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Institut de Mathématiques de Bordeaux
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Méthodes particulaires et applications en finance

Résumé :

Cette thése est consacrée à l’analyse de ces modèles particulaires pour les mathématiques

financières.

Le manuscrit est organisé en quatre chapitres. Chacun peut être lu séparément.

Le premier chapitre présente le travail de thèse de manière globale, définit

les objectifs et résume les principales contributions. Le deuxième chapitre con-

stitue une introduction générale à la théorie des méthodes particulaire, et pro-

pose un aperçu de ses applications aux mathématiques financières. Nous pas-

sons en revue les techniques et les résultats principaux sur les systèmes de par-

ticules en interaction, et nous expliquons comment ils peuvent être appliqués à

la solution numérique d’une grande variété d’applications financières, telles que

l’évaluation d’options compliquées qui dépendent des trajectoires, le calcul de sensi-

bilités, l’évaluation d’options américaines ou la résolution numérique de problèmes

de contrôle et d’estimation avec observation partielle.

L’évaluation d’options américaines repose sur la résolution d’une équation d’évolution

à rebours, nommée l’enveloppe de Snell dans la théorie du contrôle stochastique et

de l’arrêt optimal. Les deuxième et troisième chapitres se concentrent sur l’analyse

de l’enveloppe de Snell et de ses extensions à différents cas particuliers. Un ensemble

de modèles particulaires est alors proposé et analysés numériquement.

Mots-clés : Pricing d’option américaine, enveloppe de Snell, arrêt optimal,

arbre génétique, évènement rare, système de particules en interaction, inégalités de

concentration exponentielles.
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Particle methods with applications in finance

Abstract:

This thesis is concerned with the analysis of these particle models for computa-

tional finance.

The manuscript is organized in four chapters. Each of them could be read

separately.

The first chapter provides an overview of the thesis, outlines the motivation

and summarizes the major contributions. The second chapter gives a general in-

troduction to the theory of interacting particle methods, with an overview of their

applications to computational finance. We survey the main techniques and results

on interacting particle systems and explain how they can be applied to the numerical

solution of a variety of financial applications; to name a few: pricing complex path

dependent European options, computing sensitivities, pricing American options, as

well as numerically solving partially observed control and estimation problems.

The pricing of American options relies on solving a backward evolution equation,

termed Snell envelope in stochastic control and optimal stopping theory. The third

and fourth chapters focus on the analysis of the Snell envelope and its variation to

several particular cases. Different type of particle models are proposed and studied.

Keywords : Pricing of American option, Snell envelope, optimal stopping, ge-

nealogical trees, rare events, interacting particle system, exponential concentration

inequalities.
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Chapter 1

Introduction

1.1 Motivation

The history of mathematical and numerical finance starts in 1900, with the seminal

thesis of Louis Bachelier, Théorie de la Spéculation, which introduced Brownian

motion in order to model stock price movements and evaluate options. Not only

did this remarkable work modeled the randomness of stock prices in a mathemati-

cal framework germane to the popular Nobel Prize in Economics winning solution

proposed by Fischer Black, Myron Scholes and Robert Merton in 1973, but it also

laid the foundation for some key concepts of stochastic analysis.

The celebrated Black-Scholes-Merton pricing paradigm which took the financial

industry by storm, is not limited to the Samuelson’s geometric Brownian motion

model. However, it is based on a series of unrealistic assumptions, including Gaus-

sian return fluctuations, constant volatility, risk-free interest rates, full liquidity,

absence of frictions, no price impact from large or frequent trades, . . . , and the list

could go on. Furthermore, the original pricing arguments do not directly apply to

derivatives with non-European exercises such as American options, without another

level of sophistication and approximation.

The last two decades have seen a rapid development of increasingly realistic and

sophisticated stochastic models and methods for pricing, hedging and risk man-

agement in rapidly growing markets, with more unfathomable financial products.

Modern finance is becoming increasingly technical, requiring the use of complicated

mathematical models, and involving numerical techniques based on theoretical re-

sults from subfields of mathematics ranging from stochastic analysis, dynamical

system theory, nonlinear integro-differential equations, game theory, optimal con-

trol and dynamic programming, to statistical learning and information theory. Sit-

uated at the confluence of applied mathematics, computer sciences and economics,
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CHAPTER 1. INTRODUCTION

quantitative finance distinguishes itself through its wide range of themes, and its

interaction with a broad spectrum of scientific domains.

Research in financial mathematics is the driver for a great variety of numeri-

cal applications: parameter estimation, calibration of valuation models, derivative

pricing, sensitivity analysis, hedging in incomplete markets, credit risk, risk and

uncertainty quantification, portfolio optimization. . . . Resisting the temptation to

cover as broad a range of applications as possible, we choose to focus on one particu-

larly interesting issue, namely pricing of instruments with exercises of the American

type. Our choice is motivated by the fact that optimal stopping problems offer a

unique test-bed for research which goes beyond the edges of mathematical finance,

at the crossroad of stochastic control and operations research. As a result, the nu-

merical methods developed for these specific problems can in general be extended

to a wide range of other stochastic control problems.

In the following sections, we will summarize the main results of this thesis. For

more precise statements and detailed discussion, we refer the read to the related

chapters and the references therein. As a service to the reader we also provide

precise pointers to their location within each section of this manuscript.

Section 1.2 discusses the Snell envelope problem in the pricing of American

options, and presents some mains results of chapter 3, such as a robustness lemma

for the analysis of the approximation of Snell envelope, a particle algorithm based on

genealogical tree, the non asymptotic estimates, as well as some numerical examples.

This result has been published as a journal article [50] in SIAM Journal on Financial

Mathematics.

Some of my works during my thesis are published as a book volume [51] of

Foundations and trends in Machine Learning. This book presents some new con-

centration inequalities for Feynman-Kac particle processes. We analyze different

types of stochastic particle methods, including particle profile occupation measures,

genealogical tree based evolution methods, particle free energies, as well as back-

ward Markov chain particle methods. Since we can not integrate the whole book

in this thesis, we have chosen to select some interesting results and present them

in section 1.3, and refer interested readers to [51]. In the end of section 1.3, we

take the options’ sensitivity computation as an example to introduce the chapter 2,

which surveys the applications of particle methods in finance.

Following these particle methods, section 1.4 adapts the particle algorithm of

section 1.2 to some specific cases. We give an overview of the chapter 4 with its

mains results of convergence estimates and some numerical examples.

2



1.2. PRICING OF AMERICAN OPTION

1.2 Pricing of American option

American option is a contract which allows the holder of the option the right to

exercise the option at any point in time up to maturity. This kind of options are

the most commonly traded products in the market. In discrete time setting, these

problems are mathematically defined in terms of given real valued stochastic process

(Zk)0≤k≤n, adapted to some increasing filtration F = (Fk)0≤k≤n that represents the

available information at any time 0 ≤ k ≤ n. For any k ∈ {0, . . . , n}, we let Tk
be the set of all stopping times τ taking values in {k, . . . , n}. The Snell envelope
of (Zk)0≤k≤n, is the stochastic process (Yk)0≤k≤n defined for any 0 ≤ k < n by the

following backward equation

Yk = Zk ∨ E(Yk+1|Fk)

with the terminal condition Yn = Zn. The main property of this stochastic process

is that

Yk = sup
τ∈Tk

E(Zτ |Fk) = E(Zτ∗k
|Fk) with τ ∗k = min {k ≤ j ≤ n : Yj = Zj} ∈ Tk

At this level of generality, in the absence of any additional information on the

sigma-fields Fn, or on the terminal random variable Zn, no numerical computation

of the Snell envelop is available. To get one step further, we assume that (Fn)n≥0 is

the natural filtration associated with some Markov chain (Xn)n≥0 taking values in

some sequence of measurable state spaces (En, En)n≥0. We let η0 = Law(X0) be the

initial distribution on E0, and we denote by Mn(xn−1, dxn) the elementary Markov

transition of the chain from En−1 into En. We also assume that Zn = fn(Xn), for

some collection of non negative measurable functions fn on En. In this situation,

the computation of the Snell envelope amounts to solving the following backward

functional equation

uk = fk ∨Mk+1(uk+1) (1.2.1)

for any 0 ≤ k < n, with the terminal value un = fn. In the above displayed formula,

Mk+1(uk+1) stands for the measurable function on Ek defined for any xk ∈ Ek by

the conditional expectation formula

Mk+1(uk+1)(xk) =

∫

Ek+1

Mk+1(xk, dxk+1) uk+1(xk+1) (1.2.2)

= E (uk+1(Xk+1)|Xk = xk)

1.2.1 A robustness lemma

Even it looks innocent, numerical solving numerically the recursion (1.2.1) often

requires extensive calculations. The central problem is to compute the conditional

3



CHAPTER 1. INTRODUCTION

expectationsMk+1(uk+1) on the whole state space Ek, at every time step 0 ≤ k < n.

For Markov chain models taking values in some finite state spaces (with a reason-

ably large cardinality), the above expectations can be easily computed by a simple

backward inspection of the whole realization tree that lists all possible outcomes

and every transition of the chain. In more general situations, we need to resort

to some approximation strategy. Most of the numerical approximation schemes

amount to replacing the pair of functions and Markov transitions (fk,Mk)0≤k≤n by

some approximation model (f̂k, M̂k)0≤k≤n on some possibly reduced measurable sub-

sets Êk ⊂ Ek. We let ûk be the Snell envelope of f̂k associated with the sequence of

operators M̂k from Êk−1 into Êk. Using the elementary inequality

|(a ∨ a′)− (b ∨ b′)| ≤ |a− a′|+ |b− b′|

which is valid for any a, a′, b, b′ ∈ R, one readily obtains, for any 0 ≤ k < n

|uk − ûk| ≤ |fk − f̂k|+ |Mk+1uk+1 − M̂k+1ûk+1|
|Mk+1uk+1 − M̂k+1ûk+1| ≤ |(Mk+1 − M̂k+1)uk+1|+ M̂k+1|uk+1 − ûk+1|.

Iterating the argument, one finally arrives at the following robustness lemma.

Lemma 1.2.1. For any 0 ≤ k < n, on the state space Êk, we have that

|uk − ûk| ≤
n∑

l=k

M̂k,l|fl − f̂l|+
n−1∑

l=k

M̂k,l|(Ml+1 − M̂l+1)ul+1|

This lemma provides a simple and natural way to analyze the robustness prop-

erties of the Snell equation with respect to the pair parameters (fk,Mk).

We emphasize that this non asymptotic robustness analysis also allows to com-

bine in a natural way several approximation methods. For instance, under appro-

priate tightness conditions, cut-off techniques can be used to reduce the numerical

analysis of (1.2.1) to compact state spaces Ên and bounded functions f̂n. In the

same line of ideas, in designing any type of Monte Carlo approximation methods, we

can suppose that the transitions of the chain Xn is known based on a preliminary

analysis of Euler type approximation methods.

To illustrate the generality and robustness of this framework, we state the anal-

yse of Broadie-Glasserman method in chapter 3 as an example. This importance

sampling method was introduced in 1997 by Broadie and Glasserman. They as-

sume that there exist a sequence of measures(ηk)0≤k≤n which are equivalent to the

underling asset dynamic transition 1.2.2 such that

Mk(xk−1, ·) ∼ ηk.

4



1.2. PRICING OF AMERICAN OPTION

We further construct η̂k =
1
N

∑N
i=1(δξik) the occupation measure associated with a

sequence of independent random variables ξk := (ξik)1≤i≤N with common distribution

ηk. In this context, we can construct the approximation model M̂k+1 with the

following change of measure:

M̂k+1(xk, dxk+1) := η̂k+1(dxk+1)Rk+1(xk, xxk+1
),

where

Rk+1(xk, xxk+1
) :=

dMk+1(xk, ·)
dηk+1

(xk+1).

By replacing the transitionMk+1 in the recursion 1.2.1, we provide an approximation

of the Snell envelope:

ûk = fk ∨ M̂k+1(uk+1), (1.2.3)

for 0 ≤ k ≤ n, with the terminal condition ûn = fn. By Khintchine’s inequality, we

can easily provide an estimate of the local approximation error:

√
N Êη0

(∣∣∣
[
Ml+1 − M̂l+1

]
(f)(x′l)

∣∣∣
p) 1

p ≤ 2 a(p) ηl+1 [(Rl+1(xl, ·)f)p]
1
p .

where the constants a(p) are defined as, for any non-negative integer r:

a(2r)2r = (2r)r 2
−r and a(2r + 1)2r+1 =

(2r + 1)r+1√
r + 1/2

2−(r+1/2) , (1.2.4)

with the notation (q)p = q!/(q − p)! , for any 1 ≤ p ≤ q.

Here, we recall the approximation error bounds in the robustness lemma:

|uk − ûk| ≤
n−1∑

l=k

M̂k,l|(Ml+1 − M̂l+1)ul+1|

Combining the above inequality and the local error, we are ready to state the

following theorem.

Theorem 1.2.1. For any integer p ≥ 1, we denote by p′ the smallest even integer

greater than p. Then for any time horizon 0 ≤ k ≤ n, and any xk ∈ Ek, we have

√
N Êη0 (|uk(xk)− ûk(xk)|p)

1
p (1.2.5)

≤ 2a(p)
∑

k≤l<n

{∫
Mk,l(xk, dxl)ηl+1

[
(Rl+1(xl, ·)ul+1)

p′
]} 1

p′

.

As mentioned previously, this framework can be easily applied to different ap-

proximation methods. In chapter 3, we apply this result to a series of approximation

methods, including interpolation methods, cut-off type approximations, Euler time

5



CHAPTER 1. INTRODUCTION

schemes, quantification tree methods, and the Monte Carlo method of Broadie-

Glasserman. In each situation, we provide non asymptotic convergence estimates,

including Lp-mean error bounds and exponential concentration inequalities. With-

out any doubt, the theory of empirical processes and measure concentration is one

of the most powerful mathematical tools to analyze the deviations of Monte Carlo

based approximations. Most Lp-mean error bounds presented in this thesis have a

form like 1.2.5. We present here a exponential concentration inequality lemma to

better understand these non asymptotic convergence estimates:

Lemma 1.2.2. Suppose the estimates have the following form:

√
N sup

x∈Ek

E (|uk(x)− ûk(x)|p)
1
p ≤ a(p)bk(n),

where bk(n) are some finite constants whose values do not depend on the parameter

p and a(p) is a collection of constants defined in theorem 1.2.1 Then we deduce the

following exponential concentration inequality

sup
x∈Ek

P

(
|uk(xk)− ûk(xk)| >

bk(n)√
N

+ ǫ

)
≤ exp

(
−Nǫ2/(2bk(n)2)

)
. (1.2.6)

Considering again the example of the Broadie-Glasserman method, this lemma

implies that the probability of making some level of approximation error in this

method is exponentially small.

1.2.2 A genealogical tree based particle method

In the final part of chapter 3, we propose a genealogical tree based algorithm based

on a mean field approximation of the reference Markov process in terms of a neutral

type genetic method. In contrast to Broadie-Glasserman Monte Carlo methods, the

computational cost of this new stochastic particle approximation is proportional to

the size of the random particle samples.

To have a idea of this particle method, we present here the pseudo algorithm in

avoiding the extensive mathematics notations. We refer the reader to section 3.5

for the rigorous analysis.

The initial particle system ξ
(N)
0 =

(
ξ
(i,N)
0

)
0≤i≤N0

, is a sequence ofN i.i.d. random

copies of X0. To simplify the presentation, when there is no confusion we suppress

the population size parameter N , and we write ξk and ξ
i
k instead of ξ

(N)
k and ξ

(i,N)
k .

By construction, ξk is a genetic type method with a neutral selection transition and

a mutation type exploration

ξk ∈ EN
k

Selection
−−−−−−−−→ ξ̂k :=

(
ξ̂ik

)
1≤i≤N

∈ EN
k

Mutation
−−−−−−−→ ξk+1 ∈ EN

k+1 . (1.2.7)

6



1.2. PRICING OF AMERICAN OPTION

During the selection transition, we select randomly N path-valued particles ξ̂k :=(
ξ̂ik

)
1≤i≤N

among the N path-valued particles ξk = (ξik)1≤i≤N . Sometimes, this

elementary transition is called a neutral selection transition in the literature on

genetic population models. During the mutation transition ξ̂k  ξk, every selected

path valued individual ξ̂ik evolves randomly to a new path valued individual ξik+1 =

(ξ̂ik, Y
i), by adding the variable Y i = x randomly chosen with the distribution

Mk+1(ξ̂
i
k,k, x), with 1 ≤ i ≤ N . In previous display, every particle is a path-valued

random variable defined by

ξik :=
(
ξi0,k, ξ

i
1,k, . . . , ξ

i
k,k

)

ξ̂ik :=
(
ξ̂i0,k, ξ̂

i
1,k, . . . , ξ̂

i
k,k

)
∈ (E0 × . . .× Ek) .

By definition of the transition in path space, we also have that

ξik+1 =



(
ξi0,k+1, ξ

i
1,k+1, . . . , ξ

i
k,k+1

)
︸ ︷︷ ︸

||

, ξik+1,k+1




=

( ︷ ︸︸ ︷(
ξ̂i0,k, ξ̂i1,k, . . . , ξ̂ik,k

)
, ξik+1,k+1

)
=

(
ξ̂ik, ξ

i
k+1,k+1

)
,

where ξik+1,k+1 is a random variable with distribution Mk+1(ξ̂
i
k,k, ·). In other words,

the mutation transition ξ̂ik  ξik+1 simply consists in extending the selected path ξ̂
i
k

with an elementary move ξ̂ik,k  ξik+1,k+1 of the end point of the selected path.

The simulation mentioned above of the particle system can be summarized by

the following pseudo algorithm:

Initialization At time step k = 0, generate N i.i.d. random copies of X0 and set

ξ0 = (ξi0)0≤i≤N .

At each time step k = 1, · · · , n

1. Selection: For each i = 1, · · · , N , generate independently an indice

Ii ∈ {1, · · · , N} with probability P(Ii = j) = 1/N . Then set ξ̂ik−1 = ξIik−1.

2. Mutation: For each i = 1, · · · , N , generate independently N i.i.d. ran-

dom variables (ξik,k)0≤i≤N according to the transition kernelMk(ξ̂
i
k−1,k−1, ·).

Then set ξik = (ξ̂ik−1, ξ
i
k,k).

With this particle system, we can construct the approximation of the Snell en-

velope 1.2.1 in the following backward algorithm:

Initialization At time step k = n, for all i = 1, · · · , N , set ûn(ξin,n) = f(ξin,n).

7



CHAPTER 1. INTRODUCTION

At each time step k = n− 1, · · · , 0, for all i = 1, · · · , N set

ûk(ξ
i
k,n) = fk(ξ

i
k,n) ∨

∑N
j=1 ûk+1(ξ

j
k+1,n) 1ξjk,n=ξik,n∑N

j=1 1ξjk,n

.

In this context, we can provide by applying again the robustness lemma the

non-asymptotic estimate of this approximation method:

Theorem 1.2.2. For any p ≥ 1, and 0 ≤ i ≤ N we have the following uniform

estimate

sup
0≤k≤n

∥∥(uk − ûk)(ξ
i
k,n)

∥∥
p
≤ cp(n)/

√
N , (1.2.8)

with some collection of finite constants cp(n) <∞ whose values only depend on the

parameters p and n.

In addition to above non asymptotic estimate, some bias analysis are also pro-

vided:

Theorem 1.2.3. For any 0 ≤ k ≤ n and any i ∈ {1, . . . , N}, we have

E
(
ûk(ξ

i
k,n)|ξk,n

)
≥ uk(ξ

i
k,n) .

As shown in above theorem, the estimator is always biased upward. In general,

it is useful to know that the bias is positive. Once we compute the approximation

of the Snell envelope, we can extract the exercise policy. Based on this stopping

strategy, another estimate can be established with a negative bias. In practice, it is

convenient that the biases of the two estimators have opposite signs.

We end this section with the numerical simulations in chapter 3. The numerical

examples are taken from Bouchard and Warin [14], who provided precise approx-

imations of option values in their examples. The asset prices are modeled by a

d-dimensional Markov process (X̃t) such that each component (i.e. each asset) fol-

lows a geometric Brownian motion under the risk-neutral measure, that is, for assets

i = 1, · · · , d,
dX̃t(i)

X̃t(i)
= rdt+ σidz

i
t , (1.2.9)

where zi, for i = 1, · · · , d are independent standard Brownian motions. The interest
rate r is set to 5% annually. We also assume that for all i = 1, · · · , d, X̃t0(i) = 1

and σi = 20% annually.

We consider two different Bermudan options with maturity T = 1 year and 11

equally distributed exercise opportunities at dates tk = kT/n with k = 0, 1, · · · , n =
10, associated with two different payoffs:

1. a geometric average put option with strikeK = 1 and payoff (K−∏d
i=1 X̃T (i))+,

8



1.2. PRICING OF AMERICAN OPTION

2. an arithmetic average put option with strikeK = 1 and payoff (K−1
d

∑d
i=1 X̃T (i))+.

We report in Table 1.1 the benchmark option values computed in [14], for both the

geometric and arithmetic put options (by using respectively the one dimensional

PDE method and the least squares regression method with 8× 106× d2 simulations
and ten basis functions for each direction).

Number of assets 1 2 3 4 5 6

Geometric Payoff 0.06033 0.07815 0.08975 0.09837 0.10511 0.11073
Arithmetic Payoff 0.06033 0.03882 0.02947 0.02403 0.02046 0.01830

Table 1.1: Benchmark values for the geometric and arithmetic put options (taken

from [14]).

The genealogical tree algorithm is designed for finite state spaces. Hence, before

applying it to the aforementioned continuous space examples, we have to approxi-

mate the continuous state space Markov chain solution of (4.7.1) by a Markov chain

with a finite state space. To this end, one can first discretize the state space using

either a random tree, or a stochastic mesh, or a Binomial tree or a quantization

approach . . . The state aggregation technique we use in this thesis is a quantization-

like approach. This step is quiet technical, we refer the reader to section 3.5.5 for

more details.

Simulations results are reported in Figure 1.1 for the geometric put payoff and in

Figure 1.2 for the arithmetic put payoff. First notice that these results are consistent

with theorem 1.2.3, and that the estimates have a positive bias in most cases (Notice

that one can observe on the graph that for d = 2 or 3 the bias of our estimator

can be negative. The negative bias arises in the discretization of the state space).

Also notice that our algorithm has been implemented without any control variate

technique. Moreover, our implementation has not been optimized. In particular, we

have not investigated in this thesis any parallel implementations of our algorithm.

Thus, it seems not relevant to report any running time measurements. We refer the

reader to section 3.5.5 for the algorithm complexity, which gives a good indication

of the number of operations required by our algorithm.

Hence, to compare the estimation errors of the backward estimate provided by

our algorithm to a corresponding approach, we have reported, in Table 1.2, the es-

timation errors obtained with the genealogical algorithm using N = 25000 particles

and N
d

d+2 sites in the space discretization step, in valuing the geometric put (on the

first line) and the arithmetic put (on the second line) and, within parenthesis, the

performances of the backward estimate provided by the quantization approach [4]

implemented in [14], with 25600 quantization points for the same options. One can

observe that both algorithms achieve similar performances for approximately the

9
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Figure 1.1: Boxplots for estimated option values (divided by the benchmark values) as

a function of the number of particles for the geometric put-payoff. The box stretches

from the 25th percentile to the 75th percentile, the median is shown as a line across the

box, the whiskers extend from the box out to the most extreme data value within 1.5 IQR

(Interquartile Range) and red crosses indicates outliers.

10
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Figure 1.2: Boxplots for estimated option values (divided by the benchmark values) as

a function of the number of particles for the arithmetic put-payoff. The box stretches

from the 25th percentile to the 75th percentile, the median is shown as a line across the

box, the whiskers extend from the box out to the most extreme data value within 1.5 IQR

(Interquartile Range) and red crosses indicates outliers.

11
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same number N of quantization points (for the quantization algorithm) and parti-

cles (for the genealogical algorithm).

Now, we can see in section 3.5.5 that the complexity (per time step) of the genealog-

ical algorithm is of order N
2d+2
d+2 for the construction of the genealogical tree and of

order N for the backward induction on the prices, which is slightly smaller than the

complexity of the quantization approach of order N2 for the backward induction on

prices (without taking into account the complexity related to the construction of the

quantization tree and to the computation of the transition probabilities). Hence,

we can conclude that our new algorithm is competitive with respect to comparable

algorithms.

Number of assets d = 3 d = 4 d = 5 d = 6
Geometric Put error

(in % of the option value)
2 (2) 7 (8) 14 (15) 17 (22)

Arithmetic Put error
(in % of the option value)

3.5 (3.5) 10 (8) 15 (16) 14 (17)

Table 1.2: Error (in % of the option value in Table 1.1) of the genealogical algorithm

with N = 25000 particles and N ′ = N
d

d+2 sites, and within parenthesis of the quantization

algorithm with N = 25600 quantization points, (taken from [14]) for the geometric and

arithmetic put options.

1.3 Particle methods

The numerical technique we use previously is based on the interacting particle sys-

tems. Though these particle methods are known as powerful numerical tools, these

algorithms have rarely been applied to computational finance fields. In chapter 2,

we present an overview of these particle techniques and their applications in finance.

Here, we summarize this presentation with some interesting financial examples in

this section.

Stochastic particle methods are increasingly used to solve a variety of problems,

including nonlinear filtering equations, data assimilation problems, rare event sam-

pling, hidden Markov chain parameter estimation, stochastic control problems and

financial mathematics. To illustrate these methods, we start with a toy model of

barrier option pricing as example. We consider the underlying asset as a Markov

chain Xk taking values in Rd, we will denote by M = (Mp,n)p,n its transition prob-

ability

Mp,n(x, dy) := P(Xn ∈ dy|Xp = x), x ∈ Rd. (1.3.1)

12
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With a sequence of barrier sets (Ak)0≤k<n and the payoff function f , we are then

interested in the price of the barrier options given by:

E

(
f(Xn)

n−1∏

p=1

1Ap(Xp)

)
.

which is, in most cases, difficult to compute. One natural way to resolve this esti-

mation problem is to work with its associated conditional expectation:

E (f(Xn)|Xp ∈ Ap, 0 ≤ p < n) .

