, 93]; The

stochastic nature of the current is reduced by the presence of a large number of arrays [94];

recently an observation of soliton-like single electron oscillations with this method has been

reported [95]. A similar phenomenon for superconducting Josephson junctions has been

predicted (Bloch oscillations) [96] and investigated by many authors [97–100]. Arrays of DC

SQUIDs have also been exploited in this case to build up the proper environment to obtain

Coulomb blockade of Cooper pairs [101–103]. Reports on the observation of Shapiro-step-like

structures in microwave/RF-irradiated junctions constitute the present state of the art for the

experimental probe of this effect [90,98,104,105]. Progress in the detection of high-frequency

current fluctuations [20–23] can open new possibilities of observation, and especially of the

crossover region, where the oscillations are not completely established. At the same time

the possibility of generating a periodic and frequency-tunable electric signal without any

oscillating source is an interesting opportunity and could have applications, for instance, as

actuation of motion in nanomechanical systems or as controlled single-electron source.
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Chapter 1

Single-electron oscillations at zero

temperature

In this chapter we investigate how accurate the SETOs can be as a function of the

impedance and of the bias conditions, at zero temperature and in a strict current-biasing

scheme in a limit for which quantum fluctuations are negligible. To this purpose we study

the charge-fluctuation spectrum at the junction capacitance (or equivalently the current-

fluctuation spectrum through the resistance load), and in particular the width of the peak

at frequency ∼ Ib/e. Notwithstanding the relatively large number of papers on this subject,

some specifically addressing the dynamics of arbitrarily biased mesoscopic tunnel junctions

with an analytical approach [106–108], a consistent and simple calculation of these quantities

is not available. It can be useful in order to evaluate the expected effect in view of measuring

current fluctuations in this kind of device. We find that the width of the peak scales as the

inverse of the impedance for large R/Rt. The peak remains observable till values of R/Rt of

the order of 5. This chapter can be considered as the bulk of the SETOs part and is organized

as follows: in section 1.1 we introduce the basic assumptions underlying our treatment of the

transport through the junction; in 1.2 we present the model of the junction circuit; in 1.3

we discuss the different regimes that the system undergoes by varying the bias current and

the environment resistance, obtaining in particular an analytical expression for the the I-V

characteristic in the SETOs regime; in 1.4 we calculate analytically the charge spectrum; the

results are discussed and compared with numerical Monte Carlo simulations in section 1.5;

section 1.6 gives our conclusions. The results have been published in Ref. [109].

1.1 Charging effects in tunnel junctions

A tunnel junction can be generally defined as a barrier, for example a thin layer of insu-

lating material, interposed between conductors (see Fig. 1.1.1), through which electrons can
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Figure 1.1.1: (a) a real evaporated overlap junction; (b) schematic example

of an overlap junction with an insulating layer; (c) circuit representation of

a tunnel junction element.

only pass by quantum tunneling. We will be interested here only in the case where the con-

ductors, which we can call electrodes, are normal metals, thus disregarding superconducting

tunnel junctions in the following. It is by now well-known that with very small junctions and

at low temperatures, the result of a recharging of the junction capacitance by the tunneling

of a single electron can give rise to charging effects. The conditions for such a direct man-

ifestation of the discreteness of the charge are however not so straightforwardly realized. A

tunnel barrier alone in fact is not enough to observe the effects of single charge quanta on

macroscopic quantities (currents and voltages). It is primarily needed Coulomb interaction

between electrons to be strong enough to act against thermal charge fluctuations. Secondly,

also quantum electromagnetic fluctuations play an essential role in determining the tunneling

rates of electrons across the junction. We shall stress that single-electron effects are washed

out in a single tunnel junction unless a proper biasing scheme is implemented, while they

are not prevented to occur in systems composed of at least one ‘island’ (as is obtained for

example by placing two tunnel junctions in series).

From the semiclassical point of view we will be adopting here, a junction or generically

a tunnel barrier can be represented by a capacitance C and a tunneling resistance Rt. The

basic conditions for single-electron effects which arise in the presence of tunnel barriers not

to be masked by thermal and quantum fluctuations are

1. the tunneling resistance Rt must be much greater that the quantum resistance RQ =

h/e2 ≃ 25.8 kΩ, to ensure the wave function of an electron to be well-localized on one

side or the other of the barrier, so that we can meaningfully speak about a ‘tunneled

electron’:

Rt ≫ RQ , (1.1.1)

2. the capacitance C associated to the barrier must be small enough and the temperature

low enough for the energy scale of thermal fluctuations to be exceeded by the charging

energy Ec =
e2

2C , that is the energy required to charge the capacitance with an electron:

Ec ≫ kBT . (1.1.2)

If these conditions are realized the charging energy dominates the transport process and this
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is enough for Coulomb blockade to occur in circuits with at least one island, i.e. if they are

contacted to a voltage source there is a threshold for the passage of current through the

island V > e/2C. Consider instead just a single tunnel junction contacted to an ideal voltage

source (or ‘ideally voltage biased’): an electron which tunnels through the barrier from one

side of the capacitance to the other is immediately removed from the junction and the only

energy scale involved is eV , the work done by the voltage source; the charge on the junction

capacitor is in other words kept fixed at all times. This results in a linear current-voltage

characteristics without Coulomb blockade. On the other hand, consider adding an ideal

resistive environment, say a resistor R > RQ in series with the voltage source for simplicity:

this prevents the immediate removal of the tunneled charge since the junction capacitance is

now being slowly charged with time constant RC. Coulomb blockade thus does occur and

the transport through the junction is blocked until its voltage is enough for the charging

energy to be exceeded V = Q/C > e/2C; at this point an electron can tunnel through the

junction changing the capacitor charge by e and the process of slow charging continues. The

result is the well-known offset in the current-voltage characteristics given by e/2C known as

‘Coulomb gap’. In Fig. 1.1.2 we show schematically how the resistive environment is essential

for single-charge effects to show off in a tunnel-junction circuit without an island. We want

to clarify here a matter of nomenclature in the literature for single tunnel junctions which

may otherwise generate some confusion: in the zero-impedance limit of Fig. 1.1.2, i.e. when

no single-charge effects are displayed [even in the presence of conditions (1.1.1) and (1.1.2)]

the junction is referred to as ideally ‘voltage biased’ and the global rule is said to apply, while

the opposite R → ∞ limit is the ideally ‘current biased’ case and the local rule is said to

apply. These definitions label the two opposite limiting behaviors of any tunnel junction and

apply independently from the effective biasing scheme of the circuits considered.

In this chapter we will work in the limit of R ≫ RQ, so that we can neglect quantum

fluctuations and study the phenomenon of the single-electron tunneling oscillations in the

tunnel junction as a function of the ratio R/Rt. A semiclassical theory describing this regime,

the so-called ‘orthodox theory’ has been developed in Ref. [76], to which we refer in the

following. We will then relax this assumption in chapter 3 and see the crossover to a low-

impedance case where Coulomb blockade starts to be washed out and the global rule applies.

This will require taking into account the environment properly, as is done by the P (E) theory

by Ingold and Nazarov (Ref. [110]).

We now recall the derivation of the tunneling rates expression in the orthodox theory

framework, as is very clearly done for example in Ref. [111]. Following the local rule, the

rates are calculated taking into account only the change in the electrostatic energy of the

junction before and after the electron has tunneled ∆E. Using Fermi’s golden rule the tunnel

rate from an initial state i to a final state f can be generically expressed as

Γi→f (∆E) =
2π

~
|Mif |2δ(Ei − Ef −∆E) , (1.1.3)

where Mif is the tunnel transmission coefficient from the state i with momentum ki to the

state f with momentum kf , Ei and Ef are the initial and final energies of the tunneling
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Figure 1.1.2: Basic scheme of the influence of the environment [here rep-

resented generically as an impedance Z(ω)] on single-charge effects for a

single tunnel junction. I and V are the current and the voltage at the junc-

tion. In the case of ideal pure voltage bias, i.e. Z(ω) → 0, single-charge

effects are washed out (dashed line). In the case of ideal current bias, i.e.

the impedance is an infinite resistance Z(ω) = R → ∞, there is an offset

in the I-V curve due to Coulomb Blockade (dotted line).

electron. The total rate from occupied states at one side of the tunnel barrier to unoccupied

states on the other side is given by the summation over possible initial and final states:

Γ(∆E) =
2π

~

∑

i

∑

f

|Mif |2f(Ei)(1− f(Ef ))δ(Ei − Ef −∆E) , (1.1.4)

where f(E) is the Fermi function

f(E) =
1

1 + e(E−EF )/(kBT )
. (1.1.5)

The transmission probability can reasonably be treated as a constant |Mif |2 ≃ |M |2, and by

using the density of states D(E) we can convert the summations into integrals:

Γ(∆E) =
2π

~
|M |2
∫ ∞

Eci

dEi

∫ ∞

Ecf

dEf Di(Ei)Df (Ef )f(Ei)(1− f(Ef ))δ(Ei − Ef −∆E) , (1.1.6)

where Eci and Ecf are the conduction band edges of the sides the electron is tunneling from

and to respectively. The product of the Fermi functions in Eq. (1.1.6) is nonvanishing in a

window defined by the Fermi energies of the initial and final sides (EFi
and EFf

), over which

the densities of states can be taken constant. We thus get

Γ(∆E) =
2π

~
|M |2DiDf

∫ ∞

Ec

dE f(E)(1− f(E))δ(E −∆E) , (1.1.7)
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with Ec = max(Eci , Ecf ). In absence of charging effects we know that the tunnel junction

has Ohmic I-V characteristics, with the current proportional to the applied bias through

the tunneling resistance Rt. We can thus phenomenologically define the tunneling resistance

incorporating the transmission matrix element and the densities of states:

Rt =
~

2πe2|M |2DiDf
. (1.1.8)

For metal junctions we have EF ≫ Ec and we can safely take the integration from −∞:

Γ(∆E) ≃ 1

e2Rt

∫ ∞

−∞

dE f(E)(1 − f(E))δ(E −∆E) ≃ 1

e2Rt

∆E

e∆F/(kBT ) − 1
, (1.1.9)

or at zero temperature

Γ(∆E) ≃







0 ∆E ≥ 0

−∆E/(e2Rt) ∆E < 0
. (1.1.10)

The difference in the electrostatic energy before and after tunneling reads explicitly:

∆E =
(Q± e)2

2C
− Q2

2C
=

e

C

(e

2
±Q

)

. (1.1.11)

Apart from the above mentioned condition Rt ≫ RQ (about the required opacity of the tunnel

barriers to speak consistently of localized electrons), a few other basic assumptions underlie

this result: dimensions and shapes of electrodes and junction are ignored, the orthodox

theory is a 0D model; the tunneling process is assumed to be almost instantaneous, the

barrier traversal time of tunneling electron is the shortest timescale of the system and in

particular is much shorter than the time between consecutive tunnel events; the electric

charge redistribution inside the electrodes after the tunneling is assumed to be instantaneous;

the energy quantization in the electrodes is ignored.

1.2 The system and the model

Let us consider a tunnel junction with tunneling resistance Rt ≫ RQ and associated

capacitance C. The circuit is voltage-biased (at voltage Vb) at zero temperature (T = 0) in

the presence of a resistor of resistance R in series with the junction [see. Fig. (1.2.1) left side].

This circuit is equivalent to one with a current source Ib and a shunt resistor Rs in parallel to

the junction, provided Ib = Vb/R and R = Rs [see. Fig. (1.2.1) right side]. We will thus use

the parallel configuration to describe the device in analogy with the previous literature [76].

It is clear that the results can be readily converted to the voltage bias case. In particular

note that the limit Rs →∞ (specifically Rs ≫ Rt) describes the ideal current source.

Since we are interested in studying SETOs we need Rs & Rt ≫ RQ, as we will explain in

detail. We thus assume from the outset that Rs ≫ RQ, which allows us to neglect quantum
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Figure 1.2.1: Circuit scheme of the system considered: a tunnel junction

with capacitance C and tunneling resistance Rt, biased by the constant

current Ib and shunted by a resistance Rs in parallel.

fluctuations and treat the charge degrees of freedom classically [76]. We also assume that

the environment has a flat frequency response Z(ω) = Rs up to frequencies ~ω ≈ e2/2C.

This hypothesis, though not easy to fulfill in practice (see chapter 3 for more details), is the

common assumption in the literature about this problem, and allows a simpler and more

transparent approach. As introduced in section 1.1, in this regime the transport through the

junction is described by the orthodox Coulomb blockade theory. We rewrite the expression

for the electron-tunneling rate (1.1.10) in terms of the voltage at the junction (VJ ) as follows:

Γ(VJ) = θ(VJ − e/2C)(VJ − e/2C)/eRt , (1.2.1)

where θ is the Heaviside function. If (RQ ≪) Rs ≪ Rt the standard picture of Coulomb

blockade applies to the degrees of freedom of the environment: they have the time to relax

to thermal equilibrium between two electron-tunneling events. The current-voltage charac-

teristic in this case is then given by 〈IJ(VJ)〉 = R−1
t (〈VJ 〉 − e/2C)θ(〈VJ 〉 − e/2C), exposing a

linear monotonic behavior and a clear Coulomb gap for the current IJ through the junction.

But if Rs ∼ Rt or larger (for moderate values of the bias voltage) the resistive environment

(described for instance by a large collection of bosonic modes) reaches thermal equilibrium,

but not the charge on the capacitance Q(t), which needs a time τs = RsC to relax to its sta-

tionary state. Formula (1.2.1) still holds, but with a time-dependent voltage VJ(t) = Q(t)/C.

The time dependence of the charge is given by the solution of the differential equation:

Q̇ = −Q/RsC + Ib , (1.2.2)

which for an initial condition Q0 at t = 0 reads

Qf (Q0, t) = (Q0 − Ibτs)e−t/τs + Ibτs . (1.2.3)

With Eq. (1.2.3) and the tunneling rate (1.2.1) the stochastic problem of transport through

the junction is then completely formulated. In the remainder of the chapter we discuss the

behavior of the current and of the charge as a function of the two relevant dimensionless

parameters of the problem:

ρ =
Rs

Rt
(1.2.4)
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Figure 1.2.2: Average current through the junction versus average voltage

for different values of the ratio ρ = Rs/Rt. The curves evolve from the

standard Coulomb blockade suppression (rightmost line corresponding to

ρ = 0.1) to a square root behavior (leftmost line ρ = 500). The dotted line

is the large-ρ limit of Eq. (1.2.6).

and

κ = (Ib − Ith)/Ith , (1.2.5)

with Ith = e/(2τs) the threshold for the current to start flowing through the tunnel junction.

The current through the junction has already been calculated numerically in the very early

literature [80]. We obtained the same results by Monte Carlo simulations and for convenience

we show the curves in Fig. 1.2.2. The limit of infiniteRs, or ideal current source, was discussed

in details in Refs. [76, 112]. There it was shown in particular that in this limit the system is

in the ideal SETOs regime with frequency Ib/e, and with an average voltage at the junction

given by (see [76])

〈VJ 〉 =
√

πeRt〈IJ〉
2C

. (1.2.6)

In the next section we will discuss the behavior of the system for the intermediate regimes

appearing when Rs/Rt is not infinite, giving in particular analytical expressions for the

SETOs frequency and I-V characteristics.
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Figure 1.3.1: Average voltage through the junction versus bias current

in logarithmic scale (ρ = 5 × 102): four different transport regimes can be

outlined. Solid line is the numerical simulation, while dashed lines represent

the analytical curves given in Sec. 1.3.

1.3 Regimes of current transport

In this section we study the evolution of the current through the junction as a function

of the current bias for different values of the external resistance. The most interesting case

is when Rs/Rt is very large, we thus plot in Fig. 1.3.1 the current on a logarithmic scale for

the extreme value of Rs/Rt = 5× 102. Fig. (1.3.1) will be used as a map for the rest of the

section, where we will discuss how the junction evolves through the four different regimes of

transport indicated in the figure with roman numbers from (I) to (IV). Fig. (1.3.2) shows the

behavior of Q(t) in the different regimes.

1.3.1 Non SETOs regimes

Let us begin with the region indicated with (I) in Fig. 1.3.1. For Ib < Ith the whole current

flows through the shunting resistance and the voltage at the junction

〈VJ〉I = RsIb (1.3.1)

remains below the threshold of the Coulomb blockade: e/2C. Note that this first branch of

the I-V characteristic in Fig. 1.2.2 is flattened on the IJ = 0 value and it is thus not visible.
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Figure 1.3.2: The time behavior of the charge in the different regimes.

Extreme values of the parameters ρ and κ have been chosen to best outline

the differences.

For Ib > Ith transport through the junction becomes possible. For Ib − Ith → 0+ one can

identify a poissonian regime of transport [region (II) in Fig. 1.3.1], where the time between

tunneling events fluctuates strongly. This is due to the fact that Γ(V ) as given by Eq. (1.2.1)

vanishes linearly near the threshold, and for very small Ib − Ith the charge has always the

time (typically τs) to reach the saturation value Qs = Ibτs. We thus have that the typical

inverse time between two tunnel events is

1

τeff
= Γ(Qs) =

Rs

Rt

Ib − Ith
e

≪ 1

τs
. (1.3.2)

The last inequality sets also the region of existence of the regime (II) i.e. 0 < κ≪ 1/ρ. The

average of VJ can be readily evaluated by averaging the oscillations of the charge Q(t) =

Qs − e e−t/τs on the average time between two tunneling events τeff + τs ≈ τeff . This gives:

〈VJ〉II = Rs

[

Ib

(

1− Rs

Rt

)

+ Ith
Rs

Rt

]

(1.3.3)

and the curve is shown dashed in Fig. 1.3.1 (appearing almost a vertical line at the chosen

scale). Note that the slope changes sign at Rs/Rt = 1. We will see that for Rs ≪ Rt this

region joins continuously region (IV) without the appearance of region (III).

It is thus convenient to discuss now the region (IV) defined as the limit of large Ib. In

this limit the junction has the I-V characteristic of a normal resistor shifted by the Coulomb
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gap. The average VJ reads then

〈VJ〉IV =
RsRt

Rs +Rt

(

Ib +
e

2RtC

)

. (1.3.4)

This expression holds for 〈VJ 〉 ≫ e/2C, i.e. for Ib/Ith ≫ (Rt + Rs)/Rs. For Rs ≫ Rt it is

then clear that a large region defined by the condition

1/ρ≪ κ≪ ρ (1.3.5)

exists between region (II) and region (IV). This is the SETOs region, (III) in Fig. (1.3.1),

which will be discussed below. On the other side, for Rs ≪ Rt, one sees that region (II)

and region (IV) overlap at κ ≈ 1. Actually it is straightforward to check that Eq. (1.3.4)

expanded to first order in Rs/Rt coincides with Eq. (1.3.3).

1.3.2 SETOs regime

Let us now discuss the single-electron oscillations regime, defined as region (III) in Fig.

1.3.1. This region is present only if Rs ≫ Rt and is characterized by nearly periodic elec-

tron tunneling events, since the time between two events is dominated by the deterministic

charging time of the capacitance. This time is typically of the order of t⋆, defined as the time

needed to charge the capacitance from Q = −e/2 to Q = e/2:

t⋆/τs = ln

(
Ib + Ith
Ib − Ith

)

= ln

(
2 + κ

κ

)

. (1.3.6)

The electrons hop just after the threshold voltage has been reached.

A general statistical theoretical framework is presented in Ref. [76] (and recalled in ap-

pendix 1.A), but its analytical solution is given there only in the ideal current source limit

(Rs/Rt → ∞). Actually a simple approach happens to be available for the SETOs regime

and further progress is possible. In order to obtain these results and for the calculation of

the correlation function of the next section it is convenient to introduce a few concepts.

In Fig. (1.3.3) the typical time dependence of the charge Q(t) in the SETOs regime is

shown. We can associate a number n to each hopping event and define tn and τn = tn + δτn
as the instant of time when Q(t) = e/2 and when the hopping event takes places, respectively.

