Développement de méthodes bioinformatiques dédiées à la prédiction et l'analyse des réseaux métaboliques et des ARN non codants
Auteur / Autrice : | Amine Ghozlane |
Direction : | Maylis Delest, Isabelle Dutour, Patricia Thébault |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 20/11/2012 |
Etablissement(s) : | Bordeaux 1 |
Ecole(s) doctorale(s) : | École doctorale Mathématiques et informatique (Talence, Gironde ; 1991-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire bordelais de recherche en informatique |
Jury : | Examinateurs / Examinatrices : Fabien Jourdan, Jean-Pierre Mazat |
Rapporteurs / Rapporteuses : Alain Denise, Christine Gaspin |
Mots clés
Résumé
L'identification des interactions survenant au niveau moléculaire joue un rôle crucial pour la compréhension du vivant. L'objectif de ce travail a consisté à développer des méthodes permettant de modéliser et de prédire ces interactions pour le métabolisme et la régulation de la transcription. Nous nous sommes basés pour cela sur la modélisation de ces systèmes sous la forme de graphes et d'automates. Nous avons dans un premier temps développé une méthode permettant de tester et de prédire la distribution du flux au sein d'un réseau métabolique en permettant la formulation d'une à plusieurs contraintes. Nous montrons que la prise en compte des données biologiques par cette méthode permet de mieux reproduire certains phénotypes observés in vivo pour notre modèle d'étude du métabolisme énergétique du parasite Trypanosoma brucei. Les résultats obtenus ont ainsi permis de fournir des éléments d'explication pour comprendre la flexibilité du flux de ce métabolisme, qui étaient cohérentes avec les données expérimentales. Dans un second temps, nous nous sommes intéressés à une catégorie particulière d'ARN non codants appelés sRNAs, qui sont impliqués dans la régulation de la réponse cellulaire aux variations environnementales. Nous avons développé une approche permettant de mieux prédire les interactions qu'ils effectuent avec d'autres ARN en nous basant sur une prédiction des interactions, une analyse par enrichissement du contexte biologique de ces cibles, et en développant un système de visualisation spécialement adapté à la manipulation de ces données. Nous avons appliqué notre méthode pour l'étude des sRNAs de la bactérie Escherichia coli. Les prédictions réalisées sont apparues être en accord avec les données expérimentales disponibles, et ont permis de proposer plusieurs nouvelles cibles candidates.