To compute above expectation, we can use the genealogical tree model associated

with a genetic type interacting particle model. This genetic algorithm is defined with

mutation transitions according to 1.3.1, and proportional selections with regard

to (w.r.t.) the potential functions (Ak)0≤k<n. The occupation measures of the

corresponding genealogical tree provides an approximation of the desired conditional

distributions of the underlying asset. More generally, for any function F on the path

space we have

lim
N↑∞

1

N

N∑

1

F (linen(i)) ≃N↑∞ E(F (X0, . . . , Xn)|Xp ∈ Ap, 0 ≤ p < n) (1.3.2)

where linen(i) stands for the i−th ancestral line of the genealogical tree, at time n.

1.3.1 Feynman-Kac measures

Interacting particle systems aim to design the interacting particle approximation

of the Feynman-Kac measures, which represent the distribution of the paths of a

Markov process, weighted by a collection of potential functions. These functional

models encapsulate traditional changes of probability measures, commonly used in

importance sampling, posterior distributions in Bayesian statistics, and the optimal

filter in nonlinear filtering problems.

These stochastic models are defined in terms of only two ingredients:

A Markov chainXn, with Markov transitionMn on some measurable state spaces

(En, En) with initial distribution η0, and a sequence of (0, 1]-valued potential func-
tions Gn on the set En.

The Feynman-Kac path measure associated with the pairs (Mn, Gn) is the prob-

ability measure Qn on the product state space

En := (E0 × . . .× En)

defined by the following formula

dQn :=
1

Zn

{ ∏

0≤p<n

Gp(Xp)

}
dPn (1.3.3)

13
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where Zn is a normalizing constant and Pn is the distribution of the random paths

Xn = (X0, . . . , Xn) ∈ En

of the Markov process Xp from the origin p = 0 with initial distribution η0, up to

the current time p = n. We also denote by

Γn = Zn Qn (1.3.4)

its unnormalized version.

Several probabilistic interpretations in the domain of quantitative finance of this

model can be found in chapter 2. To have an idea of these models, we take again

the barrier option example presented in the beginning of this section:

XA
n ∈ An := En

absorption ∼Ac
n−−−−−−−−−−−−−−−−−−→ X̂A

n

exploration ∼Mn+1−−−−−−−−−−−−−−−−−−→ XA
n+1. (1.3.5)

The chain XA
n starts at some initial state XA

0 randomly chosen with distribution

η0. During the selection stage, we set X̂
A
n = XA

n if XA
n ∈ An, otherwise we put the

particle in an auxiliary cemetery set Ac
n. When the particle X̂A

n is still alive (that is,

if we have X̂c
n ∈ An), it performs an elementary move X̂

A
n  XA

n+1 according to the

Markov transition Mn+1. Otherwise, the particle is absorbed and we set X
A
p = X̂A

n ,

for any time p > n.

If we let T be the first time X̂c
n /∈ An, then we have the Feynman-Kac represen-

tation formulae

Qn = Law((XA
0 , . . . , X

A
n ) | T ≥ n) and Zn = Proba (T ≥ n) .

We also denote by ηn and γn, the n-th time marginal of Qn and Γn. It is a simple

exercise to check that

γn = γn−1Qn and ηn+1 = Φn+1(ηn) := ΨGn(ηn)Mn+1 (1.3.6)

with the positive integral operator

Qn(x, dy) = Gn−1(x) Mn(x, dy)

and the Boltzmann-Gibbs transformation

ΨGn(ηn)(dx) =
1

ηn(Gn)
Gn(x) ηn(dx). (1.3.7)

In addition, the normalizing constants Zn can be expressed in terms of the flow of

marginal measures ηp, from the origin p = 0 up to the current time n, with the

following multiplicative formulae:

Zn := γn(1l) = E

( ∏

0≤p<n

Gp(Xp)

)
=

∏

0≤p<n

ηp(Gp). (1.3.8)

14
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This multiplicative formula is easily checked using the induction

γn+1(1) = γn(Gn) = ηn(Gn) γn(1).

The abstract formulae discussed above are more general than they may appear.

For instance, they can be used to analyze, without further work, path spaces models,

including historical processes or transition space models, as well as finite excursion

models. These functional models also encapsulate quenched Feynman-Kac models,

Brownian type bridges and linear Gaussian Markov chains conditioned on starting

and end points.

When the Markov transitionsMn are absolutely continuous with respect to some

measures λn on En, for any (x, y) ∈ (En−1 × En) we have

Hn(x, y) :=
dMn(x, .)

dλn
(y) > 0. (1.3.9)

We also have the following backward formula

Qn(d(x0, . . . , xn)) = ηn(dxn)
n∏

q=1

Mq,ηq−1(xq, dxq−1) (1.3.10)

with the the collection of Markov transitions defined by

Mn+1,ηn(x, dy) ∝ Gn(y) Hn+1(y, x) ηn(dy). (1.3.11)

1.3.2 Interacting particle systems

In this subsection we explain how to design an interacting particle approximation of

the Feynman-Kac measures introduced in the previous paragraphs. These particle

methods can be interpreted in different ways, depending on the application domain

in which they are considered.

In the filtering example presented at the beginning of this chapter, these particle

algorithms can be seen as a stochastic adaptive fixed approximation of the filtering

equations. From a purely statistical point of view, these algorithms can also be

seen as a sophisticated acceptance-rejection technique with an interacting recycling

transition.

The particle model is defined as follows:

We start with a population of N possible candidate solutions (ξ10 , . . . , ξ
N
0 ) ran-

domly chosen w.r.t. some distribution η0.

The coordinates ξi0 are also called individuals or phenotypes, with 1 ≤ N . The

random evolution of the particles is decomposed into two main steps : the free

exploration and the adaptive selection transition.

During the updating-selection stage, multiple individuals in the current popu-

lation (ξ1n, . . . , ξ
N
n ) at time n ∈ N are stochastically selected based on the fitness

15
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function Gn. In practice, we choose a random proportion Bi
n of an existing solution

ξin in the current population with a mean value ∝ Gn(ξ
i
n) to breed a brand new

generation of ”improved” solutions (ξ̂1n, . . . , ξ̂
N
n ). For instance, for every index i,

with a probability ǫnGn(ξ
i
n), we set ξ̂

i
n = ξin, otherwise we replace ξ

i
n with a new

individual ξ̂in = ξjn randomly chosen from the whole population with a probability

proportional to Gn(ξ
j
n). The parameter ǫn ≥ 0 is a tuning parameter that must sat-

isfy the constraint ǫnGn(ξ
i
n) ≤ 1, for every 1 ≤ i ≤ N . During the mutation stage,

every selected individual ξ̂in moves to a new solution ξin+1 = x randomly chosen in

En+1, with a distribution Mn+1(ξ̂
i
n, dx).

If we interpret the updating-selection transition as a birth and death process,

then the important notion of the ancestral line of a current individual arises. More

precisely, when a particle ξ̂in−1 −→ ξin evolves to a new location ξin, we can interpret

ξ̂in−1 as the parent of ξ
i
n. Looking backwards in time and recalling that the particle

ξ̂in−1 has selected a site ξ
j
n−1 in the configuration at time (n − 1), we can interpret

this site ξjn−1 as the parent of ξ̂
i
n−1 and therefore as the ancestor denoted ξ

i
n−1,n at

level (n − 1) of ξin. Running backwards in time we may trace the whole ancestral

line as

ξi0,n ←− ξi1,n ←− . . .←− ξin−1,n ←− ξin,n = ξin. (1.3.12)

In the interacting particle system literature, most of the terminology we have

used is drawn from filtering and genetic evolution theories. In this thesis we adapt

these notions to the filed of quantitative finance.

In the barrier option example presented in the beginning of this chapter, the

former particle model is dictated by the two-steps mutation-selection learning equa-

tions of the conditional distributions of the underlying asset Xk, given their survival

zones Ak. In this setting, the potential functions represent the absorption w.r.t.

the barrier sets Ak, while the free exploration transitions are related to the Markov

transitions of the underlying asset. More formally, using the notation we used in

the barrier option example, we have:

P(Xk = xk|Xk−1 = xk−1) =Mk(xk−1|xk) and 1Ak
(xk) = Gk(xk).

The different types of particle approximation measures associated with the ge-

netic type particle model described above are summarized in the following synthetic

picture corresponding to the case N = 3.

◦ // ◦ • // • // • = ⋆

• // •

��?
??

??
??

??�������
// ◦ • // • = ⋆

◦ // ◦ •

>>}}}}}}}}
// • // • = ⋆
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1.3.3 Concentration inequalities

In this subsection, we give an overview of the four particle approximation measures

that can be extracted from the interacting population evolution model described

above. Our concentration inequalities will basically be stated. The proofs of these

results are quite subtle and are not provided in the this thesis. We encourage the

reader to explore the book [51] for details and the references therein. In the further

development of the next subsections, c1 stands for a finite constant related to the

bias of the particle model, while c2 is related to the variance of the scheme. The

value of these constants may vary from one line to another, but in all the situations

they do not depend on the time parameter.

The precise form of the constants in these exponential inequalities depends on

the contraction properties of Feynman-Kac flows. Our stochastic analysis requires

us to combine the stability properties of the nonlinear semigroup of the Feynman-

Kac distribution flow ηn, with the deep convergence results of empirical processes

theory associated with interacting random samples.

Last population models

The occupation measures of the current population, represented by the stars in the

above figure

ηNn :=
1

N

N∑

i=1

δξin

converge to the n-th time marginals ηn of the Feynman-Kac measures Qn. We

shall measure the performance of these particle estimates through several concen-

tration inequalities, with a special emphasis on uniform inequalities w.r.t. the time

parameter. Our results will basically be stated as follows.

1) For any time horizon n ≥ 0, any bounded function f , any N ≥ 1, and for any

x ≥ 0, the probability of the event

[
ηNn − ηn

]
(f) ≤ c1

N

(
1 + x+

√
x
)
+

c2√
N

√
x

is greater than 1− e−x.

We have already mentioned one important consequence of these uniform con-

centration inequalities for time homogeneous Feynman-Kac models. Under some

regularity conditions, the flow of measures ηn tends to some fixed point distribution

η∞, in the sense that

‖ηn − η∞‖tv ≤ c3 e
−δn (1.3.13)

for some finite positive constants c3 and δ. In the above display ‖ν − µ‖tv stands
for the total variation distance. As a direct consequence of the above inequalities,
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we find that for any x ≥ 0, the probability of the following events is greater than

1− e−x: [
ηNn − η∞

]
(f) ≤ c1

N

(
1 + x+

√
x
)
+

c2√
N

√
x+ c3 e

−δn.

2) For any x = (xi)1≤i≤d ∈ En = Rd, we set (−∞, x] =
∏d

i=1(−∞, xi] and we

consider the repartition functions

Fn(x) = ηn
(
1(−∞,x]

)
and FN

n (x) = ηNn
(
1(−∞,x]

)
.

The probability of the following event
√
N

∥∥FN
n − Fn

∥∥ ≤ c
√
d (x+ 1)

is greater than 1 − e−x, for any x ≥ 0, for some universal constant c < ∞ that

does not depend on the dimension, nor on the time parameter. In the above display

‖F‖ = supx |F (x)| stands for the uniform norm. Furthermore, under the stability

properties (1.3.13), if we set

F∞(x) = η∞
(
1(−∞,x]

)

then, the probability of the following event
∥∥FN

n − F∞
∥∥ ≤ c√

N

√
d (x+ 1) + c3 e

−δn

is greater than 1− e−x, for any x ≥ 0, for some universal constant c <∞ that does

not depend on the dimension.

Particle free energy models

Mimicking the multiplicative formula (1.3.8), we set

ZN
n =

∏

0≤p<n

ηNp (Gp) and γNn (dx) = ZN
n × ηNn (dx). (1.3.14)

We have already mentioned that these rather complex particle models provide

an unbiased estimate of the unnormalized measures. That is, we have that

E

(
ηNn (fn)

∏

0≤p<n

ηNp (Gp)

)
= E

(
fn(Xn)

∏

0≤p<n

Gp(Xp)

)
. (1.3.15)

The concentration properties of the unbiased particle free energies ZN
n around

their limiting values Zn are developed in [51]. Our results will basically be stated

as follows.

For any N ≥ 1, and any ǫ ∈ {+1,−1}, the probability of each of the following
events

ǫ

n
log
ZN

n

Zn

≤ c1
N

(
1 + x+

√
x
)
+

c2√
N

√
x

is greater than 1− e−x.
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Genealogical tree model

The occupation measure of the N -genealogical tree model represented by the lines

linking the solid circles converges as N →∞ to the distribution Qn

lim
N→∞

1

N

N∑

i=1

δ(ξi0,n,ξi1,n,...,ξin,n)
= Qn. (1.3.16)

In this notation, we have, for any n ≥ 0, any bounded function fn on the path

space En, such that (s.t.) ‖fn‖ ≤ 1, and any N ≥ 1, the probability of each of the

following events
[

1
N

∑N
i=1 fn(ξ

i
0,n, ξ

i
1,n, . . . , ξ

i
n,n)−Qn(fn)

]

≤ c1
n+ 1

N

(
1 + x+

√
x
)
+ c2

√
(n+ 1)

N

√
x

is greater than 1− e−x.

The concentration properties of genealogical tree occupation measures can be de-

rived more or less directly from those of the last population models. This rather sur-

prising assertion comes from the fact that the n-th time marginal ηn of a Feynman-

Kac measure associated with a reference historical Markov process has the same

form as in the measure (1.3.3).

Using these properties, we prove concentration properties for interacting empir-

ical processes associated with genealogical tree models. Our concentration inequal-

ities will basically be stated as follows. We let Fn be the set of product functions of

cell indicators in the path space En =
(
Rd0 × . . . ,×Rdn

)
, for some dp ≥ 1, p ≥ 0.

We also denote by ηNn the occupation measure of the genealogical tree model. In

this notation, the probability of the following event

sup
fn∈Fn

∣∣ηNn (fn)−Qn(fn)
∣∣ ≤ c (n+ 1)

√∑
0≤p≤n dp

N
(x+ 1)

is greater than 1− e−x, for any x ≥ 0, for some universal constant c <∞ that does

not depend on the dimension.

Complete genealogical tree models

Mimicking the backward model (1.3.10) and the above formulae, we set

ΓN
n = ZN

n ×QN
n (1.3.17)

with

QN
n (d(x0, . . . , xn)) = ηNn (dxn)

n∏

q=1

Mq,ηNq−1
(xq, dxq−1).
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Notice that the computation of sums w.r.t. these particle measures are reduced

to summations over the particle locations ξin. It is therefore natural to identify

a population of individuals (ξ1n, . . . , ξ
N
n ) at time n to the ordered set of indexes

{1, . . . , N}. In this case, the occupation measures and the functions are identified
with the following line and column vectors

ηNn :=

[
1

N
, . . . ,

1

N

]
and fn :=




fn(ξ
1
n)
...

fn(ξ
N
n )




and the matrices Mn,ηNn−1
by the (N ×N) matrices

Mn,ηNn−1
:=




Mn,ηNn−1
(ξ1n, ξ

1
n−1) · · · Mn,ηNn−1

(ξ1n, ξ
N
n−1)

...
...

...

Mn,ηNn−1
(ξNn , ξ

1
n−1) · · · Mn,ηNn−1

(ξNn , ξ
N
n−1)


 (1.3.18)

with the (i, j)-entries

Mn,ηNn−1
(ξin, ξ

j
n−1) =

Gn−1(ξ
j
n−1)Hn(ξ

j
n−1, ξ

i
n)∑N

k=1Gn−1(ξkn−1)Hn(ξkn−1, ξ
i
n)
.

For instance, the Qn-integration of normalized additive linear functionals of the form

fn(x0, . . . , xn) =
1

n+ 1

∑

0≤p≤n
fp(xp) (1.3.19)

is given the particle matrix approximation model

QN
n (fn) =

1

n+ 1

∑

0≤p≤n
ηNn Mn,ηNn−1

Mn−1,ηNn−2
. . .Mp+1,ηNp

(fp).

These type of additive functionals arise in the calculation of the sensitivity mea-

sures. Its application in options’ sensitivity computation is discussed in section

2.5.

For any n ≥ 0, any normalized additive functional of the form (1.3.19), with

max0≤p≤n ‖fp‖ ≤ 1, and any N ≥ 1, the probability of each of the following events

[
QN

n −Qn

]
(fn) ≤ c1

1

N
(1 + (x+

√
x)) + c2

√
x

N(n+ 1)

is greater than 1− e−x.

For any a = (ai)1≤i≤d ∈ En = Rd, we denote by Ca the cell

Ca := (−∞, a] =
d∏

i=1

(−∞, ai]
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and fa,n the additive functional

fa,n(x0, . . . , xn) =
1

n+ 1

∑

0≤p≤n
1(−∞,a](xp).

The probability of the following event

sup
a∈Rd

∣∣QN
n (fa,n)−Qn(fa,n)

∣∣ ≤ c

√
d

N
(x+ 1)

is greater than 1 − e−x, for any x ≥ 0, for some constant c < ∞ that does not

depend on the dimension, nor on the time horizon.

1.3.4 Example of applications in finance

In chapters 3 and 4, the numerical methods we use for pricing of American options

are based on the interacting particle system. Recently, these particle techniques

also have been applied to some other areas of finance; to name a few: the pricing

of complex path dependent European options, sensitivities computing, as well as

the numerical solution of partially observed control and estimation problems. In

chapter 2, we present these applications with some detailed analysis. Here, we take

the option sensitivity computation as an example to illustrate the application of

particle methods.

We let θ ∈ Rd be a parameter that may represent the volatility of some asset

price movements, or any other kinetic parameter. We assume that the evolution of

the risky asset price S
(θ)
k associated to some value of the parameter θ, is given by a

one-step probability transition of the form

M
(θ)
k (s, ds′) := Proba

(
S
(θ)
k ∈ ds′|S(θ)

k−1 = s
)
= H

(θ)
k (s, s′) λk(ds

′) ,

for some positive density functions H
(θ)
k (s, s′) and some reference measure λk. We

also consider a collection of functions G
(θ)
k (s) = e−r

(θ)
k (s) that depend on θ. We also

assume that the gradient and the Hessian of the logarithms of these functions with

respect to the parameter θ are well defined.

In this situation, we denote a general form of the option price by

Γθ
n(Fn) := E

(
Fn(S

(θ)
0 , . . . , S(θ)

n )
∏

0≤p<n

G(θ)
p

(
S(θ)
p

)
)

. (1.3.20)

Simple derivations show that the first and second order derivatives of the option

value with respect to θ is given by

∇Γ(θ)
n (Fn) = Γ(θ)

n (FnΛ
(θ)
n )

∇2Γ(θ)
n (Fn) = Γ(θ)

n

[
Fn(∇L(θ)

n )′(∇L(θ)
n ) + Fn∇2L(θ)

n

]
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with Λ
(θ)
n := ∇L

(θ)
n and

L(θ)
n (x0, . . . , xn) :=

n∑

p=1

log
(
G

(θ)
p−1(sp−1)H

(θ)
p (sp−1, sp)

)
.

These quantities can be approximated by the unbiased particle models

∇NΓ
(θ)
n (Fn) := Γ(θ,N)

n (FnΛ
(θ)
n )

∇2
NΓ

(θ)
n (Fn) = Γ(θ,N)

n

[
Fn(∇L(θ)

n )′(∇L(θ)
n ) + Fn∇2L(θ)

n

]
.

For each value of the parameter θ, we denote by Γ
(θ,N)
n the N -particle approx-

imation measures associated with a given value of the parameter θ and defined in

(1.3.17). The analysis for the approximation error of ∇Γ(θ)
n (Fn) would be a direct

consequence of the concentration inequalities stated in the previous subsection.

1.4 More sophisticated American options

After the study of the Feynman-Kac measures, it is important to remark that the

particle method we propose in section 1.2 can be easily adapted to pricing of some

sophisticated American options. Instead of the uniform selection, we can design

some Feynman-Kac measures based on certain potential information (Gk)0≤k≤n.

One direct application in mind is the pricing of deep Out of The Money (OTM)

options. In this situation, the payoff function is localized in a small region of the

space. As in classic rare events problem, standard Monte Carlo simulations usually

fail, and the main variance reduction technique is importance sampling. But in

general, desirable changes of measure favoring sample paths realizing rare events are

highly unlikely to lead to explicit formula. In this case importance sampling is no

longer an option. A natural alternative is then interacting particles methods. Based

on different choices of the potential function of (Gk)0≤k≤n, the particle techniques

can usually send the simulation samples to desirable regions to achieve the variance

reduction.

With this technique, we can consider even more complicate situation: the maxi-

mization of E(fτ (Xτ )
∏τ−1

k=0Bk(Xk)) for a given class of functions (Bk)0≤k≤n modeling

an obstacle. For instance in the case of barrier options, (Bk)0≤k≤n take the form of

indicator functions. In chapter 4, we can prove that the computations of deep OTM

options and of barrier options are mathematically equivalent in our algorithm if we

take Bk = Gk in above display. In this context, in the further development of this

section we will unify the notation and focus on the analysis of the Snell envelope

for supτ E(fτ (Xτ )
∏τ−1

k=0Gk(Xk)).
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1.4.1 Snell envelope with small probability event criteria

In chapter 4, we can see the Snell envelope for such options will be reduced to :
{
vn(xn) = fn(xn)

vk(xk) = fk(xk) ∨
[
Gk(xk)Mk+1(vk+1)(xk)

]
, ∀ 0 ≤ k ≤ n− 1 .

(1.4.1)

The above recursion implies that it is not relevant to compute precisely the con-

ditional expectation Mk+1(vk+1)(xk) when the value of the criteria Gk(xk) is zero

or very small, or when the gain function fk is zero or very small. Hence from a

variance reduction point of view, when approximating the conditional expectation

Mk+1(vk+1)(xk) by a Monte Carlo method, it seems relevant to concentrate the sim-

ulations in the regions of Ek+1 where Gk+1 and/or fk+1 reach high values. Hence, to

avoid the potential rare eventsG, we consider a change of measure on the measurable

product space (E0 × · · · × En, E0 × · · · × En), with the following form

dQn =
1

Zn

[
n−1∏

k=0

Gk(Xk)

]
dPn , with Zn = E

(
n−1∏

k=0

Gk(Xk)

)
=

n−1∏

k=0

ηk(Gk) ,

(1.4.2)

where ηk is the probability measure defined on Ek such that, for any measurable

function f on Ek

ηk(f) :=
E

(
f(Xk)

∏k−1
p=0 Gp(Xp)

)

E

(∏k−1
p=0 Gp(Xp)

) .

The measures (ηk)0≤k≤n defined above can be seen as the laws of random states

(X̄k)0≤k≤n under the probability measures (Qk)0≤k≤n. More interestingly, in Section

4.4 we will see that the sequence of random states (X̄k)0≤k≤n forms a nonlinear

Markov chain with transitions X̄k  X̄k+1 that depends on the current distribution

ηk, at time k. The behavior of this chain is dictated by the potential functions

(Gk)0≤k≤n and the Markov transitions (Mk)≤k≤n of the reference process (Xk)0≤k≤n.

Regions with high Gk−values are visited more likely.
To illustrate this remark, we examine the situation where Gk(xk) := 1Ak

(xk)

with Ak ⊂ Ek. In this situation, law(Xk|Xp ∈ Ap, p < k) = law(X̄k) = ηk is the

conditional distribution of Xk given the fact that Xp ∈ Ap, for any p < k. In this

special case, the process (X̄k)0≤k≤n is restricted to regions related to the choice of

the sequence (Ak)0≤k≤n. This change of measure is known as the optimal twisted

measure for sampling a Markov chain restricted to the subset regions Ak. More

general change of measure are addressed in section 4.6 of chapter 4. These models

are direct extension of 1.4.2 to potential functions that depend on the transition of

the reference Markov chain.

Furthermore, it is also important to observe that, for any measurable function

f on Ek

ηk(f) =
ηk−1(Gk−1Mk(f))

ηk−1(Gk−1)
. (1.4.3)
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We denote the recursive relation between ηk and ηk−1 by introducing the operators

Φk such that, for all 1 ≤ k ≤ n

ηk = Φk(ηk−1) . (1.4.4)

Let us now introduce the integral operator Qk such that, for all 1 ≤ k ≤ n

Qk(f)(xk−1) :=

∫
Gk−1(xk−1)Mk(xk−1, dxk)f(xk) . (1.4.5)

By definition, we can rewrite the recursion 1.4.1 as:

vk(xk) = fk(xk) ∨Qk+1(vk+1)(xk) = fk(xk) ∨ Φk+1(η)

(
dQk+1(xk, ·)
dΦk+1(η)

vk+1

)
,

for any measure η on Ek.

To extend the discussion in previous sections on the particle models, we state

here the analysis in chapter 4. To construct a particle method to sample the random

variables according to above distributions, we remark by definition (1.4.4) that:

Φk(ηk−1) = ηk−1Kk,ηk−1
= ηk−1Sk−1,ηk−1

Mk = ΨGk−1
(ηk−1)Mk . (1.4.6)

Where Kk,ηk−1
, Sk−1,ηk−1

and ΨGk−1
are defined as follows:





Kk,ηk−1
(xk−1, dxk) = (Sk−1,ηk−1

Mk)(xk−1, dxk)

=
∫
Sk−1,ηk−1

(xk−1, dx′k−1)Mk(x
′
k−1, dxk) ,

Sk−1,ηk−1
(x, dx′) = ǫGk−1(x)δx(dx′) + (1− ǫGk−1(x))ΨGk−1

(ηk−1)(dx′)

ΨGk−1
(ηk−1)(dx) = Gk−1(x)

ηk−1(Gk−1)
ηk−1(dx) ,

where the real ǫ is such that ǫG takes its values [0, 1].

More generally, the operations Ψ and S can be expressed as ΨG(η)(f) =
η(Gf)
η(G)

=

ηSη(f) with Sη(f) = ǫGf+(1−ǫG)ΨG(η)(f). We recall from [40] that ηk = law(X̄k),

where X̄k−1  X̄k is a Markov chain with transitions Kk,ηk−1
defined above.