These quantities fluctuate randomly, but a correlation between tn and tn−1 exists. Inversion

of Eq. (1.2.3) gives the time needed to reach the border of the Coulomb blockade region

starting from a charge Q0:

Ξ(Q0) = −τs ln
(
Ibτs − e/2

Ibτs −Q0

)

. (1.3.7)

We thus have the following relation between successive times tn:

tn − tn−1 ≡ F(δτn−1) , (1.3.8)
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Figure 1.3.3: Details of the tunneling process: tn is the time at which the

charge reaches the blockade region border after the (n − 1)th tunneling

event and δτn is the time it stays outside the border before the nth event.

with

F(δτ) = δτ + Ξ
(

Qf

(e

2
, δτ
)

− e
)

= δτ − τs ln
(

κ

2 + κe−δτ/τs

)

. (1.3.9)

Let us now introduce the probability Pn(t) that n electrons have tunneled through the

junction at the time t. Within the SETOs region, this quantity is different from zero only in a

small time region of the order of t⋆, and, in particular, the above-mentioned condition on the

typical hopping time implies that Pn(t) will reach 1 and then vanish in a time much shorter

than t⋆, just after Q(t) crosses the threshold e/2. The rate equation for t ≥ tn [Q(tn) = e/2]

takes the simple form
dPn(t)

dt
= −Γ

(
Qf (e/2, t)

C

)

Pn(t) , (1.3.10)

with the initial condition Pn(tn) = 1. The solution reads

Pn(t) = exp

{

−(Ibτs − e/2)

eRtC
τs

(
t− tn
τs

+ e−
t−tn
τs − 1

)}

. (1.3.11)

For short times (t− tn ≪ τs) it has a Gaussian form

Pn(t) ≈ exp

{

−Ibτs − e/2

2eRtCτs
(t− tn)2

}

= exp

{

−(t− tn)2κρ
(4τ2s )

}

(1.3.12)

that has a decay time scale ∼ τs/
√
κρ ≪ t⋆ in region (III). The Gaussian form will thus be

used in the following for the analytical calculations.

From the knowledge of Pn(t) it is possible to obtain the probability density that a hopping

event takes places at time t: P(t) = −dPn/dt, for t ≥ tn. This allows us to calculate the
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average delay time 〈δτ 〉 for an electron to hop after the threshold e/2 has been crossed by

the charge Q(t):

〈δτ 〉 =
∫ ∞

0
dt t P(t) . (1.3.13)

In particular, when Pn can be approximated by the Gaussian (1.3.12) one obtains

Pgauss(δτ) = −
e/2− Ibτs
eRtCτs

δτ exp

{
e/2 − Ibτs
2eRtCτs

δτ2
}

=
κρ

2τ2s
δτ exp

{

− κρ

4τ2s
δτ2
}

, (1.3.14)

We can therefore explicitly calculate all the moments 〈δτn〉:

〈δτn〉 =
∫ ∞

0
d(δτ)

κρ

2τ2s
δτn+1 exp

{

− κρ

4τ2s
δτ2
}

=

(
4τ2s
κρ

)n/2

Γ
(

1 +
n

2

)

, (1.3.15)

where we have the Gamma function Γ(1+n/2) =
√
π(n)!!/2(n+1)/2 . In the following we will

need only the first two:

〈δτ 〉 =
∫ ∞

0
d(δτ) δτ Pgauss(δτ) =

√

eπRtCτs
2(Ibτs − e/2)

= τs

√
π

κρ

〈
δτ2
〉
=

∫ ∞

0
d(δτ) δτ2 Pgauss(δτ) =

4eπRtCτs
2(Ibτs − e/2)

= τ2s
4

κρ
.

(1.3.16)

Note in particular that 〈δτ 〉 = τs
√

π/(κρ)≪ t⋆.

To obtain the period T of the SETOs one has to average the nonlinear expression (1.3.9):

T = 〈F〉. For small fluctuations 〈δτ〉 we have :

F(δτ) = lim
δτ→0

[

δτ − τs ln
(

κ

2 + κe−δτ/τs

)]

= t⋆ +
2 δτ

2 + κ
+

κ δτ2

τs(2 + κ)2
+O(δτ3) , (1.3.17)

and

T = t⋆ +
2 〈δτ 〉
2 + κ

+
κ
〈
δτ2
〉

τs(2 + κ)2
+O

(〈
δτ3
〉)
. (1.3.18)

In the SETOs region we can thus simplify to

T = t⋆ + 2
〈δτ 〉

(2 + κ)
. (1.3.19)

Let us now come back to the probability. Conservation of the probability gives that

Pn+1(t) = 1−Pn(t). Since in this approximation the behavior is quasiperiodic, the charge on

the capacitor for the (n+1)th electron is on average Qf (e/2, 〈t− tn+1〉) = Qf (e/2, t−tn−T ).
(A discussion on the precise validity of this last average can be found in appendix 1.A, where

the problem is analyzed more rigorously.) The average charge can then be computed by

averaging over a period as follows:

〈Q〉 =

∫
tn+T

tn

dt

T

[

Qf

( e

2
, t− tn

)

Pn(t) + Qf

( e

2
, t− tn − T

)

Pn+1(t)

]

. (1.3.20)
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In the limit of ρ ≫ 1 only the Gaussian part of the probability is relevant, and the integral

gives:

〈Q〉 = Qs −
(

Qs −
e

2

)(

e
T
τs − 1

) τs
T

[

1−
√

π

κρ
e

1
κρ Erfc

(
1√
κρ

)]

. (1.3.21)

We report for completeness the details of the calculation:

〈Q〉 =

∫
tn+T

tn

dt

T

[

Qf

( e

2
, t− tn

)

Pn(t) + Qf

( e

2
, t− tn − T

)

Pn+1(t)

]

≃

≃

∫
tn+T

tn

dt

T

[

Qf

( e

2
, t− tn

)

Pn(t) + Qf

( e

2
, t− tn − T

)

(1− Pn(t))

]

=

=

∫
tn+T

tn

dt

T Qf

( e

2
, t− tn − T

)

+

+

∫
tn+T

tn

dt

T

[

Qf

( e

2
, t− tn

)

−Qf

(e

2
, t− tn − T

) ]

Pn(t) =

= Qs −
τs
T
( e

2
−Qs

) (
1− eT τs

)
+

+
1

T
( e

2
−Qs

) (
1− eT τs

)

∫
tn+T

tn

dt exp

{

− t− tn
τs

}

exp

{

−Qs − e/2

2eRtCτs
(t− tn)2

}

≃

≃ Qs −
τs
T
( e

2
−Qs

) (
1− eT τs

)
+

+
τs
T
(e

2
−Qs

) (
1− eT τs

)
e

1

κρ

√
π

κρ
Erfc

(
1√
κρ

)

. (1.3.22)

With little loss in the accuracy Eq. (1.3.21) can be simplified [using Erfc
(
1/
√
κρ
)
≃ 1,

T ≃ t⋆, and e
1
κρ ≃ 1] to the form

〈Q〉 ≈ e

2

[

κ+ 1− 2

(

1−
√

π

κρ

)

/ ln

(
2 + κ

κ

)]

. (1.3.23)

The analytical expressions (1.3.21), (1.3.23), and (1.A.12) obtained in the appendix, are

compared to the Monte Carlo results in Fig. (1.3.4).

These expressions describe the current with good accuracy, and in particular they all

capture the presence of a minimum in the voltage VJ . This minimum signals the crossover

region between two different kinds of SETOs. We indicated them in Fig. (1.3.1) as III.1 and

III.2. The latter one appears for 1 ≪ κ ≪ ρ. In this case, and in the extreme limit ρ → ∞
the SETOs period becomes T = e/Ib, i.e. corresponds exactly to the time needed to the ideal

current source to furnish a charge e. The saturation value for the charge (Qs) in this regime

is much larger than e/2, implying that only the linear part of the exponential in Eq. (1.2.3)
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Figure 1.3.4: Comparison between the different approximations for the

SETOs back-bending (or ‘nose’) of the current-voltage characteristics:

Monte Carlo data (circles) are shown against analytical calculations from

Eq. (1.A.12) (solid), Eq. (1.3.21) (dashed) and Eq. (1.3.23) (dot-dashed).

is explored. This is important since the small fluctuations in the hopping times do not affect

the evolution equation for the next electron. One can readily verify that in the limit of an

ideal current source the charge time dependence around each tn is Q(t) = Ib(t − ne/Ib).

The nonlinear corrections instead add a stochastic dependence on the time evolution of the

charge. The period, for instance, does not depend on 〈δτ 〉 anymore for κ → ∞, as is clear

from Eq. (1.3.19). This extreme limit is not realistic and thus the correction given in (1.3.19)

are normally important.

Reducing the current bias, the saturation charge becomes of the order of e/2 (κ = 2Qs/e−
1 < 1) and the nonlinear behavior of Q(t) begins to correlate different hopping events. The

charge time evolution in this regime is characteristic and resembles a shark fin, as shown in

Fig. (1.3.2). It is also clear from (1.3.19) that in this regime the stochastic fluctuations have

the greatest impact on the average SETOs period.

These two regimes can be identified on the current plot Fig. (1.3.4) and in the analytical ex-

pression (1.3.23) by the two branches joined by a minimum of the voltage (the SETOs ‘nose’).

The large-bias behavior (κ ≫ 1) of Eq. (1.3.23) gives e/(2C)
√

πκ/ρ, which is the Averin-

Likharev expression for the current of Eq. (1.2.6) (〈IJ 〉 ∼ Ib in this limit), while in the opposite

limit the long exponential charging time is dominating: 〈VJ〉 ≈ (e/C)
√
π/(
√
κρ ln (2/κ)).

The overall situation is summarized in Fig. (1.3.5). Since it is very difficult in practice
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Figure 1.3.5: Scheme of transport regimes boundaries as a function of the

relevant parameters: the tunneling/shunt resistances ratio ρ−1 = Rt/Rs

and the relative distance of the current bias from the threshold κ = (Ib −
Ith)/Ith. The SETOs regime exists only in the limit ρ≫ 1.

to experimentally reach large values of ρ, the plot in Fig. (1.3.5) suggests that a good ex-

perimental choice can be κ = 1, for which the SETOs appear for the lowest values of ρ.

We will discuss in the following the correlation function of the charge in order to analyze

quantitatively the evolution of the accuracy of the SETOs.

1.4 Charge-fluctuation spectrum

A quantitative measure of the accuracy of the SETOs is given by the time correlation of

the charge. This can be defined as

S(τ) = 〈Q(t+ τ)Q(t)〉 − 〈Q(t+ τ)〉 〈Q(t)〉 , (1.4.1)

where the average is performed over a statistical ensemble and the result does not depend on

t, since the stochastic process is stationary. Note also that this quantity is proportional to

the spectrum of current fluctuations through the shunt resistance Rs: SRs(τ) = S(τ)/τ2s (see

also appendix 1.B). In the case of voltage-biased junctions [see. Fig. (1.2.1)], S(τ)/τ2s gives

the current fluctuations that can be directly measured through the load resistance R.

For perfectly periodic charge oscillations the Fourier transform of (1.4.1) is given by a

sum of Dirac delta functions at ω = 2πn/T , with n integer. The nonperiodic fluctuations

introduce a finite width of these peaks. The form of S(ω) measures thus directly the accuracy
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of the periodic charge transfer. In this section we derive with a simple procedure an analytical

expression for S(ω) that allows us to better understand the origin of the fluctuations. In the

next section we will compare these results to those obtained numerically by Monte Carlo

simulations.

In order to calculate the Fourier transform of S(τ) for this stationary process it is conve-

nient to define the charge Q(t) over a time 0 < t < Λ, with Λ≫ T so that many oscillations

are present in a single sample of Q(t). One can then calculate the Fourier series

Qp =

∫
Λ

0

dt

Λ
Q(t)eip

2π
Λ
t , Q(t) =

∑

p

e−ip 2π
Λ
tQp . (1.4.2)

Substituting Eq. (1.4.2) into Eq. (1.4.1) and averaging over t one obtains:

S(τ) =
∑

p

〈
|Qp|2

〉
e−ip 2π

Λ
τ −Q2

0 , (1.4.3)

which can be used numerically to compute the correlation function from the Monte Carlo

data (see next section), or analytically, by performing the limit Λ → ∞. In particular the

Fourier transform can be defined as

S(ω) =

∫
+Λ/2

−Λ/2

dτeiωτ−0+|τ |S(τ) , (1.4.4)

which gives

S(ω) =
∑

p

(〈
|Qp|2

〉
− δp,0Q2

0

)
2π δ(ω − ωp) , (1.4.5)

with ωp = 2πp/Λ. The presence of the Dirac delta functions is an artifact consequent to the

periodic extension induced by the Fourier transform. In practice, since the frequency scale

1/Λ is infinitesimal one can obtain the smooth function S(ω) by averaging the expression

(1.4.5) for each value of ω over a small interval 2π/Λ. This simply gives that

S(ωp) = Λ
〈
|Qp|2

〉
(1.4.6)

for p 6= 0 (Wiener-Khinchin theorem).

The problem is now reduced to the calculation of the Fourier series of the charge. Using

the definitions of tn and τn given before [Eq. (1.3.7)] and assuming that the extrema of the

time evolution of Q(t) coincide with the two hopping events at times τ0 and τN we can write:

Qp =
N−1∑

n=0

∫
τn+1

τn

dt

Λ
Q(t) eiωpt =

N−1∑

n=0

eiωpτn

∫
τn+1−τn

0

dt

Λ
Qf (e/2, t − tn+1 + τn) e

iωpt . (1.4.7)

In the limit of well-established SETOs the integral gives a contribution that fluctuates very

little. On the contrary the exponentials are much more sensible to even small fluctuations of
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the tunneling times, since the phase results from the accumulation of many different hopping

events. For this reason we expect that the upper integration limit can be substituted with

the period of the SETOs τn+1 − τn ≈ T and we use Qf

(
e/2, t − (T − 〈δτ 〉)

)
as the average

charge dependence. The Fourier transform then takes the form

S(ω) = NT
〈
|F (ω)|2

〉
A(ω) , (1.4.8)

where

F (ω) =
1

N

N−1∑

n=0

eiωtn (1.4.9)

and

A(ω) =

∣
∣
∣
∣
∣
∣

eiω〈δτ〉

∫ T

0

dt

T Qf (e/2, t − T + 〈δτ 〉)eiωt
∣
∣
∣
∣
∣
∣

2

. (1.4.10)

Explicitly:

〈 |Qp|2〉 =
〈∣
∣
∣
∣

N−1∑

n=0

∫
τn+1

τn

dt

Λ
Q(t) eiωpt

∣
∣
∣
∣

2〉

=

=

〈∣
∣
∣
∣

N−1∑

n=0

eiωptn

∣
∣
∣
∣

2〉〈∣∣
∣
∣
eiωpδτn

∫
F(δτn)+δτn+1−δτn

0

dt′

T Qf (e/2, t
′ + tn + δτn − tn+1) e

iωpt′
∣
∣
∣
∣

2〉

≃

≃
〈∣
∣
∣
∣

N−1∑

n=0

eiωptn

∣
∣
∣
∣

2〉∣∣
∣
∣

〈

eiωpδτn

∫
F(δτn)+δτn+1−δτn

0

dt′

T Qf (e/2, t
′ + tn + δτn − tn+1) e

iωpt′
〉 ∣
∣
∣
∣

2

≃

≃
〈∣
∣
∣
∣

N−1∑

n=0

eiωptn

∣
∣
∣
∣

2〉∣∣
∣
∣
eiωp〈δτ〉

∫ T

0

dt′

T Qf (e/2, t
′ − T + 〈δτ 〉) eiωpt′

∣
∣
∣
∣

2

=

=
〈
|F (ωp)|2

〉
A(ωp) . (1.4.11)

The quantity A can be readily evaluated:

A(ω) =
(eτs
2T
)2
∣
∣
∣
∣
∣

κ+ 1

ωτs
(eiωT − 1)− κe−〈δτ 〉/τs

ωτs + i
(eiωT − eT /τs)

∣
∣
∣
∣
∣

2

. (1.4.12)

In order to proceed we have to evaluate also the average of F (ω). It is convenient to express

the time at which one event happens as a sum over the delay between previous events using

Eq. (1.3.8):

F (ω) =
eiωt0

N

(

1 +

N−1∑

n=1

exp

{

iω

n−1∑

k=0

F(δτk)

})

. (1.4.13)
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Now the average of |F (ω)|2 can be performed using the distribution function P(δτ):

〈
|F (ω)|2

〉
=

1

N

(

1 + 2Re

{
g(ω)

1− g(ω)

})

+
δF

N2
(1.4.14)

where we introduced the quantities:

g(ω) =
〈

eiωF(δτ)
〉

=

∫ ∞

0

d(δτ)P(δτ)eiωF(δτ) (1.4.15)

and δF = 2Re
{
g(gN − 1)/(1 − g)2

}
, whose contribution to S(ω) vanishes in the limit N →

∞. The details of the calculation leading from Eq. (1.4.13) to Eq. (1.4.14) are as follows:

〈
|F (ω)|2

〉
=

〈∣
∣
∣
∣

N−1∑

n=0

eiωtn
∣
∣
∣
∣

2〉

=

=

〈(

1 +

N−1∑

n=1

exp

{

iω

n−1∑

k=0

F(δτk)

})(

1 +

N−1∑

m=1

exp

{

−iω
m−1∑

k=0

F(δτk)

})〉

=

=1 +

〈N−1∑

n=1

n−1∏

k=0

eiωF(δτk)
〉

+

〈N−1∑

m=1

m−1∏

k=0

e−iωF(δτk)

〉

+N − 1

+

〈N−1∑

n=1

n−1∑

m=1

eiω
∑n−1

k=m
F(δτk)

〉

+

〈N−1∑

n=1

N−1∑

m=n+1

e−iω
∑m−1

k=n
F(δτk)

〉

=

=N +
N−1∑

n=1

n−1∏

k=0

〈

eiωF(δτk)
〉

+
N−1∑

m=1

m−1∏

k=0

〈

e−iωF(δτk)

〉

+

+

N−1∑

n=1

n−1∑

m=1

n−1∏

k=m

〈

eiωF(δτk)
〉

+

N−1∑

n=1

N−1∑

m=n+1

m−1∏

k=n

〈

e−iωF(δτk)

〉

=

=N +
N−1∑

n=1

gn +
N−1∑

m=1

g∗m +
N−1∑

n=1

n−1∑

m=1

gn−m +
N−1∑

n=1

N−1∑

m=n+1

g∗m−n =

=N + g
1− gN−1

1− g + g∗
1− g∗N−1

1− g∗ +

N−1∑

n=1

g
1− gn−1

1− g +

N−1∑

n=1

g∗
1− g∗N−n−1

1− g∗ =

=N + 2Re

{

g
1− gN−1

1− g

}

+ 2(N − 1)Re

{
g

1− g

}

− 2Re

{

g
1− gN−1

(1− g)2
}

=

=N + 2Re

{
(N − 1)g −Ng2 + gN+1

(1− g)2
}

=

=N + 2NRe

{
g

1− g

}

+ 2Re

{
g(gN − 1)

(1− g)2
}

. (1.4.16)

In conclusion we find

S(ω) =

(

1 + 2Re

{
g(ω)

1− g(ω)

})

T A(ω) (1.4.17)

that constitutes the central result of this section.
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We are now in the position to study the spectrum of the charge fluctuations for the system

at hand. As it can be seen from the form of (1.4.14) the function has a singularity for g → 1.

Since

|g(ω)|2 =

∫ ∞

0
dt

∫ t

0
dt′ P(t)P(t′)2 cos(ωt) ≤ 1 , (1.4.18)

a singularity is here present for ω → 0 or when the fluctuations are negligible so that g ≈
eiω〈F(δτ)〉. This picture predicts a series of peaks for the frequencies Ωn = 2πn/T with n

integer. Small fluctuations introduce a finite width, regularizing the correlation function.

The numerical integration in the expression of g(ω) is straightforward, but it is also possible

to obtain an analytical expression. Deep in the SETOs regime P(δτ) has a Gaussian behavior

and provides a short cutoff time, so that we can expand the exponential in (1.4.15) to second

order in δτ . This gives

g(ω) = eiωt⋆

(

1 +
2iω

2 + κ
〈δτ 〉 − κ2iω + 4ω2τs

2(2 + κ)2

〈
δτ2
〉

τs
+ . . .