The particle approximation provided in the present chapter is defined in terms of

a Markov chain ξ
(N)
k = (ξ

(i,N)
k )1≤i≤N on the product state spaces EN

k , where the given

integer N is the number of particles sampled in every instant. The initial particle

system, ξ
(N)
0 =

(
ξ
(i,N)
0

)
1≤i≤N

, is a collection of N i.i.d. random copies of X0. We

let FN
k be the sigma-field generated by the particle approximation model from the

origin, up to time k. To simplify the presentation, when there is no confusion we

suppress the population size parameter N , and we write ξk and ξ
i
k instead of ξ

(N)
k
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and ξ
(i,N)
k . By construction, ξk is a particle model with a selection transition and

a mutation type exploration i.e. the evolution from ξk to ξk+1 is composed by two

steps:

ξk ∈ EN
k

Selection
−−−−−−−−→

S
k,ηN

k

ξ̂k :=
(
ξ̂ik

)
1≤i≤N

∈ EN
k

Mutation
−−−−−−−→

Mk+1

ξk+1 ∈ EN
k+1 . (1.4.7)

Then we define η̂Nk as the occupation measure after the mutation steps. More

precisely,

η̂Nk :=
1

N

∑

1≤i≤N
δξ̂ik

.

During the selection transition Sk,ηNk
, for 0 ≤ i ≤ N with a probability ǫGk(ξ

i
k)

we decide to skip the selection step i.e. we leave ξ̂ik stay on particle ξik, and with

probability 1 − ǫGk(ξ
i
k) we decide to do the following selection: ξ̂

i
k randomly takes

the value in ξjk for 0 ≤ j ≤ N with distribution
Gk(ξ

j
k)∑N

l=1 Gk(ξ
l
k)
. Note that when ǫGk ≡ 1,

the selection is skipped ( i.e. ξ̂k = ξk) so that the model corresponds exactly to the

Broadie-Glasserman type model analysed by P. Del Moral and P. Hu et al. [50].

Hence, the factor ǫ can be interpreted as a level of selection against the rare events.

During the mutation transition ξ̂k  ξk+1, every selected individual ξ̂ik evolves

randomly to a new individual ξik+1 = x randomly chosen with the distribution

Mk+1(ξ̂
i
k, dx), for 1 ≤ i ≤ N .

Now, we can construct the approximation scheme to estimate the Snell envelope

(vk)0≤k≤n with the following backward recursion:




v̂n = fn

v̂k(xk) = fk(xk) ∨ ηNk+1

(
dQk+1(xk, ·)
dΦk+1(ηNk )

v̂k+1

)
for all 0 ≤ k < n ,

(1.4.8)

Following again the robust lemma we proposed in section 1.2, we can estimate

the approximation error by the following theorem:

Theorem 1.4.1. For any 0 ≤ k ≤ n, any integer p ≥ 1, we have

sup
x∈Ek

‖(v̂k − vk)(x)‖Lp
≤ 2 a(p)√

N

∑

k<l<n

qk,l

[
Qk,l+1(h

p′−1
l+1 v

p′

l+1)(x)
] 1

p′

,

where p′ is the smallest even integer greater than p, we refer the reader to 4.5 for

more details on other coefficients in above display.

1.4.2 Numerical results

In the end of chapter 4, some numerical examples are provided to test this new

algorithm. Those are very good examples to have an idea of the choice of potential
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functions. In further development, we name our algorithm Stochastic Mesh with

Change of Measure (SMCM) and compare the results with the standard Stochastic

Mesh (SM) algorithm without change of measure.

In these numerical tests we have considered a simple Black-Scholes price model.

However, notice that both algorithms (SM and SMCM ) can be applied in a general

Markovian framework. The asset prices are modeled by a d-dimensional Markov

process (St) such that each component (i.e. each asset) follows a geometric Brownian

motion under the risk-neutral measure, that is, for assets i = 1, · · · , d,

dSt(i) = St(i)(rdt+ σdzit) , (1.4.9)

where zi, for i = 1, · · · , d are independent one dimensional standard Brownian

motions. Unless otherwise specified, the interest rate r is set to 10% annually and

the volatility is supposed to be the same for all assets, σ = 20% annually. The

starting prices of the assets are for all i = 1, · · · , d, St0(i) = 1. We consider two

types of Bermudan options with maturity T = 1 year and 11 equally distributed

exercise opportunities at dates tk = kT/n with k = 0, 1, · · · , n = 10, associated

with two different payoffs:

1. Geometric average put option with payoff (K −∏d
i=1 ST (i))+,

2. Arithmetic average put option with payoff (K − 1
d

∑d
i=1 ST (i))+,

The benchmark values of these options are reported on Table 1.3.

Strike K = 0.95 K = 0.85 K = 0.75

Option value 0.0279 0.0081 0.0015

Table 1.3: Benchmark values for the geometric put option obtained by using the Stochas-

tic Mesh method with 10000 particles. n = 11 exercise opportunities, T = 1, S0 = 1 and

r = 10%/d, σi = 20%/
√
d for the geometric payoff and r = 10%, σi = 20% for the

arithmetic payoff.

We consider the Markov chain (Xk)0≤k≤n, taking values on Ek = R+d, obtained

by discretization of the time-continuous process S defined by (4.7.1) at times of

exercise opportunities, 0 = t0 < · · · < tn = T , such that for all k = 0, · · · , n ,
Xk = Stk .

Now, we can introduce the sequence of positive functions (Gk)1≤k≤n, defining the

change of measure (4.3.1), as follows:





G0(x1) = (f1(x1) ∨ ε)α ,

Gk(xk, xk+1) =
(fk+1(xk+1)∨ε)α

(fk(xk)∨ε)α , for all k = 1 , · · · , n− 1 ,

(1.4.10)
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where fk are the payoff functions and α ∈ (0, 1] and ε > 0 are parameters fixed in

our simulations to the values α = 1/5 and ε = 10−7.

For each example, we have performed the algorithm for different numbers of

mesh points N = 100 , 200 , 400 , 800 , 1600 , 3200 , 6400. 1000 runs of both

algorithms ( Stochastic Mesh (SM) and Stochastic Mesh with Change of Measure

(SMCM)) were performed to compute the mean and confidence intervals of each

estimate.

Simulation results are reported in Figure 1.3, 1.4 and 1.5 for the geometric and

arithmetic put payoff, with strikes corresponding to standard out of the money puts

to deep out of the money puts: K = 0.95, K = 0.85 and K = 0.75.

Notice that both algorithms (the Stochastic Mesh algorithm with and with-

out Change of Measure) have been implemented without any standard variance

reduction technique (control variate, stratification, . . . ). In term of complexity, the

Stochastic Mesh algorithm with Change of Measure is equivalent to the standard

Stochastic Mesh algorithm: the complexity is in both cases quadratic with the num-

ber of mesh points O(N2) since the number of operations required to operate the

change of measure is negligible.

We have reported on our graphs two types of estimates:

• the Positively-biased estimator provided by the backward induction on the

value function;

• the Negatively-biased estimator provided by the associated optimal exercise

policy. This estimate is obtained via a two-step procedure: first, the optimal

policy is approximated in the backward induction on the value function, then

the policy is evaluated using the standard forward Monte Carlo procedure.

Note that the resulting estimator is known to provide a lower bound (in av-

erage) to the option price. In our simulation, we have used Nforward = 10000

Monte Carlo forward simulations.

As expected, one can observe on Table 4.2, that the SMCM algorithm allows to

obtain an estimate, v̂SMCM , with the same complexity but with a smaller variance

than the standard SM algorithm estimate, v̂SM , especially for deep out the money

options.

More surprisingly, one can observe on Table 4.2 and Figure 1.3, 1.4 and 1.5 that

the SMCM algorithm also allows to reduce significantly the estimator bias which is

known to compose the growing part of the error when the number of underlying as-

sets increases. For instance, one can notice that the SMCM algorithm achieves the

convergence in average of the Positively-biased estimate to the Negatively-biased

estimate for a number of mesh points much smaller than for the SM algorithm.

Hence, the SMCM could also be a way to deal with high dimensional optimal stop-
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Figure 1.3: Positively-biased option values estimates (average estimates with 95% con-

fidence interval computed over 1000 runs) and Negatively-biased option values estimates

(average estimates over the 1000 runs each forward estimate being evaluated over 10000

forward Monte Carlo simulations), computed by the SM algorithm (in blue line) and the

SMCM algorithm (in red line), as a function of the number of mesh points for geomet-

ric (on the left column) and arithmetic (on the right column) put options with strike

K = 0.95.
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Figure 1.4: Positively-biased option values estimates (average estimates with 95% con-

fidence interval computed over 1000 runs) and Negatively-biased option values estimates

(average estimates over the 1000 runs each forward estimate being evaluated over 10000

forward Monte Carlo simulations), computed by the SM algorithm (in blue line) and the

SMCM algorithm (in red line), as a function of the number of mesh points for geomet-

ric (on the left column) and arithmetic (on the right column) put options with strike

K = 0.85.
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Figure 1.5: Positively-biased option values estimates (average estimates with 95% con-

fidence interval computed over 1000 runs) and Negatively-biased option values estimates

(average estimates over the 1000 runs each forward estimate being evaluated over 10000

forward Monte Carlo simulations), computed by the SM algorithm (in blue line) and

the SMCM algorithm (in red line), as a function of the number of mesh points for geo-

metric (on the left column) and arithmetic (on the right column) put options with strike

K = 0.75. (For the clarity of the graph (f), the Negatively-biased estimate is not reported,

the associated variance (for 10 000 forward Monte Carlo simulations) being relatively

strong). 30
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ping problems since the algorithm complexity remains insensitive to the dimension

whereas the convergence rate is not significantly reduced.

Payoff K d = 1 d = 2 d = 3 d = 4 d = 5
Geometric 0.95 1 (1%) 1 (3%) 1 (6%) 1 (9%) 1 (10%)

Put 0.85 5 (2%) 8 (6%) 6 (11%) 4 (14%) 3 (14%)
0.75 18 (6%) 28 (11%) 18 (17%) 16 (18%) 11 (16%)

Arithmetic 0.95 1 (1%) 3 (2%) 3 (7%) 4 (13%) 5 (18%)
Put 0.85 5 (2%) 13 (6%) 24 (19%) 56 (24%) 100 (20%)

0.75 18 (6%) 71 (15%) 363 (14%) 866 (16%) − (−)

Table 1.4: Variance ratio ( V ar(v̂SM )
V ar(v̂SMCM )) and Bias ratio (E(v̂SM )−E(v̂SMCM )

E(v̂SM ) ) (within paren-

theses) computed over 1000 runs for N = 3200 mesh points. (For the arithmetic put,

when d = 5 and K = 0.75, the 1000 estimates provided by the standard SM algorithm

were all equal to zero, hence the associated variance ratio has not been reported).
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1.5 Organization of the thesis and contributions

This thesis is organised four chapters.

Chapter 1 provides an overview of the thesis, outlines the motivation and sum-

marizes the major contributions.

Chapter 2 is aimed to give a general introduction to the theory of interacting

particle methods, and an overview of its applications to computational finance. This

result has been published as a chapter in Numerical methods in Finance of Springer

Proceedings in Mathematics.

• Sections 2.1-2.3 survey the main techniques and results on interacting particle

systems.

• Sections 2.4-2.7 explain how these techniques can be applied to the numerical

solution of a variety of financial applications such as pricing complex path de-

pendent European options, computing sensitivities, pricing American options

or numerically solving partially observed control and estimation problems.

Chapter 3 presents the optimal control problem in the pricing of American

options, and analyzes the robustness properties of the Snell envelope equations. This

chapter provides a general framework to analyse different approximation methods.

This result has been published as a journal article in SIAM Journal on Financial

Mathematics.

• Sections 3.3 and 3.4 consider a series of approximation schemes, including

cut-off type approximations, Euler discretization schemes, interpolation meth-

ods, quantization tree methods, and the Stochastic Mesh method of Broadie-

Glasserman. In each situation, we provide non asymptotic convergence es-

timates, including Lp-mean error bounds and exponential concentration in-

equalities. We deduce these estimates from a single and general robustness

property of Snell envelope semigroups. In particular, this analysis allows us

to recover existing convergence results for the quantization tree method and

to improve significantly the rates of convergence obtained for the Stochastic

Mesh estimator of Broadie-Glasserman.

• Section 3.5 provides a new approach based on a genealogical tree approxi-

mation method of the reference Markov process in terms of a neutral type

genetic model. In contrast to Broadie-Glasserman Monte Carlo method, the

computational cost of this new stochastic approximation is linear in the num-

ber of random samples. Some simulation results are provided and confirm the

interest of this new algorithm.
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Chapter 4 analyzes and computes the Snell envelope in the specific case where

the criterion to optimize is associated with a small probability or a rare event.

• Sections 4.1-4.3 present and analyze the Snell envelope with small probabil-

ity criteria. We resolve the high dimensionality problem arisen in the small

probability criteria.

• Sections 4.4-4.7 provide a new approach which combines the Stochastic Mesh

approach of Broadie and Glasserman with a particle approximation scheme

based on a specific change of measure designed to concentrate the computa-

tional effort in regions pointed out by the criteria. The theoretical analysis of

this new algorithm provides non asymptotic convergence estimates. Finally,

the numerical tests confirm the practical interest of this approach.
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Chapter 2

A survey on Particle Methods

with Financial Applications

2.1 Introduction

The growing field of Feynman-Kac expectations and related particle models is one

of the most active contact points between probability theory and practical appli-

cations. The particle simulation techniques they suggest are also called sequential

Monte Carlo methods in Bayesian statistics, and particle or genetic type filters

in advanced signal processing. They are used to approximate a flow of proba-

bility measures with an increasing level of complexity. This class of probabilistic

models includes conditional distributions of signals with respect to noisy and par-

tial observations, non absorption probabilities in Feynman-Kac-Schrödinger models,

Boltzmann-Gibbs measures, as well as conditional distributions of stochastic pro-

cesses in critical regimes. For a thorough discussion on the application domains

of interacting particle algorithms, we refer the reader to the first rigorous study of

particle filters [39], the review article [55], the monograph [40], and the references

therein.

Recently, these interacting particle techniques have been applied in several areas

of finance. For instance, using the rare event interpretation of particle methods,

R. Carmona, J. P. Fouque and D. Vestal proposed in [24] an interacting particle

algorithm for the computation of the probabilities of simultaneous defaults in large

credit portfolios. These developments for credit risk computation were then im-

proved in the subsequent paper [21] by R. Carmona and S. Crépey, and by P. Del

Moral and F. Patras in [57].

Following the particle filtering approach which is already widely used to estimate

hidden Markov models, V. Genon-Catalot, T. Jeantheau and C. Laredo [73] in-
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troduced particle methods for the estimation of stochastic volatility models. This

approach has been applied for filtering nonlinear and non-Gaussian models by R.

Casarin [27], R. Casarin and C. Trecroci [28], and V. Rossi and J. P. Vila[105].

More recently, M. S. Johannes, N. G. Polson and J.R. Stroud [79] used a similar ap-

proach to filter latent variables such as the jump times and sizes in jump diffusion

price models. Particle techniques can also be used for stochastic optimization as

demonstrated by S. Ben Hamida and R. Cont who provide in [10] a new calibration

algorithm allowing for the existence of multiple global minima. Finally, in [50], in-

teracting particle methods were used to estimate backward conditional expectation

for American option pricing.

In this chapter, we survey the main ideas behind the particle technology alluded

to above, with illustrations from recent applications in computational finance. We

tried to provide a synthetic picture of particle solutions to some estimation prob-

lems arising in mathematical finance. We adopted an informal style of presentation,

focusing on the ideas rather than on their detailed rigorous mathematical justifica-

tion.

This chapter is organized as follows. In the following section, we highlight the

natural link between option prices and Feynman-Kac formula. Then in the third

section, the main principles and results related to particle methods are recalled. Fi-

nally, we dedicate the last sections of this chapter to the application of these particle

techniques to some specific financial problems: credit risk analysis, sensitivity com-

putation, American option pricing and control and estimation of partially observed

models.

2.2 Option prices and Feynman-Kac formula

The numerical pricing of European-style options has been extensively studied in the

mathematical finance literature. It would be foolish to try to cover this subject

in the present chapter. We refer the reader to I. Karatzas and S.E. Shreve’s book

[80], and the more focused account by Y. Achdou and O. Pironneau [1] for a sample

of texts relevant to the present discussion. European option pricing is a standard

numerical problem in finance, well suited to our interpretation of option prices in

terms of Feynman-Kac formula.

2.2.1 Discrete time models

We first consider discrete time models (often called multi-period models by economists).

Option prices are often given by Feynman-Kac formulas of the form

Qp,n(fn)(Xp) := E

(
fn(Xn)

∏

p≤q<n

Gq(Xq) |Xp

)
, (2.2.1)
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with the terminal condition Qn,n(fn)(x) = fn(Xn). Here p is the time at which

the price is computed, and n is the time of maturity of the option, f = (fn)n is a

space-time function, i.e. a function of time n and a variable in the state space En at

time n of the possible values of the underlying interest X = (Xn)n, fn(x) giving the

payoff of the option at time n if the underlying interest has the value x, i.e. Xn = x.

We will assume throughout that X = (Xn)n is a Markov chain, and we will denote

by M = (Mp,n)p,n its transition probability

Mp,n(x, dy) := P(Xn ∈ dy|Xp = x), x ∈ Ep. (2.2.2)

We assume that the state space En of the chain at time n can change with n. We

shall use the simpler notation M when the Markov chain is time homogeneous, in

which case Mp,n = Mn−p = Mn−p, and the state space E does not change with

time. The major ingredients in the above equation are the Markov chain X and

the space-time potential G = (Gn)n, given for each n, by a non-negative measurable

function on En. The chain X is usually constructed from random factors evolving

in time and price series Sj = (Sj
n)n which gives the time evolution of the risky asset

prices. We give some simple example below. To conform with the terminology of

the particle models used to understand theoretically and implement numerically the

Feynman-Kac formulas of the above type, we shall sometimes call Xn a particle at

time n. Depending on the application under consideration, the role of the potential

Gn will be to capture the discounting necessary in the computation of the price, or

some constraints (like barriers) present in the indenture of the option, or the risk

premium in the form of a pricing kernel, or even to force the particle to visit some

parts of the space-time domain where rare events occur, in which case its financial

interpretation will not be possible.

We give some simple examples to illustrate the versatility of formula (2.2.1).

European barrier option.

In this case, we assume that there is only one underlying stock whose time evolution

is given by a Markov chain S = (Sn)n, that Xn = Sn is the price of this underlying

stock at time n, that fn gives the payoff function if the maturity is n, and that

K > 0 is the strike of the option. If we assume that stochastic interest rates are

given by a non-negative space-time function r = (rn)n of the chain, and if we denote

by A = (An) the sequence of barrier sets Ap, then the price of the barrier option is

given by the Feynman-Kac formula (2.2.1) with

fn(Xn) = (Xn −K)+ and Gq(Xq) = 1lAq(Xq) e
−rq(Xq) . (2.2.3)

Asian option

This example is important because it allows us to illustrate the use of the Feynman-

Kac formula (2.2.1) when the chain X evolves on path space. Indeed, if we assume

37



CHAPTER 2. A SURVEY ON PARTICLE METHODS WITH FINANCIAL

APPLICATIONS

that S = (Sn)n is a Markov chain in a state space E giving the time evolution of

the stock price on which the Asian option is written, at each time n we define Xn

as the path from time p = 0 up to the current time p = n of the underlying Markov

chain. In other words:

Xn := (S0, . . . , Sn) ∈ En := En+1

and the payoff of the option can be written in the form

fn(Xn) = (Hn(Xn)−K)+ , (2.2.4)

where K > 0 is the strike of the option and where, in the case of the one dimensional

fixed strike Asian option (E = R):

Hn(Xn) =
1

n+ 1

n∑

p=0

Sp . (2.2.5)

Notice that this formalism for the Asian option includes the case of plain European

options if we take Hn(Xn) = fn(Sn). Notice also that, if we choose K = 0 in (2.2.4)

and

Hn(Xn) =
1

n+ 1

n∑

p=0

Sp − Sn ,

then we have the floating strike Asian option with a null price at the origin. Many

other payoff functions on path space can be considered, including geometric means,

better-off or worse-off lookback options related to the maximum or the minimum

values of the historical asset prices.

Remark 1. Notice that Importance Sampling models can also be encapsulated

in the Feynman-Kac formula (2.2.1). These stochastic sampling methods are simple

change of probability measures. They are often used in rare event simulation to

make events with small occurrence probability less rare [40, 47].

2.2.2 Continuous time models

In continuous time finance, the stochastic factors and the underlying stock prices

are often given by diffusion models, and the reference Markov chain sequence S

or X often results from a discretization procedure, such as those given by Euler

or Milshtein schemes. For instance, let us suppose we are given an Rd-valued Itô

stochastic differential equation

dSc
t = b(Sc

t ) dt+ σ(Sc
t ) dWt , (2.2.6)

with some initial random vector Sc
0 ∈ Rd with distribution η0 = Law(Sc

0). Here,

W = (Wt)t≥0 is a standard d-dimensional Wiener process, and for any x ∈ Rd,
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σ(x) = (σi,j(x))1≤i,j≤d is a d× d symmetric nonnegative definite matrix, and b(x) =
(bi(x))1≤i≤d a d-dimensional vector. The Euler discretization scheme over the regular

time subdivision (also called time grid) (tn)n≥0, with the mesh (tn − tn−1) = ∆ > 0

is given by

Sn − Sn−1 = b (Sn−1) ∆ + σ (Sn−1)
(
Wtn −Wtn−1

)
. (2.2.7)

The elementary Markov transition

M(x, dy) := P (Sn ∈ dy|Sn−1 = x)

(the time subscripts are not needed because of the time homogeneity of the chain)

can alternatively be defined in the integral form on bounded test functions as below

M(f)(x) :=

∫
M(x, dy) f(y) = E

(
f
(
x+ b(x)∆ + σ(x)

√
∆ Y

))
, (2.2.8)

where Y = (Y i)1≤i≤d is a sequence of independent and centred Gaussian random

variables with unit variance.

In the same vein, suppose that the evolution of the underlying prices is given by

a jump type Markov process Sc which evolves between jumps times Tn as in (2.2.6)

the jump times Tn being defined in terms of a sequence (en)n≥1 of independent and

identically exponentially distributed random variables with unit parameter by the

following recursion

Tn = inf

{
t ≥ Tn−1 :

∫ t

Tn−1

λ(Su) du ≥ en

}
, (2.2.9)

with T0 = 0 and some non negative function λ. At the time Tn of a jump, the

process jumps from Sc
Tn− to a new location Sc

Tn
randomly chosen with distribution

P (Sc
Tn−, dy) where P (x, dy) is a given Markovian transition kernel.

A discrete time approximation model Sn is defined as above by replacing the

transition M in (2.2.8), by the Markov transition MJ such that

(MJ)(x, dz) :=

∫
M(x, dy) J(y, dz) ,

with the geometric jump type Markov transition

J(y, dz) = e−λ(y)∆ δy(dz) +
(
1− e−λ(y)∆

)
P (y, dz) .

If we revisit the example of the barrier option for the sake of illustration, for

time homogeneous barrier regions An = A, and non-negative stochastic interest

rates (R(St))t≥0 given by a function R on R, if we set rn(x) = Rtn(x)∆ and X = S

in (2.2.3), then formula (2.2.1) gives a ∆-approximation of the continuous time

model

E

(
ftn(S

c
tn) 1lT≥tn exp

{
−
∫ tn

tp

Rs(S
c
u)du

}∣∣∣Sc
tp = x

)
,

where T stands for the first time the process S gets out of the barrier region A.
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2.3 Interacting particle approximations

In this section, we present a brief introduction to interacting particle methods as

they pertain to the computation of the Feynman-Kac expectations discussed in the

previous section. These advanced stochastic techniques are becoming increasingly

popular in economics as well as in finance. A detailed survey to this field can be

found in [36, 54].

2.3.1 Feynman-Kac semigroups

First, we notice that the integral operators Qp,n defined in (2.2.1) can be interpreted

as the linear semigroup associated with the flow of non negative measures γn whose

values on test functions fn are given by:

γn(fn) :=

∫
γn(dx) fn(x) = E

(
fn(Xn)

∏

0≤q<n

Gq(Xq)

)
. (2.3.1)

The operators Qp,n were defined in (2.2.1) through their action on functions. Letting

them act on measures by duality we get:

γn(dy) = (γpQp,n)(dy) :=

∫
γp(dx) Qp,n(x, dy) ,

and for 0 ≤ p ≤ q ≤ n we have the semigroup property

Qp,n(x, dz) = (Qp,qQq,n)(x, dz) :=

∫
Qp,q(x, dy) Qq,n(y, dz) .

Using these formulas in numerical implementations requires extensive calculations

due to the fact that the total mass of the measures γn obtained by choosing the

constant function fn(x) ≡ 1 in (2.3.1) is very costly to compute with a reasonable

precision. To illustrate this assertion, let us suppose that Gp = 1lA, for any p ≤ n.

Then, the total mass γn(1l) coincides with the probability that the trajectories of

the Markov chain X stay in the set A for all times:

γn(1l) = E

(
∏

0≤q<n

Gq(Xq)

)
= P (Xp ∈ A 0 ≤ p < n) ,

which is, in most cases, difficult to compute. One natural way to resolve this esti-

mation problem is to work with the normalized distributions ηn defined by:

ηn(fn) := γn(fn)/γn(1l) . (2.3.2)

which should be a reasonable alternative since the original unnormalized measures

can be recovered from the normalized ones with the following easily checked multi-

plicative formula:

γn(fn) = ηn(fn)×
∏

0≤p<n

ηp(Gp) . (2.3.3)
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The second key observation is that the normalized distributions ηn satisfy the fol-

lowing recursive equation giving a nonlinear transition in ηn−1:

ηn(dy) =
(
ηn−1Kn,ηn−1

)
(dy) =

∫
Kn,ηn−1(x, dy)ηn−1(dx) , (2.3.4)

where for each probability measure η on En−1, the Markovian transition kernel Kn,η

on En−1 is defined by

Kn,η(x, dz) =

∫
Sn−1,η(x, dy)Mn−1,n(y, dz) , (2.3.5)

where in the above displayed formula, Sn−1,η is the selection-jump type Markov

transition defined by

Sn−1,η(x, dy) = Gn−1(x) δx(y) + (1−Gn−1(x)) ΨGn−1(η)(dy) , (2.3.6)

with the Boltzmann-Gibbs transformation

Ψg(η)(dy) =
g(y)

η(g)
η(dy) . (2.3.7)

Remark 2. It is instructive, and in fact crucial given the use of the above result

in the next subsection, to understand the effect of this Boltzmann-Gibbs transfor-

mation (2.3.7) in the case of point measures. Indeed, in this case:

η =
N∑

i=1

αiδxi
→֒ ψg(η) =

N∑

i=1

βiδxi

where the new weights βi are given by:

βi =
αig(xi)∑N
j=1 αjg(xj)

, i = 1, · · · , N

which shows that de facto, the Boltzmann-Gibbs transformation is a resampling

with replacement of the xi’s according to the weights αig(xi) given by the original

weights and the function g. This interpretation will be extremely important for

Monte Carlo implementation purposes.