)

. (1.4.19)

The maximum of Re{g/(1 − g)} takes place for Arg[g(ω)] = 0, which at lowest order in

〈δτ 〉 gives for the position of the poles

Ωn =
2πn

t⋆

(

1− 2 〈δτ〉
(2 + κ) t⋆

)

, (1.4.20)

coinciding at linear order in 〈δτ 〉 /τs with 2πn/T . The phase of g (g = |g|eiφ) thus vanishes
at the minimum of Re{g/(1 − g)}, so that near this point one can write at lowest order

φ ≈ T (ω − Ωn). The relevant part of (1.4.14) then reads

Re

{
g

1− g

}

≈ (1− |g|)
(1− |g|)2 + φ2

, (1.4.21)

and Eq. (1.4.8) takes the simple Lorentzian form

S(ω) ≃ A(Ωn)
Γn/2

Γ2
n/4 + (ω − Ωn)2

, (1.4.22)

with the full width at half maximum Γn defined by

Γn = 2
1− |g|
T =

4Ω2
n

T (2 + κ)2

(〈
δτ2
〉
− 〈δτ 〉2

)

. (1.4.23)

The presence in this formula of the mean squared variance of delay in the tunneling time,

i.e.
〈
(δτ − 〈δτ 〉)2

〉
, clearly indicates that the spread in the hopping event controls the width

of the peak, as is physically expected. One also sees that the width of the poles increases

with n. Performing the average with the Gaussian distribution we find
〈
(δτ − 〈δτ 〉)2

〉
/τ2s =

4(1− π/4)/(κρ), hence
Γn = 4

Ω2
n

T (2 + κ)2
τ2s
κρ

4
(

1− π

4

)

, (1.4.24)
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Figure 1.4.1: The relative width at half height of the first noise peak as a

function of κ, given by Eq. (1.4.27), for ρ = 10.

and at first order we can approximate

Ωn ≃
2πn

t⋆
=

2πn

RsC ln
(
2+k
k

) =
2πn

RsC ln
(
CV+e/2
CV−e/2

) , (1.4.25)

Subsituting back in (1.4.24) and taking the limits ρ→∞ and κ→∞ we obtain 1

Γn =
2n2π2(4− π)

RsC

Rt

Rs
. (1.4.26)

For the relative width Γn/Ωn we have the explicit expression

Γn

Ωn
=

32π n (1− π/4)
ρ κ (2 + κ)2 ln2(κ/(2 + κ))

. (1.4.27)

Eq. (1.4.27) allows us to study the width of the peak in the charge-correlation spectrum,

and thus, the accuracy of the SETOs. It correctly gives that Γ1/(2π/T ) ≪ 1 in the SETOs

regime (1/ρ ≪ κ ≪ ρ). It also shows [see. Fig. (1.4.1)] that the relative width Γ1/Ω1 is a

monotonic decreasing function of the bias current (κ) for a given value of the resistance (ρ).

From the form of (1.4.22) it is clear that within this approximation the weight of the

Lorentzian peak is controlled only by the form factor A(Ωn). Using its explicit expression

one finds that it induces a relatively weak dependence on κ and ρ: we can approximate

A(Ω1) ≃ e2/
(
4π2 + ln2

[
2+κ
κ

])
, which saturates to a constant for κ→∞. The full variation

1. This expression does not agree with the expression (57) of Ref. [76], specifically we find a different

functional dependence on Rs: Γ ∼ 1/R2
s instead of 1/Rs.
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takes place in the κ < 1 region, where the shape of Q(t) evolves from the shark-fin to the

sawtooth form. From the form of Eq. (1.4.27) one can also see that for small κ the peak

broadens and the SETOs are washed out when Γ1 ∼ Ω1 (for κ ∼ 1/ρ). For large κ instead

the theory predicts that the relative width decreases monotonically:

Γn

Ωn
=

8πn(1− π/4)
ρκ

. (1.4.28)

In this limit the SETOs disappear by a decrease of the weight of the peak, but within our

approximation this is not seen. Actually for sufficiently large current bias (κ ∼ ρ) there is a

finite probability that a single tunnel event is no more sufficient to bring the charge back in

the Coulomb blockade region. This is quantified by the value of Pn(tn) < 1, which, contrary

to our hypothesis, becomes smaller than 1. One can expect that the theory roughly remains

valid for the fraction of tunneling events that leaves Q(tn) < e/2, i.e. the fraction Pn(tn) < 1.

This would describe a peak that remains sharp, but that vanishes in weight as Pn(tn).

Another interesting and relevant limit is the low-frequency behavior of S(ω). Expanding

Eq. (1.4.15) in ω

g(ω) ≃ e〈iωF〉 ≃ 1 + iω 〈F〉 − ω2

2!

〈
F2
〉
− iω

3

3!

〈
F3
〉
+O(ω4) (1.4.29)

one can show that

N
〈
|F (ω)|2

〉
=

F2 − F 2
1

F 2
1

+ ω2 4F1F2F3 − F 2
1 F4 − 3F 3

2

12F 4
1

+ . . . (1.4.30)

where Fn = 〈Fn〉. If the fluctuations are negligible then Fn = Fn
1 and the noise at low

frequency vanishes. In particular in our case the average (1.4.30) takes a simple form if the

explicit expression of F is used. We have in fact:

〈F(δτ)n〉 ≃
〈[

lim
δτ→0

(

δτ − τs ln
(

κ

2 + κe−δτ/τs

))]n〉

=

=

〈(

t⋆ +
2 δτ

2 + κ
+

κ δτ2

(2 + κ)2τs
+O(δτ3)

)n〉

.

(1.4.31)

Up to O(δτ2) we can write then:

F1 ≃ t⋆ +
2〈δτ〉
2 + κ

+
κ〈δτ2〉

(2 + κ)2τs

F2 ≃ t2⋆ +
4 t⋆〈δτ〉
2 + κ

+
4 〈δτ2〉
(2 + κ)2

+
2 t⋆κ〈δτ2〉
(2 + κ)2τs

F3 ≃ t3⋆ +
6 t2⋆〈δτ〉
2 + κ

+
12 t⋆〈δτ2〉
(2 + κ)2

+
3 t2⋆κ〈δτ2〉
(2 + κ)2τs

F4 ≃ t4⋆ +
8 t3⋆〈δτ〉
2 + κ

+
24 t2⋆〈δτ2〉
(2 + κ)2

+
4 t3⋆κ〈δτ2〉
(2 + κ)2τs

,

(1.4.32)

and we rewrite (1.4.30) as

N
〈
|F (ω)|2

〉
=

F2 − F 2
1

F 2
1

(

1 + ω2 4F1F2F3 − F 2
1 F4 − 3F 3

2

12F 2
1 (F2 − F 2

1 )

)

, (1.4.33)
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with now

F2 − F 2
1

F 2
1

=
4
(〈
δτ2
〉
− 〈δτ 〉2

)

t2⋆ (2 + κ)2
+O(δτ3)

4F1F2F3 − F 2
1F4 − 3F 3

2 =
4 t4⋆

(〈
δτ2
〉
− 〈δτ 〉2

)

t2⋆ (2 + κ)2
+O(δτ3)

12F 2
1 (F2 − F 2

1 ) =
48 t2⋆

(〈
δτ2
〉
− 〈δτ 〉2

)

t2⋆ (2 + κ)2
+O(δτ3) ,

(1.4.34)

leading finally to

N
〈
|F (ω)|2

〉
= 4

〈
δτ2
〉
− 〈δτ 〉2

t2⋆ (2 + κ)2

(

1 +
ω2t2⋆
12

+ . . .

)

. (1.4.35)

We find thus that in the SETOs regime the low-frequency noise is suppressed.

Eq. (1.4.35) together with the expansion of Eq. (1.4.12) for ω → 0 allows us to evaluate

the zero-frequency Fano factor:

F ≡ SJ(0)

e 〈IJ〉
=

S(0)

τ2s e 〈IJ〉
, (1.4.36)

where SJ(ω) is the noise spectrum of the current through the junction and the relation

S(ω) = SJ(ω)τ
2
s /(1 + ω2τ2s ) holds exactly, see appendix 1.B for more details. The reduction

of the current fluctuations in the large ρ limit naturally leads to sub-Poissonian noise (F < 1)

vanishing for ρ→∞:

F ≃ (4− π)(−2 + (κ+ 1)t⋆/τs)
2

ρ κ (2 + κ)2(t⋆/τs)2
. (1.4.37)

Nevertheless this expression is only qualitatively correct, since the analytical theory has been

designed to describe accurately the noise for frequencies around the peak of the SETOs. This

will be shown in the next section, where we present numerical simulations.

1.5 Numerical simulations

In this section we show numerical results obtained by Monte Carlo simulations for the

charge-fluctuation spectrum. The purpose is to compare them with the analytical calculations

of the preceding sections, valid for ρ ≫ 1 and 1/ρ ≪ κ ≪ ρ, and to explore the crossover

region where the SETOs disappear.

The Monte Carlo simulations are performed by generating different realization of the

stochastic time evolution of the charge Q(t) over a time much longer than the SETOs period.

The time evolution of the charge is obtained by discretizing the time on a nonuniform grid,

such that in the time interval ∆t the charge varies by a small quantity and the tunneling

probability P = Γ(Q(t))∆t is < N ≪ 1. The tunneling event is accepted or refused by
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Figure 1.5.1: The noise peak at ω = Ω1 obtained from Monte Carlo numer-

ical simulations for values of ρ ranging from 80 to 200 in steps of 10. On

the x-axis the frequency is shifted by Ω1, so that the peak is at zero, and

scaled by the width Γ1 calculated in Eq. (1.4.23); on the y-axis the noise is

scaled by T ρ e2.

generating a random number between 0 and 1 and by comparing it to P . The deterministic

evolution of Q(t) between two events is simply given by Eq. (1.2.3). The sequence of time

intervals of deterministic evolution interspersed by tunneling times so constructed gives the

full knowledge of Q(t) and constitutes the stochastic run. The square modulus of the Fourier

transform of the charge is then easily analytically calculated piecewise, interval by interval. To

obtain the noise as from (1.4.6), just a further average over several runs is needed. Typically

N = .01, each run counts 103 tunneling events, and an average over 104 realizations is

performed.

Let us now discuss the numerical results. We begin by comparing the form of the first

peak in the noise spectrum. It is shown scaled by the analytically calculated width Γ1 in

Fig. (1.5.1) for different values of ρ and given κ. The agreement is excellent. We then compare

the full ω dependence of S(ω) obtained from Eq. (1.4.17) with the one calculated numerically.

We show the comparison in Fig. (1.5.2) for the relevant case κ = 1 (which corresponds to the

widest extension in ρ of the SETOs region) and for ρ ranging from 200 to 10. As expected,

the agreement is very good deep in the SETOs regime, for ρ ≫ 1, and at ρ = 10 all the

essential features of the peak at ω = Ω1 are still fairly well represented by the theory.

Let us now investigate how the SETOs disappear. From the experimental point of view

a simple parameter that can be varied continuously is κ ∼ Ib. We thus plot in Fig. (1.5.3)
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Figure 1.5.2: Comparison between Monte Carlo data for the charge-

fluctuation spectrum and the analytical results obtained from Eq. (1.4.17)

for different values of ρ, at fixed bias condition κ = 1. Logarithmic scale

on the vertical axis.

the evolution of S(ω) for given ρ = 10 and 100 as a function of κ. These two plots show

several interesting features. The first striking one is the reduction of the relative widths

of the peaks by increasing κ. This is predicted by the analytical expression (1.4.27) and

the numerical calculations assess its validity even outside the region of applicability of the

analytical theory. Note that in Fig. (1.5.3) the frequency axis is scaled with Ω1; thus the

apparent weight of the peaks is reduced by the scaling, but it saturates in the region κ≪ ρ

as predicted by the analytical theory, and then starts to really decrease in the crossover

region. The second visible feature is the appearance of a wide Lorentzian zero-frequency

peak that remains the only structure for κ ≫ ρ. This structure is due to the charge noise

induced at the capacitance by the Poissonian current fluctuations generated by the tunnel

junction. By solving the electromagnetic problem one finds S(ω) = C2|Z(ω)|2e 〈IJ〉, where
e 〈IJ〉 is the standard tunnel junction Poissonian white noise and Z(ω) = R‖/(1 + iωR‖C),

with R‖ = RsRt/(Rs+Rt), the impedance between the current source and the voltage at the

capacitance. This gives:

S(ω) =
e〈IJ〉C2R2

s

1 + 2ρ+ ρ2(1 + ω2R2
tC

2)
, (1.5.1)

which fits our data very well (see appendix 1.B for more details).

Finally we show in Fig. (1.5.4) the evolution of S(ω) for κ = 1 and for ρ evolving from 1

to 100. This figure gives an idea of the expected spectrum at the optimal value κ = 1 as a

function of ρ. It turns out that already at ρ = 3, S(ω) presents a very broad maximum and

ρ = 5 is probably sufficient to observe a clear structure in S(ω).
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Figure 1.5.3: Monte Carlo spectra for different bias conditions κ at fixed

junction environment (ρ = 100/ρ = 10 in the upper/lower panel). Increas-

ing κ means here moving along a horizontal line in Fig. (1.3.5) toward the

high-bias boundary of the SETOs region and it allows us to see how SETOs

disappear.
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different values of ρ: the crossover from the SETOs regime to the ρ . 1

region is shown.

1.6 Summary and conclusions

In this chapter we have studied theoretically the electronic transport in a tunnel junction

in the presence of a strongly resistive environment. The phenomenon of SETOs has been

predicted to appear in this system for essentially infinite value of the external resistance, so

that the junction can be seen as current biased. We investigated under which conditions the

SETOs appear for a realistic finite value of the environment resistance. We found analytical

expressions for the current [Eq. (1.3.21)] and for the charge-fluctuation spectrum [Eq. (1.4.8)

with Eq. (1.4.23)]. Our analytical results describe very well the form of the peak in the charge

noise, which can be regarded as the hallmark of the SETOs, since it quantifies the accuracy

of the periodicity in the charge time dependence. We find that a ratio of Rs/Rt of the order

of 5 can be sufficient to observe a clear structure in S(ω) if the bias current is chosen such

that Ib ≈ 2Ith = e/RsC (this can be converted on a condition on the voltage bias Vb ≈ e/C).

This ratio should be obtainable experimentally. It has to be noticed however that the theory

presented in this chapter is limited to the zero temperature case kBT ≪ e2/2C and holds for

a highly resistive environment where quantum fluctuations are negligible. A more realistic

modeling of the resistance, say a RC-line, needs to account for both thermal and quantum

effects, which will smear the Coulomb blockade gap and introduce spurious tunneling events

for |Q(t)| < e/2. We leave the discussion for the next two chapters, but we can anticipate

that a comparison with the results here presented will show the presence of a maximum of the

noise function at the optimal values κ = 1 surviving for accessible values of the environment

resistance even at finite temperature and in the presence of quantum fluctuations.
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Appendix

1.A Calculation of the I-V characteristics in the SETOs regi-

me with a Master Equation approach

In this appendix we find expressions for the I-V characteristics taking into account the

spread in the distribution probability of the charge. A full statistical description of the

behavior of the system can be given in terms of the probability density σn(Q, t) that at time

t the charge in the capacitance is Q and n charges have crossed the junction. Conservation

of the probability and the Master Equation describing electron tunneling (which we will be

largely using and explaining later on) lead to the following set of coupled partial differential

equations:

∂σn(Q, t)

∂t
=

∂

∂Q

[
(Q−Qs)

τs
σn(Q, t)

]

−Γ
(
Q

C

)

σn(Q, t)+Γ

(
Q+ e

C

)

σn−1(Q+e, t) . (1.A.1)

Eq. (1.A.1) is a generalization of the equations given in Ref. [76] to include the information

on the number of electrons which have tunneled. The general solution of this equation is

difficult in the presence of a finite resistance. But in the SETOs regime we can find an

explicit solution by exploiting the fact that at every cycle the charge passes through the

blocked range (−e/2 < Q < e/2). Let us assume that at t = 0 the distribution function is:

σn(Q, 0) = δ(Q− e/2)δn,n0
. (1.A.2)

The differential equation (1.A.1) for σn0
(Q, t) can be easily solved, since it decouples from

the others (σn0−1 = 0):

σn0
(Q, t) = P (t)δ

(

Q−Qf

( e

2
, t
))

, (1.A.3)

where P (t) = Pn(t) as given by Eq. (1.3.12) with tn = 0 and Qf is defined in Eq. (1.2.3).

Once we know the solution for σn0
we can substitute it into Eq. (1.A.1) and find the solution

for σn0+1:

∂σn0+1(Q, t)

∂t
=

∂

∂Q

[
(Q−Qs)

τs
σn0+1(Q, t)

]

+ Γ

(
Q+ e

C

)

σn0
(Q+ e, t) . (1.A.4)
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This can be done by using the ansatz

σn0+1(Q, t) =

∫

dQ′δ
(
Q−Qf

(
Q′, t

))
f(Q′, t) =

=

∫

dQ′δ
(

Q−
[

(Q′ −Qs)e
−t/τs +Qs

])

f(Q′, t) =

=f
(

(Q−Qs)e
t/τs +Qs, t

)

et/τs ,

(1.A.5)

which gives

σn0+1(Q, t) = f(z(Q), t)e
t
τs , (1.A.6)

with z(Q) = (Q−Qs)e
t
τs +Qs, and f(z(Q), t) = 0 for z(Q) < e/2 and t > τs ln

(
1
2 −

z(Q)
e

)

.

The resulting differential equation for f reads

∂f(z(Q), t)

∂t
= e−

t
τs Γ

(
Q+ e

C

)

σn0
(Q+ e, t) =

= e−
t
τs
Q+ e/2

eRtC
P (t) δ

(

Q+ e−
( e

2
−Qs

)

e−
t
τs −Qs

)

=

= e−
t
τs

(

Qs +
e

2
+ (z(Q) −Qs)e

− t
τs

) P (t)

eRtC
δ
(

e +
(

z(Q)− e

2

)

e−
t
τs

)

.

(1.A.7)

The equation can be integrated

f(z(Q), t) =

∫

dt e−
t
τs

(

Qs +
e

2
+ (z(Q)−Qs)e

− t
τs

) P (t)

eRtC
δ
(

e +
(

z(Q)− e

2

)

e−
t
τs

)

=

=

∫

dt e−
t
τs

(

Qs +
e

2
+ (z(Q)−Qs)e

− t
τs

) P (t)

eRtC

δ(t− t0)
∣
∣
∣− 1

τs

(
z(Q)− e

2

)
e−

t0
τs

∣
∣
∣

=

= e−
t0
τs

(

Qs +
e

2
+ (z(Q) −Qs)e

− t0
τs

) P (t0)

eRtC

1
∣
∣
∣− 1

τs

(
z(Q)− e

2

)
e−

t0
τs

∣
∣
∣

,

(1.A.8)

for t > t0 and z(Q) < −e/2, with t0 = τs ln(1/2 − z(Q)/e), giving:

f(z(Q), t) = P

(

τs ln

(
1

2
− z(Q)

e

))
τs

eRtC

(
e
2 −Qs

) (
z(Q) + e

2

)

(
z(Q)− e

2

)2 , (1.A.9)

nonvanishing only for t > τs ln(1/2 − z(Q)/e) and z(Q) < −e/2, which equivalently results

in the condition Q1(t) < Q < Q2(t), with

Q1(t) =Qs − e− (Qs − e/2)e−t/τs

Q2(t) =Qs − (Qs + e/2)e−t/τs ,
(1.A.10)

see Fig. 1.A.1. So we finally get for σn0+1(Q, t):

σn0+1(Q, t) =







0 Q < Q1(t)

e
t
τs f(z(Q), t) Q1(t) < Q < Q2(t)

0 Q > Q2(t)

. (1.A.11)
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Figure 1.A.1: The functions Q1(t) and Q2(t) as in Eq.(1.A.10).

It is interesting to note that the distribution has now a finite spread in Q induced by the

combined action of the stochastic fluctuations and of the finite value of the resistance. This

is in contrast with the simpler approximation used in Sec. 1.3.2 to evaluate the average in

Eq. (1.3.21), where we assumed that the spread was negligible, and that a delta function

could be used to describe the distribution σn0+1.

-0.5 0 0.5 1
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Figure 1.A.2: On the left, snapshots of the distribution σn0+1(Q, t) as a

function of the charge for fixed times show that it shifts and shrinks as

time goes by, tending towards a delta at the saturation value Qs/e = 1

(κ = 1 here). On the right, a 3D plot of the snapshots at large times in the

{Q, t} plane.
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Figure 1.A.3: Snapshots of the distribution σn0+1(Q, t) in Eq. (1.A.11) as

a function of the charge for fixed small times.

In Figs. 1.A.2 and 1.A.3 we show snapshots at different times of σn0+1(Q, t) as a function

of Q. At long times it tends unsurprisingly to a delta at the saturation value Qs (= e

in the figures), which is where the natural time-evolution of the circuit pushes the charge

(Fig. 1.A.2). At small times its behavior can be understood as follows. As it can be seen

in Fig. 1.A.1, at very small times the distribution is nonvanishing only in a small interval

close to −e/2, which goes to zero for t → 0 while enlarges and drifts away from −e/2 at

larger times (this explains why the curves for t ≤ 20 appear to be truncated). We recall that

σn0+1(Q, t) is the charge density distribution of the (n0+1)th tunneled electron and its shape

depends basically on how often do electrons tunnel with respect to the the ‘velocity’ of the

recharge after tunneling. At small times the charge grows linearly in time and faster at −e/2
than at e/2: dQ/dt|−e/2 > dQ/dt|e/2. The tunneling rate grows also linearly in time at small

times. In the charge distribution this results in an higher accumulation at the left border of

the interval Q1 < Q < Q2 with respect to the right one with a linear triangular profile, as

shown in Fig. 1.A.3. For larger times the linearity of the charge behavior no longer holds and

the curvature influences the recharge process and the tunneling rate. As a result the shape

of distribution starts to deform end evolves as in Fig. 1.A.2.

We can now calculate the average charge on the junction during a single oscillation:

〈
Q
〉
=

∫ T

0

dt

T



Qf

( e

2
, t
)

P (t) +

∫ Q2(t)

Q1(t)

dQ Q σn0+1(Q, t)



 . (1.A.12)

The numerical integration of this expression leads to the result shown in Fig. (1.3.4).
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1.B More details about current fluctuations

We want here to consider in more details the sources of fluctuations and noise in the circuit

at hand, explaining the relation between charge noise and current noise introduced in the

Fano factor discussion of Sec. 1.4 and motivating the high-bias formula for the charge noise

(1.5.1). Let us start by separating the different current contributions in our circuit.

Rs Rs

IC IJ

Ib Ib Ib

equivalent

Rt

at high bias

δI ′J

IRs

IRs
IRt

Figure 1.B.1: The tunnel junction circuit of Fig.1.2.1 (left) showed in an

equivalent way (middle), separating the tunnel junction explicitly in the

contributions from the capacitor and tunneling. IRs , IC , and IJ are the

current through the resistor Rs, the current at the capacitor and the pure

tunneling term respectively. On the right the high-bias limit is also shown:

the junction behaves as a resistor Rt plus a source of Poissonian fluctuations

δI ′J .

In Fig. 1.B.1 (middle scheme) we call IRs the current through the resistance Rs and we

separate the current through the junction in IC = Q̇ and IJ , associated to the charging of

the capacitor in time and the tunneling of electrons respectively. The different currents are

related by the following relation:

Ib = IRs + IJ + IC =
Q

Rs
+ IJ + Q̇ . (1.B.1)

We can now express the fluctuation of IJ in terms of the fluctuations of IRs and IC :

δIJ(t) = −
δQ(t)

RsC
− δQ̇(t) , (1.B.2)

where we have used the short notation δA = A− 〈A〉. Recalling the definitions of the charge

noise in Eqs. (1.4.1) and (1.4.4), we introduce also the resistor noise and the current noise as:

SRs(ω) =

∫

dt1

∫
Λ/2

−Λ/2

dt2
Λ

〈
δQ(t1)

RsC

δQ(t2)

RsC

〉

eiω(t1−t2)
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SJ(ω) =

∫

dt1

∫
Λ/2

−Λ/2

dt2
Λ

〈
δIJ(t1)δIJ (t2)

〉
eiω(t1−t2) . (1.B.3)

From the first line of the previous equation the relation between the charge noise and the

noise at the resistor is immediately evident: SRs(ω) = S(ω)/(R2
sC

2). By then substituting

Eq. (1.B.2) in the second line we easily see that the relation between charge noise and current

noise is as given in Sec. 1.4:

SJ(ω) =

(

− 1

RsC
+ iω

)(

− 1

RsC
− iω

)

S(ω) =
1 +R2

sC
2ω2

R2
sC

2
S(ω) . (1.B.4)

We also note that the zero-frequency spectrum of the fluctuations through the resistance and

through the junction are the same S(0) = R2
sC

2SJ(0) = R2
sC

2SRs(0).

Moreover, we can consider the high-bias limit for the circuit. In this case the junction

behaves as a resistor Rt plus a source of Poissonian fluctuations which we indicate in Fig. 1.B.1

(rightmost scheme) as δI ′J . The spectrum of these high-bias fluctuations is the bare shot noise

through the junction S′
J(ω) ∼ e〈IJ 〉. They contribute together with the fluctuations across

the resistance Rt to the total fluctuations of the current at the junction:

δIJ = δI ′J + δIRt . (1.B.5)

The last equality allows us to explicitly find out the relation between the charge noise SJ and

this shot noise term S′
J , as we now show. Eq. (1.B.2) becomes here

δQ(t)

R‖
+ δQ̇(t) + δI ′J (t) = 0 , (1.B.6)

so that we dispose of the following relation between δI ′J and the charge fluctuations

δQ(ω) =
−δI ′J (ω)
1

R‖C
+ iω

, (1.B.7)

leading to

δIRt(ω) =
δQ(ω)

RtC
=

−δI ′J(ω)
RtC

(
1

R‖C
+ iω

) . (1.B.8)

Eq. (1.B.5) becomes then

δIJ(ω) = δI ′J (ω)





RtC
(

1
R‖C

+ iω
)

− 1

RtC
(

1
R‖C

+ iω
)



 , (1.B.9)

leading finally to

SJ(ω) = S′
J(ω)

(

1− Rt

R‖

)2
+R2

tC
2ω2

R2
tC

2

(

1
R2

‖
C2 + ω2

) . (1.B.10)
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Using Eq. (1.B.4) we can thus conclude

S(ω) = S′
J(ω)

R2
sC

2

(1 + ρ)2 +R2
sC

2ω2
=

e〈IJ 〉R2
sC

2

(1 + ρ)2 +R2
sC

2ω2
. (1.B.11)

which is exactly Eq. (1.5.1). We show in Fig. 1.B.2 an example of the very good agreement

of this formula with the numerical simulations in the high-bias limit.

2.5 5 7.5 10
ω R

t
C
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3
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S(
ω

) 
/ (

e2 R
tC

)

ρ=10

κ=100

Figure 1.B.2: Very good agreement between the numerical simulations

(dots) for the charge noise in the limit of very high bias (κ = 100) and

the analytical estimation of Eq. (1.B.11) (solid line). Here ρ = 10.
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Chapter 2

Thermal fluctuations

In chapter 1 we considered the vanishing-temperature case, which has allowed us to find

the time dynamics of the electron tunneling through a simple analytical approach. We showed

that the SETOs regime appears for Rs > Rt (≫ RQ). A question does now naturally arise:

what happens to SETOs if we consider the effect of a finite temperature? Thermal effects are

expected to act against the appearance of a clear noise peak in the charge/current-fluctuation

spectrum. Would SETOs still be traceable at least in the Fano factor? When T 6= 0 the

Coulomb gap is smeared and the electron-tunneling rate is given by the full expression (1.1.9).

To model the junction transport in the presence of a finite temperature it is thus convenient

to resort to a different technique, both analytically and numerically, with respect to the one

used in chapter 1: we will tackle the problem by means of a Master Equation (ME) approach,

as has been briefly introduced in appendix 1.A.

2.1 Finite temperature charge noise

We consider the system of chapter 1 at finite temperature, the ‘orthodox’ framework set

by assumption Rs ≫ RQ still holding. To implement numerical simulations and calculate the

Fano factor we choose for convenience to resort to a ME technique instead of Monte Carlo:

we find the stationary solution of the ME for the charge density distribution σ(Q, t), and

use it to calculate the zero-frequency and finite-frequency noise. We recall that σ(Q, t)dQ is

the probability that at time t the charge on the capacitance is between Q and Q + dQ [cfr.

with σn(Q, t) in appendix 1.A, here we do not care about how many electrons have tunneled

through the junction and we sum over the n index; see also Ref. [76] Eq. (31a)]. The full ME

reads

∂σ(Q, t)

∂t
= −Ib

∂σ(Q, t)

∂Q
+

1

Rs

∂

∂Q

(

kBT
∂σ(Q, t)

∂Q
+
Q

C
σ(Q, t)

)

+ (2.1.1)

−
(

Γ+(Q) + Γ−(Q)
)

σ(Q, t) + Γ−(Q+ e)σ(Q + e, t) + Γ+(Q− e)σ(Q− e, t) .
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Figure 2.1.1: The Γ−(Q) tunneling rate for several temperatures as given

by Eq. (2.1.2); Γ+(Q) is not plotted here, as is just given by Γ−(−Q).

Temperature in units of e2/C.

The electron-tunneling rate is now given by Eq. (1.1.9) instead of Eqs. (1.1.10) and (1.2.1).

We distinguish between backward and forward rates:

Γ±(Q) =
∆E±(Q)

e2Rt

(

exp

{
∆E±(Q)

kBT

}

− 1

)−1

, (2.1.2)

with ∆E±(Q) = E(Q± e)− E(Q), explicitly:

∆E+(Q) =
e

C

(

Q+
e

2

)

∆E−(Q) = − e

C

(

Q− e

2

)

∆E+(Q− e) =
e

C

(

Q− e

2

)

= −∆E−(Q)

∆E−(Q+ e) = − e

C

(

Q+
e

2

)

= −∆E+(Q)

(2.1.3)

We plot Γ−(Q) in Fig. 2.1.1. The charge noise reads (δQ = Q− 〈Q〉):
S(τ) =〈Q(t+ τ)Q(t)〉 − 〈Q(t+ τ)〉〈Q(t)〉 = 〈δQ(t+ τ)δQ(t)〉 =

=

∫

d(δQ1)

∫

d(δQ2) δQ2 σ(Q2, t+ τ |Q1, t) δQ1 σ(Q1, t) =

=

∫

d(δQ1)

∫

d(δQ2) δQ2 σ(Q2, t+ τ |Q1, t) δQ1 σ
st ,

(2.1.4)

where σ( | ) is the conditional probability density 1, with σ(Q2, t|Q1, t) = δ(Q2 − Q1), and

σst is the stationary charge distribution.

1. σ(Q2, t2|Q1, t1) is the conditional probability density that the charge on the capacitance is Q2 at time

t2 if it was Q1 at t1.
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We give in the following a few details of the numerical implementation. The first step is

to discretize Eq. (2.1.1):

Q→ q = {qi}i=1,N

σ → σ = {σi}i=1,N

σ( | )→ Σ = {σij}i,j=1,N

qi+1 − qi = ∆ .

(2.1.5)

The discretized derivatives read

∂σi
∂Q
→ σi+1 − σi

∆
,

∂2σi
∂Q2

→ σi+1 − 2σi + σi−1

∆2
. (2.1.6)

The ME can be then be written in matrix form as ∂σ
∂t = Mσ, or by components ∂σi

∂t =
∑

ikMi,kσk, with M a sparse matrix which has non-zero entries:

Mi,i =
Ib
∆
− 2kBT

Rs∆2
+

1

τs
− qi
τs∆

− Γ+(qi)− Γ−(qi)

Mi,i+1 = −
Ib
∆

+
kBT

Rs∆2
+

qi
τs∆

Mi,i−1 =
kBT

Rs∆2

Mi,i+N∆ = Γ−(qi+N∆)

Mi,i−N∆ = Γ+(qi−N∆) .

(2.1.7)

The conditional probability density obeys the differential equation:







σ̇ij =
∑

kMi,kσkj

σij(0) = δij/∆ ,
(2.1.8)

which passing to Laplace transform reads

zσij(z) − σij(0) =
∑

k

Mi,kσkj(z) . (2.1.9)

We thus look for the solution of

zσij(z)−
∑

k

Mi,kσkj(z) = δij/∆ , (2.1.10)

or, in matrix form, (z −M)Σ(z) = 1/∆, thus

Σ(z) = (z −M)−1/∆ . (2.1.11)

Substituting in the Laplace transform of discretized (2.1.4) we get:

S(z) =
∑

i

∑

j

∆2 δqi σij(z) δqj σ
st
j =

∑

i

∑

j

∆ δqi (z −M)−1
ij δqj σ

st
j . (2.1.12)
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We can now write the Fourier transform as

S(ω) =

∫ +∞

−∞
dτeiωτS(τ) =

∫ +∞

0

dτeiωτS(τ) +

∫ +∞

0

dτe−iωτS(−τ) =

=

∫ +∞

0

dτS(τ)
(
eiωτ + e−iωτ

)
= S(z = −iω + ǫ) + S(z = iω + ǫ) ,

(2.1.13)

where we have used the fact that S(τ) = S(−τ). The final expression for the charge noise

reads

S(ω) =
∑

ij

∆δqi

(
1

1(ǫ+ iω)−M
+

1

1(ǫ− iω)−M

)

ij

δqjσ
st
j =

=
∑

ij

∆δqi

( −2M
1ω2 +M2

)

ij

δqjσ
st
j .

(2.1.14)

2.2 Finite temperature current noise

Here we introduce an alternative approach to directly calculate the current-noise. As

we stated in the discussion about the Fano factor of section 1.4 and in appendix 1.B, the

following relation between charge-noise and current-noise holds exactly at T = 0:

S(ω) =
τ2s

(1 + ω2τ2s )
SJ(ω) . (2.2.1)

At finite temperature however, the thermal fluctuations at the resistor need to be taken into

account: the current at the junction fluctuates now also due to the thermal noise coming from

the resistance Rs. This thermal contribution, say δIkT , has classically the standard white

noise spectrum (Johnson-Nyquist noise) SkT = 2kBT/Rs. The problem is that thermal fluc-

tuations at the resistor and fluctuations of the charge at the junction are strongly correlated.

To write the correct relation between charge-noise and current-noise at finite temperature,

one would therefore need to know the mixed correlators of the type 〈δQ(t1)δIkT (t2)〉. Ex-

tracting the current-noise from the charge-noise is thus delicate at finite temperature. The

knowledge of the current-noise is on the other hand needed to have direct access to the Fano

factor:

F ≡ SJ(0)

e 〈IJ〉
. (2.2.2)

Fortunately, we can resort to the possibility of directly computing the current-noise SJ given

by the technique of Refs. [113–115].

We start again from the ME but keeping track of the number of electrons having tunneled

through the junction, as it is done in appendix 1.A, see Eq. (1.A.1):

∂σn(Q, t)

∂t
=L0σn(Q, t)−

(
Γ+(Q) + Γ−(Q)

)
σn(Q, t)+

+ Γ−(Q+ e)σn−1(Q+ e, t) + Γ+(Q− e)σn+1(Q− e, t) ,

(2.2.3)
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with

L0σn(Q, t) = −Ib
∂σn(Q, t)

∂Q
+

1

Rs

∂

∂Q

(

kBT
∂σn(Q, t)

∂Q
+
Q

C
σn(Q, t)

)

. (2.2.4)

We then define the Fourier series:

σχ(Q, t) =

+∞∑

n=−∞
eiχnσn(Q, t) , (2.2.5)

and the following relations hold:

+∞∑

n=−∞
eiχnσn−1(Q, t) =e

iχσχ(Q+ e, t)

+∞∑

n=−∞
eiχnσn+1(Q, t) =e

−iχσχ(Q− e, t) .

(2.2.6)

The Master Equation (2.2.3) in the χ-space reads:

∂σχ(Q, t)

∂t
=L0σχ(Q, t)−

(
Γ+(Q) + Γ−(Q)

)
σχ(Q, t)+

+ Γ−(Q+ e)eiχσχ(Q+ e, t) + Γ+(Q− e)e−iχσχ(Q− e, t) .

(2.2.7)

As in Sec. 2.1, we discretize Q and σχ for the numerical implementation: σχ → σχ = {σiχ}i
and we write the ME in matrix form as

∂σχ

∂t = Lσχ, or by components
∂σi

χ

∂t =
∑

ik Li,kσkχ
with L a sparse matrix which has non-zero entries:

Li,i =
Ib
∆
− 2kBT

Rs∆2
+

1

τs
− qi
τs∆

− Γ+(qi)− Γ−(qi)

Li,i+1 = −
Ib
∆

+
kBT

Rs∆2
+

qi
τs∆

Li,i−1 =
kBT

Rs∆2

Li,i+N∆ = Γ−(qi+N∆)e
iχ

Li,i−N∆ = Γ+(qi−N∆)e
−iχ .

(2.2.8)

As in Ref. [113], the current noise is then given by

SJ(t) = δ(t)wt
L

′′
σ +wt

L
′eLt

L
′
σ − (wt

L
′
σ)2 , (2.2.9)

where wt = (1, 1, 1, ...., 1)/(wt
σ), the matrix L

′ = ∂L(χ)
∂iχ

∣
∣
∣
χ=0

has non-zero entries

L′i,i+N∆ =Γ−(qi+N∆)e
iχ

L′i,i−N∆ =− Γ+(qi−N∆)e
iχ ,

(2.2.10)

and the matrix L
′′ = ∂2L(χ)

∂(iχ)2

∣
∣
∣
χ=0

has non-zero entries

L′′i,i+N∆ =Γ−(qi+N∆)e
iχ

L′′i,i−N∆ =Γ+(qi−N∆)e
iχ .

(2.2.11)
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By introducing L̃
′ = L

′ −wt
L

′
σ, we can rewrite (2.2.9) as

SJ(t) = δ(t)wt
L

′′
σ +wt

L̃
′eLt

L̃
′
σ . (2.2.12)

The Fourier transform reads then:

SJ(ω) = wt
L

′′
σ − 2wt

L̃
′

L

1ω2 +L
2 L̃

′
σ , (2.2.13)

or

SJ(ω) =
∑

ijkl

wt
iL′′ijσj − 2wt

iL̃′ij
(

L

1ω2 +L
2

)

jk

L̃′klσstl , (2.2.14)

where σ
st is the stationary result of the ME as in (2.1.14).

2.3 Numerical results

We show here the results of numerical simulations for the charge-noise spectrum at finite

temperature, to be compared to the zero-temperature results of section 1.5. We solve the

ME for the stationary charge distribution σ
st, which we use to obtain the charge-noise via

Eq. (2.1.14). Fig. 2.3.1 reports the I-V characteristics at different temperatures for ρ = 100

and ρ = 10. The zero-T case was also shown in Fig. 1.2.2. The back-bending, or ‘nose’,

which was fully explained by our analytical model in section 1.3.2, already disappears at

temperatures which are still relatively low with respect to the Coulomb energy scale (kBT ∼
0.05 e2/C). As is to be expected, SETOs are being washed out by thermal effects. This

appears even more clearly by inspecting the evolution of the SETOs peak in the charge-noise

spectrum: we plot it in Fig. 2.3.2 for the case κ = 1, i.e. optimum bias condition, ρ = 100 and

ρ = 10, which in particularly represents an experimentally reasonable resistive environment

that is sufficiently large for the spectrum to display a clear peak (see Fig. 1.5.2). The peak

is no more visible already at kBT ∼ 0.05 e2/C. We note that the disappearance of the back-

bending in the I-V curves at fixed ρ is quicker than the disappearance of the charge-noise

peak for rising temperature.

We can try to clarify here the interpretation of these results. Thermal effects participate

with two contributions to the ME. We have seen first of all that the temperature smoothens

the tunneling rates with respect to the T = 0 case [cfr. Eqs. (1.2.1) and (1.1.9)]: electrons

can now tunnel even before the charge has reached the value of e/2, the sooner the higher is

the temperature, and a sharp threshold does not exist anymore. This damages already the

periodicity of the SETOs. Secondly, the temperature enters directly in the ME itself with a

diffusive term, introducing fluctuations of the charge at the junction which are a source of

thermal noise affecting the charge-noise spectrum. In order to evaluate the respective impor-

tance of these two contributions with the numerical calculations we have tried to implement

the ME (2.1.1) switching off the temperature only in the tunneling rates and we found the

results very little differing to the full-temperature ones. This clearly indicates that the most
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Figure 2.3.1: I-V characteristics for different values of the temperature

(units of e2/C), with ρ = 100 (top) and ρ = 10 (bottom): the zero-T

curves (solid black) are the one obtained with Monte Carlo simulations

already shown in Fig. 1.2.2.
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Figure 2.3.2: The charge noise S(ω) computed at different temperatures

by numerically solving the ME and using Eq. (2.1.14), compared to the

zero-temperature result obtained in chapter 1 by Monte Carlo simulations

(black dots). Here κ = 1 and ρ = 100 in the upper panel (y axis in logscale),

while ρ = 10 in the lower panel. The SETOs peak is severely smeared by

thermal effects already for kBT as small as 0.01 e2/C.
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important thermal effects are the ones associated with charge fluctuations. From the numer-

ical results we can conclude that not only temperature acts against SETOs, as is obvious,

but they appear to be extremely delicate and sensitive to thermal effects, which represents

a serious warning for all possible experimental observations/applications attempts. In the

next section we provide a quantitative analytical estimation of the effect of thermal charge

fluctuations on the SETOs peak, to clarify the scale of temperature (energy) involved.