Remark 3. Formulas (2.3.4) and (2.3.5) show that the passage from ηn−1 to ηn
is done in two steps. The individual particles x ∈ En−1 distributed as ηn−1, are

first moved into dy according to the transition Sn−1,ηn−1(x, dy). This is a selection

since (2.3.6) says that the particle remains at x with probability Gn−1(x), and with

probability 1−Gn−1(x) it is chosen at random (independently of its current position

x ∈ En−1) according to the distribution Ψηn−1(ηn−1)(dy). The resulting particles

y ∈ En−1 are then mutated into particle z ∈ En according to the transition Mn−1,n
of the original Markov chain X = (Xn)n. The interpretation of the selection step
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will be crystal clear when we implement it in for probability distributions with finite

supports which we will interpret as empirical distributions of particle systems.

Remark 4. Note that the above interpretation is not limited to [0, 1]-valued

potential functions G as long as G is non-negative and bounded, and as long as we

replace Gn by ǫnGn in (2.3.6) and (2.3.7) with ǫn such that ǫnGn ∈ [0, 1].

2.3.2 Interacting particle methodologies

We now revisit the measure flows of the previous subsection in the case of point

measures given by the empirical distribution of a fixed but large number N of

particles. Let ξ := (ξn)n≥0 be a Markov chain with product EN
n as state space at

time n. So at each time n, ξn is an N -tuple ξn := (ξin)1≤i≤N . We assume that the

transition probability of this chain is given by:

P
(
ξn ∈ dx1 × · · · × xN |ξn−1

)
=
∏

1≤i≤N
Kn,ηNn−1

(ξin−1, dx
i) , (2.3.8)

where ηNn−1 denotes the empirical measure of the components of ξn−1:

ηNn−1 :=
1

N

N∑

i=1

δξin−1
.

We assume that the initial law ηN0 is a product distribution of the form ηN0 =

(η0 × · · · × η0), or in other words that the initial system ξ0 = (ξi0)1≤i≤N consists of

N independent and identically distributed random variables ξi0 with common law

η0. The transition mechanism of the chain ξ depends only upon the empirical dis-

tribution of the components of its state, not the actual values of these components.

Indeed, given the empirical distribution ηNn−1 of the ξ
i
n−1’s, these ξ

i
n−1’s evolve inde-

pendently of each other, each ξin−1 moving according to the transition kernelKn,ηNn−1
.

So the interaction between the N particles is highly symmetric, and only through

the empirical distribution of the particles. For this reasons, the name mean field

particle system is used, still as a reference to the particle physics models for which

they were introduced.

An interacting particle implementation of the measure flow introduced in the

previous subsection is done via the flow of measures (ηNn )n viewed as an approxi-

mation of the flow (ηn)n. The rationale behind this approximation is that since η
N
n

is the empirical distribution of N independent random variables with distributions

Kn,ηNn−1
(ξin−1, x), we expect that when η

N
n−1 is a good approximation of ηn−1 then in

view of (2.3.8), ηNn should be a good approximation of ηn. We define the approxi-

mation error (which is stochastic because of the randomness of the particles ξin) in

terms of a sequence of centered random fields V N
n defined by:

V N =
√
N(ηn − ηNn ) =

√
N(ηNn−1Kn,ηNn−1

− ηn−1Kn,ηn−1). (2.3.9)
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Then, under rather weak regularity conditions, one can prove that (V N
n )n≥0 con-

verges in law as N → ∞, toward a sequence of independent centered Gaussian

fields V = (Vn)n≥0 with a variance function that can be explicitly expressed in

terms of the Markov transitions Kn,ηn−1 . This can be checked by induction [39] on

the time parameter, or using martingale decompositions in terms of local sampling

random fields [40, 55].

Using formula (2.3.3) as rationale, the unnormalized measures γn are approxi-

mated by the unbiased particle (unnormalized) measures γNn defined by their actions

on test functions by:

γNn (fn) = ηNn (fn)×
∏

0≤p<n

ηNp (Gp),

and the weak consistency results

lim
N→∞

γNn (fn) = γn(fn)

for each fixed test function fn is proven by an elementary argument.

The stochastic perturbation analysis discussed above is developed in some details

in [40, 51, 55, 59], and in the recent book [43]. Under some appropriate regularity

conditions on the flow of measures ηn, for any bounded measurable function f , any

time horizon n, any N ≥ 1, and any λ, the probability to have any of the following

estimates is greater that 1− 2e−λ
∣∣ηNn (f)− ηn(f)

∣∣ ≤ (1 +
√
2λ) c/

√
N

and ∣∣1− γNn (1l)/γn(1l)
∣∣ ≤ n

(
c1

(
1 + 2(λ+

√
λ)
)
/N +

√
c2λ/N

)
,

for some constants c, c1, c2 <∞, whose values do not depend upon time.

By construction, the flow of Feynman-Kac measures evolves according to the

two-step updating/prediction transitions,

ηn
Sn,ηn−−−−−−−−→ η̂n = ηnSn,ηn = ΨGn(ηn)

Mn+1−−−−−−−→ ηn+1 = η̂nMn+1 . (2.3.10)

In the corresponding N -mean field particle model, this pair of recursions is replaced

by a two-step selection/mutation transition in product spaces

ξn ∈ EN
selection
−−−−−−−−→ ξ̂n ∈ EN

mutation
−−−−−−−→ ξn+1 ∈ EN . (2.3.11)

The genetic type evolution of the system is summarized by the following synthetic

diagram: 


ξ1n
...

ξin
...

ξNn




S
n,ηNn−−−−−−−−−−→




ξ̂1n
Mn+1−−−−−−−−−−→

...

ξ̂in −−−−−−−−−−→
...

ξ̂Nn −−−−−−−−−−→

ξ1n+1
...

ξin+1
...

ξNn+1



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with the selection Markov transition:

Sn,ηNn (ξin, x) := Gn(ξ
i
n) 1lξin(x) +

(
1−Gn(ξ

i
n)
) ∑

1≤j≤N

Gn(ξ
j
n)∑

1≤k≤N Gn(ξkn)
1lξjn(x) .

(2.3.12)

For general non necessarily [0, 1]-valued potential functions G, we replace the ac-

ceptance rate Gn(ξ
i
n) by Gn(ξ

i
n)/maxj Gn(ξ

j
n).

2.3.3 Path space models

We now work in the path space set up introduced earlier in our discussion of the

Asian option example. In other words, we assume that the reference Markov chains

X and the potential function G in (2.3.1) are defined on path spaces:

Xn := (S0, · · · , Sn) ∈ En = En+1 and Gn(Xn) := Gn (S0, . . . , Sn) . (2.3.13)

Genealogical tree based algorithms

The abstract Feynman-Kac formulae discussed above are more general than it may

appear. They can be used to analyze path spaces models, including historical pro-

cesses or transition space models, as well as finite excursion models. These stochastic

models also encapsulate quenched Feynman-Kac models with respect to some pa-

rameter, island type coarse grained particle algorithms, Brownian type bridges and

linear Gaussian Markov chains conditioned on starting and end points. For n exten-

sive discussion on these path space models, we refer the interested reader to Section

2.4, Section 2.6, and Chapters 11-12 in the monograph [40], as well as Section 2.6

of the lecture notes [51], and Section 2.3.4 and Section 2.7.3 of the present chapter.

In the situation of this subsection, γn is a measure on E
n+1 defined by

γn(fn) = E

(
fn(S0, . . . , Sn)

∏

0≤q<n

Gq(S0, . . . , Sq)

)
.

Its mean field particle approximation is defined as before, but now, a particle at time

n is a path of length n + 1. The selection transition consists in selecting a path-

particle with high potential value, while the mutation transition simply consists

in extending the path with an elementary move according to the auxiliary process

X ′
n = Sn, with Markov transitions M ′

n on the state space E. When the potential

functions only depend upon the terminal value of the paths

Gn(Xn) := G′n(Sn) ,

for some G′n which we sometimes call fitness function, we can check that the path

particle model gives the evolution of the genealogical tree model associated with the
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time evolution of the individuals ξin evolving with M
′
n-mutations and G

′
n-selections.

In this situation, if

ξin := (ξi0,n, ξ
i
1,n, . . . , ξ

i
n,n)

stands for the i-th ancestral line of the current individual ξin,n after the n-th muta-

tion, then for any function fn on En, we have that

lim
N→∞

1

N

N∑

i=1

fn
(
ξi0,n, ξ

i
1,n, . . . , ξ

i
n,n

)
=

E

(
fn(S0, . . . , Sn)

∏
0≤p<nG

′
p(Sp)

)

E

(∏
0≤p<nG

′
p(Sp)

) .

(2.3.14)

In addition, we also have the unbiased unnormalized estimates in the sense that:

1

N

N∑

i=1

fn
(
ξi0,n, ξ

i
1,n, . . . , ξ

i
n,n

)
×
∏

0≤p<n

1

N

N∑

i=1

G′p(ξ
i
p,p)

≃N↑∞ E

(
fn(S0, . . . , Sn)

∏
0≤p<nG

′
p(Sp)

)
.

(2.3.15)

If we look at what this particle algorithm gives in the case of the one dimensional

fixed strike Asian option (2.2.5) with stochastic interest rates rp(X
′
p) > 0 and time

homogeneous barrier set Ap = A, we have the unbiased estimates:

E



(

1

n+ 1

n∑

p=0

Sp −K

)

+

1lT≥n exp

{
∑

0≤q<n

rq(Sq)

}


≃N↑∞
1

N

N∑

i=1

(
1

n+ 1

n∑

p=0

ξip,n −K

)

+

×
∏

0≤p<n

1

N

N∑

i=1

e−rp(ξ
i
p,p)1lA(ξ

i
p,p) ,

where T stands for the first exit time of the process S outside the barrier A. The

approximation of European barrier call option prices with strike K > 0, stochastic

interest rates rp(Sp), and time homogeneous barrier set A is even simpler. It is given

by the unbiased estimates:

E

(
(Sn −K)+ 1lT≥n exp

{∑
0≤q<n rq(Sq)

})

≃N↑∞
1

N

N∑

i=1

(
ξin,n −K

)
+
×
∏

0≤p<n

1

N

N∑

i=1

e−rp(ξ
i
p,p)1lA(ξ

i
p,p) .

If we use as before the notations ηNn and ηn for the occupation measures of the

ancestral lines and its limiting measures defined in (2.3.15), using the concentration

analysis of mean field particle models developed in [59], the following exponential

estimate was proved in [51]. Under some natural regularity conditions on the flow of
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the n-th time marginal measures, for any bounded measurable function fn on path

space, time horizon n, N ≥ 1, and λ, the following estimate:

∣∣ηNn (fn)− ηn(fn)
∣∣ ≤

(
c1 (n+ 1)

(
1 + 2(λ+

√
λ)
)
/N + c2

√
λ(n+ 1)/N

)
,

holds with probability greater that 1 − 2e−λ. Here c1 and c2 are finite constants

whose values do not depend on the time parameter.

Backward Markov chain model

To distinguish path space measures and their finite time marginals, we denote by

Γn and Qn the measures on path space defined for any function Fn on En by

Γn(Fn) = E

(
Fn(S0, . . . , Sn)

∏

0≤q<n

Gq(Sq)

)
and Qn(Fn) = Γn(Fn)/Γn(1l) ,

(2.3.16)

for some Markov chain S = (Sn)n on the state space E with initial distribution η0,

and some space time potential G = (Gn)n. We also denote by γn and ηn the n-th

marginal measure defined for any function fn on E by

γn(fn) = E

(
fn(Sn)

∏

0≤q<n

Gq(Sq)

)
and ηn(Fn) = γn(Fn)/γn(1l) .

We observe that

Γn(d(s0, . . . , sn)) :=

{
∏

0≤q<n

Gq(sq)

}
Pn(ds0 × · · · × dsn) , (2.3.17)

with the probability measure Pn on the path space En defined by

Pn(ds0 × · · · × dsn) = η0(ds0)M1(s0, ds1) . . .Mn(sn−1, dsn) .

We further assume that the Markov transitions Mn(s, ds
′) of the reference Markov

chain S has a density Hn(s, s
′) with respect to some measure λn(ds′):

Mn(s, ds
′) = Hn(s, s

′) λn(ds
′) .

In this case, one easily derives the following backward representation:

Qn(d(s0, . . . , sn))

:= ηn(dsn)× Mn,ηn−1(sn, dsn−1) · · · M2,η1(s2, ds1)×M1,η0(s1, ds0) ,

(2.3.18)

with the time reversal Markov transitions Mn,ηn−1(sn, dsn−1) defined by

Mn,ηn−1(sn, dsn−1) :=
ηn−1(dsn−1)Gn−1(sn−1)Hn(sn−1, sn)

ηn−1 (Gn−1Hn(., sn))
.
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We refer the interested reader to the article [45] for a detailed discussion on these

Markov transitions. Mimicking formula (2.3.18) an alternative particle approxima-

tion of the measures Qn by the following estimates

QN
n (d(s0, . . . , sn))

:= ηNn (dsn)×Mn,ηNn−1
(sn, dsn−1) · · ·M2,ηN1

(s2, ds1)×M1,ηN0
(s1, ds0)

→N↑∞ Qn(d(s0, . . . , sn))

(2.3.19)

and the unbiased unnormalized estimates

ΓN
n (d(s0, . . . , sn))

:= γNn (1l)×QN
n (d(s0, . . . , sn))

= γNn (dsn)×Mn,ηNn−1
(sn, dsn−1) · · ·M2,ηN1

(s2, ds1)×M1,ηN0
(s1, ds0)

→N↑∞ Γn(d(s0, . . . , sn)) .

(2.3.20)

Notice also that the computation of sums with respect to these particle measures

are reduced to summations over the particles locations ξin. It is therefore natural to

identify a population of individual (ξ1n, . . . , ξ
N
n ) at time n to a specific ordering of the

set {1, . . . , N} of indexes. In this case, the occupation measures and the functions
are identified with the following row and column vectors

ηNn :=

[
1

N
, . . . ,

1

N

]
and fn :=



fn(ξ

1l
n)
...

fn(ξ
N
n )




and the matrices Mn,ηNn−1
by the N ×N matrices

Mn,ηNn−1
:=




Mn,ηNn−1
(ξ1ln , ξ

1l
n−1) · · · Mn,ηNn−1

(ξ1ln , ξ
N
n−1)

...
...

...

Mn,ηNn−1
(ξNn , ξ

1l
n−1) · · · Mn,ηNn−1

(ξNn , ξ
N
n−1)


 ,

with the (i, j)-entry Mn,ηNn−1
(ξin, ξ

j
n−1) defined by:

Mn,ηNn−1
(ξin, ξ

j
n−1) =

Gn−1(ξ
j
n−1)Hn(ξ

j
n−1, ξ

i
n)∑N

k=1Gn−1(ξkn−1)Hn(ξkn−1, ξ
i
n)

.

For instance, the Qn-integration of normalized additive linear functionals of the form

F n(s0, . . . , sn) =
1

n+ 1

∑

0≤p≤n
fp(sp) (2.3.21)
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is given in the particle matrix approximation model by:

QN
n (F n) =

1

n+ 1

∑

0≤p≤n
ηNn Mn,ηNn−1

Mn−1,ηNn−2
. . .Mp+1,ηNp

(fp) . (2.3.22)

Several non asymptotic convergence estimates have been developed in [45], distin-

guishing the bias error

sup
n≥0

∣∣∣E
(
QN

n (F n)
)
−QN

n (F n)
∣∣∣ ≤ c

N
,

and the mean quadratic error

E
∣∣QN

n (F n)−Qn(F n)
∣∣2 ≤ c

N

(
1

n+ 1
+

1

N

)
, for all n ≥ 0 ,

where c is some finite constant that does not depend on the time parameter n.

Thus, for any large time horizon n ≥ N , the upper bound on the mean square error

given in the above right hand side is of the order 1/N2. More recently, a different

estimate was proven in [51] using the concentration methodology developed in [59].

Under some appropriate regularity conditions on the flow of the n-th time marginal

measures, for any sequence of bounded measurable functions fn, any time horizon

n, any N ≥ 1, and any λ, the estimate

∣∣QN
n (F n)−Qn(F n)

∣∣ ≤
(
c1

(
1 + 2(λ+

√
λ)
)
/N + c2

√
λ/(N(n+ 1))

)
,

for some constants c1, c2 < ∞ whose values do not depend upon n, holds with

probability greater that 1− 2e−λ.

Additive functionals of the form (2.3.21) arise in many applications in finance.

For instance, in the context of continuous Asian option, this approach could allow to

improve seriously the trade-off between the bias induced by the discrete approxima-

tion of the continuous integral payoff and the variance of the Monte Carlo method

approximating the expectation. We refer to [71] for a survey of numerical methods

for this type of options. As an example we consider the case of continuous Asian

options with payoff functions of the following general form

FT ((S
c
t )0≤t≤T ) =

(
1

T

∫ T

0

f(u, Sc
u) du−K

)+

.

The strategy coming out of the above discussion suggests to first estimate the payoff

by the following arithmetic average

F n(S
c
t0
, · · · , Sc

tn) =
1

n+ 1

∑

0≤p≤n
f(tp, Stp) ,

with a time discretization tp+1− tp = T/(n+1), inducing an approximation error of

order 1/n. Then the backward Markov chain scheme (2.3.22) can be used to estimate
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the expectation with N ≥ n particles, inducing the same order of approximation

error 1/n. Of course, usual variance reduction techniques as control variate can be

applied in addition to that approach.

This type of additive functionals will be used in Section 2.5 in our discussion of

sensitivity measure computations.

2.3.4 Parallel island particle models

Island genetic models are powerful parallel computational techniques used to speed

up interacting genetic search algorithms. These coarse grained parallel procedures

are very popular in genetic algorithms literature (see for instance [35, 112],[90], and

the references therein).

In our context, we run in parallel several genetic type interacting particle algo-

rithms on a collection of islands. At a geometric stochastic rate, the populations

between islands interact according to some selective migration processes. The island

selection mechanism is defined in terms of the averaged fitness of the individuals in

the island population.

To define these island particle models more precisely, we observe that the unbi-

ased properties of the unnormalized Feynman-Kac measures γNn can be rewritten as

follows

E

(
fn(Sn)

∏

0≤q<n

Gq(Sq)

)
= E

(
Fn(Xn)

∏

0≤p<n

Gp(Xp)

)
, (2.3.23)

with the Markov chain Xn = (ξin)1≤i≤N on the product spaces En = EN
n , an the

empirical functionals Fn, and Gn defined by

Fn(Xn) = ηNn (fn) =
1

N

N∑

i=1

fn(ξ
i
n) and Gn(Xn) = ηNn (Gn) =

1

N

N∑

i=1

Gn(ξ
i
n) .

Now, it is important to notice that the r.h.s. term in formula (2.3.23) has exactly

the same mathematical form as the Feynman-Kac measures γn introduced in (2.3.1).

Thus, applying the particle methodologies developed in Section 2.3.2 to these mod-

els, we define an N -interacting island particle model with a mutation and a selection

transition on the space of islands En.
During the mutation stage, the population in each island evolve independently

one another according to the genetic type Markov transitions of the chain Xn. In

other words, we run in parallel the selection mutation transitions of N genetic par-

ticle models (2.3.11). During the selection stage, we evaluate the Gn-potential value
of each island. As in (2.3.12), at a geometric rate we select the island populations

using the empirical potential function Gn.
We observe that the island version of the acceptance ratio in the selection tran-

sition (2.3.12) discussed in the end of Section 2.3.2 tends to 1, as the number of
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individuals in each island tends to infinity. In other words, the independence de-

gree between the islands increases with respect to the size of their populations. As

proposed in the recent article [2], an alternative sampling approach is to use an

independent Metropolis-Hasting model with a target measure defined by the r.h.s.

term in formula (2.3.23) (up to some normalizing constant). One again, the unbiased

property (2.3.23) ensures that the limiting target measure coincides with the desired

Feynman-Kac measures ηn, as well as the measure Qn for the path space version

of these island models. These island particle models will be used in Section 2.7.3

dedicated to fixed parameter estimation in Hidden Markov chain models.

2.4 Application in credit risk analysis

The simulation of credit events with remarkably small probabilities is a key issue for

regulatory and risk management purposes, as well as for the pricing of credit deriva-

tives. The main variance reduction technique used in Monte Carlo computations of

rare events is importance sampling. However in general multi-name credit models,

desirable changes of measure favoring sample paths realizing rare events are highly

unlikely to lead to explicit formula. In this case importance sampling is no longer

an option. A natural alternative is then interacting particles methods.

Though interacting particle systems are known to provide very efficient variance

reductions in Monte Carlo approximations of rare events, these algorithms have

only appeared recently in the credit risk literature with for instance the articles of

Carmona, Fouque and Vestal [24] and Carmona and Crepey [21]. In Chapter 21

of [17], the authors provide an overview of the main techniques and results of the

application of interacting particle systems to credit risk analysis. We also refer

to [57] for some recent applications of these techniques in the financial risk area. All

these results show the strengths of IPS based Monte Carlo computations of small

default probabilities, especially when other methods fail. A systematic comparison

with importance sampling is provided in [21].

2.4.1 Change of measure for rare events and Feynman-Kac

formula

We consider a Markov chain S = (Sn)0≤n≤T representing at each time n, d cor-

related risky sources Sn = (S1
n, . . . , S

d
n) ∈ E. We are interested in understanding

the asymptotic behavior of probabilities of rare events of the form {VT (ST ) ≥ K}
or more generally {VT (S0, . . . , ST ) ≥ K}, where VT is some real positive function

whose value can be thought of as a risk measure.

To compute P(VT (ST ) ≥ K), standard Monte Carlo simulations usually fail,

because of the difficulty to ensure that enough simulation samples realize the rare
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event. A partial remedy amounts to providing a reasonably tight upper-bound based

on large deviations ideas. Indeed, for any λ ≥ 0, we have:

P(VT (ST ) ≥ K) = (E
(
1VT (ST )≥Ke

λVT (ST )e−λVT (ST )
)
≤ e−λKE

(
1VT (ST )≥Ke

λVT (ST )
)
,

and if we denote by E(λ) the expectation under the probability P(λ) defined by

dP(λ) ∝ eλVT (ST )dP ,

we have

E
(
1VT (ST )≥Ke

λVT (ST )
)
= E(λ)

(
1VT (ST )≥K

)
E
(
eλVT (ST )

)
,

and using the fact that:

E(λ)
(
1VT (ST )≥K

)
≤ 1,

we get:

P(VT (ST ) ≥ K) ≤ e− supλ≥0(λK−Λ(λ)) , (2.4.1)

where Λ(λ) is defined by Fenchel transformation as log(E(λVT (ST ))).

From the above argument we see that we can approximate the desired probability

by searching a proper λ. This large deviation type approach is widely used, but in

the form of (2.4.1), it requires extensive calculations in order to obtain a reasonable

approximation of the desired probability.

Del Moral and Garnier provide in [47] a zero-bias estimate with interacting par-

ticle systems. The idea is to construct a genealogical tree based model as mentioned

in Section 2.3.3 instead of the large deviation type inequality used above.

Using again the same change of measure from P to P(λ), we remark that the

target probability

P(VT (ST ) ≥ K) = E
(
1VT (ST )≥Ke

λVT (ST )e−λVT (ST )
)

can be written as

E(λ)
(
1VT (ST )≥Ke

−λVT (ST )
)
E
(
eλVT (ST )

)
= E(λ) (fT (ST ))E

(
eλVT (ST )

)
,

with fT (ST ) := 1VT (ST )≥Ke
−λVT (ST ). It is also important to notice that, with the

convention V0 = 0, we have the following decomposition

eλVT (ST ) ≡
T∏

p=1

eλ(Vp(Sp)−Vp−1(Sp−1)) .

By using the notation Xk = (Sk, Sk+1) for 0 ≤ k < T , the above product can be

defined as

T∏

p=1

Gp−1(Xp−1) , where Gp−1(Xp−1) := eλ(Vp(Sp)−Vp−1(Sp−1)) .
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Using the notation FT (XT ) = fT (ST ), we see that we need to simulate the same

formulae as in Section 2.3.3.

E(λ) (fT (ST )) =
E

(
FT (XT )

∏T
p=1Gp(XP )

)

E

(∏T
p=1Gp(XP )

) := ηT (FT ) .

The general discussion of the previous section shows that these quantities can be

approximated efficiently by interacting particle systems.

In practice, we are interested in the conditional law L
(
(S0, . . . , ST )|VT (ST ) ≥

K
)
. By modifying the function FT in the above analysis, the same framework can

be applied directly. Particle models are very flexible, but the choice of the space-

time potential function on path space can become very tricky and the performance

of the algorithm can deteriorate with a poor choice of this potential. The particular

choice

Gp(s0, . . . , sp) = µeλ(Vp(s0,...,sp)−Vp−1(s0,...,sp−1)) (2.4.2)

was proposed and analyzed in [47] where µ is chosen so that Gp ≤ 1 and λ can be

fine-tuned to the given rare event set.

2.4.2 On the choice of the potential functions

As mentioned earlier, the choice of suitable space-time potential functions G is a key

ingredient in the ability of interacting particle systems to tackle rare events prob-

lems. In the recent work of Carmona, Fouque and Vestal [24], the authors propose

a choice of the potential functions that departs from the one given above in (2.4.2).