0.2 0.4 0.6 0.8 1
ωR

t
C

0

0.04

0.08

0.12

0.16

S
J(ω

)R
tC

/e
2

0.1

0.01

k
B
T=0.001

0.02
0.05

0.1
0.01

S(ω)(1+ω2τ
s

2
)/τ

s

2

S
J
(ω)

0.003

zoom
ed

Figure 2.3.3: The current noise SJ(ω) (thick dashed) computed at different

temperatures by numerically solving the ME and using Eq. (2.2.13), com-

pared to the charge noise S(ω) (thin dotted) times the factor (1+ω2τ2s )/τ
2
s

given by Eq. (2.2.1), which establishes the exact relation between the two at

zero temperature. Here κ = 1 and ρ = 10, as in the lower panel of Fig. 2.3.2.

In the inset a zoom of the low-frequency region, with logarithmic vertical

scale.

To complete the overview on the numerical results we shall also show computations of

the current noise obtained via Eq. (2.2.13). As explained at the beginning of Sec. 2.2, we

will need the zero-frequency current noise SJ(0) to numerically compute the Fano factor and

compare it with analytical results (see Sec. 2.5). It is then useful first to compare here the

full-frequency spectrum SJ(ω) with the charge noise S(ω) to see how Eq. (2.2.1) fails at

finite temperature. We thus report in Fig. 2.3.3 the current noise for different temperatures

compared to the charge noise scaled by the factor (1 + ω2τ2s )/τ
2
s : the agreement at the

peak remains good even at temperatures which already significantly influence the SETOs

(kBT ∼ 0.1 e2/C, as we have seen before) but the low-frequency spectrum is instead more
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importantly affected. Eq. (2.2.1) is thus a good approximation for frequencies close to the

peak up to kBT ∼ 0.1 e2/C but does not hold at low frequency: this confirms that we cannot

obtain the Fano factor from the charge noise and we need instead directly the current noise.

2.4 Analytical estimation of the effect of thermal charge fluc-

tuations on the SETOs peak

How exactly thermal charge fluctuations act against SETOs? In section 1.3.2 we have

seen that at T = 0 SETOs are controlled by the delay time in tunneling of electrons after

the threshold, and we found that the width of the charge-noise peak depends on the spread

of this tunneling time 〈 δτ2〉 − 〈δτ〉2 [see Eq. (1.4.23)]. We now add to the picture a thermal

source of charge fluctuations [see also appendix 1.B and the beginning of Sec. 2.2], with the

standard thermal noise spectrum SkT (ω) = ~ω/Rs coth(2kBT/(~ω)), and investigate how it

competes with the zero-temperature mechanism. We can see the effect of the thermal charge

fluctuations as a delay in the time required to reach the threshold. This delay, call it ∆tkT ,

has then a spread

〈∆t2kT 〉 = 〈∆Q2
kT 〉
/[

d

dt
Qf (−e/2, t)

] ∣
∣
∣
Qf=e/2

=
〈∆Q2

kT 〉
κe/(2RsC)

, (2.4.1)

where the spread of the charge 〈∆Q2
kT 〉 can be readily calculated knowing SkT (ω) as

〈∆Q2
kT 〉 =

∫
t

0

dt1

∫
t

0

dt2

∫
+∞

−∞

dω

2π
SkT (ω)e

iω(t1−t2) . (2.4.2)

The relevant time scale t is here exactly the time t⋆ needed to recharge from −e/2 to e/2

without thermal fluctuations, given in Eq. 1.3.6. It corresponds to frequencies which are

well above the thermal energy scale t⋆ ≪ ~/kBT , so that we can carry out explicitly the

integrations in Eq. (2.4.2):

〈∆Q2
kT 〉 =

∫
t⋆

0

dt1

∫
t⋆

0

dt2

∫
+∞

−∞

dω

2π
SkT (ω) e

iω(t1−t2) =

∫
+∞

−∞

dω

2π
SkT (ω)

4 sin2(ωt⋆/2)

ω2
=

= t⋆

∫
+∞

−∞

dx

2π
SkT (x/t⋆)

4 sin2(x/2)

x2
≃ t⋆

∫
+∞

−∞

dx

2π

2kBT

Rs

4 sin2(x/2)

x2
=

= t⋆
4

π

2kBT

Rs

∫
+∞

0

dx
sin2(x/2)

x2
= t⋆

2kBT

Rs
. (2.4.3)

This gives

〈∆t2kT 〉 = 8 τ2s ln

(
2 + κ

κ

)
T̃

κ2
, (2.4.4)
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where we have defined the dimensionless temperature T̃ ≡ kBT/(e2/C). This time spread acts

against the periodicity of SETOs and gives a contribution analogous to the zero-temperature

spread 〈 δτ2〉 − 〈δτ〉2 in Eq. (1.4.23). We can now quantify the importance of the thermal

effect by comparing the two terms:

〈 δτ2〉 − 〈δτ〉2
〈∆t2kT 〉

=
1

4

(

1− π

4

) κ

ρ

[

ln

(
2 + κ

κ

)]−1

T̃−1 . (2.4.5)

From the previous equation we can estimate the two contributions to have the same order

for

T̃ ∼ 1

4

(

1− π

4

) κ

ρ

[

ln

(
2 + κ

κ

)]−1

. (2.4.6)

For κ = 1 and ρ = 10 or ρ = 100, this corresponds to T̃ ∼ 0.015 and T̃ ∼ 0.0015 respectively,

which is consistent with what Fig. 2.3.2 displays. This thus explains why thermal effects

become important even for kBT ≪ e2/C.

2.5 The high-voltage limit

It is now also very interesting to explore analytically the high-voltage limit with the ME

approach. For convenience we will here neglect the temperature dependence in the tunneling

rate, but keep the temperature-dependent term in the ME, which gives the main contribution

as we said in Sec. 2.3. Only Γ−(Q) and Γ−(Q + e) are thus nonvanishing, and Eq. (2.2.7)

reads:

∂σχ(Q, t)

∂t
=− Ib

∂σχ(Q, t)

∂Q
+

1

Rs

∂

∂Q

(

kBT
∂σχ(Q, t)

∂Q
+
Q

C
σχ(Q, t)

)

+

− Γ−(Q)σχ(Q, t) + Γ−(Q+ e)eiχσχ(Q+ e, t) .

(2.5.1)

We define Γ0 ≡ (RtC)−1 and rewrite the rate as

Γ−(Q) =
1

eRtC

(

Q− e

2

)

=
Γ0

e

(

Q− e

2

)

. (2.5.2)

We also introduce the moments of the σ-distribution, defined as

S(k)
χ (t) ≡

∫ +∞

−∞
dQ Qk σχ(Q, t) . (2.5.3)

The knowledge of these moments gives access to the relevant quantities of the system, such

as average charge and average current at the junction and also the zero-frequency noise from

which we can obtain the Fano factor. We have in fact:

S
(0)
0 =

∫ +∞

−∞
dQ σ(Q) = 1

S
(1)
0 =

∫ +∞

−∞
dQ Q σ(Q) = 〈Q〉

S
(2)
0 =

∫ +∞

−∞
dQ Q2 σ(Q) = 〈Q2〉 ,

(2.5.4)
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where the absence of time dependence means we are dealing with the stationary quantities,

and

∂iχ
∣
∣
χ=0

∂tS
(0)
χ = ∂t〈N(t)〉 = 〈IJ〉

e

∂2iχ
∣
∣
χ=0

∂tS
(0)
χ = ∂t〈N2(t)〉

〈N(t)〉 = ∂iχ
∣
∣
χ=0

S(0)
χ =

〈IJ〉t
e

〈N2(t)〉 = ∂2iχ
∣
∣
χ=0

S(0)
χ .

(2.5.5)

The zero-frequency noise SJ(0) = e2∂t
(
〈N2(t)〉 − 〈N(t)〉2

)
is then given by

SJ(0)

e2
= ∂t

[

∂2iχ
∣
∣
χ=0

S(0)
χ −

(

∂iχ
∣
∣
χ=0

S(0)
χ

)2
]

= ∂2iχ
∣
∣
χ=0

∂tS
(0)
χ − 2

〈IJ 〉2
e2

t . (2.5.6)

To lighten the notation we define

∂niχ
∣
∣
χ=0

S(k)
χ ≡ ∂nχS(k)

0 . (2.5.7)

We thus need to calculate ∂2χ∂tS
(0)
0 . We start by calculating ∂tS

(0)
χ , using Eq. 2.5.1:

∂tS
(0)
χ (t) =

∫ +∞

−∞
dQ ∂tσχ(Q, t) =

Γ0

2

(
1− eiχ

)
S(0)
χ (t)− Γ0

e

(
1− eiχ

)
S(1)
χ (t) , (2.5.8)

and analogously

∂tS
(1)
χ (t) =

∫ +∞

−∞
dQ Q ∂tσχ(Q, t) =

(

Ib +
Γ0e

2
eiχ
)

S(0)
χ (t)+

+

(
Γ0

2
(1− 3eiχ)− 1

RsC

)

S(1)
χ (t) +

Γ0

e

(
eiχ − 1

)
S(2)
χ (t) .

(2.5.9)

By taking the stationary solution of (2.5.9) at χ = 0 we can already extract the stationary

average value of the charge:

0 =

(

Ib +
Γ0e

2

)

S
(0)
0 −

(

Γ0 +
1

RsC

)

S
(1)
0 = Ib +

Γ0e

2
−
(

Γ0 +
1

RsC

)

〈Q〉 , (2.5.10)

which gives:

〈Q〉 = Ib +
Γ0e
2

Γ0 +
1

RtC

= R‖C

(

Ib +
e

2RtC

)

, (2.5.11)

with 1/R‖ = 1/Rs +1/Rt. By taking the first derivative of Eq. (2.5.8) with respect to iχ we

also have

∂iχ∂tS
(0)
χ = −Γ0

2
eiχS(0)

χ +
Γ0

e
eiχS(1)

χ +
Γ0

2

(
1− eiχ

)
∂iχS

(0)
χ −

Γ0

e

(
1− eiχ

)
∂iχS

(1)
χ , (2.5.12)

which at χ = 0 immediately gives the average value of the current at the junction:

〈IJ〉
e

=∂χ∂tS
(0)
0 = −Γ0

2
S
(0)
0 +

Γ0

e
S
(1)
0 = −Γ0

2
+

Γ0

e
〈Q〉 =

Γ0R‖C

e

(

Ib −
e

2RsC

)

. (2.5.13)
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To calculate the noise we need the second derivative of Eq. (2.5.8) at χ = 0 (see Eq. (2.5.6):

∂2χ∂tS
(0)
0 = −Γ0

2
S
(0)
0 +

Γ0

e
S
(1)
0 − Γ0 ∂χ∂tS

(0)
0 +

2Γ0

e
∂χ∂tS

(1)
0 =

=
Γ0

e

(

〈Q〉 − e

2

)

− Γ0 ∂χ∂tS
(0)
0 +

2Γ0

e
∂χ∂tS

(1)
0 ,

(2.5.14)

where ∂χ∂tS
(0)
0 is known [see Eq. (2.5.5)], and we thus further need to calculate only ∂χ∂tS

(1)
0 .

This is done by taking the first derivative with respect to iχ of Eq. (2.5.9):

∂iχ∂tS
(1)
χ =Ib∂iχS

(0)
χ +

Γ0e

2
∂iχS

(0)
χ +

Γ0e

2
S(0)
χ +

− 3Γ0

2
S(1)
χ − Γ0∂iχS

(1)
χ −

1

RsC
∂iχS

(1)
χ +

Γ0

e
S(2)
χ ,

(2.5.15)

giving at χ = 0

∂χ∂tS
(1)
0 =

Γ0e

2
S
(0)
0 −

3Γ0

2
S
(1)
0 +

Γ0

e
S
(2)
0 +

+

(

Ib +
Γ0e

2

)

∂χS
(0)
0 −

(
1

RsC
+ Γ0

)

∂χS
(1)
0 =

=
Γ0e

2
− 3Γ0

2
〈Q〉+ Γ0

e
〈Q2〉+

+

(

Ib +
Γ0e

2

) 〈IJ〉t
e
−
(

1

RsC
+ Γ0

)

∂χS
(1)
0 .

(2.5.16)

We see that in order to be able to solve this differential equation for ∂χS
(1)
0 we still need to

calculate the second moment S
(2)
0 = 〈Q2〉. As in Eqs. (2.5.8) and (2.5.9) we have

∂tS
(2)
χ (t) =

∫ +∞

−∞
dQ Q2 ∂tσχ(Q, t) =

(
2kBT

Rs
− Γ0e

2

2
eiχ
)

S(0)
χ + 2

(
Ib + Γ0e e

iχ
)
S(1)
χ +

+

(

− 2

RsC
+

Γ0

2
− 2Γ0e

iχ − Γ0

2
eiχ
)

S(2)
χ +

Γ0

e

(
eiχ − 1

)
S(3)
χ .

(2.5.17)

and the stationary solution at χ = 0 gives

0 =
2kBT

Rs
− Γ0e

2

2
+ 2 (Ib + Γ0e) 〈Q〉 − 2

(
1

RsC
+ Γ0

)

〈Q2〉 , (2.5.18)

thus

〈Q2〉 = R‖C (Ib + Γ0e) 〈Q〉 −R‖C Γ0
e2

4
+R‖C

kBT

Rs
. (2.5.19)

The differential equation (2.5.16) contains now known functions and we write it in the form

∂χ∂tS
(1)
0 = −η ∂χS(1)

0 + at+ b , (2.5.20)
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with

η =
(
R‖C

)−1

a =

(

Ib +
Γ0e

2

) 〈IJ〉
e

=
〈Q〉
R‖C

〈IJ 〉
e

b =
Γ0e

2
− 3Γ0

2
〈Q〉+ Γ0

e
〈Q2〉 .

(2.5.21)

The solution for t→∞ is easily found as

∂χS
(1)
0 ≃ a

η
t+

b− a/η
η

. (2.5.22)

By plugging it in Eq. (2.5.14), we can now calculate the zero-frequency noise (2.5.6):

SJ(0)

e2
= ∂2χ∂tS

(0)
0 − 2

〈IJ 〉2
e2

t =

=
Γ0

e

(

〈Q〉 − e

2

)

+
2Γ0

e

(
a

η
t+

b− a/η
η

)

− Γ0
〈IJ〉t
e
− 2
〈IJ〉2
e2

t =

=
Γ0

e

(

〈Q〉 − e

2

)

+
2Γ0

e

b− a/η
η

,

(2.5.23)

where we see that the linear terms in t cancel out exactly, leaving the result time-independent

as it has to be. We can now easily obtain an explicit analytic expression for the Fano

factor, defined in Eq. (2.2.2), to be compared with the numerical results obtained via the

implementation described in Sec. 2.2:

F =
R2

t

(Rs +Rt)2
+ 4

kBT

e2/C

Rs

Rs +Rt

e/(2RsC)

Ib − e
2RsC

=
1

(1 + ρ)2
+ 4

kBT

e2/C

ρ

1 + ρ

1

κ
. (2.5.24)

A few interesting comments arise from this result. Eq. (2.5.24) contains both the contribution

of the shot noise and the contribution of the noise due to fluctuations of the charge. The pure

shot noise of a tunnel junction due to random uncorrelated tunneling events would lead to a

Fano factor identically equal to one, and this Poissonian limit is correctly retrieved by taking

ρ→ 0 in Eq. (2.5.24). In the presence of an even slightly resistive environment Rs 6= 0, and

therefore particularly in the case of the SETOs regime, a correlation between tunneling events

is established and the Fano factor becomes sub-Poissonian. What Eq. (2.5.24) tells us, is that

it actually remains sub-Poissonian also at high bias, well beyond the border of the standard

SETOs region [established by the condition (1.3.5)]: we see that at zero temperature the

high-bias Fano factor is a constant < 1 depending only on the ratio Rs/Rt. This means that

tunneling events remain correlated even if we are biasing far away from the blockade region

and SETOs are washed out. In Fig. 2.5.1 we reproduce the results of numerical simulations

for the Fano factor as a function of the average voltage across the junction: the high-bias

saturation value is exactly the theoretical one 1/(1 + ρ)2.

The correction at finite temperature goes to zero as Ib →∞, so it is practically negligible

at sufficiently high bias. For fixed bias however the temperature acts against the correlation
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Figure 2.5.1: Fano factor as a function of the average voltage across the

junction 〈VJ〉 for ρ = 0.1, 1, 10. The results of numerical simulations for

high enough bias (equivalently, high enough average voltage) reproduce ex-

actly the analytical value given by Eq. (2.5.24) (dotted lines). The temper-

ature here is low enough (kBT = 0.01 e2/C) for its correction to Eq. (2.5.24)

to be negligible. Logarithmic scale on x-axis.

of tunneling events, resulting in a higher Fano factor, as it can be seen from Fig. 2.5.2, where

we show the analytical temperature dependence of F. At fixed bias and in the limit of very

large resistance Rs the junction noise is in practice just the thermal classical Johnson-Nyquist

noise of the resistor, S ∼ 2kBT/Rs, leading to a Fano factor F ∼ 2kBT/(eRsIb), which is

exactly the limit of Eq. (2.5.24) for ρ → ∞. Fig. 2.5.3 shows that numerical results for the

Fano factor as a function of ρ at fixed bias perfectly match the analytical results.

The link between the Fano factor behavior and the correlations appears very clearly from

our analytical analysis. Note that ∂χS
(1)
0 ≡ 〈QN〉 and using 〈N〉 = 〈IJ〉t/e [see (2.5.5)]

together with Eq. (2.5.22) we have thus

〈QN〉 = 〈Q〉〈N〉 + b− a/η
η

, (2.5.25)

from which it follows

〈〈QN〉〉 = 〈QN〉 − 〈Q〉〈N〉 = b− a/η
η

6= 0 , (2.5.26)

and also SJ(0)/e
2 = Γ0/e (〈Q〉 − e/2) + 2Γ0/e 〈〈QN〉〉. If we impose 〈〈QN〉〉 = 0 we find

F = 1 identically, which is the standard shot-noise result. We therefore see that the sub-

Poissonian behavior of the Fano factor comes exactly from the fact that the charge at the
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Figure 2.5.2: Theoretical high-bias (κ = 10) Fano factor as a function of ρ

for different temperatures (in units of e2/C). Logarithmic scale on x-axis.
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Figure 2.5.3: The Fano factor at high bias (κ = 10) numerically calculated

by solving the ME for two different temperatures (circles kBT = 10−3 e2/C

and squares kBT = 0.1 e2/C) compared to the analytical result given by

Eq. (2.5.24) (dotted lines). Logarithmic scale on x-axis.
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junction and the number of tunneled electrons are correlated quantities, i.e. the cumulant

〈〈QN〉〉 is nonvanishing.

2.6 Conclusions

We have presented the generalization to the case of nonvanishing temperature of the

analysis of the single-electron transport through the tunnel junction introduced in chapter

1. Discussions about thermal effects were already present in the early literature, see for

example Ref. [80], but only in the strict Rs = ∞ limit. A complete and rigorous treatment

of thermal effects in the presence of environments with large but finite resistance Rs ≫ RQ

was lacking, in particular focused on the influence on the SETOs regime. Via numerical

simulations we have shown that SETOs are rather sensitive to thermally induced charge

fluctuations, which seem to be destructive even at temperatures corresponding to energies

still low compared to the Coulomb energy. We provided an analytical estimation which

explains the temperature/energy scale involved by thermal effects. The adopted Master

Equation technique has also allowed us to analyze analytically the high-bias limit and clarify

some features of the Fano factor.
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Chapter 3

Effects of the electromagnetic

environment

The aim of this chapter is to drop the assumption Rs ≫ RQ and investigate the possibility

that Rs . RQ. In particular we shall follow the behavior of the system from a high-impedance

environment to a low-impedance one, discussing the crossover from the purely classical case

(Rs ≫ RQ) to the quantum fluctuations dominated regime (Rs ≪ RQ). How SETOs are

influenced by quantum fluctuations of the environment?

The concern about going beyond the ideal high-impedance, current-biased point of view

and treat the environment in a more realistic way is well-motivated. The problem of modeling

the electromagnetic environment of real circuits has been considered both theoretically and

experimentally since the 1990s, see for example Refs. [82, 89, 116–118]. It is clear that the

ideal picture of a pure resistive environment which can be tuned at will to switch from

the voltage-bias scheme to the current-bias scheme is hardly realizable experimentally. Let

us represent the environment as a generic impedance Z(ω). As very clearly explained in

Ref. [116], up to moderately high frequencies the value of the impedance can be made large

by a clever choice of the leads shape and material; but no matter how careful the design of the

junction, at frequencies of the order ∼ 1014−1015 Hz radiation phenomena dominate and the

impedance becomes of the order of the vacuum impedance Zvacuum ≃ 377 Ω. In other words,

in practice even the best Ohmic environment will start to behave as a RC transmission line

at high frequencies. In Fig. 3.0.1 (taken from Ref. [116]) we show the behavior of the modulus

|Z(ω)|: the environmental impedance is modeled as a transmission line with total capacitance

Cℓ and total resistance Rℓ and with characteristic impedance Zℓ < Zvacuum. With standard

leads typical values of Rℓ are in the range 100 Ω−1 kΩ, which is comparable with Zℓ, and the

environment behaves in practice as a resistor Zℓ (solid blue line); if on the other hand special

effort is made in obtaining high-resistance leads, with Rℓ ∼ 100 kΩ much higher than Zℓ, then

the environment behaves as a resistor Rℓ but only until frequency of the order of (RℓCℓ)
−1,

when it unavoidably enters a RC-line regime with a ω−1/2 fall-off until a saturation value is
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Figure 3.0.1: Scheme of the behavior of the modulus of a realistic en-

vironmental impedance as a function of the frequency, reproduced from

Ref. [116]. The impedance is modeled as a RC-line with parameters Rℓ,

Cℓ and Zℓ. Solid blue line: standard case where the leads resistance is

comparable to Zℓ and the impedance behaves as a resistor Zℓ; dashed red

line: with high-resistance leads (Rℓ ≫ Zℓ) the impedance behaves as a re-

sistor Rℓ up to frequencies ∼ (RℓCℓ)
−1, when it starts to decrease as ω−1/2

and then reaches the value Zℓ of the standard case. The frequencies corre-

sponding to three characteristic time scales of the system are represented

(dotted black vertical lines): (RtC)−1 is the tunneling rate, RQC is the

uncertainty time associated to the Coulomb energy and τtunn is the (very

short) tunneling time.

reached and the frequency-independent behavior of the standard case is retrieved (dashed red

line). The perfect current-bias scheme with |Z(ω)| ≫ RQ cannot thus exist, at least not at

all frequencies, since when the impedance behaves as Zℓ the inequality Zℓ < Zvacuum ≪ RQ

holds 1. The question whether the environment of a realistic tunnel junction circuit is or not

appropriate to make single-charge effects visible is therefore delicate. From the experimental

point of view special efforts are thus required to improve (at the relevant frequencies) from the

standard, easily set up working regime Rs . RQ to the less straightforward Rs & RQ. On the

theoretical side, investigating how precisely single-charge effects arise in a real environment

stands as a key issue and implies in principle being able to describe all the regimes swept by

a change of the resistance Rs from the ideal SETOs value Rs ≫ Rt ≫ RQ to an opposite

1. the ratio between the vacuum impedance and the quantum resistance is equal to twice the fine structure

constant e2/(4πε0~c) ∼ 1/137.
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Figure 3.0.2: Phase-diagram-like overview of the possible transport regimes

as a function of the relevant ratios α = RQ/Rs and αt = RQ/Rt. The per-

turbation theory which underlines the orthodox and P (E) theories applies

for Rt ≫ RQ, i.e. in the horizontal stripe at the bottom of the graph. The

ideal SETOs studied in chapter 1 appear in a small triangle on the left side

close to the origin. The P (E) theory holds in the blue slice going from

Rt ≫ Rs > RQ to the limit Rt ≫ RQ ≫ Rs.

(closer to reality) one Rt & RQ & Rs .

In order to better clarify the different possible regimes we show in Fig. 3.0.2 a phase-

diagram scheme of the plane of the parameters α ≡ RQ/Rs and αt ≡ RQ/Rt. For α ≪ 1

quantum fluctuations are not important: a description with a classical Master Equation works

just fine and we have applied the orthodox theory of chapter 1 in the square {α≪ 1, αt ≪ 1}
at the bottom-left of the chart. SETOs live in a very small triangle at the extreme left, where

the condition Rs ≫ Rt ≫ RQ is satisfied. The standard theory which on the other hand
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provides a description of the crossover from high to low-impedance environment for a tunnel

junction system goes under the name of ‘P (E) theory’ and has been reviewed by Ingold and

Nazarov in Ref. [110]: it holds in the blue slice of Fig. 3.0.2 going from Rt ≫ Rs > RQ to the

limit Rt ≫ RQ ≫ Rs. Quantum fluctuations of the environment are completely accounted

for by the P (E) theory, which provides suitable expressions for the tunneling rates. These

tunneling rates, as we will see in Sec. 3.1, reduce to the orthodox theory ones in the limit

α≪ 1.

We point out that both orthodox and P (E) theories are based on a perturbation-theory

treatment of the tunneling, and this implies that the condition Rt ≫ RQ must always be

satisfied. This selects the bottom rectangle αt ≪ 1 in Fig. 3.0.2. Here the extreme limits of

ideal SETOs and strong quantum fluctuation effects lay on opposite sides.

To explore a region where possibly strong single-electron time-correlation effects manifest

and quantum fluctuations are also important would require to leave the framework of the

perturbation theory and enter the domain RQ & Rt. This has been investigated both with

analytical nonperturbative approaches [119–127] and by numerical Monte Carlo simulations

[120,122,128]. It has been demonstrated [119,120,129] that at sufficiently low temperatures,

even for large values of the ratio RQ/Rt ≡ αt strong quantum fluctuations do not destroy

Coulomb blockade but have a renormalization effect on the junction capacitance, so that the

Coulomb gap is also renormalized E∗
c ∝ Ec exp(−2αt). The price to pay is then a much lower

temperature (kBT ≪ E∗
c ) for single-charge effects to be visible, making them very difficult

to observe. The αt ≫ 1 regime seems therefore unattractive from the experimental point of

view for probing SETOs. A theoretical study of nonperturbative SETOs (which in Fig. 3.0.2

would show up in the α≪ 1, αt ≫ 1 region) can be found in Ref. [119], where a formula for

the I-V characteristics is given, and in Ref. [130]. To our knowledge these are the only works

in the literature done in this regime, of very difficult experimental access.

α

αt

standard

region of

experiments

experimental

approahing path

Figure 3.0.3: Zoom on the relevant area of Fig. 3.0.2: possible experimental

improvements in making high-resistive environments push exactly in the

direction of the still unexplored crossover area between P (E) and orthodox

theories.

We shall then purposefully focus on the tunneling regime represented by the area αt ≪ 1

and ask ourselves how to describe the crossover from the left border where quantum fluctua-

tions are irrelevant to the right one where they control transport, accounting throughout for

the charge non-equilibrium effects which are responsible for the SETOs. In particular, we will
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C,Rt

V

Figure 3.1.1: Generic circuit scheme considered within the P (E)-theory

framework. The environment is modeled by a generic impedance Z(ω).

With Z(ω) = Rs and V = Vb the circuit is equivalent to the one introduced

in chapter 1.

discuss on how to deal with the unexplored region (question-marks patterned in Fig. 3.0.2)

Rs > Rt ≫ RQ where SETOs are weak but still surviving and quantum fluctuations are

expected to have a small but not-negligible effect. We note that the direction of possible ex-

perimental improvement in constructing high-resistive environments pushes exactly through

this intermediate region (see Fig. 3.0.3), which thus deserves more theoretical interest. As we

will illustrate in Sec. 3.3, the key point will be to exploit both the classical Master Equation

of chapters 1, 2 and the P (E) theory. The bases of the P (E) and ME approaches are hence

recalled in Secs. 3.1 and 3.2 respectively, to establish the needed theoretical context.

3.1 The P (E) theory and the calculation of the tunneling rates

In this section we briefly illustrate the main steps for the derivation of the P (E) theory.

The P (E) theory is the standard way to describe electron tunneling in the presence of dissi-

pation, i.e. accounting for quantum fluctuations induced by coupling with an environment.

We consider a circuit with a tunnel junction in series with a voltage source and a dissipative

element represented by a generic impedance Z(ω), see Fig. 3.1.1.

As explained in Sec. 1.2, with Z(ω) = Rs this circuit is exactly equivalent to the one

studied so far (with a current bias and a parallel resistance). The effects of dissipation

manifest as oscillations of the voltage VJ(t) across the junction induced by the environment.

These voltage oscillations are equivalently oscillations of the phase at the junction φ, which

is directly related to the voltage by the relation

φ(t) =
e

~

∫ t

−∞
dt′ VJ(t

′) . (3.1.1)

We can thus model the dissipative element of the circuit as a set of harmonic LC-oscillators

coupled to the phase. In the presence of the external voltage source V , the average phase

evolves as (e/~)V t and the average charge on the junction capacitor is given by CV , it is
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thus convenient for the following to introduce the shifted charge and phase Q̃ = Q−CV and

φ̃(t) = φ(t)− e
~
V t, which conserve the same commutation relations as the unshifted variables,

i.e. [φ̃, Q̃] = ie. The Hamiltonian of the environment reads then

Henv =
Q̃2

2C
+

N∑

n=1

(

q2n
2Cn

+

(
~

e

)2 1

2Ln
(φ̃− φn)2

)

, (3.1.2)

where the first term describes the charging energy of the junction capacitor and the second

term is the sum over the environmental degrees of freedom represented by harmonic oscillators

of frequency ωn = 1/
√
LnCn bilinearly coupled to the phase φ̃. We note that this is the exact

electromagnetic equivalent of the quantum description of a brownian particle in a bath of

harmonic oscillators, see for example [131]. For the details of the microscopic foundation of

such a model of the dissipation see Ref. [110]. We will just comment here that Eq. (3.1.2)

describes correctly the classical charge relaxation of the circuit and is thus an equivalent

description which allows us to treat the environment quantum mechanically. The link between

the model parameters Ln, Cn and the macroscopic impedance can be retrieved by writing

the Heisenberg equations of motions corresponding to the Hamiltonian (3.1.2) and solving

for the charge Q̃(t):

˙̃Q(t) +
1

C

∫ t

0
ds Y (t− s) Q̃(s) = IN (t) , (3.1.3)

where Y (t) =
∑N

n=1 cos(ωnt)/Ln: the Fourier transform of this function is the admittance and

is exactly the inverse macroscopic impedance Y (ω) = 1/Z(ω). Including the tunneling part

in the description of the circuit, we finally get the total Hamiltonian Htot = Hqp+HT +Henv,

where

Hqp =
∑

κσ

(ǫκ + eV )c†κσcκσ +
∑

pσ

ǫqc
†
qσcqσ (3.1.4)

is the contribution due to the quasiparticles in the two electrodes and

HT =
∑

κqσ

Tκqc
†
qσcκσe

−iφ̃ + h.c. (3.1.5)

the proper tunneling term which couples Hqp and Henv. Starting from Htot the tunneling

rates are calculated after introducing two important assumptions: i) the tunneling resistance

Rt, which is inversely proportional to the square of the tunneling matrix element, is large

compared to the resistance quantum RQ:

Rt ≫ RQ . (3.1.6)

This allows us to treat the tunneling Hamiltonian HT as a perturbation and justifies resorting

to the Fermi golden rule; ii) between tunneling events the environment has always the time

to thermalize, i.e. thermal equilibrium of the modes distribution is always achieved before

a new tunneling event, and the quasiparticle states are always equilibrium states described

by Fermi functions. This requires in practice the time between two tunneling events to be

large compared to the charge relaxation time. The rate of tunneling is proportional to the
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square of the tunneling matrix element and so inversely proportional to Rt. More precisely

if we call ∆τ the average time between tunneling events we have ∆τ ∼ eRt/V . The charge

relaxation time for example in the case Z(ω) = Rs is instead ∼RsC. Since V ∼ e/(2C), this

corresponds to the requirement

Rt ≫ Rs . (3.1.7)

These assumptions lead to the following final expression for the (backward and forward)

tunneling rates
−→
Γ (V ) and

←−
Γ (V ) =

−→
Γ (−V ) 2:

−→
Γ (V ) =

1

e2Rt

∫ +∞

−∞
dE

E

1− e−βE
P (eV − E) . (3.1.8)

The key ingredient of Eq. (3.1.8) is the P (E) density probability function which describes

the exchange of energy between tunneling electrons and environmental modes. It quantifies

in practice the probability that an electron exchanges an energy E with the environment

and it is defined as the Fourier transform of the phase-phase correlation function J (t) ≡
〈[φ̃(t)− φ̃(0)]φ̃(0)〉:

P (E) =
1

2π~

∫ +∞

−∞
dt exp

(

J (t) + i

~
Et

)

. (3.1.9)

Eq.(3.1.8) can be read as the convolution product of the probability per unit time that a

tunneling event converts an energy E into quasiparticle excitations in the electrodes, i.e.

(Rte
2)−1E/(1 − e−βE), and the probability P (E) that the electromagnetic environment ab-

sorbs an energy E during the tunneling process. The fluctuation-dissipation theorem relates

the Fourier transform of the equilibrium phase-phase correlation function to a dynamical

susceptibility which describes the charge relaxation [110], leading to the equality

∫ +∞

−∞
dt e−iωt 〈φ̃(0)φ̃(t)〉 = 2~

1− e−β~ω

( e

~

)2 Re{Zt(ω)}
ω

, (3.1.10)

where Zt is the total impedance of the circuit consisting of the capacitance of the junction C

in parallel with the external impedance of the environment Z(ω):

Zt(ω) =
1

iωC + Z(ω)−1
. (3.1.11)

The explicit expression for J (t) is then readily calculated as:

J (t) = 2

∫ ∞

0

dω

ω

Re{Zt(ω)}
RQ

[

coth

(
β~ω

2

)
(
cos(ωt)− 1

)
− i sin(ωt)

]

. (3.1.12)

The behavior of the P (E) function is immediately obtained in simple limits: if the impedance

of the environment is zero, i.e. we are in the pure voltage-biased case, then P (E) = δ(E) and

2. we follow here the notation of Ingold and Nazarov in Ref. [110], to distinguish the rates calculated via

the P (E) theory with the orthodox theory one:
−→
Γ (V ) is the P (E)-theory version of Γ−(Q/C) in Eq. (2.1.2)

and
←−
Γ (V ) of Γ+(Q/C).
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only ‘elastic’ tunneling is possible, in the sense that tunneling electrons cannot couple to the

modes of the electromagnetic environment of the junction. As we said in Sec. 1.1, this prevents

single-charge effects to arise in a single junction and there will exist no Coulomb blockade.

If instead the impedance is low but finite, P (E) peaks at low voltages and has a long tail at

large voltages. At high impedance P (E) = δ(E−Ec) and we retrieve the ideal current-biased

case: there is perfect overlap in this limit between the Averin & Likharev orthodox theory

and Ingold & Nazarov theory for what concerns the expression of the tunneling rates.

Three important general properties are associated with the function P (E) independently

of temperature and environmental impedance:

• it is positive and normalized (as required by a probability function):
∫ +∞

−∞
dE P (E) = eJ (0) = 1 , (3.1.13)

• it satisfies the sum rule:
∫ +∞

−∞
dE E P (E) = i~J ′(0) = Ec , (3.1.14)

• it satisfies the detailed balance symmetry:

P (−E) = e−βEP (E) . (3.1.15)

P (E) cannot be evaluated analytically except for the aforementioned simple limits and nu-

merical methods have to be used. One option is to use directly Eqs. (3.1.9), (3.1.12) and

(3.1.11) [starting from Zt(ω) to calculate ∂J /∂t and then going back to the frequency do-

main to obtain P (E)], but involves two slowly-converging Fourier integrals and a standard

integration. The other option is to evaluate P (E) without going to the time domain, by

means of an integral equation (see for example ref. [132]) whose derivation we sketch in the

following. We start by writing

EP (E) =

∫
+∞

−∞

dt

2π~
E eJ (t)eiEt/~ =

∫
+∞

−∞

dt

2π~
eJ (t) ~

i

d

dt
eiEt/~ =

i

2π

∫
+∞

−∞

dt eiEt/~eJ (t)J ′(t) , (3.1.16)

where

J ′(t) =− 2i

∫ ∞

0

dω ζ(ω)

[

cos(ωt)− i sin(ωt) coth
(
β~ω

2

)]

=

=− i
∫ ∞

0

dω ζ(ω)

[

eiωt
(

1− coth

(
β~ω

2

))

+ e−iωt

(

1 + coth

(
β~ω

2

))]

,

(3.1.17)

with ζ(ω) ≡ Re{Zt(ω)}
RQ

. By using (3.1.17) and the inverse Fourier transform

eJ (t) =

∫ +∞

−∞
dE P (E) e−

iEt
~ , (3.1.18)
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and by defining ζ̃(ω) = θ(ω)ζ(ω), we have thus:

EP (E) =
1

2π

∫ +∞

−∞
dω

∫ +∞

−∞
dE′

∫ +∞

−∞
dt ζ̃(ω)

[

e
i
(

E
~
−E′

~
+ω

)

t
(

1− coth

(
β~ω

2

))

+

+ e
i
(

E
~
−E′

~
−ω

)

t
(

1 + coth

(
β~ω

2

))]

P (E′) =

=~

∫ +∞

−∞
dω

∫ +∞

−∞
dE′

∫ +∞

−∞
dt ζ̃(ω)

[

δ(E − E′ + ~ω)

(

1− coth

(
β~ω

2

))

+

+ δ(E − E′ − ~ω)

(

1 + coth

(
β~ω

2

))]

P (E′) =

=

∫ +∞

−∞
dω

∫ +∞

−∞
dE′

∫ +∞

−∞
dt ζ̃(ω)

[

δ

(
E − E′

~
+ ω

)(

1− coth

(
β~ω

2

))

+

+ δ

(
E − E′

~
− ω

)(

1 + coth

(
β~ω

2

))]

P (E′) =

=

∫ +∞

−∞
dE′

(

1 + coth

(
β(E − E′)

2

))[

ζ̃

(
E′ − E

~

)

+ ζ̃

(
E − E′

~

)]

P (E′) . (3.1.19)

After straightforward manipulation Eq. (3.1.19) can be rewritten as:

EP (E) =

∫ ∞

0

dx ζ
(x

~

)[(

1 + coth

(
βx

2

))

P (E − x)+

+

(

1 + coth

(−βx
2

))

P (E + x)

]

=

=

∫ ∞

0

dx ζ
(x

~

)[

P (E − x) + P (E + x)+

+ coth

(
βx

2

)
(
P (E − x)− P (E + x)

)
]

.

(3.1.20)

At zero temperature [β = +∞, coth(β~ω/2) = 1] we have that the function P (E) vanishes

for negative energy, as it should 3, and we can simplify Eq. (3.1.19) obtaining

E P (E) = 2

∫ +∞

0

dE′ ζ

(
E′ − E

~

)

P (E′) = 2

∫ +∞

0

dE′
Re

{

Zt

(
E′−E

~

)}

RQ
P (E′) , (3.1.21)

which is formula (75) of Ref. [110].

Substituting Z(ω) = Rs in Eq. (3.1.11), and using RQ = h/e2 we can write

ζ

(
E − E′

~

)

=

(

α+
1

α

(E − E′)2

~2
R2

QC
2

)−1

=

(

α+
(E − E′)2

α

π2

E2
c

)−1

. (3.1.22)

3. P (E) for negative energy is the probability density of a tunneling electron absorbing an energy E from

the environment, so P (E) for all E < 0 must vanish at zero temperature.
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Figure 3.1.2: The function P (E) at zero temperature as calculated from

formula (3.1.21) displayed for different values of α = RQ/Rs.