Their construction illustrates the flexibility of the particle methods regarding the

crucial point of choice of the potential functions. In the case of large credit portfo-

lios, typically with d = 125, we write the dynamics of the various assets values as a

Markov chain Si
n, with time n = 1, · · · , T and i = 1, . . . , d associated to

Gn = exp


−α

d∑

i=1

log
min
0≤l≤n

Si
l

min
0≤l≤n−1

Si
l


 ,

where the parameter α has to be fine-tuned to the particular class of rare events of

interest. Numerical performance of this technique is dicussed in [24] where exam-

ples are provided under a structural model with stochastic volatility. The authors

demonstrate the efficiency of this method, especially in situations where importance

sampling is not possible or numerically unstable.

In a similar vein, a fast algorithm without requirement of fine-tuned parameters

has been recently developed for multiple defaults models by setting the potential

function

Gp(x) = 1− 1{c}(x) , (2.4.3)
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where the c stands for a cemetery state under a multilevel splitting approach intro-

duced in Chapter 12 in [40]. Let S = (Sn)0≤n≤T be a Markov chain on a sequence of

state spaces E = (En)0≤n≤T and Xn (resp. Fn = E0 × · · · × En) the corresponding

path space Markov chain (resp. sequence of path state spaces). We assume that

a sequence of subsets U1, . . . , UT , Up ∈ Fp is fixed. We are typically interested in

the probability 1−P(X1 /∈ U1, . . . , XT /∈ UT ) that the trajectory does enter at least

one of these subsets. The key idea is to introduce a series of intermediate events

interpolating between the series of the full state space E1, . . . , ET of the path space

and the target rare event series U1, . . . , UT . Then we assume that such a series is

given:

∀ p ≤ T, Up = U (k)
p ⊂ U (k−1)

p ⊂ · · · ⊂ U (1)
p ⊂ U (0)

p = Fp .

Then the state {c} appearing in (2.4.3) is defined in the construction of a new

Markov chain in constant state space F := F0 ∪ · · · ∪ FT ∪ {c}. With a series of

stopping times:

τj := (T + 1) ∧ inf{p,Xp ∈ U j
p}

with the convention thatXT+1 := c. Then the process Z0 := X0, Z1 := Xτ1 , . . . , Zk :=

Xτk is a Markov chain on F . In this context, the potential functions (2.4.3) con-

sist in, roughly speaking, killing the trajectories at some point of the recursion of

the particle algorithm when they reach some of the intermediate rare event sets

associated to c.

2.5 Sensitivity computation

Partial derivatives of financial option values allow traders to determine how sensitive

the values of options are to small changes in the set of parameters on which they

depend, such as the volatility parameter, the risk free stochastic interest rates or

prices of assets related to the option. The computation of these sensitivities, often

called Greeks (because they are traditionally denoted by Greek letters) is a central

problem in computational finance that must be addressed for risk analysis appli-

cations. Besides, in the specific case of sensitivities with respect to assets prices,

(called delta and gamma for the first and second order derivatives) the practical

issue is even more crucial since they are the basic ingredients of dynamic hedging

strategies.

There are mainly three approaches to compute sensitivities. We refer to the

survey paper of Kohatsu-Higa and Montero [81], for a detailed presentation and

comparison of those methods. The most natural and simple approach to compute

sensitivities is the usual finite difference method. It is easily implemented but known

to necessitate large computing budgets (requiring for instance two option calcula-

tions in the case of a first order sensitivity) and unstable with a subtle trade-off
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between bias and variance. We focus here on the two alternative approaches intro-

duced in the pioneering paper of Broadie and Glasserman [18], namely the likelihood

ratio method and the pathwise, or tangent process method. In this section, these

techniques are presented in terms Feynman-Kac formula, showing in some specific

examples how particle methods can be used.

2.5.1 Likelihood ratio: application to dynamic parameter

derivatives

This technique introduced in [18] requires that the underlying interest on which

a European option is written admits a sufficiently regular density with respect to

Lebesgue measure, also known as state price density. The main idea is to inter-

change differentiation and integration and whenever the derivative with respect to

a variable not appearing in the payoff function, to apply the differentiation on the

density of the distribution. The advantage of this approach is that it does not

require any regularity assumption on the payoff function, allowing for kinks and

discontinuities. This approach has been generalized by Fournié, Lasry, Lebuchoux,

Lions and Touzi [69] to path space using Malliavin integration-by-parts argument,

allowing for a wide class Greek weights.

In this subsection, we focus on the computation of the sensitivity of an option

to dynamic parameters related to the risky asset evolution or to the risk free rate

variations.

We let θ ∈ Rd be a parameter that may represent the volatility of some asset

price movements, or any other kinetic parameter. We assume that the evolution of

the risky asset price S
(θ)
k associated to some value of the parameter θ, is given by a

one-step probability transition of the form

M
(θ)
k (s, ds′) := Proba

(
S
(θ)
k ∈ ds′|S(θ)

k−1 = s
)
= H

(θ)
k (s, s′) λk(ds

′) ,

for some positive density functions H
(θ)
k (s, s′) and some reference measure λk. We

also consider a collection of functions G
(θ)
k (s) = e−r

(θ)
k (s) that depend on θ. We also

assume that the gradient and the Hessian of the logarithms of these functions with

respect to the parameter θ are well defined.

In this situation, following the Feynman-Kac representation (2.2.1) or (2.3.16),

a general form of the option price on path space is provided by

Γθ
n(Fn) = E

(
Fn(S

(θ)
0 , . . . , S(θ)

n )
∏

0≤p<n

G(θ)
p

(
S(θ)
p

)
)

. (2.5.1)

For each value of the parameter θ, we denote by Γ
(θ,N)
n the N -particle approximation

measures associated with a given value of the parameter θ and defined in (2.3.20).
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Simple derivations, show that the first order derivative of the option value with

respect to θ is given by

∇Γ(θ)
n (Fn) = Γ(θ)

n (FnΛ
(θ)
n )

∇2Γ(θ)
n (Fn) = Γ(θ)

n

[
Fn(∇L(θ)

n )′(∇L(θ)
n ) + Fn∇2L(θ)

n

]

with Λ
(θ)
n := ∇L

(θ)
n and

L(θ)
n (x0, . . . , xn) :=

n∑

p=1

log
(
G

(θ)
p−1(sp−1)H

(θ)
p (sp−1, sp)

)
.

These quantities can be approximated by the unbiased particle models

∇NΓ
(θ)
n (Fn) := Γ(θ,N)

n (FnΛ
(θ)
n )

∇2
NΓ

(θ)
n (Fn) = Γ(θ,N)

n

[
Fn(∇L(θ)

n )′(∇L(θ)
n ) + Fn∇2L(θ)

n

]
.

We illustrate the above discussion with the computation of the Vega of the option,

i.e. the sensitivity to changes in the diffusion volatility coefficient of the stochastic

equation (2.2.7), with d = 1. We suppose X
(θ)
n = S

(θ)
n satisfies equation

S(θ)
n − S

(θ)
n−1 = b

(
S
(θ)
n−1

)
∆+

[
σ
(
S
(θ)
n−1

)
+ θ σ′

(
S
(θ)
n−1

)] (
Wtn −Wtn−1

)
,

for some function σ′ such that σ + θ σ′ > 0 for any θ ∈ [0, 1]. In this situation, we

have

∂

∂θ

n∑

p=1

log
(
H(θ)

p (sp−1, sp)
)

=
n∑

p=1

σ′(sp−1)

σ(sp−1) + θσ′(sp−1)



(

(sp − sp−1)− b(sp−1)∆

(σ(sp−1) + θσ′(sp−1))
√
∆

)2

− 1


 .

To compute the rho of the option, i.e. the sensitivity to changes in the drift of

the stochastic equation (2.2.7), with d = 1, we assume that X
(θ)
n satisfies equation

S(θ)
n − S

(θ)
n−1 =

[
b
(
S
(θ)
n−1

)
+ θb′

(
S
(θ)
n−1

)]
∆+ σ

(
S
(θ)
n−1

) (
Wtn −Wtn−1

)
,

for some function b′. In this situation, we have

∂

∂θ

n∑

p=1

log
(
H(θ)

p (sp−1, sp)
)

=
n∑

p=1

[(sp − sp−1)− [b(sp−1) + θb′(sp−1)]∆]× b(sp−1)/σ
2(sp−1) .
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Finally, if we assume that changes in the stochastic interest rates are given by

the space-time potential function

Gn(x) = exp (− [rn(x) + θr′n(x)]) ,

for some non negative functions rn and r
′
n, then we have:

∂

∂θ

∑

0≤p<n

log
(
G(θ)

p (sp)
)
= −

∑

0≤p<n

r′p(sp) .

We illustrate these particle models with an European option associated with a

risky asset S
(θ)
n = Sn whose values do not depend on θ, and payoff function fn(Sn).

In this situation, the option price is given by the formula

γ(θ)n (fn) = E

(
fn(Sn) exp

{
−
∑

0≤q<n

r(θ)q (Sq)

})
.

Then using the backward Markov chain model developed in Section 2.3.3, we obtain

the following unbiased particle matrix approximation for the sensitivity with respect

to the interest rate r:

∇γ(θ)n (fn) = −
∑

0≤p<n

γ(θ)n

(
fn M

n,η
(θ)
n−1

. . .M
p+1,η

(θ)
p

(
∇r(θ)p

))

≃N↑∞ −
∑

0≤p<n

γ(θ,N)
n

(
fn M

n,η
(θ,N)
n−1

. . .M
p+1,η

(θ,N)
p

(
∇r(θ)p

))
.

2.5.2 Tangent process: application to initial state deriva-

tives

We review the tangent process approach introduced by Broadie and Glasserman

in [18], and focus on the computation of the sensitivity of an option price to pertur-

bations of the initial value of the underlying asset price – this sensitivity is usually

called the delta of the option – which is in general more complex than in the case

of the sensitivity measures with respect to the dynamic parameters parameters. Ef-

ficient numerical schemes for the implementation of the method we are about to

discuss can be found in Giles and Glasserman [74].

To simplify our presentation, we only consider European-style options with

smooth payoff functions f − (fn)n.

As before, the strategy is to interchange the differentiation and expectation

operations. However, in the present situation. this requires regularity of the payoff

function, so discontinuous payoff profiles will have to be regularized using Gaussian

kernel convolution type techniques, or any related smoothing method. For instance,

we can approximate the call option (2.2.3) by the following smoothed payoff profile

fǫ(x) =
1

2

[
(x−K) +

√
(K − x)2 + ǫ

]
→ǫ↓0 f(x) = (x−K)+ .
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We assume that the stochastic dynamics of the underlying stock price S = (Sn)n
are given by an induction equation of the type:

Sn+1 := Fn(Sn) = (Fn ◦ Fn−1 ◦ · · · ◦ F0)(S0) (2.5.2)

starting at some random state S0, where the random functions Fn are of the form

of the form

Fn(x) = Fn(x,Wn) , (2.5.3)

for functions Fn

Fn : Rd+d′ ∋ (x, w) →֒ Fn(x, w) ∈ Rd

and some independent random variables Wn taking values in Rd′ , with d′ ≥ 1. We

also assume that these random variables are also independent of S0. Under these

assumptions, the prices of European options are given by the semigroup of the

Markov chain S defined for any regular function f and initial state x by

Pn+1(f)(x) := E (f(Sn+1) | S0 = x) = E (f(Sn+1(x))) ,

with the random flows (Sn( · ))n≥0 defined for any n ≥ 0 and x ∈ E by:

Sn+1(x) = Fn(Sn(x)) ,

with the initial condition S0(x) = x. By the chain rule, for any 1 ≤ i, j ≤ d and

any x ∈ Rd we have

∂Si
n+1

∂xj
(x) =

∑

1≤k≤d

∂F i
n

∂xk
(Sn(x))

∂Sk
n

∂xj
(x) . (2.5.4)

Interchanging derivations and expectations in the definition of the semigroup we

get:

∂Pn+1(f)

∂xj
(x) = E

(∑

1≤i≤d

∂f

∂xi
(Sn+1(x))

∂Si
n+1

∂xj
(x)

)
. (2.5.5)

Let us denote by Vn = (V
(i,j)
n )1≤i,j≤d and An = (A

(i,j)
n )1≤i,j≤d the random d × d

matrices whose entries are given by:

V (i,j)
n (x) =

∂Si
n

∂xj
(x)

and

A(i,j)
n (x) =

∂F i
n

∂xj
(x) =

∂F i
n(.,Wn)

∂xj
(x) := A(i,j)

n (x,Wn) .

With this notation in hand, equation (2.5.4) can be rewritten in terms of the fol-

lowing random matrix formulae

Vn+1(x) = An(Sn(x)) Vn(x)

= An(Sn(x))An−1(Sn−1(x)) · · ·A1(S1(x))A0(x) :=
n∏

p=0

Ap(Sp(x)) ,(2.5.6)
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with a product
∏n

p=0Ap of non commutative random elements Ap taken in the order

An, An−1,. . . , A0. Using equation (2.5.5) with the payoff function f = fn+1, we get:

∇Pn+1(fn+1)(x) = E (∇fn+1(Sn+1(x)) Vn+1(x))

= E

(
∇fn+1(Sn+1)

∏

0≤p≤n
Ap(Sp) | S0 = x

)
, (2.5.7)

which is, except for the fact that we are dealing with products of non-commuting

random matrices, of the form of the Feynman-Kac formulas studied in this chapter.

For one dimensional models of the form

Sn+1 = Sn + b (Sn) ∆ + σ (Sn)
√
∆ Wn , (2.5.8)

with a sequence of independent and and identically distributed mean zero Gaussian

random variables Wn, it is readily checked that

An(x) = An(x,Wn) =

(
1 +

∂b

∂x
(x) ∆ +

∂σ

∂x
(x)

√
∆ Wn

)

and therefore

Vn+1(x) =
n∏

p=0

(
1 +

∂b

∂x
(Sp) ∆ +

∂σ

∂x
(Sp)

√
∆ Wp

)

≃∆↓0 exp
∑

0≤p≤n

(
∂b

∂x
(Sp) ∆ +

∂σ

∂x
(Sp)

√
∆ Wp

)
.

As already mentioned, for non smooth payoff functions we can use the following

Gaussian regularization kernel

Pn+1,ǫ(fn+1)(x) := E (fn+1(Sn+1(x) + ǫY )) ≃ǫ↓0 Pn+1,ǫ(fn+1)(x) , (2.5.9)

for some auxiliary Gaussian variable, independent of Sn and Wn. In this case, we

have the following formula

∂

∂x
Pn+1,ǫ(fn+1)(x) = E

(
ǫ−1 [fn+1(Sn+1(x) + ǫY )− fn+1(Sn+1(x))] Y Vn+1(x)

)
.

In the particular case d = 1, the particle interpretation developed in Section 2.3.2

applies directly. W

Remark 5. As an aside, we also mention that these expansions are closely re-

lated to the time discretization of the stochastic integrals arising in exponential

weights of the Feynman-Kac interpretation of the Kushner-Stratonovitch filtering

equation [38]. In this interpretation, the particle interpretations of the Feynman-

Kac formulae (2.5.7) coincide with the particle filters developed in the last referenced

article.
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Before getting into multi-dimensional models, let us pause for a while to discuss

the connexions of the above methodology with the existing literature. Firstly, we

observe that the Gaussian regularization formula (2.5.9) can be interpreted as the

addition of an extra Gaussian move. This suggests that we can alternatively use

the last transition to regularize the model.

Pn+1(fn+1)(x) = E

(
E

(
fn+1

(
Sn+1(x)

)∣∣Sn(x)
))

.

Letting Hn+1(xn, xn+1) be the density of the Markov transition Sn = xn  Sn+1

with respect to the Lebesgue measure, arguing as above we find that

∂

∂x
Pn+1(fn+1)(x) = E (fn+1(Sn+1(x)) dHn+1(Sn(x), Sn+1(x)) Vn(x)) ,

with the weight function

dHn+1(xn, xn+1)

=
∂

∂xn
logHn+1(xn, xn+1)

=

((
(xn+1−xn)−b(xn)∆

σ(xn)
√
∆

)2
− 1

)
∂

∂x
log σ(xn)−

(
(xn+1−xn)−b(xn)∆

σ(xn)
√
∆

) 1 + ∂b
∂x
(xn)∆

σ(xn)
√
∆

.

These formulae and the corresponding conventional weighted Monte Carlo approx-

imations have been recently proposed by N. Chen and P. Glasserman [31] as an

alternative to the Malliavin calculus computation of the Greeks introduced by E.

Fournié, J.M. Lasry, J. Lebuchoux, P.L. Lions, and N. Touzi in their groundbreaking

articles [69, 70]. If Ps,t denotes the semigroup associated with the (continuous time)

diffusion equation (2.2.6) (recall that d = 1 in the present discussion):

Ps,t(f)(Ss) = E (f(St) | Ss) ,

one easily checks that, for any 0 ≤ s ≤ t it holds:

Ps,t(f)(Ss) = P0,t(f)(S0) +

∫ s

0

∂Pr,t(f)

∂x
(Sr) σ(Sr) dWr ,

and if we set s = t in the above equation, then we find that

E

[
f(St(x))

∫ t

0

∂Ss

∂x
(x) σ−1(Ss(x))) dWs

]
= E

[∫ t

0

∂Ps,t(f)

∂x
(Ss(x))

∂Ss

∂x
(x) ds

]
,

whenever σ is a smooth positive function bounded away from 0. Recalling that

∂

∂x
P0,t(f)(x) =

∂

∂x
E [Ps,t(f)(Ss(x))] = E

[
∂Ps,t(f)

∂x
(Ss(x))

∂Ss

∂x
(x)

]
,

we arrive at a Malliavin formulation of the semigroup derivatives

∂

∂x
P0,t(f)(x) = E

[
f(St(x))

1

t

∫ t

0

σ−1(Ss(x))
∂Ss

∂x
(x) dWs

]
.
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A rigorous derivation of the above equations is provided in [69, 70]. We also refer

the reader to the contribution of B. Bouchard and X. Warin in the present volume.

The Euler time discretization scheme justifies using the discrete time approxi-

mate model:

S(n+1)∆ − Sn∆ = b (Sn∆) ∆ + σ (Sn∆)
√
∆ Yn , (2.5.10)

for a sequence of independent mean zero Gaussian random variables Yn. We thus

have the approximation model

∂
∂x
P0,(n+1)∆(f)(x) ≃∆↓0

1

(n+ 1)
√
∆

∑

0≤p≤n
E
(
f(S(n+1)∆(x))Zp(x)

)
, (2.5.11)

with the random weights

Zp(x) := ϕ (Sp∆(x), Yp)
∏

0≤q<p

Gq(Sq∆(x), Yq)

ϕ (x, y) = σ−1(x) y and Gq(x, y) = 1 +
∂b

∂x
(x) ∆ +

∂σ

∂x
(x)

√
∆ y .

The ratio 1/
√
∆ in the right hand side of (2.5.11) may induce numerical degeneracies.

One way to overcome this problem and to remove this term from the numerical

scheme is to use the following formula

E
(
f(S(n+1)∆(x))Zp(x)

)
= E (Υp+1,n+1(f) [Sp∆(x), Yp]×Zp(x)) ,

with the function

Υp+1,n+1(f)[x, y]

= P(p+1)∆,(n+1)∆(f)
(
x+ b(x)∆ + σ(x)

√
∆y
)
− P(p+1)∆,(n+1)∆(f) (x+ b(x)∆) .

Under some appropriate regularity conditions, we notice that

Υp+1,n+1(f)[x, y]

≃∆↓0 Pp∆,(n+1)∆(f)
(
x+ b(x)∆ + σ(x)

√
∆y
)
− Pp∆,(n+1)∆(f) (x+ b(x)∆)

≃∆↓0
∂Pp∆,(n+1)∆(f)

∂x
(x) σ(x)

√
∆ y ,

which implies that

∂
∂x
P0,(n+1)∆(f)(x)

≃∆↓0
1

(n+ 1)

∑

0≤p≤n
E

(
∂Pp∆,(n+1)∆(f)

∂x
(Sp∆(x)) Y

2
p

∏

0≤q<p

Gq(Sq∆(x), Yq)

)
.

In higher dimensions, the calculations are more involved. To analyze these models,

we design a Feynman-Kac interpretation of the distributions of product of random

matrices.
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Using the notation ‖.‖ for a fixed norm in Rd, we assume that for any state U0

in the unit sphere Sd−1, we have

∥∥∥∥∥

[ ∏

0≤p≤n
Ap(Sp)

]
U0

∥∥∥∥∥ > 0 .

In this situation, we have the multiplicative formulae

[
∇fn+1(Sn+1)

∏

0≤p≤n
Ap(Sp)

]
U0 = [∇fn+1(Sn+1) Un+1]

∏

0≤p≤n
‖Ap(Sp) Up‖ ,

with the well defined Sd−1-valued Markov chain defined by

Un+1 =
An(Sn)Un

‖An(Sn)Un‖
=

[∏
0≤p≤nAp(Sp)

]
U0

∥∥∥
[∏

0≤p≤nAp(Sp)
]
U0

∥∥∥
.

If we choose U0 = u0, then we obtain the following Feynman-Kac interpretation of

the gradient of a semigroup

∇Pn+1(fn+1)(x) u0 = E

(
Fn+1(Xn+1)

∏

0≤p≤n
Gp (Xp)

)
.

In the above display, Xn is the multivariate Markov chain sequence

Xn := (Sn, Un,Wn)

and the functions Fn+1 and Gn are defined by

Fn+1(x, u, w) := ∇fn+1(x) u and Gn (x, u, w) := ‖An(x, w) u‖ .

In physics literature, the mean field particle approximations of these non commu-

tative Feynman-Kac models are often referred as Resampled Monte Carlo meth-

ods [110].

2.6 American-style option pricing

2.6.1 Description of the model

Optimal stopping problems are at the heart of the theory of stochastic control.

Their importance in quantitative finance is due to the large number of financial

instruments with American exercises, sometimes called Bermudan exercises in the

framework of discrete time models.
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In this section, n stands for a fixed final time horizon, and for each k ∈ {0, . . . , n},
we let Fk denote the set of events known at time k and Tk the set of Fk - stopping

times τ taking values in {k, . . . , n}. These stopping times are used to model the

decision by the holder of the option to exercise it at a given time of his or her

choice. The payoff is given by an adapted (no crystal ball can be used in this

model!) stochastic process Z = (Zk)0≤k≤n. For each k ∈ {0, . . . , n}, Zk represents

the reward to the holder for exercising the option at time k. To recast the problem in

the framework used so far, we assume that the filtration F = (Fk)0≤k≤n is generated

by a Markov chain X = (Xk)0≤k≤n in some measurable state space E, and that

Zk = Fk(X0, . . . , Xk) for some known deterministic functions Fk on E
k+1. As usual,

we shall use the notation M = (Mk)k to denote the transition probability of the

Markov chain X.

The Snell envelope of (Zk)0≤k≤n, is the stochastic process (Uk)0≤k≤n defined for

any 0 ≤ k < n by the following backward equation

Uk = Zk ∨ E(Uk+1|(X0, . . . , Xk)) ,

with the terminal condition Un = Zn. The main property of this stochastic process

is that

Uk = sup
τ∈Tk

E(Zτ |(X0, . . . , Xk)) = E(Zτ∗k
|(X0, . . . , Xk)) (2.6.1)

with τ ∗k = min {k ≤ l ≤ n : Ul = Zl} ∈ Tk .

Notice that Uk ≥ Zk, for any 0 ≤ k ≤ n and τ ∗k is given by the following backward

formula

τ ∗k = k 1Zk≥Uk
+ τ ∗k+1 1Zk<Uk

with τ ∗n = n .

To get one step further, we let η0 = Law(X0) be the initial distribution on E, and

we denote by Mk(x, y) the elementary Markov transition of the chain Xk from E

into itself.

To be more specific we also assume that

Zk = Fk(X0, . . . , Xk) := fk(Xk)
∏

0≤l<k

Gl(Xl), 0 ≤ k ≤ n,

for some non negative space-time functions f = (fk)k andG = (Gk)k on {0, 1, · · · , n}×
E. In this situation, the Snell envelope process is given in terms of deterministic

functions uk through

Uk = uk(Xk)
∏

0≤p<k

Gp(Xp),

where the functions uk are given inductively by the backward functional equation

uk = Hk+1(uk+1), 0 ≤ k < n, (2.6.2)
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with the terminal value un = fn, and the functional transformations

Hk+1(uk+1) := fk ∨Qk+1(uk+1) with Qk+1(x, dy) = Gk(x) Mk+1(x, dy) .

In the above displayed formula, Qk+1(uk+1) stands for the measurable function on

E defined for any xk ∈ E by the conditional expectation:

Qk+1(uk+1)(x) = Gk(x) E (uk+1(Xk+1)|Xk = x) =

∫
Qk+1(x, dy) uk+1(y) .

For a detailed derivation of these formulae, we refer the interested reader to the

article [49].

We let Hk,l = Hk+1 ◦ Hk+1,l, with k ≤ l ≤ n, be the nonlinear semigroups

associated with the backward equations (4.2.1). We use the convention Hk,k = I,

the identity operator, so that uk = Hk,l(ul), for any k ≤ l ≤ n.

If for any given sequence of bounded integral operators (Qk)k from some state

space E into itself, we denote by Qk,l the iterated composition operator defined by

Qk,l := Qk+1Qk+2 · · ·Ql,

for any k ≤ l, with the convention Qk,k = I, then one can check that a necessary

and sufficient condition for the existence of the Snell envelope (uk)0≤k≤n is that

Qk,lfl(x) <∞ for any 1 ≤ k ≤ l ≤ n, and any state x ∈ E. To check this claim, we
simply notice that

fk ≤ uk ≤ fk +Qk+1uk+1 ∀ 1 ≤ k ≤ n

implies that

fk ≤ uk ≤
∑

k≤l≤n
Qk,lfl ∀ 1 ≤ k ≤ n . (2.6.3)

From the readily proved Lipschitz property |Hk(u)−Hk(v)| ≤ Qk+1 (|u− v|), for
any functions u, v on E, we also have that

|Hk,l(u)−Hk,l(v)| ≤ Qk,l (|u− v|) , (2.6.4)

for any functions u, v on E, and any k ≤ l ≤ n.

2.6.2 A perturbation analysis

Even if it may look innocent at first, solving numerically the recursion (4.2.1) of-

ten requires extensive calculations. The major issue is to compute the conditional

expectations Mk+1(uk+1) on the whole state space E, at every time step 0 ≤ k < n.

For Markov chain models taking values in some finite state spaces, the above

expectations can be computed by systematic backward inspection of the realization
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tree that lists all possible outcomes and every transition of the chain. For excessively

large state spaces, or more general situations, we need to resort to approximation

strategies.

Over the last two decades, several approximation methodologies have been pro-

posed, including Carriere-Longstaff-Schwartz’s functional regression style methods [26,

32, 88, 108], refined singular values decomposition strategies [14], Monte Carlo sim-

ulation methods [19, 58, 49, 50, 87], and the quantization grid technology developed

by Pagès and his co-authors [93, 94, 95, 92, 96].

Most of the numerical approximation schemes amount to replacing the pair

(fk, Qk)0≤k≤n by some approximation model (f̂k, Q̂k)0≤k≤n on some possibly reduced

finite subsets Ê ⊂ E. We let ûk be the Snell envelope on Êk associated with the

functions f̂k and the sequence of transition operators M̂k from Ê into itself.

ûk = Ĥk+1(ûk+1) := f̂k ∨ Q̂k+1(ûk+1) . (2.6.5)

Let also Ĥk,l = Ĥk+1 ◦Ĥk+1,l with k ≤ l < n be the nonlinear semigroups associated

with the backward equations (3.2.5) so that ûk = Ĥk,l(ûl) for any k ≤ l ≤ n. Using

the elementary inequality |a ∨ a′ − b ∨ b′| ≤ |a − b| + |a′ − b′| which is valid for

any a, a′, b, b′ ∈ R, for any 0 ≤ k < n and for any functions u on Ek+1 one readily

obtains the local approximation inequality
∣∣∣Hk+1(u)− Ĥk+1(u)

∣∣∣ ≤ |fk − f̂k|+ |(Qk+1 − Q̂k+1)(u)| . (2.6.6)

To transfer these local estimates to the semigroups Hk,l and Ĥk,l we use a perturba-

tion analysis. The difference between the approximate and the exact Snell envelope

can be written as a telescoping sum

uk − ûk =
n∑

l=k

[
Ĥk,l(Hl+1(ul+1))− Ĥk,l(Ĥl+1(ul+1))

]
,

setting for simplicity Hn+1(un+1) = un and Ĥn+1(un+1) = ûn, for l = n. Combining

the Lipschitz property (3.2.4) of the semigroup Ĥk,l with the local estimate (3.2.6),

one gets the final estimates:

|uk − ûk| ≤
n∑

l=k

Q̂k,l|fl − f̂l|+
n−1∑

l=k

Q̂k,l|(Ql+1 − Q̂l+1)ul+1| .

The perturbation analysis of nonlinear semigroups discussed above is a natural

and fundamental tool for the analysis of the Snell envelope approximations. It can be

used sequentially, and without further work, to obtain non asymptotic estimates for

models combining several levels of approximations. In the same vein, and whenever

possible, it can also be used as a technical tool to reduce the analysis of Snell

approximation models on compact state spaces or even on finite but possibly large
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quantization trees or Monte Carlo grids. This perturbation analysis is clearly not

new, it has been used with success in [41, 48, 85, 109] in the context of nonlinear

filtering semigroups and particle approximation models. In the context of optimal

stopping problems and numerical quantization schemes, these techniques were also

used for instance in the papers of Egloff [64] and Gobet, Lemor and Warin [76] or

Pagès [92]. To the best of our knowledge, the general and abstract formulation given

above has first been presented in the recent article [50].

2.6.3 Particle approximations

In this subsection, we focus on a type of Monte Carlo importance sampling scheme

which is a version called average density of the Stochastic Mesh schemes proposed

by Broadie and Glasserman in [19]. The formulation of this algorithm in terms of

interacting particles was crucial to derive precise convergence results in [50].

We let ηn be the normalized Feynman-Kac measures defined in (2.3.2). By

(2.3.10), we have that

ηk+1 = ΨGk
(ηk)Mk+1 .

Now, we assume that the Markov transitions Mk have a density Hk with respect to

some reference measure λk

Mk+1(x, dy) = Hk(x, y) λk(dy) .

Under this assumption, we can rewrite Qk+1(uk+1)(x) as follows

Qk+1(uk+1)(x) = ηk(Gk)

∫
ηk+1(y)

Gk(x)Hk+1(x, y)∫
ηk(dz)Gk(z)Hk+1(z, y)

uk+1(y) , (2.6.7)

and as before, we let

ηNn :=
1

N

N∑

i=1

δξin →N→∞ ηn

be the particle approximation of the measures ηn defined in Section 2.3.2 . We

denote by Q̂k+1 the matrix obtained by replacing the measures ηk by their N -particle

approximations:

Q̂k+1(f)(x) := ηNk (Gk)

∫
ηNk+1(y)

Gk(x)Hk+1(x, y)∫
ηNk (dz)Gk(z)Hk+1(z, y)

f(y)

= ηNk (Gk)
N∑

j=1

Gk(x)Hk+1(x, ξ
j
k+1)∑N

j′=1Gk(ξ
j′

k )Hk+1(ξ
j′

k , ξ
j
k+1)

f(ξjk+1) ,

for any test function f on E. Notice that these expressions are easily computed

(with computational cost N2) at any state ξik of the k-th population when the
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values f(ξjk+1) of the function f are known

Q̂k+1(f)(ξ
i
k) = ηNk (Gk)

N∑

j=1

Gk(ξ
i
k)Hk+1(ξ

i
k, ξ

j
k+1)∑N

j′=1Gk(ξ
j′

k )Hk+1(ξ
j′

k , ξ
j
k+1)

f(ξjk+1) .

By (3.2.5) the corresponding backward particle approximation of the Snell envelope

is given by the following equations, for i = 1, · · ·N ,

ûk(ξ
i
k) = fk(ξ

i
k) ∨

(
ηNk (Gk)

N∑

j=1

Gk(ξ
i
k)Hk+1(ξ

i
k, ξ

j
k+1)∑N

j′=1Gk(ξ
j′

k )Hk+1(ξ
j′

k , ξ
j
k+1)

ûk+1(ξ
j
k+1)

)
.

Also notice that the values ûk(x) on any state x can be computed using the formula

ûk(x) = fk(x) ∨
(
ηNk (Gk)

N∑

j=1

Gk(x)Hk+1(x, ξ
j
k+1)∑N

j′=1Gk(ξ
j′

k )Hk+1(ξ
j′

k , ξ
j
k+1)

ûk+1(ξ
j
k+1)

)
.

For a thorough discussion on these particle models, their convergence analysis, and

a variety of related approximation grid type models, we refer the reader to the pair

of articles [49, 50]. In particular, this formalization allows to prove that the Lp mean

error induced by this version of Stochastic Mesh approximation vanishes, under mild

assumptions, with a rate 1/
√
N . Also, a new Monte Carlo approximation scheme is

proposed in [50] using simulations of a genealogical tree with neutral selections and

mutations associated with a discrete-space Markov chain approximating the price

dynamics. The main advantage of this new scheme is the fact that the computational

effort of the algorithm is linear in the number of sampled points, as opposed to

quadratic as for the Stochastic Mesh scheme.

2.7 Pricing models with partial observation mod-

els

Managing large portfolios and pricing financial instruments under partial observa-

tions are quite common problems in quantitative finance. See for instance the series

of articles [83, 98, 100, 101, 111], and references therein. The case of stochastic

volatility models is the epitome of these situations: one can more or less observe

stock prices but not the evolution of the stochastic volatility.

2.7.1 Abstract formulation and particle approximation

We work in discrete time and we recast the dynamical financial model in the frame-

work of hidden Markov models. The basic object is a pair process (X, Y ) =
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((Xn, Yn))n forming a Markov chain on some product space EX × EY with ele-

mentary transitions given

P ((Xn, Yn) ∈ d(x, y) | (Xn−1, Yn−1)) =Mn(Xn−1, dx)× gn(x, y) λn(dy) , (2.7.1)

for some positive likelihood function gn, and some reference probability measure

λn on EY . According to our setup throughout the paper, the marginal process

X = (Xn)n is also assumed to be a Markov chain and as usual, we denote by Mn its

transition probability. We can think of Xn as a vector of prices and random factors

(instantaneous volatility could be one of them), and Yn a vector of observations

of quantities derived from the components of Xn. We can also consider Xn as a

stochastic volatility model, and Yn the stock price observations. For the sake of

definiteness, we choose to illustrate the particle methods on a pricing problem, so

we assume that we are given a European payoff function fn(Xn, Yn) for each time

n ≥ 0. The price of the contingent claim is given at time p ≤ n by:

Vp,n(fn) := E

[
fn(Xn, Yn)

∏

p≤q<n

G′q(Xq, Yq) | (Y0, . . . , Yp)
]
.

for some non negative functions G′p related to barrier sets or stochastic interest

rates, as explained in Section 2.2.3. It is important to observe that the conditional

expectations

Up,n(fn)(x, y) := E

[
fn(Xn, Yn)

∏

p≤q<n

G′q(Xq, Yq) | (Xp, Yp) = (x, y)

]

have the same form as the Feynman-Kac definitions of the measures introduced in

(2.3.1), with the reference Markov chain (Xq, Yq), from the initial time q = p, start-

ing from (Xp, Yp) = (x, y) at time p. For any starting point (Xp, Yp) = (x, y), these

unnormalized distributions can be approximated by running an N -particle model

on (EX × EY ), with selection potential functions G′q. We denote by UN
p,n(fn)(x, y)

the corresponding unbiased particle approximation. Fix an observation sequence

Y = y, and consider the Feynman-Kac models (2.3.1) associated with the likelihood

potential functions:

Gp(x) := gp(x, yp) 0 ≤ p ≤ n .

To emphasize the dependence of the Feynman-Kac measures on the observation

sequence, we use the notations

η
[y0,...,yn]
n+1 and γ

[y0,...,yn]
n+1 (2.7.2)

for the normalized and unnormalized measures associated with the series of observa-

tions Yp = yp, for 0 ≤ p ≤ n. These conditional distributions can be approximated
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using an N -particle model on EX , with selection potential functions Gq. We denote

by

η
([y0,...,yn],N)
n+1 :=

1

N

N∑

i=1

δ
ξ
([Y0,...,Yn−1],i)

n+1

the empirical measures providing the particle approximation. Notice that

Law(Xn | Yp = yp, 0 ≤ p < n) = η[y0,...,yn−1]
n (2.7.3)

and by the Bayes rule

Law(Xn | Yp = yp, 0 ≤ p ≤ n) := Ψgn(.,yn)

(
η[y0,...,yn−1]
n

)
= η̂[y0,...,yn]n , (2.7.4)

and by construction, we have:

Vp,n(fn) =

∫
Ψgp(.,Yp)

(
η[Y0,...,Yn−1]
n

)
(dx) Up,n(fn)(x, Yp) ,

and these quantities can be approximated combining the particle estimates defined

above. Indeed, we have that

Vp,n(fn) ≃N↑∞ V N
p,n(fn) ,

with

V N
p,n(fn) :=

∫
Ψgp(.,Yp)

(
η([Y0,...,Yn−1],N)
n

)
(dx) UN

p,n(fn)(x, Yp)

=
N∑

i=1

gp(ξ
([Y0,...,Yp−1],i)
p , Yp)∑N

j=1 gp(ξ
([Y0,...,Yp−1],j)
p , Yp)

UN
p,n(fn)(ξ

([Y0,...,Yp−1],i)
p , Yp) .

2.7.2 Optimal stopping with partial observation

We work with the setup of a pair (Xn, Yn) Markov chain model introduced in the

previous section. According to our discussion in Section 2.6.1, the Snell envelop

associated with an American option with finite maturity n, payoffs Zk = fk(Xk, Yk)

is given by

Uk := sup
τ∈T Y

k

E(fτ (Xτ , Yτ )|(Y0, . . . , Yk)) ,

where T Y
k stands for the set of all FY

k - stopping times τ taking values in {k, . . . , n},
where the filtration is know given by the sigma fields FY

k generated by the observa-

tion sequence Yp, from p = 0 up to the time k. We denote by η
[y0,...,yn−1]
n and η̂

[y0,...,yn]
n

the conditional distributions defined in (2.7.3) and (2.7.4). With these notations,

for any 0 ≤ k ≤ n we have that

E(fτ (Xτ , Yτ )|(Y0, . . . , Yk)) = E

(
n∑

p=k

1τ=p E (fp(Xp, Yp) | (Y0, . . . , Yp)) | (Y0, . . . , Yk)
)

= E
(
Fτ

(
Yτ , η̂

[Y0,...,Yτ ]
τ

)
| (Y0, . . . , Yk)

)
, (2.7.5)

68



2.7. PRICING MODELS WITH PARTIAL OBSERVATION MODELS

with the conditional payoff function

Fp

(
Yp, η̂

[Y0,...,Yp]
p

)
=

∫
η̂[Y0,...,Yp]
p (dx) fp(x, Yp) .

It is well known that

Xp :=
(
Xp, Yp, η̂

[Y0,...,Yp]
p

)

is a Markov chain with elementary transitions defined by, for any integrable function

F on product space EX × EY × P(EX),

E

[
F
(
Xp, Yp, η̂

[Y0,...,Yp]
p

) ∣∣∣
(
Xp−1, Yp−1, η̂

[Y0,...,Yp−1]
p−1

)
= (x, y, µ)

]

=

∫ ∫
λp(dyp) Mp (x, dxp) gp(xp, yp) F

(
xp, yp,Ψgp(.,yp) (µMp)

)
.

A proof of this assertion can be found in any textbook on advanced stochastic

filtering. For instance, the book of W. Runggaldier and L. Stettner [106] provides

a detailed treatment of discrete time partially observed models, their non linear

filtering, and related partially observed control problems.

Roughly speaking, using Bayesian notation, we have

η[y0,...,yp−1]
p (dxp) = dpp(xp | (y0, . . . , yp−1))

=

∫
dpp(xp | xp−1)× pn(xp−1 | (y0, . . . , yp−1))

= η̂
[y0,...,yp−1]
p−1 Mp(dxp)

and
Ψgp(.,yp)

(
η̂
[y0,...,yp−1]
p−1 Mp

)
(dxp)

=
p(yp|xp)∫

pp(yp | x′p) dpp(x′p | (y0, . . . , yp−1))
dpp(xp | (y0, . . . , yp−1))

= dpp(xp | (y0, . . . , yp−1, yp)) ,
from which we can prove that

µMp(gp(., yp)) =

∫
pp(yp | xp) dpp(xp | (y0, . . . , yp−1))

= pp(yp | (y0, . . . , yp−1))

and

Ψgp(.,yp) (µMp) = η̂[y0,...,yp]p ,

as long as µ = η̂
[y0,...,yp−1]
p−1

(
⇒ µMp = η

[y0,...,yp−1]
p

)
.
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The above discussion suggests the following interpretation. We can rewrite

(2.7.5) as the Snell envelop of a fully observed augmented Markov chain:

E(fτ (Xτ , Yτ )|(Y0, . . . , Yk)) = E (Fτ (Xτ ) | (X0, . . . ,Xk)) .

This Markov chain Xn takes values in an infinite dimensional state space, and it can

rarely be sampled without some addition level of approximation. Therefore, most of

the grid or Monte Carlo simulation based techniques for solving these models require

the introduction of a specific grid approximation of conditional distributions, or

judicious approximation sampling schemes. The particle methodology advocated in

this chapter provides a natural strategy. Using the particle approximations discussed

in Section 2.3.2, we can replace the chain Xn by theN -particle approximation defined

by

XN
n :=

(
Yp, η̂

([Y0,...,Yp],N)
p

)
,

where

η̂([Y0,...,Yp],N)
p := Ψgp( · ,Yp)

(
η̂
([Y0,...,Yp−1,N)]
p−1

)

stands for the updated measure associated with the particle scheme associated with

the likelihood selection functions gp( · , Yp). The corresponding N -particle approxi-
mation of the Snell envelop is now given by

E(fτ (Xτ , Yτ )|(Y0, . . . , Yk)) ≃N↑∞ E
(
Fτ

(
XN

τ

)
| (XN

0 , . . . ,XN
k )
)
.

In this setup, the approximated optimal stopping problem requires the computation

of the quantities

UN
k := sup

τ∈T N
k

E
(
Fτ

(
XN

τ

)
| (XN

0 , . . . ,XN
k )
)
,

where T N
k stands for the set of FX

N
k

k - stopping times τ taking values in {k, . . . , n},
where the filtration is formed by the sigma fields generated by the Markov chain

random variables XN
k , from p = 0 up to the current time k.

We close this section with an alternative representation in terms of the unnor-

malized filters γ
[Y0,...,Yn−1]
n defined in (2.7.2). We let Pn be the probability distribution

of a Markov chain (Xp, Yp)0≤p≤n defined in (2.7.1), and P
(0)
n the probability distri-

bution of the Markov chain (Xp, Yp)0≤p≤n with independent random observations

Yp with distribution λp with p ≤ n, also assume to be independent of the chain

(Xp)0≤p≤n,. By construction, Pn is absolutely continuous with respect to P
(0)
n , and

its Radon-Nykodym derivative is given by:

dPn

dP
(0)
n

=
∏

0≤p≤n
gp(Xp, Yp) .
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Now, for any τ ∈ T Y
0 we observe that

E(fτ (Xτ , Yτ )) = E(0)

(
n∑

p=0

1τ=p E(0)

(
fp(Xp, Yp)

∏

0≤q≤p
gq(Xq, Yq) | (Y0, . . . , Yp)

))

and
E(0)

(
fp(Xp, Yp)

∏
0≤q≤p gq(Xq, Yq) | (Y0, . . . , Yp)

)

= γ
[Y0,...,Yp−1]
p (fp(., Yp)gp( · , Yp))

= η
[Y0,...,Yp−1]
p (fp(., Yp)gp( · , Yp))×

∏
0≤q<n η

[Y0,...,Yq−1]
q (gq( · , Yq)) .

The last assertion is a direct consequence of the multiplicative formula (2.3.3) for

unnormalized Feynman-Kac measures. Arguing as above, we introduce the Markov

chain

Xn :=
(
Yn, η

[Y0,...,Yn−1]
n

)

the payoff and the potential functions

Fn(Xn) := η[Y0,...,Yn−1]
n (fn(., Yn)gn(., Yn)) and Gn(Xn) := η[Y0,...,Yn−1]

n (gn(., Yn)) .

By construction, we have

E (fτ (Xτ , Yτ )) = E(0)

(
Fτ (Xτ )

∏

0≤p<τ

Gp(Xp)

)
.

We have now reduced the optimal stopping problem with partial observations to

a conventional optimal stopping problem of a measure valued Markov chain Xn

with stochastic potential functions Gp(Xp), and independent random observations

sequences. Once more, using the particle approximation models discussed in Sec-

tion 2.3.2, we can replace the chain Xn by the N -particle approximation model

defined by

XN
n :=

(
Yp, η

([Y0,...,Yp],N)
p

)
.

Here again, we have turned a complex optimal stopping problem under partial ob-

servations into an almost equivalent optimal stopping problem of an easy to sample

Markov chain sequence of the same form as the one discussed in Section 2.6.1. These

particle transformations can also be used for more general stochastic control prob-

lems with partial observations. We refer the reader to [12, 11, 106, 60, 89, 91, 99]

for a more thorough discussion on this subject.

2.7.3 Parameter estimation in hidden Markov chain models

In many economic and financial applications, the parameters are unknown and must

be estimated from partial and noisy observations. This situation is typical of hidden

Markov chain problems which arise in a variety of domains, ranging from signal
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processing, medical Bayesian inference, communication and information theory. For

an overview of some of the problems occurring in finance and econometrics we refer

the reader to [8, 33, 34, 37, 82], to mention only a few.

As in (2.7.1) these models are framed in terms of a signal-observation type

pair Markov chain (Xn, Yn)n with a collection of transition probabilities Mθ,n and

likelihood functions gθ,n that depend upon the realization of a random parameter

Θ = θ taking values in some state space S, equipped with a probability measure µ.

We also denote by ηθ,0 the conditional distribution of X0 given Θ = θ.

The example we have in mind is the quintessential calibration problem in par-

tially observed models arising in computational finance. One way to set up a stochas-

tic volatility model as a filtering problem in discrete time is to choose (Xn, Yn) =

(σn, Sn). In this case Xn = σn represents the instantaneous stochastic volatility,

and the observation Yn = Sn is given by the price of the asset. In most practical

applications, the evolution of these quantities is given by a parametric model of the

form:

σk = F 1
θ,n(σn−1, Sn−1,W

1
n)

Sk = F 2
θ,n(σn−1, Sn−1,W

2
n),

where F 1
θ,n and F

2
θ,n are functions depending upon some unknown parameter θ. The

objective is to compute the conditional distribution Law(θ|S0, . . . , Sn) of θ given the

observations of the price. To be more specific, we can precise our illustration by

choosing the popular Heston’s stochastic volatility model. In our framework, this

model is given by:

F 1
θ,n(σn−1, Sn−1,W

1
n) = (ab+ (1− a)σn−1)∆t+ c

√
σn−1∆W

1
n

F 2
θ,n(σn−1, Sn−1,W

2
n) = Sk−1(1 + d)∆t+ Sk−1

√
σn−1∆W

2
n ,

where θ = (a, b, c, d) is the collection of parameters to calibrate, and (W i
n)i=1,2 are

independent Brownian motions.

Using the notations of Section 2.3.3, the conditional distribution of the random

path (X0, . . . , Xn), given Θ = θ, and the sequence (Y0, . . . , Yn−1) = (y0, . . . , yn−1) of

observations is given by the Feynman-Kac measures

Qθ,n(dx0 × · · · × dxn) =
1

Zn(θ)

{ ∏

0≤q<n

Gθ,q(xq)

}
Pθ,n(dx0 × · · · × dxn) ,

with the potential functions Gθ,q(xq) = gθ,n(xq, yq), and the conditional distribution

Pθ,n of the random path (X0, . . . , Xn) given Θ = θ. As in (2.3.3), the normalizing

constants Zn(θ) are given by the multiplicative formula

Zn(θ) =
∏

0≤p<n

η
[y0,...,yp−1]
θ,p (Gθ,p) ,
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with the p-th marginal distributions η
[y0,...,yp−1]
θ,p of the measure Qθ,n i.e. the con-

ditional distribution of the random variable Xp given Θ = θ, and the sequence

(Y0, . . . , Yp−1) = (y0, . . . , yp−1) of observations. In the Bayesian literature, the nor-

malizing constants Zn+1(θ) are often called the likelihood functions of the parameter

θ, given the observation data (y0, . . . , yn), and they are denoted by p(y0, . . . , yn | θ)
to emphasize that they are given by the conditional density of the observations given

the unknown parameter.

Above analysis are based on the fact thatW 1
n andW

2
n are independent, otherwise

the conditional distribution can be given by approximate Bayesian computation

techniques (see, for instance, [46, 52, 53] and section 2.5.2 in [51]). The authors prove

that the approximate Bayesian computation models are also under the framework

of Feynman-Kac measures.

In this section, the observation sequence Y = y is fixed, so in order to streamline

the notations we suppress the superscript [y0,...,yn]and write ηθ,p and η̂θ,p = ΨGθ,n
(ηθ,p)

for the one step predictor η
[y0,...,yp−1]
θ,p and the optimal filter η̂

[y0,...,yp]
θ,p .

From the previous discussion, it should be clear that the conditional distributions

of the parameter Θ with respect to the sequence of observations (Y0, . . . , Yn−1) =

(y0, . . . , yn−1) is given by the measures

µn(dθ) :=
1

Zn

( ∏

0≤p<n

hp(θ)

)
µ(dθ) with the functions hp(θ) = ηθ,p(Gθ,p)

(2.7.6)

for some normalizing constant Zn. In the Bayesian literature, the likelihood func-

tions hp(θ) are often denoted by p(yp | (y0, . . . , yp−1), θ). In some instances, such

as classical linear-Gaussian models for example, the local likelihood functions hp(θ)

can be computed explicitly in terms of Gaussian densities and optimal one-step

predictors given by the Kalman recursions. In this case, we can use a dedicated

Monte Carlo Markov Chain model (MCMC for short) algorithm to sample from the

Boltzmann-Gibbs measures (2.7.6). One can also turn this MCMC algorithm into an

interacting MCMC model. This is done by letting Kn be a MCMC transition with

target measure µn = µnKn. By definition of the Boltzmann-Gibbs transformation

(2.3.7), we readily see that

µn+1 = Ψhn(µn)⇒ µn+1 = Ψhn(µn)Kn+1,

which shows that µn is given by the normalized Feynman-Kac measure defined for

any measurable function f on S, by the following equation

µn(f) ∝ E

(
f(Θn)

∏

0≤p<n

hp(Θp)

)
,
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where Θn is a Markov chain on S with initial distribution µ0 = µ and Markov

transitions Kn. The interacting particle approximation

µN
n =

1

N

∑

1≤i≤N
δΘi

n

of the measures µn (and their normalizing constants) is a genetic type particle model

on the product space SN

Θn =
(
Θi

n

)
1≤i≤N ∈ S

N
selection
−−−−−−−−→ Θ̂n =

(
Θ̂i

n

)
1≤i≤N

∈ SN
mutation
−−−−−−−→ Θn+1 ∈ SN .

(2.7.7)

The mutation transitions are given by the MCMC transitions Kn, and the selection

transitions are obtained from the selection potential functions hn. The complete con-

ditional distribution of the random sequence (Θ, (X0, . . . , Xn)) given the sequence of

observations (Y0, . . . , Yn−1) = (y0, . . . , yn−1) is given by the Feynman-Kac measures

µn(dθ)×Qθ,n(d(x0, . . . , xn)) ≃N↑∞ µN
n (dθ)×QN

θ,n(d(x0, . . . , xn)) .

The measures QN
θ,n appearing in the above right hand side stand for the particle

backward model defined in (2.3.19). Alternatively, we can also use the genealogical

tree approximation discussed in (2.3.3).