Eq. (3.1.20) reads then explicitly:

EP (E) −

∫ ∞

0

dx
P (E − x) + P (E + x) + coth

(
βx
2

) (
P (E − x)− P (E + x)

)

α+ x2

α
π2

E2
c

= 0 . (3.1.23)

The former expression is ready to be discretized and numerically implemented. We solve it

by linear system solution technique (see appendix 3.A for technical details) and obtain the

function P (E) for different values of the temperature and of α. In Fig. 3.1.2 we show a plot

of the zero-temperature P (E) for varying α, while in Fig. 3.1.3 we vary the temperature for

α = 0.1.

Useful analytical results can be obtained in the high-impedance limit. In this case envi-

ronmental modes concentrate at low frequency

Re{Zt(ω)} =
Rs

1 + ω2(RsC)2
→ π

C
δ(ω) forRs →∞ (3.1.24)

and the short-time expansion of Eq. (3.1.9)

P (E) ≃ 1

2π~

∫ +∞

−∞
dt exp

(
J (0) + J ′(0)t+ J ′′(0)t2/2

)
exp

(
i

~
Et

)

(3.1.25)
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Figure 3.1.3: The function P (E) for α = 0.1 as calculated from formula

(3.1.20) displayed for different temperatures. The circles correspond to the

high-impedance analytical curve of Eq. (3.1.27). Temperatures are in units

of e2/C.
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Figure 3.1.4: I-V characteristics at zero temperature from the P (E) theory,

as calculated by formula (3.1.28), displayed for different values of α.
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always holds. With Eqs. (3.1.13), (3.1.14) and

J ′′(0) =− 2

∫ ∞

0

dω

ω

Re{Zt(ω)}
RQ

coth

(
β~ω

2

)

ω2 ≃

≃− 2

∫ ∞

0

dω

ω

Re{Zt(ω)}
RQ

2kBT

~ω
ω2 = −2 kBTEc

~2
,

(3.1.26)

we have then

P (E) ≃ 1

2

√
1

πkBTEc
exp

(

−(E − Ec)
2

4kBTEc

)

, (3.1.27)

holding for α≪ kBT/Ec (which thus defines the boundary of the high-impedance limit). We

reported the analytical curve for kBT = 2Ec in Fig. 3.1.3 to show the perfect match with the

numerical result.

Once P (E) and thus the tunneling rates (3.1.8) are known, also the I-V characteristics

can be easily obtained as

I(V ) = e
(−→
Γ (V )−←−Γ (V )

)

=
1

eRt

(

1− e−βeV
)
∫ +∞

−∞
dE

E

1− e−βE
P (eV − E) . (3.1.28)

Note that at T = 0 only the forward rate is nonvanishing and it coincides in practice with

the I-V characteristic: I(V ) = e
−→
Γ (V ), which we show in Fig. 3.1.4.

3.2 On the derivation of the classical ME

In this section we would like to briefly illustrate the derivation of the classic Master

Equation in the form used in chapter 1 and chapter 2, see Eqs. (1.A.1), (2.1.1). This clarifies

under which conditions a classical description of the charge fluctuations in a tunnel junction

circuit is justified and moreover allows us to make an interesting bridge with the Master

Equation analysis of the two-level system presented in part I: as it turns out in fact the same

Born and Markov approximations introduced there to derive the ME (4.1.18) are also at the

basis of the classic ME for the tunnel junction circuit. We follow mainly Ref. [131], focusing

on the second and third terms of the right hand side of Eq. (2.1.1), neglecting the tunneling

terms and leaving out of the picture the current source. For a complete, though somehow

more involved derivation see directly Averin and Likharev in Ref. [76].

Let us consider the reduced dynamics described by the Hamiltonian (3.1.2). As we have

seen, in the framework of the P (E) theory the charge degree of freedom is considered as part

of the environment, which always thermalizes between tunneling events, and the transient

dynamics of the charge is not important in that context. Here we are interested instead

exactly to this transient dynamics and the charge degrees of freedom requires a special treat-

ment: it becomes the new ‘system’, while the bath of harmonic oscillators is the environ-

ment. We thus rename the Hamiltonian (3.1.2) as ĤME and separate it in four contributions:

93



ĤME = ĤS + V̂c + ĤB + ĤI , where

ĤS =
Q̂2

2C
(3.2.1)

V̂c = φ̂2
N∑

n=1

1

2

(
~

e

)2 1

Ln
(3.2.2)

ĤI =− φ̂
N∑

n=1

(
~

e

)2 1

Ln
φ̂n (3.2.3)

ĤB =

N∑

n=1

(

q̂2n
2Cn

+
1

2

(
~

e

)2 1

Ln
φ̂2n

)

. (3.2.4)

We used the explicit hat notation for operators and will keep it for the rest of the section.

ĤME has the same form as Eq. (4.1.1) of part I: ĤS represents the new reduced system

(equivalent to a free brownian particle), ĤB is the bath of harmonic oscillators, ĤI the cou-

pling between the two and V̂c a ‘counter-term’ acting as an effective potential and separated

out for convenience. Introducing the scaled phase variable ϕ̂ = (~/e)φ̂, which satisfies the

new commutation relation
[

ϕ̂, Q̂
]

= i~, and with κn ≡ 1/Ln and ω2
n = (LnCn)

−1, Eq. (3.2.1)

reads

ĤS =
Q̂2

2C
(3.2.5)

V̂c = ϕ̂2
N∑

n=1

κ2n
2Cnω2

n

(3.2.6)

ĤI =− ϕ̂
N∑

n=1

κnϕ̂n (3.2.7)

ĤB =

N∑

n=1

(
q̂2n
2Cn

+
1

2
Cnω

2
nϕ̂

2
n

)

. (3.2.8)

We are interested in a weak-coupling, high-temperature limit, which we will rigorously define

in the following, where the bath relaxation times are faster than the relevant scale for the

charge dynamics. We can then treat HI as a perturbation and resort to the same exact

approach of Sec. 4.1 of part I: starting from the Liouville-von Neumann equation for the total

density matrix of the system described by ĤME, we trace out the bath degrees of freedom and

apply the Born-Markov approximation obtaining the following ME for the reduced density

matrix ρ̂S in interaction representation:

d

dt
ρ̂S(t) = −

i

~

[
Q̂2

2C
+V̂c(ϕ̂), ρ̂S(t)

]

+

+
1

~2

∫ ∞

0

dτ

(
i

2
D(τ)

[

ϕ̂,
{

ϕ̂(−τ), ρ̂S(t)
}]

+

−1

2
D1(τ)

[

ϕ̂,
[

ϕ̂(−τ), ρ̂S(t)
]])

,

(3.2.9)
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where we have introduced the bath correlation functions:

D(τ) = i〈
[

B̂, B̂(−τ)
]

〉

D1(τ) =〈
[

B̂, B̂(−τ)
]

〉 . (3.2.10)

with B̂ =
∑

n ϕ̂n/Ln. These correspond in practice to the real and imaginary part of the

function C(t) of part I chapter 4. Following here the same formalism and introducing the

spectral density

J(ω) =
∑

n

k2n
2Cnωn

δ(ω − ωn) , (3.2.11)

we can express them as

D(τ) =2~

∫ ∞

0
dωJ(ω) sin(ωτ)

D1(τ) =2~

∫ ∞

0
dωJ(ω) coth

(
~ω

2kBT

)

cos(ωτ) , (3.2.12)

which is the analogous of Eq. (4.0.3) [part I]. By substituting the explicit time evolution of

the phase operator

ϕ̂(−τ) = exp

(

− iĤSτ

~

)

ϕ̂ exp

(

iĤSτ

~

)

= ϕ̂− τ Q̂
C
, (3.2.13)

Eq. (3.2.9) can be rewritten as

d

dt
ρ̂S(t) = −

i

~

[
Q̂2

2C
+ V̂c(x), ρ̂S(t)

]

+

+
1

~2

∫ ∞

0

dτ

(
i

2
D(τ)

([

ϕ̂,
{

ϕ̂, ρ̂S(t)
}]

− τ

C

[

ϕ̂,
{

Q̂, ρ̂S(t)
}])

−1

2
D1(τ)

([

ϕ̂,
[

ϕ̂, ρ̂S(t)
]]

− τ

C

[

ϕ̂,
[

Q̂, ρ̂S(t)
]]))

=

= − i
~

[
Q̂2

2C
+ V̂c(x), ρ̂S(t)

]

+

+
1

~2

(
i

2

∫ ∞

0
dτD(τ)

[

ϕ̂,
{

ϕ̂, ρ̂S(t)
}]

︸ ︷︷ ︸

(1)

− i

2C

∫ ∞

0
dττD(τ)

[

ϕ̂,
{

Q̂, ρ̂S(t)
}]

︸ ︷︷ ︸

(2)

− 1

2

∫ ∞

0
dτD1(τ)

[

ϕ̂,
[

ϕ̂, ρ̂S(t)
]]

︸ ︷︷ ︸

(3)

+
1

2C

∫ ∞

0
dττD1(τ)

[

ϕ̂,
[

Q̂, ρ̂S(t)
]

︸ ︷︷ ︸

(4)

])

.

(3.2.14)

With 4:
∫ ∞

0
dτD(τ) = 2~

∫ ∞

0
dωJ(ω)PV

(
1

ω

)

= 2~
∑

n

κ2n
2Cnω2

n

(3.2.15)

4. we use
∫∞

0
dτ sin(ωτ ) = PV(1/ω). and

∫∞

0
dττ sin(ωτ ) = −∂ω

∫ ∞

0
dτ cos(ωτ ) = −δ′(0). PV stands for the

Cauchy principal value.
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∫ ∞

0
dτ τ D(τ) = −2~

∫ ∞

0
dωJ(ω)δ′(ω) = ~J ′(0) (3.2.16)

∫ ∞

0
dτD1(τ) = 2~

∫ ∞

0
dωJ(ω) coth

(
~ω

2kBT

)

δ(ω) (3.2.17)

∫ ∞

0
dτ τ D1(τ) = 2~

∫ ∞

0
dωJ(ω) coth

(
~ω

2kBT

)∫ ∞

0
dτ τ cos(ωτ) , (3.2.18)

we can simplify Eq. (3.2.14). Since
[

ϕ̂,
{

ϕ̂, ρ̂S(t)
}]

=
[

ϕ̂2, ρ̂S(t)
]

, we see that term (1) exactly

compensates the counter-term − i
~

[

V̂c(ϕ̂), ρ̂S(t)
]

. We are then left with an equation in the

form:

d

dt
ρ̂S(t) =−

i

~

[

Q̂2

2C
, ρ̂S(t)

]

−A1

[

ϕ̂,
{

Q̂, ρ̂S(t)
}]

+

−A2

[

ϕ̂,
[

ϕ̂, ρ̂S(t)
]]

+A3

[

ϕ̂,
[

Q̂, ρ̂S(t)
]]

, (3.2.19)

with

A1 =
i

2~C
J ′(0) (3.2.20)

A2 =
1

~

∫ ∞

0

dωJ(ω) coth

(
~ω

2kBT

)

δ(ω) (3.2.21)

A3 =
1

~C

∫ ∞

0

dωJ(ω) coth

(
~ω

2kBT

)

∂ωPV

(
1

ω

)

. (3.2.22)

We need now to relate the spectral density J(ω) to the macroscopic impedance Z(ω) = Rs

of our circuit. This is easily done by writing explicitly the Fourier transform of the Y (t)

function introduced in Eq. (3.1.3):

Y (ω) =

∫ +∞

−∞
dt Y (t) eiωt = lim

ǫ→0

∑

n

1

Ln

−iω
ω2
n − ω2 − i ǫ sign(ω) . (3.2.23)

As we said this is the admittance and Z(ω) = 1/Y (ω). By using Eq. (3.2.11) we can imme-

diately rewrite

Y (ω) = lim
ǫ→0

(

−2iω
∫ +∞

−∞
dω′ J(ω

′)
ω′

1

ω′2 − ω2 − i ǫ sign(ω)

)

. (3.2.24)

Taking the real part

Re{Y (ω)} = 2ω

∫ +∞

−∞
dω′ J(ω

′)
ω′ δ(ω′2 − ω2) =

J(ω)

ω
, (3.2.25)

leads finally to

J(ω) = ωRe

{
1

Z(ω)

}

=
ω

Rs
. (3.2.26)
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We can thus calculate A1 = i/(2~RsC) and A2 = kBT/(~
2Rs) in Eq. (3.2.20). In practice

we know that the impedance spectrum cannot be flat up to arbitrarily high frequency, there

will be thus exist a cutoff Ωc ruling the behavior of J(ω) at high frequencies. This gives

A3 ≈ 2kBT
~2RsCΩc

. Using Q ∼ Cϕ̇ ∼ C(RsC)−1ϕ we see that the ratio between the third term

and the second one in Eq. (3.2.19) is ∼ (RsCΩc)
−1 ≡ ωRC/Ωc ≪ 1, allowing us to neglect

the former. Eq. (3.2.19) reduces then to the well-known Caldeira-Leggett form

d

dt
ρ̂S(t) = −

i

~

[

Q̂2

2C
, ρ̂S(t)

]

− i

2~RsC

[

ϕ̂,
{

Q̂, ρ̂S(t)
}]

− kBT

~2Rs

[

ϕ̂,
[

ϕ̂, ρ̂S(t)
]]

. (3.2.27)

The first term describes the free coherent dynamics of the subsystem Henv. The second term

is proportional to (RsC)−1, which is in practice the relaxation rate of the circuit, and is called

the dissipative term. The last one (the diffusive term) is proportional to the temperature

and describes thermal fluctuations.

The conditions for the Born-Markov approximation to be valid are as we said the weak

coupling between the charge degree of freedom and the LC-oscillators bath and a fast decay

of the bath correlation functions with respect to the scale over which the charge dynamics

varies appreciably. More precisely this corresponds to the requirement (see Ref. [131])

~

RsC
≪ Min{~Ωc, kBT} . (3.2.28)

We consider an ideally flat impedance Rs, assuming the cutoff Ωc to be at very high frequency,

so that we have always (RsC)−1 ≪ Ωc. The relevant requirement for the Born-Markov

approximation to apply is then in our case ~/(RsC) ≪ kBT , i.e. kBT ≫ αEc. For α =

RQ/Rs ≪ 1 there is thus a large range of validity.

We can now write (3.2.27) in the charge representation:

d

dt
ρS(Q,Q

′, t) =
d

dt
〈Q|ρ̂S(t)|Q′〉 = − i

~
〈Q|

[

Q̂2

2C
, ρ̂S(t)

]

|Q′〉+

− i

2~RsC
〈Q|
[

ϕ̂,
{

Q̂, ρ̂S(t)
}]

|Q′〉 − kBT

~2Rs
〈Q|
[

ϕ̂,
[

ϕ̂, ρ̂S(t)
]]

|Q′〉 ,
(3.2.29)

which becomes:

d

dt
ρS(Q,Q

′, t) =− i

2~C
(Q2 −Q′2) ρS(Q,Q

′, t)+

+
1

2RsC

(
∂

∂Q
+

∂

∂Q′

)

(Q+Q′) ρS(Q,Q
′, t)+

+
kBT

Rs

(
∂

∂Q
+

∂

∂Q′

)2

ρS(Q,Q
′, t) .

(3.2.30)

We note that the current source term can be easily added to this picture by including a term

−Ibϕ̂ in the Hamiltonian as part of the system, which leads to a contribution to the previous

equation in the form

−Ib
(
∂

∂Q
+

∂

∂Q′

)

ρS(Q,Q
′, t) . (3.2.31)
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Eq. (3.2.30) represents the Markovian version of Eq.(13) in Ref. [76]. As is there stated,

in the limit α ≪ 1 the nondiagonal elements decay with a time constant at worst of order

∼ RsC and Eq. (3.2.30) reduces to the classical diagonal ME (2.1.1), see appendix 3.B for a

sketch of proof and an estimation of the decay constant.

3.3 Combining the ME with the P (E) theory

After recalling the bases of the Master Equation and the P (E) approaches, we have now

the necessary ingredients to tackle the problem presented in the introduction: describing at

the same time SETOs and quantum fluctuations of the environment. A full treatment of the

problem is not an easy task. In order to take into account quantum charge fluctuations one

needs to solve the full quantum Master Equation out of equilibrium. This could be done for

weak coupling to the environment, but the Coulomb blockade is a strong coupling effect, and

requires an exact solution of the coupling with the environment. The P (E) theory avoids

dealing with a Master Equation, since all the quantities are calculated at equilibrium. We

have not succeeded so far in obtaining a full quantum description of this regime, but as a

preliminary exploration attempt we have combined the P (E) theory with the classical Master

Equation, implementing the first one to calculate the tunneling rates that enter in the second

one. Our aim is to provide a simple tool to obtain a lower bound on the effect of quantum

fluctuations.

The P (E) tunneling rates [Eq. (3.1.8)] account for quantum fluctuations which are due

to the environmental coupling and start to be important as soon as the condition Rs ≫ RQ

is relaxed. When the condition Rt ≫ Rs [Eq. (3.1.7)] drops and the environment has not

the time to thermalize between tunneling events the equilibrium condition required by the

P (E) is no more valid. This is of course the case of the ideal SETOs regime but also of the

intermediate regime we are interested in (see Fig. 3.0.2 in the introduction), where weakened

SETOs and quantum fluctuations are both present. Here the out-of equilibrium behavior

of the charge and the delay in the response of the environment to an abrupt charge change

due to tunneling are essential features of the transport mechanism. However, the charge

is actually the only variable which needs a special treatment, the equilibrium assumption

for the rest of the bath degrees of freedom of Henv [Eq. (3.1.2)] continuing to be perfectly

satisfied. It is then reasonable to imagine the P (E) description of environmental quantum

fluctuations to remain fairly good, and on the other hand the classical part of the full time

dynamics of the charge is taken into account by the Master Equation. Exploiting the ME

with the P (E)-improved rates seems thus to be the most natural idea to describe at the same

time quantum fluctuations of the environment and SETOs.

As we will see in Sec. 3.3.1 the results of standard (orthodox theory) ME and of the pure

P (E) theory are correctly retrieved by our method in the limits α → 0 and ρ = Rs/Rt → 0

respectively, so that the very basic condition for a good description of the crossover between

the two limits is satisfied. A source of approximation which needs to be considered is the fact
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that the classical Master Equation neglects the quantum contribution to charge fluctuations

which arise from the discrete charge transfer across the junction. We have however illustrated

in Sec. 3.2 the condition for a classical diagonal ME to hold: the full quantum ME can

be always reduced to the form (2.2.3) if kBT ≫ αEc [see Eq. (3.2.28)]. At high enough

temperature the classical description works thus well, and in particular it is valid in the

interesting region αEc < kBT < Ec, with α < 1. For kBT . αEc the effects of out-of-

equilibrium quantum fluctuations of the charge are instead underestimated and the results

have to be interpreted as a lower-bound limit.

3.3.1 Numerical results

Following the idea introduced in Sec. 3.3, we show the numerical results obtained by

applying the same technique of Sec. 2.1 to solve the ME and calculate the charge noise but

using here the prediction of the P (E) theory for the rates. Specifically, the ME (2.1.1) is now

implemented with the tunneling rates
←−
Γ and

−→
Γ given in Eq. (3.1.8) instead of the orthodox

ones Γ±. It reads explicitly:

∂σ(Q, t)

∂t
= −Ib

∂σ(Q, t)

∂Q
+

1

Rs

∂

∂Q

(

kBT
∂σ(Q, t)

∂Q
+
Q

C
σ(Q, t)

)

+ (3.3.1)

−
(←−
Γ
(
Q
)
+
−→
Γ
(
Q
)
)

σ(Q, t) +
−→
Γ
(
Q+ e

)
σ(Q+ e, t) +

←−
Γ
(
Q− e

)
σ(Q− e, t) .

In Fig. 3.3.1 the I-V characteristics are displayed. As in Fig. 2.3.1, we chose the case

ρ = 10 and κ = 1, for which SETOs are still quite sharp and the back-bending is evident.

For comparison we report in the same figure the zero-temperature (Monte Carlo) curve, the

result obtained with the orthodox rates and also the result of the bare P (E) theory. It clearly

appears first of all that in this case the P (E) alone fails to describe the transport: treating

the charge as if at equilibrium completely misses the back-bending. Secondly, we have that

the curves obtained for finite α display a further smearing of the ‘nose’ with respect to the

(α = 0) result of chapter 2. This is what we expect, since in the tunneling rates the threshold

is further smoothened. Surprisingly though, the difference is already clearly visible for α as

small as 0.01. This indicates that although the P (E) alone misses the main transport feature,

the quantum contributions introduced by the P (E)-provided tunneling rates are significant

even at values of α which one may tend to consider as still deep in the orthodox limit α≪ 1.