For linear-Gaussian models, we emphasize that the measure Qθ,n can be com-

puted explicitly. More precisely, the backward Markov chain formula (2.3.18) can

be computed using the updating transition of the Kalman filter, with the Gaussian

likelihood density function Hθ,n+1 of the transition Mθ,n+1. In this case, (2.3.18) is

the backward product of the Gaussian transitions given below

Mθ,n+1,ηθ,n(xn+1, dxn) :=
Hθ,n+1(xn, xn+1)

η̂θ,n (Hθ,n+1(., xn+1))
η̂θ,n(dxn) .

When the local likelihood functions hn are not known, we need to add another

approximation level. To this end, we also consider the probability distribution

P (θ, dξ) of the N -particle model

ξθ := (ξθ,0, ξθ,1, . . . , ξθ,T ) ,

on the interval [0, T ], with mutation transitions Mθ,n, and potential selection func-

tions Gθ,n, with n ≤ T . We fix a large time horizon T , and for any 0 ≤ n ≤ T , we

set

µn(d(ξ, θ)) =
1

Zn

{ ∏

0≤p<n

hp(ξ, θ)

}
µ(d(ξ, θ)) , (2.7.8)

for some normalizing constants Zn, the reference measure µ being given by

µ(d(ξ, θ)) = µ(dθ) P (θ, dξ),

74



2.7. PRICING MODELS WITH PARTIAL OBSERVATION MODELS

and the potential functions hn on the product space
((∏

0≤p≤T E
N
p

)
× S

)
defined

by

hn(ξ, θ) =
1

N

∑

1≤i≤N
Gθ,n(ξ

i
θ,n) = ηNθ,n (Gθ,n) ∈ (0,∞) .

Firstly, we observe that these target measures have the same form as the Boltzmann-

Gibbs measures (2.7.6). Thus, they can be sampled using the MCMC or the inter-

acting MCMC methodologies discused above. For a detailed discussion these types

of sophisticated serial MCMC methodologies, we refer the reader to the recent arti-

cle [2].

More interestingly, using the unbiased property of the unnormalized particle

models presented in (2.3.23), we clearly have Zn = Zn and

∫
P (θ, dξ)

{ ∏

0≤p<n

hp(ξ, θ)

}
= E

( ∏

0≤p<n

ηNθ,p (Gθ,p)

)

=
∏

0≤p<n

ηθ,p(Gθ,p) ,

from which we conclude that the Θ-marginal of µn coincides with the desired target

measure

(
µn ◦Θ−1

)
(dθ) = µn(dθ) =

1

Zn

{ ∏

0≤p<n

ηθ,p(Gθ,p)

}
ν(dθ) .
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Chapter 3

On the robustness of the Snell

envelope

3.1 Introduction

The evaluation of optimal stopping time of random processes, based on a given

optimality criterion, is one of the major problems in stochastic control and optimal

stopping theory, particularly in financial mathematics with American options pricing

and hedging. The present chapter is restricted to the case of the discrete time

optimal stopping problem corresponding in finance to the case of Bermudan options.

It is well known that the price of Bermudan options giving the opportunity to

exercise a payoff fk at discrete dates k = 0, · · · , n, can be calculated by a backward
dynamic programming formula. This recursion consists in comparing at each time

step k the immediate payoff fk and the expectation of the future gain (or the so-

called continuation value), which precisely involves the Markov transition Mk+1 of

the underlying assets process (Xk).

The first objective of this chapter is to provide a simple framework to analyze

in unison most of the numerical schemes currently used in practice to approximate

the Snell envelope, which are precisely based on the approximation of the dynamic

programming recursion. The idea is to analyze the related approximation error in

terms of robustness properties of the Snell envelope with respect to the pair param-

eters (fk,Mk). Hence, we include in our analysis approximation schemes which are

defined in terms of some approximate pairs of functions and transitions (f̂k, M̂k)k≥0.

After stating the robustness Lemma 4.2.1 in the preliminary Section 3.2, we deduce

from it non asymptotic convergence theorems, including Lp-mean error bounds and

related exponential inequalities for the deviations of Monte Carlo type approxima-

tion models.
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In Section 3.3, that approach allows us to derive non asymptotic error bounds for

deterministic approximation schemes such as cut-off techniques, Euler type discrete

time approximations, quantization tree models, interpolation type approximations,

then recovering or improving some existing results or in some cases providing new

bounds. We emphasize that this non asymptotic robustness analysis also allows to

combine in a natural way several approximation models. For instance, under appro-

priate tightness conditions, cut-off techniques can be used to reduce the numerical

analysis of the Snell envelope to compact state spaces and bounded functions f̂n. In

the same line of ideas, in designing any type of Monte Carlo approximation mod-

els, we can suppose that the transitions of the chain Xn are known, based on a

preliminary analysis of Euler type approximation models.

In Section 3.4, we focus on two kinds of Monte Carlo importance sampling ap-

proximation schemes. The first one is the Stochastic Mesh method introduced by

M. Broadie and P. Glasserman in their seminal paper [19] (see also [87], for some

recent refinements). The principal idea of that methodology is to operate a change

of measure to replace conditional expectations by simple expectations involving

Markov transition densities with respect to some reference measures. The number

of sampled points with respect to the reference measures ηn required by this model

can be constant in every exercise date. This technique avoids the explosion issue of

the naive Monte Carlo method. As any full Monte Carlo type technique, the main

advantage of their approach is that it applies to high dimensional Bermudan options

with a finite but possibly large number of exercise dates. In [19], the authors pro-

vided a set of conditions under which the Monte Carlo importance scheme converges

as the computational effort increases. However, the computing time grows quadrat-

ically with the number of sampled points in the stochastic mesh. In this context, in

Section 3.4.2, we provide new non asymptotic estimates, including Lp-mean error

bounds and exponential concentration inequalities. Our analysis allows us to derive

Theorem 3.4.7 improving significantly existing convergence results (see [19] or [3]).

The second type of Monte Carlo importance sampling scheme discussed in this

chapter is another version of the Broadie-Glasserman model, called average density

in their original article. The main advantage of this strategy comes from the fact

that the sampling distribution ηn can be chosen as the distribution of the random

states Xn of the reference Markov chain, even if the Radon-Nikodym derivatives

Rn(x, y) =
dMn(x,·)

dηn
(y) are not known explicitly. Here, we only assume that the

Markov transitions Mn(x, ·) are absolutely continuous with respect to some mea-

sures λn. We can then approximate these functions with empirical measures. In this

situation, we can recover a similar approximation to the original stochastic mesh

method, except that the Radon-Nikodym derivatives Rk+1(ξ
i
k, ξ

j
k+1) are replaced by

approximations. The stochastic analysis of this particle model is provided in the

second part of Section 3.4.2 and follows essentially the same line of arguments as
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the one of the Broadie-Glasserman model.

In the final part of the chapter, Section 3.5, we present a new Monte Carlo

approach based on the genealogical tree evolution model associated with a neutral

genetic model with mutations given by the Markov transitions Mn. The main ad-

vantage of this new strategy comes from the fact that the computational effort of the

algorithm is now linear in the number of sampled points. We recall that a neutral

genetic model is a Markov chain with a selection/mutation transition. During the

mutation phase, the particles explore the state space independently according to the

Markov transitions while the selection step induces interactions between the various

particles. This type of model is frequently used in biology, and genetic algorithms

literature (see for instance [56], and references therein).

An important observation concerns the genealogical tree structure of the genetic

particle model that we consider. The main advantage of this path particle model

comes from the fact that the occupation measure of the ancestral tree model con-

verges in some sense to the distribution of the path of the reference Markov chain. It

is also well known that the Snell envelope associated with a Markov chain evolving

on some finite state space is easily computed using the tree structure of the chain

evolution. Therefore, replacing the reference distribution Pn by its N -approximation

PN
n , we define an N -approximated Markov model whose evolutions are described by

the genealogical tree model defined above. We can then construct the approximation

ûk as the Snell envelope associated with this N -approximated Markov chain. Sev-

eral estimates of convergence are provided in Section 3.5. Finally, some numerical

simulations are performed, illustrating the interest of our new algorithm.

3.2 Preliminaries

In a discrete time setting, the problem is related to the pricing of Bermuda options

and is defined in terms of a given real valued stochastic process (Zk)0≤k≤n, adapted

to some increasing filtration F = (Fk)0≤k≤n that represents the available information

at any time 0 ≤ k ≤ n. For any k ∈ {0, . . . , n}, let Tk be the set of all stopping
times τ taking values in {k, . . . , n}. The Snell envelope of (Zk)0≤k≤n, is the stochastic

process (Uk)0≤k≤n defined for any 0 ≤ k < n by the following backward equation

Uk = Zk ∨ E(Uk+1|Fk) ,

with the terminal condition Un = Zn, where a ∨ b = max(a, b). The main property

of this stochastic process is that

Uk = sup
τ∈Tk

E(Zτ |Fk) = E(Zτ∗k
|Fk) (3.2.1)

with τ ∗k = min {k ≤ l ≤ n : Ul = Zl} ∈ Tk.
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At this level of generality, in the absence of any additional information on the

filtration F , or on the terminal random variable Zn, no numerical computation of

the Snell envelope is available. To get one step further, we assume that (Fn)n≥0
is the natural filtration associated with some Markov chain (Xn)n≥0 taking values

in some sequence of measurable state spaces (En, En)n≥0. Let η0 = Law(X0) be

the initial distribution on E0, and define by Mn(xn−1, dxn) the elementary Markov

transition of the chain from En−1 into En. We also assume that Zn = fn(Xn), for

some collection of non-negative measurable functions fn on En. In this situation,

the computation of the Snell envelope amounts to solving the following backward

functional equation

uk = Hk+1(uk+1) = fk ∨Mk+1(uk+1), (3.2.2)

for any 0 ≤ k < n, with the terminal value un = fn. In the above displayed formula,

Mk+1(uk+1) stands for the measurable function on Ek defined for any xk ∈ Ek by

the conditional expectation formula

Mk+1(uk+1)(xk) =

∫

Ek+1

Mk+1(xk, dxk+1) uk+1(xk+1)

= E (uk+1(Xk+1)|Xk = xk) .

Let Hk,l = Hk+1 ◦ Hk+1,l, with k ≤ l ≤ n, be the nonlinear semigroups associated

with the backward equation (4.2.1). We use the convention Hk,k = Id, the identity

operator, so that uk = Hk,l(ul), for any k ≤ l ≤ n. Given a sequence of bounded

integral operators Mk from some state space Ek−1 into another Ek, let us denote by

Mk,l the composition operator such that Mk,l := Mk+1Mk+2 · · ·Ml, for any k ≤ l,

with the convention Mk,k = Id, the identity operator. With this notation, one can

check that a necessary and sufficient condition for the existence of the Snell envelope

(uk)0≤k≤n is that Mk,lfl(x) < ∞ for any 1 ≤ k ≤ l ≤ n, and any state x ∈ Ek. To

check this claim, we simply notice that

fk ≤ uk ≤ fk+Mk+1uk+1 , ∀ 1 ≤ k ≤ n =⇒ fk ≤ uk ≤
∑

k≤l≤n
Mk,lfl , ∀ 1 ≤ k ≤ n .

(3.2.3)

From the readily proved Lipschitz property |Hk(u)−Hk(v)| ≤ Mk+1 (|u− v|), for
any functions u, v on Ek, we also have that

|Hk,l(u)−Hk,l(v)| ≤Mk,l (|u− v|) , (3.2.4)

for any functions u, v on El, and any k ≤ l ≤ n.

Even if it looks simple, the numerical solving of the recursion (4.2.1) often re-

quires extensive computations. The central problem is to compute the conditional

expectation Mk+1(uk+1) on the whole state space Ek, at every time step 0 ≤ k < n.
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For Markov chain models taking values in some finite state spaces (with a reason-

ably large cardinality), the above expectations can be easily computed by a simple

backward inspection of the whole realization tree that lists all possible outcomes

and every transition of the chain. In more general situations, we need to resort

to some approximation strategy. Most of the numerical approximation schemes

amount to replacing the pair of functions and Markov transitions (fk,Mk)0≤k≤n by

some approximation model (f̂k, M̂k)0≤k≤n on some possibly reduced measurable sub-

sets Êk ⊂ Ek. Let ûk be the Snell envelope on Êk associated with the functions f̂k
and the sequence of integral operators M̂k from Êk−1 into Êk. As in (4.2.1), the

computation of the Snell envelope ûk amounts to solving the following backward

functional equation

ûk = Ĥk+1(ûk+1) = f̂k ∨ M̂k+1(ûk+1) . (3.2.5)

Let Ĥk,l = Ĥk+1◦Ĥk+1,l, with k ≤ l ≤ n, be the nonlinear semigroups associated

with the backward equations (3.2.5), so that ûk = Ĥk,l(ûl), for any k ≤ l ≤ n. Using

the elementary inequality |(a ∨ a′)− (b ∨ b′)| ≤ |a− b|+ |a′ − b′|, which is valid for
any a, a′, b, b′ ∈ R, for any 0 ≤ k < n and for any functions u on Ek+1 one readily

obtains the local approximation inequality
∣∣∣Hk+1(u)− Ĥk+1(u)

∣∣∣ ≤ |fk − f̂k|+ |(Mk+1 − M̂k+1)(u)|. (3.2.6)

To transfer these local estimates to the semigroups Hk,l and Ĥk,l we use the same

perturbation analysis as in [41, 48, 85, 109] in the context of nonlinear filtering semi-

groups and particle approximation models. The difference between the approximate

and the exact Snell envelope can be written as a telescoping sum

uk − ûk =
n∑

l=k

[
Ĥk,l(Hl+1(ul+1))− Ĥk,l(Ĥl+1(ul+1))

]
,

setting for simplicity Hn+1(un+1) = un and Ĥn+1(un+1) = ûn, for l = n. Combining

the Lipschitz property (3.2.4) of the semigroup Ĥk,l with the local estimate (3.2.6),

one finally gets the following robustness lemma, which is a natural and fundamental

tool for the analysis of the Snell envelope approximations.

Lemma 3.2.1. For any 0 ≤ k < n, on the state space Êk, we have that

|uk − ûk| ≤
n∑

l=k

M̂k,l|fl − f̂l|+
n−1∑

l=k

M̂k,l|(Ml+1 − M̂l+1)ul+1| .

The perturbation analysis of nonlinear semigroups described above, and the re-

sulting robustness lemma are not really new. As mentioned previously, it is a rather

standard tool in approximation theory and numerical probability. More precisely,
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these Lipschitz type estimates are often used by induction or as an intermediate

technical step in the proof of a convergence theorem of some particular approxima-

tion scheme.

In the context of optimal stopping problems, similar induction arguments are

developped to prove the convergence of some specific approximation models, for in-

stance in the papers of Egloff [64] and Gobet, Lemor and Warin [76] or Pagès [92].

However, to the best of our knowledge, the general and abstract semigroup formula-

tion given above and its direct application to different approximation models seems

to be the first result of this type for that class of models.

Besides the fact that the convergence of many Snell approximation schemes

results from a single robustness property, Lemma 4.2.1 can be used sequentially

and without further work to obtain non asymptotic estimates for models combining

several levels of approximations. In the same vein, and whenever it is possible,

Lemma 4.2.1 can also be used as a technical tool to reduce the analysis of Snell

approximation models on compact state spaces or even on finite but possibly large

quantization trees or Monte Carlo type grids.

We end this section with an exponential inequality that can be readily deduced

from the Lp-mean error bounds presented in this chapter. For a more thorough

discussion on the connexion between Khintchine style Lp-mean error bounds and

concentration inequalities, we refer the reader to [40], [44, 45], and the more recent

article on the concentration properties of mean field type particle models [59].

Lemma 3.2.2. Suppose the estimates have the following form:
√
N sup

x∈Ek

E (|uk(x)− ûk(x)|p)
1
p ≤ a(p)bk(n),

where bk(n) are some finite constants whose values do not depend on the parameter

p and a(p) is a collection of constants such that for all non-negative integer r:

a(2r)2r = (2r)r 2
−r and a(2r + 1)2r+1 =

(2r + 1)r+1√
r + 1/2

2−(r+1/2) , (3.2.7)

with the notation (q)p = q!/(q − p)! , for any 1 ≤ p ≤ q. Then we deduce the

following exponential concentration inequality

sup
x∈Ek

P

(
|uk(xk)− ûk(xk)| >

bk(n)√
N

+ ǫ

)
≤ exp

(
−Nǫ2/(2bk(n)2)

)
. (3.2.8)

Proof. This result is a direct consequence of the fact that for any non-negative

random variable U , if there exists a bounded positive real b such that

∀ r ≥ 1, E (U r)
1
r ≤ a(r)b ,

where a(r) is defined by (3.2.7), then

P (U ≥ b+ ǫ) ≤ exp
(
−ǫ2/(2b2)

)
.
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To check this implication, we first notice that

P (U ≥ b+ ǫ) ≤ inf
t≥0
{e−t(b+ǫ)E[etU ]} .

Then developing the exponential and using the moments boundedness assumption,

one obtains that for all t ≥ 0,

E
(
etU

)
≤ exp

(
(bt)2

2
+ bt

)
.

As a result,

P (U ≥ b+ ǫ) ≤ exp

(
− sup

t≥0

(
ǫt− (bt)2

2

))
.

3.3 Some deterministic approximation models

In this section, we analyze the robustness of the Snell envelope with respect to some

deterministic approximation schemes that are parts of many algorithms proposed to

approximate the Snell envelope. Hence, the non asymptotic error bounds provided

in this section can be applied and combined to derive convergence rates for such

algorithms. We recover or improve previous results and in some cases, state new

error bounds.

3.3.1 Cut-off type models

It is often useful, when computing the Snell envelope, to approximate the state

space by a compact set. Indeed, Glasserman and Yu (2004) [75] showed that for

standard (unbounded) models (like Black-Scholes), the Monte Carlo estimation re-

quires samples of exponential size in the number of variables of the value function,

whereas the bounded state space assumption enables to estimate the Snell envelope

from samples of polynomial size in the number of variables. For instance, in [65], the

authors proposed a new algorithm that first requires a cut-off step which consists

in replacing the price process by another process killed at first exit from a given

bounded set. However, no bound is provided for the error induced by this cut-off

approximation. In this section, we formalize a general cut-off model and provide

some bounds on the error induced on the Snell envelope.

We suppose that for each n, En is a topological space with σ-fields En that

contains the Borel σ-field on En. Our next objective is to find conditions under

which we can reduce the backward functional equation (4.2.1) to a sequence of

compact sets Ên.
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To that end, we further assume that the initial measure η0 and the Markov

transition Mn of the chain Xn satisfy the following tightness property: For every

sequence of positive numbers ǫn ∈ [0, 1[, there exists a collection of compact subsets
Ên ⊂ En s.t.

(T ) η0(Ê
c
0) ≤ ǫ0 and ∀n ≥ 0 sup

xn∈Ên

Mn+1(xn, Ê
c
n+1) ≤ ǫn+1 .

For instance, this condition is clearly met for regular Gaussian type transitions on

the Euclidean space, for some collection of increasing compact balls.

In this situation, a natural cut-off consists in considering the Markov transitions

M̂k restricted to the compact sets Êk

∀x ∈ Êk−1 M̂k(x, dy) :=
Mk(x, dy) 1Êk

Mk(1Êk
)(x)

.

These transitions are well defined as soon as Mk(x, Êk) > 0, for any x ∈ Êk−1.

Using the decomposition

[M̂k −Mk](uk) = M̂k(uk)−Mk(1Êk
uk)−Mk(1Êc

k
uk)

=

(
1− 1

Mk(1Êk
)

)
Mk(uk1Êk

)−Mk(1Êc
k
uk)

=
Mk(1Êc

k
)

Mk(1Êk
)
Mk(uk1Êk

)−Mk(1Êc
k
uk) ,

then using Lemma 4.2.1 yields

‖uk − ûk‖Êk
:= sup

x∈Êk

|uk(x)− ûk(x)|

≤
n∑

l=k+1



∥∥∥∥∥
Ml(1Êc

l
)

Ml(1Êl
)

∥∥∥∥∥
Êl−1

‖Ml(ul1Êl
)‖Êl−1

+ ‖Ml(ul1Êc
l
)‖Êl−1




≤
n∑

l=k+1

[
ǫl

1− ǫl
‖Ml(ul)‖Êl−1

+ ‖Ml(u
2
l )‖1/2Êl−1

ǫ
1/2
l

]
.

We summarize the above discussion with the following result.

Theorem 3.3.1. We assume that the tightness condition (T ) is met, for every

sequence of positive numbers ǫn ∈ [0, 1[, and for some collection of compact subsets

Ên ⊂ En. In this situation, for any 0 ≤ k ≤ n, we have that

‖uk − ûk‖Êk
≤

n∑

l=k+1

ǫ
1/2
l

1− ǫ
1/2
l

‖Ml(u
2
l )‖1/2Êl−1

.
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Note that

uk ≤
n∑

l=k

Mk,l(fl),

and therefore

∥∥Mk(u
2
k)
∥∥
Êk−1

≤ (n− k + 1)
n∑

l=k

∥∥Mk−1,l(fl)
2
∥∥
Êk−1

.

Consequently, one can find sets (Êl)k<l≤n so that ‖uk − ûk‖Êk
is as small as one

wants as soon as ‖Mk,l(fl)
2‖Êk

< ∞, for any 0 ≤ k < l ≤ n. A similar cut-off

approach was introduced and analyzed in Bouchard and Touzi [13], but the cut-off

was operated on some regression functions and not on the transition kernels.

3.3.2 Euler approximation models

In several application model areas, the discrete time Markov chain (Xk)k≥0 is

often given in terms of an IRd-valued and continuous time process (Xt)t≥0 given by

a stochastic differential equation of the following form

dXt = a(Xt)dt+ b(Xt)dWt, law(X0) = η0, (3.3.1)

where η0 is a known distribution on IRd, a, b are known functions, and W is a

d-dimensional Wiener process. Except in some particular instances, the time homo-

geneous Markov transitions Mk = M are usually unknown, and we need to resort

to an Euler approximation scheme.

In this situation, any approximation of the Snell envelope, which is based on

simulations of the price process will be impacted by the error induced by the Euler

scheme used in simulations. We propose here to provide bounds for that error. No-

tice that in this setting, the exercise dates are discrete and fixed, so that our results

are not comparable with those from Dupuis and Wang (2004) [62] who analyzed the

convergence of the discrete time optimal stopping problem to the continuous time

optimal stopping problem when the frequency of exercise dates increases to infinity.

Similarly, for numerical approximations of Backward Stochastic Differential Equa-

tions (BSDE), [13] and [76] also analysed the case where the number of exercise

opportunities grows to infinity.

The discrete time approximation model with a fixed time step 1/m is defined by

the following recursive formula

ξ̂0(x) = x

ξ̂ (i+1)
m

(x) = ξ̂ i
m
(x) + a

(
ξ̂ i

m
(x)

) 1

m
+ b

(
ξ̂ i

m
(x)

) 1√
m

ǫi .

85



CHAPTER 3. ON THE ROBUSTNESS OF THE SNELL ENVELOPE

where the ǫi’s are i.i.d. centered and IR
d-valued Gaussian vectors with unit covari-

ance matrix. The chain (ξ̂k)k≥0 is an homogeneous Markov with a transition kernel

which we denote by M̂ .

We further assume that the functions a and b are twice differentiable, with

bounded partial derivatives of orders 1 and 2, and the matrix (bb∗)(x) is uniformly

non-degenerate.

In this situation, the integral operators M and M̂ admit densities, denoted by p

and p̂. According to Bally and Talay [5, 6], we have that

[p ∨ p̂] ≤ c q and m |p̂− p| ≤ c q , (3.3.2)

with the Gaussian density q(x, x′) := 1√
2πσ

e−
1

2σ2 |x−x′|2 , and a pair of constants (c, σ)

depending only on the pair of functions (a, b). Let Q, be the Markov integral

operator on IRd with density q. We consider a sequence of functions (fk)0≤k≤n on

IRd. Let (uk)0≤k≤n and (ûk)0≤k≤n be the Snell envelope on IRd associated to the pair

(M, fk) and (M̂, fk). Using Lemma 4.2.1, we readily obtain the following estimate

|uk − ûk| ≤
n−1∑

l=k

M̂ l−k|(M − M̂)ul+1| ≤
c

m

n−1∑

l=k

M̂ l−kQ|ul+1| .

Rather crude upper bounds that do not depend on the approximation kernels M̂

can be derived using the first inequality in ( 3.3.2)

|uk − ûk| ≤
1

m

n−k∑

l=1

cl Ql|ul+k| .

Recalling that ul+k ≤
∑

l+k≤l′≤nM
l′−(l+k)fl′ , we also have that

|uk − ûk| ≤
1

m

n−k∑

l=1

cl Ql
∑

l+k≤l′≤n
cl
′−(l+k) Ql′−(l+k)fl′

≤ 1

m

n−k∑

l=1

∑

l+k≤l′≤n
cl
′−k Ql′−kfl′ =

1

m

∑

1≤l≤n−k
l cl Qlfk+l .

We summarize the above discussion with the following theorem.

Theorem 3.3.2. Suppose the functions (fk)0≤k≤n on IRd are chosen such that

Qlfk+l(x) < ∞, for any x ∈ IRd, and 1 ≤ k + l ≤ n. Then, for any 0 ≤ l ≤ n, we

have the inequalities

|uk − ûk| ≤
c

m

n−1∑

l=k

M̂ l−kQ|ul+1| ≤
1

m

∑

1≤l≤n−k
l cl Qlfk+l .
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3.3.3 Interpolation type models

Most algorithms proposed to approximate the Snell envelope provide discrete

approximations ûik at some discrete (potentially random) points ξ
i
k of Ek. However,

for several purposes, it can be interesting to consider approximations ûk of functions

uk on the whole space Ek. One motivation to do so is, for instance, to be able

to define a new (low biased) estimator, Ūk, using a Monte Carlo approximation

of (3.2.1), with a stopping rule τ̂k associated with the approximate Snell envelope

ûk, by replacing uk by ûk in the characterization of the optimal stopping time

τ ∗k (3.2.1), i.e.