Fig. 3.3.2 shows the charge noise spectrum for the same parameters. A finite α acts against

the SETOs analogously to what happens for the I-V characteristics: here for increasing α the

peak is smeared more and more compared to the α = 0 case. We also show for completeness

in the same figure the bare P (E) spectrum, which can be obtained for example directly from

Eq. (3.1.10). By defining for shortness the left-hand side of Eq. (3.1.10) as

∫ +∞

−∞
dt e−iωt 〈φ̃(0)φ̃(t)〉 ≡ 〈φ̃φ̃〉ω , (3.3.2)
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Figure 3.3.1: The I-V characteristics computed for ρ = 10 by combining

the ME with the P (E) theory for α = 0.01, 0.05, 0.1 (solid lines). The

Monte Carlo T = 0 curve and the pure ME calculation at kBT = 10−3 are

reported for comparison (dotted and dashed respectively). The pure P (E)

computations as from Eq. (3.1.28) are also shown for the same values of α

(dot-dashed lines), together with the α = 0, T = 0 limit (dotted).

we can in fact calculate the spectrum of the charge fluctuations given by the P (E) theory as

S(ω)P(E) =
C2

~
2

e2
ω2 〈φ̃φ̃〉ω + 〈φ̃φ̃〉−ω

2
. (3.3.3)

It contains only the equilibrium charge fluctuations and therefore remains blind to the SETOs

peak.

If we choose a value of the ratio RQ/Rt = αρ = 0.2 and then change Rs/Rt we obtain

the evolution of the I-V characteristics shown in Fig. 3.3.3. We can see that the curves cross

over from the result of the orthodox ME to the result of the bare P (E) as α increases, i.e.

the P (E) is also retrieved for large α, as the orthodox theory is for α → 0. Conversely to

what happens in the upper-left panel, which is analogous to Fig. 3.3.1, in the lower-right

panel with α = 2 and ρ = 0.1 the orthodox ME this time does not work well, as it pictures

a threshold unrealistically sharp and sees the current blocked where it is actually already

flowing. For intermediate values of α and ρ, neither of the two theories alone prove to be

efficient in describing transport. We note that the constraint Rt ≫ RQ limits the range of
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Figure 3.3.2: The charge noise S(ω) computed for ρ = 10 and κ = 1

with the different techniques considered so far: 1) the Monte Carlo zero-

temperature calculation of chapter 1; 2) the orthodox ME technique at finite

temperature of chapter 2 (kBT = 0.001 e2/C), i.e. equivalent to α = 0; 3)

the ME with the tunneling rates predicted by the P (E) theory, given by

Eq. (3.1.8) (at the same temperature). The values α = 0.01, α = 0.05

and α = 0.1 are shown; 4) the equilibrium spectrum obtained by the P (E)

theory alone for the same values of α.

values that can be spanned by the product αρ: in Fig. 3.3.1 and Fig. 3.3.2 for example we

chose ρ = 10, for which the back-bending of I-V curves is fairly marked and a clear peak is

still visible in the noise spectrum, and we must then have α . 0.1. As we have seen in the

introduction, this limitation is intrinsically related to the fact that in the perturbation-theory

regime αt ≪ 1 the more clear-cut are the SETOs the less important become the effects of

quantum fluctuations.
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Figure 3.3.3: I-V characteristics obtained combining the ME with P (E)

for varying α and ρ at fixed αρ = 0.2. The results of the bare ME and the

bare P (E) are reported for comparison. We see that the mixed approach

merges between the two with a crossover from the former to the latter as

α increases and as the voltage decreases for α fixed. kBT in units of e2/C.
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3.4 Conclusions and perspectives

We have provided an approximate method to describe the transport through a tunnel

junction in the presence of both single-charge effects such as SETOs and quantum fluctuations

of the environmental degrees of freedom. It has allowed us to explore a region of the phase-

diagram scheme of Fig. 3.0.2 left aside by the standard theoretical tools so far, but eventually

very appealing from the experimental point of view. The results are quite interesting. On

the one hand the effect of quantum fluctuations has proven to be visible for values of α (as

small as 0.01) which one could expect to be lying still in the orthodox limit. This suggests

that quantum effects, however small, should not be neglected in a description of single-charge

effects which wants to be complete. On the other hand, in the intermediate region where

α ∼ 1 and ρ ∼ 1 it clearly appears that transport fails to be described by the P (E) theory

alone, meaning in practice that the delay in the response of the environment to the tunneling

is indeed important and the out-of-equilibrium behavior of the charge must be taken into

account. Our method is far from being rigorous, but first of all it points out a hole in

the standard perturbation-theory theoretical approach, which is not able to fully cover the

crossover from α→ 0 to α→∞ at fixed value of αt ≪ 1; and secondly it starts to shed some

light on it, providing lower-bound estimations of the effects at play.

To summarize part II on the whole, we have given a complete description of the phe-

nomenon of SETOs. In chapter 1 we focused at first on the standard, ideal zero temperature

and Rs ≫ Rt ≫ RQ case, where standard means that it is the one addressed by the bulk

of the existing literature. We have here fully characterized the SETOs, providing numerical

results and an analytical approach to describe the noise peak which represent their main

signature. The picture has then enlarged in chapter 2 to thermal effects, and in chapter 3 to

the effects of quantum fluctuations. Thermal effects have proven to be quite important and

we have shown how they start to affect SETOs even for kBT/Ec ≪ 1. Also quantum effects

appear to be non-negligible. Nevertheless, even within this enriched picture, the phenomenon

should possess strong enough features to be detected and exploited experimentally in some

realistic system.

In view of possible experimental development, more theoretical effort is however called for.

A full quantum description of transport through a tunnel junction in a realistic environment,

accounting for the out-of-equilibrium dynamic of the charge, is not available and not easily

concealed, due to the fact that the coupling with the environment cannot be considered small

and an exact solution is required. In the literature, studies of the quantum dynamics of tunnel

junctions are carried out with Feynman-Vernon or Keldysh-action techniques and have to deal

with different degrees of approximation: in Ref. [133] for example, the quantum fluctuations

due to charge transfer are taken into account, but as if originated by the continuous charging

of a resistor Rt, thus neglecting the discreteness of the charge, which is a good approximation

only in the weak coupling limit Rt ≫ {RQ, Rs} and does not describe well the interesting

Rs ∼ Rt & RQ regime. A computational approach would perhaps be the best way to start
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tackling the problem. In Ref. [134] the explicit and exact form of the generating functional

for a generic circuit composed by a quantum conductor in series with an Ohmic conductor

is given. This can be straightforwardly specialized to the case of a tunnel junction in series

with a dissipative element (impedance). One could then for example think of writing an

equation for the exact dynamics of the phase quantum variable of the circuit and solving

it numerically by quantum Monte Carlo technique. This would be in practice the quantum

extension of the numerical approach of chapter 1. Such a numerical implementation should

be feasible, though possibly demanding in terms of computational efforts.
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Appendix

3.A Details of the P (E) numerical implementation

We give here technical details about how the numerical computation of the P (E) function

is actually carried out. We need to solve Eq. (3.1.23). We first discretize the integral in

Eq. (3.1.23) in energy steps of width ∆:

E P (E) −
jmax∑

j=0

∆
Ec

π

(

arctan

(
πxj
αEc

)

− arctan

(
πxj+1

αEc

))

×

×
[

P (E − xj) + P (E + xj) + coth

(
βxj
2

)
(
P (E − xj)− P (E + xj)

)
]

= 0 , (3.A.1)

where we have carried out analytically the integration of the function ζ(x) in each step

xj − xj+1: ∫ xj+1

xj

ζ
(x

~

)

=
Ec

π

(

arctan

(
πxj+1

αEc

)

− arctan

(
πxj
αEc

))

, (3.A.2)

since ζ(x) quickly diverges for x→ 0 and it is inconvenient to assume it constant on the same

scale ∆ as the rest of the integrand. We then solve an equation in matrix form MP = b,

where the vector b has just one 5 nonzero entry b[i⋆] = 1 and the matrix M has nonzero

entries

Mi,i = Ei

Mi,i+j = −
jmax∑

j=0

∆
Ec

π

(

arctan

(
πxj
αEc

)

− arctan

(
πxj+1

αEc

))(

1− coth

(
βxj
2

))

Mi,i−j = −
jmax∑

j=0

∆
Ec

π

(

arctan

(
πxj
αEc

)

− arctan

(
πxj+1

αEc

))(

1 + coth

(
βxj
2

))

, (3.A.3)

and we then put all the elements of the i⋆th row equal to ∆, i.e. M[i⋆][j] = ∆ for all j, so that

the normalization condition
∑

i∆Pi = 1, which corresponds to Eq. (3.1.13), is automatically

satisfied.

5. the position of which is not important as soon as it is not on the borders.
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3.B Vanishing of the quantum component of the density ma-

trix

We show here how the density matrix ρS(Q,Q
′, t) in Eq. (3.2.30) reduces to a diagonal

form in the basis {Q,Q′} after a time at worst of the order of τs. We introduce the variables

u ≡ (Q + Q′)/(2e) and v ≡ (Q − Q′)/e, which are maximized and minimized for Q = Q′

and represent then the ‘classical’ and ‘quantum’ variables respectively. In terms of u and v

Eq. (3.2.30) becomes:

d

dτ
ρS(u, v, t) = −

iuv

α
ρS(u, v, t) +

∂

∂u

[

uρS(u, v, t) + λ
∂

∂u
ρS(u, v, t)

]

, (3.B.1)

where α = RQ/Rs and we introduced the dimensionless time τ ≡ t/(RsC) and the dimen-

sionless temperature λ ≡ kBT/(e
2/C) ≪ 1. We want to show that for v different from zero

the time evolution dictated by Eq. (3.B.1) predicts that the density matrix vanishes on a

time scale smaller or of the order of τs. We focus first on the limit α≪ 1 and v/α≫ 1, which

is also the relevant one for the SETOs regime. In this limit the first term of the equation is

very large and will induce rapid oscillations of the density matrix. It is therefore convenient

to eliminate this rapid oscillations by defining ρS ≡ exp{−iuvτ/α}ρ̃, so that we can write

d

dτ
ρS = − iuv

α
ρS + e−

iuv
α

τ d

dτ
ρ̃ = − iuv

α
ρS +

∂

∂u

[

e−
iuv
α

τ

(

uρ̃− iλvτ

α
ρ̃+ λ

∂

∂u
ρ̃

)]

, (3.B.2)

and the equation for ρ̃ reads

d

dτ
ρ̃ =e

iuv
α

τ ∂

∂u

[

e−
iuv
α

τ

(

uρ̃− iλvτ

α
ρ̃+ λ

∂

∂u
ρ̃

)]

=

=− ivτ

α

(

uρ̃− iλvτ

α
ρ̃+ λ

∂

∂u
ρ̃

)

+
∂

∂u

(

uρ̃− iλvτ

α
ρ̃+ λ

∂

∂u
ρ̃

)

.

(3.B.3)

The dominant term of the previous equation in the limit v
α ≫ 1 is −(λv2τ2/α2)ρ̃. Neglecting

the other terms in the equation, this leads to the following solution for ρ̃:

ρ̃ ∼ exp{−λv2τ3/(3α2)} . (3.B.4)

We have thus ρS ∼ exp{−iuvτ/α − λv2τ3/(3α2)}, showing that for any fixed value of u,

ρS(v) decays to zero on a scale ∼τs 3
√

α2/λ≪ τs.

We can actually prove the decay of the off-diagonal contribution also in the opposite limit

of large α, more precisely v/α≪ 1. We introduce in this case the moments of the distribution

ρS(u, v, τ) with respect to the variable u as:

An ≡
∫ +∞

−∞
du ρS(u, v, τ) u

n . (3.B.5)

To show the off-diagonal decay of the density matrix it is enough proving that the solution

of Eq. 3.B.1 in the {u, v} space squeezes towards the u axis, which is equivalent to ask that
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for any finite v the integral
∫ +∞
−∞ du ρS(u, v, t) must go to zero. Our goal is then to show that

A0 decays exponentially in time if v > 0. To do so we can write a differential equation for

A0, but this will couple to A1. The same can be done for A1, the series of equations form an

infinite set of linear differential equations and for small v/α it is sufficient to include a few

moments since higher moments vanish rapidly. Let us show that explicitly. Using Eq. (3.B.1)

we have:

Ȧ0 =

∫ +∞

−∞
du

d

dτ
ρS(u, v, τ) =

=

∫ +∞

−∞
du

{

− iuv
α
ρS(u, v, t) +

∂

∂u

[

uρS(u, v, t) + λ
∂

∂u
ρS(u, v, t)

]}

=

=− iv

α

∫ +∞

−∞
du u ρS(u, v, t) = −

iv

α
A1 ,

Ȧ1 =

∫ +∞

−∞
du

d

dτ
ρS(u, v, τ) u =

=

∫ +∞

−∞
du

{

− iu
2v

α
ρS(u, v, t) + u

∂

∂u

[

uρS(u, v, t) + λ
∂

∂u
ρS(u, v, t)

]}

=

=− iv

α
A2 −

∫ +∞

−∞
du

[

uρS(u, v, t) + λ
∂

∂u
ρS(u, v, t)

]

= − iv
α
A2 −A1 ,

Ȧ2 =

∫ +∞

−∞
du

d

dτ
ρS(u, v, τ) u

2 =

=

∫ +∞

−∞
du

{

− iu
3v

α
ρS(u, v, t) + u2

∂

∂u

[

uρS(u, v, t) + λ
∂

∂u
ρS(u, v, t)

]}

=

=− iv

α
A3 −

∫ +∞

−∞
du 2u

[

uρS(u, v, t) + λ
∂

∂u
ρS(u, v, t)

]

=

=− iv

α
A3 − 2A2 + 2λA0 , (3.B.6)

and so on. We thus easily derive the general equation for all the moments:

Ȧn =

∫ +∞

−∞
du

d

dτ
ρS(u, v, τ) u

n =

=

∫ +∞

−∞
du

{

− iu
nv

α
ρS(u, v, t) + un

∂

∂u

[

uρS(u, v, t) + λ
∂

∂u
ρS(u, v, t)

]}

=

=− iv

α
An+1 − nAn + n(n− 1)λAn−2 . (3.B.7)

Eq. (3.B.7) is best handled by putting it in matrix form as

Ȧ = (Ȧ0, Ȧ1, . . . , Ȧn, . . .) = W(A0, A1, . . . , An, . . .) = WA , (3.B.8)
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with

W =































0 −iv/α 0 0 0 0 . . .

0 −1 −iv/α 0 0 0 . . .

2λ 0 −2 −iv/α 0 0 . . .

0 6λ 0 −3 −iv/α 0 . . .

0 0 12λ 0 −4 −iv/α . . .

...
...

...
. . .

...
. . .

. . .

...
...

...
...

. . .
...

. . .































. (3.B.9)

Since the coupling λ is small and we are in the limit v/α≪ 1 we see that W is almost diagonal

and has eigenvalues which at the lowest order in lambda are given by 0,−1,−2,−3,−4, . . ..
Including lambda perturbatively will modify the eigenvalues slightly, but in particular the 0

eigenvalue will acquire a small negative real part controlled by λ and v/α.

We now just need to show that the solution of Eq. (3.B.8) decays in time for finite v, that

is, all the moments and in particular A0 go to zero for long enough time. The slowest decay

contribution is given by the minimum eigenvalue, which is close to zero but does not vanish

at finite λ and v/α. By solving numerically for the eigenvalues of a finite-size W (N × N
with N = 4 is actually enough for convergence in this λ ≪ 1, v/α ≪ 1 limit), we find that

the minimum eigenvalue actually decays as ∼ −λv2/α2.

This shows that as far as v is finite the off-diagonal part of the density matrix vanishes

exponentially, but it also tells that for v → 0 the decay time becomes longer the more

we approach the diagonal part, giving a clear picture of the crossover between the classical

(diagonal part) and quantum (off-diagonal part) in the density matrix. As a last comment, we

note that this time is also controlled by the temperature, as one could expect for decoherence.
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tems: Master equation and optimal phase, Phys. Rev. A 82, 062112 (2010).

[40] F. Pellegrini, Quantum dissipation at the nanoscale, PhD Thesis 2011, SISSA/ISAS,

http://www.sissa.it/cm/thesis/2011/pellegrini.pdf.

[41] F. Pellegrini, C. Negri, F. Pistolesi, N. Manini, G. E. Santoro, E. Tosatti, Crossover from

adiabatic to antiadiabatic quantum pumping with dissipation, Phys. Rev. Lett. 107, 060401

(2011).

[42] D. Cohen, Quantum pumping and dissipation in closed systems, Physica E: Low-dimensional

Systems and Nanostructures 29, 308 (2005). Proceedings of Frontiers of Quantum and Meso-

scopic Thermodynamics.

[43] D. J. Thouless, Quantization of particle transport, Phys. Rev. B 27, 6083 (1983).

[44] Q. Niu, Quantum adiabatic particle transport, Phys. Rev. B 34, 5093 (1986).

[45] B. L. Altshuler, L. I. Glazman, Pumping electrons, Science 283, 1864 (1999).

[46] M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. Lond. A

392, 45 (1984).
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Controlling electron transport: quantum pumping and single-electron tunneling oscillations

Exploiting time-dependent effects to induce and control currents through mesoscopic and nanoscopic

conductors is a major challenge in the field of quantum transport. In this dissertation we consider

two nanoscale systems in which a current can be induced through intriguing mechanisms of coupling

between excitations by external fields and electron transport. We first study a quantum pumping

problem, analyzing the possibility to induce a DC response to an AC parametric driving through a

three-site system in a ring configuration. We are interested in particular in the crossover between

adiabatic and antiadiabatic driving regimes and in the presence of dissipation, which is accounted for

by coupling with an external bath. We show that for a clever choice of this coupling the dissipative

model admits a full analytical solution for the steady state current valid at arbitrary frequency, which

allows us to fully understand the pumping-frequency dependence of the induced current. We then

focus on a different current-controlling scheme exploiting the phenomenon of single-electron tunneling

oscillations (SETOs). In this case, opposite to what happens for pumping, an AC effect, an almost

periodic current of single electrons, arises through a tunnel junction circuit as a consequence of a

DC bias. We study the zero-temperature noise spectrum of a tunnel junction in different resistive

environments with the aim to determine the boundaries of the SETOs regime and quantify their quality

in terms of periodicity. We then discuss the finite-temperature generalization and the possibility to

account for the effects of quantum fluctuations.

Keywords: Quantum transport, quantum pumping, dissipative two-level system, single-electron tun-

neling oscillations, current fluctuations, Coulomb blockade, tunnel junction.

Contrôle du transport électronique: pompage quantique et oscillations tunnel à un

électron

Exploiter des effets dépendants du temps pour induire et contrôler des courants à travers des conduc-
teurs mésoscopiques et nanoscopiques est un enjeu majeur dans le domaine du transport quantique.
Dans cette thèse, nous considérons deux systèmes de taille nanométrique pour lesquels un courant est
induit grâce au couplage entre champs extérieurs dépendants du temps et le transport d’électrons.
Nous étudions d’abord un problème de pompage quantique au sein d’un système à trois sites en config-
uration d’anneau, en considérant la possibilité d’induire un courant continu par modulation temporelle
des paramètres de contrôle. Nous nous intéressons en particulier à la transition entre régime adiaba-
tique et antiadiabatique en présence d’un mécanisme de dissipation modélisé par un couplage entre le
système et un bain extérieur. Nous montrons que le modèle dissipatif admet une solution analytique
complète valable pour la composante DC du courant à fréquence arbitraire. Ceci nous permet de bien
comprendre comment le courant induit dépend de la fréquence de pompage. Nous nous concentrons
ensuite sur un autre système de contrôle du courant exploitant le phénomène des oscillations tun-
nel á un électron (SETOs). Contrairement au cas précédent, ici la circulation d’un courant continu
à travers un circuit comportant une jonction tunnel produit, pour le régime approprié, un courant
quasi-périodique d’électrons. On étudie le spectre de bruit à température nulle d’une jonction tunnel
dans différents environnements résistifs dans le but de déterminer les limites du régime des SETOs et
de quantifier leur degré de périodicité. Nous généralisons par la suite les résultats à température finie
et discutons des effets des fluctuations quantiques.

Mots-clefs: Transport quantique, pompage quantique, système dissipatif à deux niveaux, oscillations

tunnel à un électron, fluctuations de courant, blockage de Coulomb, jonction tunnel.
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