Ūk =
1

M

M∑

i=1

fτ̂ ik(X
i
τ̂ ik
) with τ̂ ik = min {k ≤ l ≤ n : ûl(X

i
l ) = fl(X

i
l )} . (3.3.3)

where X i = (X i
1, · · · , X i

n) are i.i.d. path according to the reference Markov chain

dynamic.

In this section, we analyze non asymptotic errors of some specific approximation

schemes providing such interpolated estimators ûk of uk on the whole state Ek. Let

M̂k+1 = IkM̃k+1 be the composition of the Markov transition M̃k+1 from a finite set

Sk into the whole state space Ek+1, with an auxiliary interpolation type and Markov

operator Ik from Ek into Sk, so that

∀xk ∈ Sk Ik(xk, ds) = δxk
(ds) ,

and such that the integrals

x ∈ Ek 7→ Ik(ϕk)(x) =

∫

Sk

Ik(x, ds) ϕk(s) ,

of any function ϕk on Sk are easily computed starting from any point xk in Ek. We

further assume that the finite state spaces Sk are chosen so that

‖f − Ikf‖Ek
≤ ǫk(f, |Sk|)→ 0 as |Sk| → ∞ , (3.3.4)

for continuous functions fk on Ek. An example of interpolation transition Ik is

provided hereafter. Let M̂k = Ik−1M̃k be the composition operator on the state

spaces Êk = Ek.

The approximation models M̃k are non necessarily deterministic. In [?], the

authors examined the situation where

∀s ∈ Sk M̃k(s, dx) =
1

Nk

∑

1≤i≤Nk

δXi
k(s)

(dx) ,

where X i
k(s) stands for a collection of Nk independent random variables with com-

mon law Mk(s, dx).
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Theorem 3.3.3. We suppose that the Markov transitions Mk are Feller, in the

sense that Mk(C(Ek)) ⊂ C(Ek−1), where C(Ek) stands for the space of continuous

functions on the Ek. Let (uk)0≤k≤n, and respectively (ûk)0≤k≤n be the Snell enve-

lope associated with the functions fk = f̂k, and the Markov transitions Mk, and

respectively M̂k = Ik−1M̃k on the state spaces Êk = Ek. Then

‖uk − ûk‖Ek
≤

n−1∑

l=k

[
ǫl (Ml+1ul+1, |Sl|) + ‖(Ml+1 − M̃l+1)ul+1‖Sl

]
.

The proof of the theorem is a direct consequence of Lemma 4.2.1 combined with

the following decomposition

‖uk − ûk‖Ek
(3.3.5)

≤
n−1∑

l=k

[
‖(Id− Il)Ml+1)ul+1‖El

+ ‖Il(Ml+1 − M̃l+1)ul+1‖El

]
.

We illustrate these results in the typical situation where the space Ek are the

convex hull generated by the finite sets Sk. Firstly, we present the definition of

the interpolation operators. Let ¶ = {¶1, . . . ,¶m} be a partition of a convex and

compact space E into simplexes with disjoint non empty interiors, so that E =

∪1≤i≤m¶i. We denote by δ(¶) the refinement degree of the partition ¶

δ(¶) := sup
1≤i≤m

sup
x,y∈¶i

‖x− y‖ .

Let S = V(¶) be the set of vertices of these simplexes. We denote by I be the

interpolation operator defined by I(f)(s) = f(s), if s ∈ S, and if x belongs to some
simplex ¶j with vertices {xj1, . . . , xjdj}

I(f)(
∑

1≤i≤dj
λi x

i
j) =

∑

1≤i≤dj
λi f(x

j
i ) ,

where the barycenters (λi)1≤i≤dj are the unique solution of

x =
∑

1≤i≤dj
λi x

j
i with (λi)1≤i≤dj ∈ [0, 1]dj and

∑

1≤i≤dj
λi = 1 .

The Markovian interpretation is that starting from x, one chooses the “ closest

simplex” and then one chooses one of its vertices xi with probability λi.

For any δ > 0, let ω(f, δ) be the δ-modulus of continuity of a function f ∈ C(E)

ω(f, δ) := sup
(x,y)∈E:‖x−y‖≤δ

|f(x)− f(y)| .

The following technical Lemma provides a simple way to check condition (3.3.4) for

interpolation kernels.
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Lemma 3.3.1. Then for any f, g ∈ C(E),

sup
x∈E

|f(x)− Ig(x)| ≤ max
x∈S

|f(x)− g(x)|+ ω(f, δ(¶)) + ω(g, δ(¶)) . (3.3.6)

In particular, we have that

sup
x∈E

|f(x)− If(x)| ≤ ω(f, δ(¶)) .

Proof. Suppose x belongs to some simplex ¶j with vertices {xj1, . . . , xjdj}, and let

(λi)1≤i≤dj be the barycenter parameters x =
∑

1≤i≤dj λi x
i
j. Since we have Ig(xji ) =

g(xji ), and Ig(xji ) = g(xji ) for any i ∈ {1, . . . , dj}, it follows that

|f(x)− Ig(x)| ≤
dj∑

i=1

λi|(f(x)− f(xji )|+
dj∑

i=1

λi|f(xji )− Ig(xji )|

+

dj∑

i=1

λi|Ig(xji )− g(x)|

=

dj∑

i=1

λi|(f(x)− f(xji )|+
dj∑

i=1

λi|f(xji )− g(xji )|

+

dj∑

i=1

λi|g(xji )− g(x)| .

This implies that

sup
x∈¶j

|f(x)− Ig(x)| ≤ max
x∈¶j

|f(x)− g(x)|+ ω(f, δ(¶j)) + ω(g, δ(¶j)) ,

with

ω(f, δ(¶j)) = sup
‖x−y‖≤δ(¶j)

|f(x)− f(y)| and δ(¶j) := sup
x,y∈¶j

‖x− y‖ .

The end of the proof is now clear.

Combining (3.3.5) and (3.3.6), we obtain the following result.

Proposition 3.3.2. Let ¶k = {¶1
k, . . . ,¶mk

k } be a partition of a convex and compact

space Ek into simplexes with disjoint non empty interiors, so that Ek = ∪1≤i≤mk
¶i.

Let Sk = V(¶k) be the set of vertices of these simplexes. Let (ûk)0≤k≤n, be the

Snell envelope associated with the functions f̂k = fk and the Markov transitions

M̂k = Ik−1M̃k on the state spaces Ek = Êk.

‖uk − ûk‖Ek
≤

n−1∑

l=k

[
ω(Ml+1ul+1, δ(¶l)) + ‖(Ml+1 − M̃l+1)ul+1‖Sl

]
.
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To illustrate the results of Theorem 3.3.3 and Proposition 3.3.2, we have derived

the effective convergence rate induced by the interpolation in a specific example.

Following the previous Section, let us consider the Rd-valued Markov chain (ξ̂k)0≤k≤n
defined as the Euler time discretization of the stochastic differential equation (3.3.1),

with a time step ∆t = 1, i.e.

ξ̂0 = x

ξ̂k+1 = ξ̂k + a(ξ̂k)∆t+ b(ξ̂k)
√
∆tǫk , (3.3.7)

where ǫk are i.i.d. centered Gaussian vectors on Rd with unit covariance matrix.

Let Lip(Rd) be the set of all Lipschitz functions f on Rd, and we set

L(f) = sup
x,y∈Rd,x 6=y

‖f(x)− f(y)‖
‖x− y‖ , f ∈ Lip(Rd). (3.3.8)

We assume that a : Rd → R and b : Rd → M(d, d) are Lipschitz continuous

functions. Then, we can prove that the time homogeneous Markov transitionsMk =

M associated to the Markov chain (ξ̂k)0≤k≤n is such that for any Lipschitz continuous

function f on Rd,

|M(f)(x)−M(f)(y)| ≤ (1 + α)L(f)‖x− y‖ , (3.3.9)

with α := α(L(a), L(b),∆t) := L(a)∆t + dL(b)
√
∆t ≥ 0. Hence, we observe that

Mk(Lip(R
d)) ⊂ Lip(Rd) . We also observe that

(
fk and uk+1 ∈ Lip(Rd)

)

⇓(
uk ∈ Lip(Rd) with L(uk) ≤ L(fk) ∨ L(Mk+1(uk+1))

) (3.3.10)

Moreover, assume that the payoff function fk = f for all k = 0, · · · , n. Using (3.3.9)
together with (3.3.10) implies

L(uk) ≤ (1 + α)n−kL(f) .

Using again (3.3.9) yields

ω
(
Ml+1ul+1, δ(Pl)

)
≤ (1 + α)n−lL(f)δ(Pl) .

Finally, in the specific case of model (3.3.7), with payoff functions fk = f and some

refinement degrees of the partitions δ(Pk) ≤ δ, we obtain the following bound for

the convergence of our interpolation model

‖uk − ûk‖Ek
≤ (1 + α)n−k+1

α
L(f)δ +

n−1∑

l=k

‖(Ml+1 − M̃l+1)ul+1‖Sl
.
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3.3.4 Quantization tree models

Quantization tree models belong to the class of deterministic grid approximation

methods. The basic idea consists in choosing finite space grids

Êk =
{
x1k, . . . , x

mk
k

}
⊂ Ek = Rd ,

and some neighbourhoods measurable partitions (Ai
k)1≤k≤mk

of the whole space Ek

such that the random state variable Xk is suitably approximated, as mk → ∞, by

discrete random variables of the following form

X̂k :=
∑

1≤i≤mk

xik 1Ai
k
(Xk) ≃ Xk .

The numerical efficiency of these quantization methods heavily depends on the

choice of these grids. There exists various criteria to choose judiciously these ob-

jects, including minimal Lp-quantization errors, that ensure that the corresponding

Voronoi type quantized variable X̂k minimizes the Lp distance to the real state

variable Xk. For further details on this subject, we refer the interested reader to

the pioneering article of G. Pagès [92], and the series of articles of V. Bally, G.

Pagès, and J. Printemps [4], G. Pagès and J. Printems [96], as well as [7, 20, 76, 95],

and references therein. The second approximation step of these quantization model

consists in defining the coupled distribution of any pair of variables (X̂k−1, X̂k) by

setting

P

(
X̂k = xjk , X̂k−1 = xik−1

)
= P

(
Xk ∈ Aj

k , Xk−1 ∈ Ai
k−1

)
,

for any 1 ≤ i ≤ mk−1, and 1 ≤ j ≤ mk. This allows to interpret the quantized

variables (X̂k)0≤k≤n as a Markov chain taking values in the states spaces (Êk)0≤k≤n
with Markov transitions

M̂k(x
i
k−1, x

j
k) := P

(
X̂k = xjk | X̂k−1 = xik−1

)
= P

(
Xk ∈ Aj

k | Xk ∈ Ai
k−1

)
.

Using the decompositions

Mk(f)(x
i
k−1) =

mk∑

j=1

∫

Aj
k

f(y) P(Xk ∈ dy | Xk−1 = xik−1)

=

mk∑

j=1

∫

Aj
k

f(y) P(Xk ∈ dy | Xk−1 ∈ Ai
k−1)

+

∫ [
M(f)(xik−1)−M(f)(x)

]
P(Xk−1 ∈ dx|Xk−1 ∈ Ai

k−1) ,

and

M̂k(f)(x
i
k−1) =

mk∑

j=1

∫

Aj
k

f(xjk) P(Xk ∈ dy | Xk−1 ∈ Ai
k−1) ,
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we find that

[Mk − M̂k](f)(x
i
k−1)

=

mk∑

j=1

∫

Aj
k

[f(y)− f(xjk)] P(Xk ∈ dy | Xk−1 ∈ Ai
k−1)

+

∫ [
M(f)(xik−1)−M(f)(x)

]
P(Xk−1 ∈ dx | Xk−1 ∈ Ai

k−1) .

We further assume that Mk(Lip(R
d)) ⊂ Lip(Rd) . From previous considerations, we

find that

|[Mk − M̂k](f)(x
i
k−1)| ≤ L(f) E

[
|Xk − X̂k|p | X̂k−1 = xik−1)

] 1
p

+L(Mk(f)) E(|Xk−1 − X̂k−1|p | X̂k−1 = xik−1)
1
p .

This clearly implies that

M̂k,l|(Ml+1 − M̂l+1)f |(xik) ≤ L(f)
[
E(|Xl+1 − X̂l+1|p | X̂k = xik)

] 1
p

+L(Ml+1(f)) E(|Xl − X̂l|p | X̂k = xik)
1
p .

Using (3.3.10), we also obtain that L(uk) ≤ L(fk)∨L(Mk+1(uk+1)). Using Lemma 4.2.1,

we readily arrive at the following Proposition similar to Theorem 2 in [4].

Proposition 3.3.3. Assume that (fk)0≤k≤n ∈ Lip(Rd)n+1, and Mk(Lip(R
d)) ⊂

Lip(Rd), for any 1 ≤ k ≤ n. In this case, we have (uk)0≤k≤n ∈ Lip(Rd)n+1, and for

any 0 ≤ k ≤ n, we have the almost sure estimate

|uk − ûk|(X̂k) ≤ L(Mk+1(uk+1)) |Xk − X̂k|

+
n−1∑

l=k+1

(L(ul) + L(Ml+1(ul+1))) E(|Xl − X̂l|p | X̂k)
1
p

+L(fn)
[
E(|Xn − X̂n|p | X̂k)

] 1
p
.

Proof. Using the decomposition

ûk(X̂k)− uk(Xk) = [ûk(X̂k)− uk(X̂k)] + [uk(X̂k)− uk(Xk)] ,

we have that

|uk(X̂k)− uk(Xk)| ≤ L(uk) |X̂k −Xk| .
Then the proof is completed by the following inequality:

|ûk(ξ̂k)− uk(Xk)| ≤ L(fn)
[
E(|Xn − X̂n|p | X̂k)

] 1
p

+
n−1∑

l=k

(L(ul) + L(Ml+1(ul+1))) E(|Xl − X̂l|p | X̂k)
1
p .
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In contrast with [4] which focuses on optimizing deterministic grids, we remark

that the independent applications of Lemma 4.2.1 in this model and in the previous

examples illustrate the generality of our framework.

3.4 Monte Carlo importance sampling approxi-

mation schemes

3.4.1 Path space models

The choice of non homogeneous state spaces En is not without consequences. In

several applications, the underlying Markov model is a path-space Markov chain

Xn = (X ′
0, . . . , X

′
n) ∈ En = (E ′0 × . . .× E ′n) . (3.4.1)

The elementary prime variables X ′
n represent an elementary Markov chain with

Markov transitionsM ′
k(xk−1, dx

′
k) from E ′k−1 into E

′
k. In this situation, the historical

process Xn can be seen as a Markov chain with transitions given for any xk−1 =

(x′0, . . . , x
′
k−1) ∈ Ek−1 and yk = (y′0, . . . , y

′
k) ∈ Ek by the following formula

Mk(xk−1, dyk) = δxk−1
(dyk−1) M

′
k(y

′
k−1, dy

′
k) .

This path space framework is, for instance, well suited when dealing with path

dependent options as Asian options.

Besides, this path space framework is also well suited for the analysis of Snell

envelope under different probability measures. To fix the ideas, we associate with

the latter a canonical Markov chain
(
Ω,F , (X ′

n)n≥0,P
′
η′0

)
with initial distribution η′0

on E ′0, and Markov transitions M
′
n from E ′n−1 into E

′
n. We use the notation E′η′0

to

denote the expectations with respect to P′η′0
. We further assume that there exists a

sequence of measures (ηk)0≤k≤n on the state spaces (E ′k)0≤k≤n such that

η′0 ∼ η0 and M ′
k(x

′
k−1, .) ∼ ηk , (3.4.2)

for any x′k−1 ∈ E ′k−1, and 1 ≤ k ≤ n. Let (Ω,F , (X ′
n)n≥0,Pη0) be the canonical space

associated with a sequence of independent random variables X ′
k with distribution ηk

on the state space E ′k, with k ≥ 1. Under the probability measure Pη0 , the historical

process Xn = (X ′
0, . . . , X

′
n) can be seen as a Markov chain with transitions

Mk(xk−1, dyk) = δxk−1
(dyk−1) ηk(dy

′
k) .
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By construction, for any integrable function f ′k on E
′
k, we have

Eη′0
(f ′n(X

′
n)) = Eη0 (fn(Xn)) ,

with the collection of functions fk on Ek given for any xk = (x′0, . . . , x
′
k) ∈ Ek by

fk(xk) = f ′k(x
′
k)×

dP′k
dPk

(xk) with
dP′k
dPk

(xk) =
dη′0
dη0

(x′0)
∏

1≤l≤k

dM ′
l (x

′
l−1, .)

dηl
(x′l) .

(3.4.3)

Proposition 3.4.1. The Snell envelope uk and u′k associated with the pairs (f ′k,M
′
k)

and (fk,Mk) are given, for any 0 ≤ k < n, by the backward recursions

u′k = f ′k ∨M ′
k+1(u

′
k+1) and uk = fk ∨Mk+1(uk+1) with (u′n, un) = (f ′n, fn) .

These functions are connected by the formula

∀ 0 ≤ k ≤ n, ∀ xk = (x′0, . . . , x
′
k) ∈ Ek, uk(xk) = u′k(x

′
k)×

dP′k
dPk

(xk) . (3.4.4)

Proof. The first assertion is a simple consequence of the definition of a Snell enve-

lope, and formula (3.4.4) is easily derived using the fact that

u′k(x
′
k) = f ′k(x

′
k) ∨

(∫

E′k+1

ηk+1(dx
′
k+1)

dM ′
k+1(x

′
k, .)

dηk+1

(x′k+1) u
′
k+1(x

′
k+1)

)
.

That completes the proof of the proposition.

Under condition (3.4.2), the above proposition shows that the computation of

the Snell envelope associated with a given pair of functions and Markov transitions

(f ′k,M
′
k) reduces to that of the path space models associated with sequence of in-

dependent random variables with distributions ηn. More formally, the restriction

Pη0,n of reference measure Pη0 to the σ-field Fn generated by the canonical random

sequence (X ′
k)0≤k≤n is given by the the tensor product measure Pη0,n = ⊗n

k=0ηk. Nev-

ertheless, under these reference distributions, the numerical solving of the backward

recursion stated in the above proposition still involves integrations with respect to

the measures ηk. These equations can be solved if we replace these measures by

some sequence of (possibly random) measures η̂k with finite support on some re-

duced measurable subset Ê ′k ⊂ E ′k, with a reasonably large and finite cardinality.

We extend η̂k to the whole space E
′
k by setting η̂k(E

′
k − Ê ′k) = 0.

Let P̂η̂′0
be the distribution of a sequence of independent random variables ξ̂′k with

distribution η̂k on the state space Ê
′
k, with k ≥ 1. Under the probability measure

P̂η̂′0
, the historical process Xn = (X ′

0, . . . , X
′
n) can now be seen as a Markov chain

taking values in the path spaces

Êk :=
(
Ê ′0 × . . .× Ê ′k

)
,
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with Markov transitions given for any xk−1 = (x′0, . . . , x
′
k−1) ∈ Êk−1 and yk =

(y′0, . . . , y
′
k) ∈ Êk by the following formula

M̂k(xk−1, dyk) = δxk−1
(dyk−1) η̂k(dy

′
k) .

Notice that the restriction P̂η̂′0,n
of these approximated reference measure P̂η̂′0

to the

σ-field Fn generated by the canonical random sequence (X ′
k)0≤k≤n is now given by

the the tensor product measure P̂η̂′0,n
= ⊗n

k=0η̂k.

Let ûk be the Snell envelope on the path space Êk, associated with the pair

(f̂k, M̂k), with the sequence of functions f̂k = fk given in (3.4.3). By construction,

for any 0 ≤ k ≤ n, and any path xk = (x′0, . . . , x
′
k) ∈ Êk, we have

ûk(xk) = û′k(x
′
k)×

dP′k
dPk

(xk) ,

with the collection of functions (û′k)0≤k≤n on the state spaces (E ′k)0≤k≤n given by

the backward recursions

û′k(x
′
k) = f ′k(x

′
k) ∨

(∫

Ê′k+1

M̂ ′
k+1(x

′
k, dx

′
k+1) û

′
k+1(x

′
k+1)

)
, (3.4.5)

with the random integral operator M̂ ′
k from E ′k into Ê

′
k+1 defined below

M̂ ′
k+1(x

′
k, dx

′
k+1) = η̂k+1(dx

′
k+1) Rk+1(x

′
k, x

′
k+1) ,

with the Radon-Nikodym derivatives Rk+1(x
′
k, x

′
k+1) =

dM ′
k+1(x

′
k,.)

dηk+1
(x′k+1).

3.4.2 Broadie-Glasserman models

We consider the path space models associated to the change of measures presented in

Section 3.4.1. We use the same notation. We further assume that η̂k =
1
N

∑N
i=1 δξik is

the occupation measure associated with a sequence of independent random variables

ξk := (ξik)1≤i≤N with common distribution ηk on Ê
′
k = E ′k. We further assume that

(ξk)0≤k≤n are independent. This Monte Carlo type model has been introduced in

1997 by Broadie and Glasserman (see for instance [19], and references therein). Let

Ê be the expectation operator associated with this additional level of randomness,

and we set Êη0 := Ê⊗ EPη0
.

In this situation, we observe that

(M ′
k+1 − M̂ ′

k+1)(x
′
k, dx

′
k+1) =

1√
N

V̂k+1(dx
′
k+1) Rk+1(x

′
k, x

′
k+1) ,

with the random fields V̂k+1 :=
√
N [ηk+1 − η̂k+1]. From these observations, we

readily prove that the approximation operators M̂ ′
k+1 are unbiased, in the sense

that

∀0 ≤ k ≤ l ∀x′l ∈ El Êη0

(
M̂ ′

k,l(f)(x
′
l) |Fk

)
=M ′

k,l(f)(x
′
l) , (3.4.6)
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for any bounded function f on El+1. Furthermore, for any even integer p ≥ 1, we

have

√
N Êη0

(∣∣∣
[
M ′

l+1 − M̂ ′
l+1

]
(f)(x′l)

∣∣∣
p) 1

p ≤ 2 a(p) ηl+1 [(Rl+1(x
′
l, ·)f)p]

1
p .

The above estimate is valid as soon as the r.h.s. in the above inequality is well

defined.

We are now in position to state and prove the following theorem.

Theorem 3.4.1. For any integer p ≥ 1, we denote by p′ the smallest even integer

greater than p. Then for any time horizon 0 ≤ k ≤ n, and any x′k ∈ E ′k, we have

√
N Êη0

(
|u′k(x′k)− û′k(x

′
k)|p

) 1
p (3.4.7)

≤ 2a(p)
∑

k≤l<n

{∫
M ′

k,l(x
′
k, dx

′
l)ηl+1

[
(Rl+1(x

′
l, ·)u′l+1)

p′
]} 1

p′

.

Note that, as stated in the introduction, this result implies exponential rate

of convergence in probability. Hence, this allows to improve noticeably existing

convergence results stated in [19], where there was no rate of convergence, and

in [3], where the rate of convergence in probability was polynomial.

Proof. For any even integers p ≥ 1, any 0 ≤ k ≤ l, any measurable function f on

El+1, and any xk ∈ E ′k, using the generalized Minkowski inequality we find that
√
N Êη0

(∣∣∣M̂ ′
k,l

∣∣∣
[
M ′

l+1 − M̂ ′
l+1

]
(f)

∣∣∣ (x′k)
∣∣∣
p

|Fl

) 1
p

≤ 2a(p)

∫
M̂ ′

k,l(x
′
k, dx

′
l) ηl+1 [(Rl+1(x

′
l, ·)f)p]

1
p .

By the zero-bias property (3.4.6), we conclude that

√
N Êη0

(∣∣∣M̂ ′
k,l

∣∣∣
[
M ′

l+1 − M̂ ′
l+1

]
(f)

∣∣∣ (x′k)
∣∣∣
p) 1

p

≤ 2a(p)

{∫
M ′

k,l(x
′
k, dx

′
l) ηl+1 [(Rl+1(x

′
l, ·)f)p]

}1/p

.

For odd integers p = 2q + 1, with q ≥ 0, we use the fact that

E(Y 2q+1)2 ≤ E(Y 2q) E(Y 2(q+1)) and E(Y 2q) ≤ E(Y 2(q+1))
q

q+1 ,

for any non negative random variable Y and

(2(q + 1))q+1 = 2 (2q + 1)q+1 and (2q)q = (2q + 1)q+1/(2q + 1) ,

so that

a(2q)2qa(2(q + 1))2(q+1) ≤ 2−(2q+1)(2q + 1)2q+1/(q + 1/2) =
(
a(2q + 1)2q+1

)2
,
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and

N Êη0

(∣∣∣M̂ ′
k,l

∣∣∣
[
M ′

l+1 − M̂ ′
l+1

]
(f)

∣∣∣ (x′k)
∣∣∣
2q+1

)2

≤
(
2(2q+1)a(2q + 1)2q+1

)2 ∫
M ′

k,l(x
′
k, dx

′
l) ηl+1

[
(Rl+1(x

′
l, ·)f)2(q+1)

] q
q+1

×
∫
M ′

k,l(x
′
k, dx

′
l) ηl+1

[
(Rl+1(x

′
l, ·)f)2(q+1)

]
.

Using the fact that E(Y
q

q+1 ) ≤ E(Y )
q

q+1 , we prove that the r.h.s. term in the above

display is upper bounded by

(
2(2q+1)a(2q + 1)2q+1

)2 {∫
M ′

k,l(x
′
k, dx

′
l)ηl+1

[
(Rl+1(x

′
l, ·)f)2(q+1)

]}2(1− 1
2(q+1))

,

from which we conclude that

√
N Êη0

(∣∣∣M̂ ′
k,l

∣∣∣
[
M ′

l+1 − M̂ ′
l+1

]
(f)

∣∣∣ (x′k)
∣∣∣
2q+1

) 1
2q+1

≤ 2a(2q + 1)
{∫

M ′
k,l(x

′
k, dx

′
l) ηl+1

[
(Rl+1(x

′
l, ·)f)2(q+1)

]} 1
2(q+1) .

That complete the proof of the theorem.

The Lp-mean error estimates stated in Theorem 3.4.1 are expressed in terms of

Lp′ norms of Snell envelope functions and Radon-Nikodym derivatives. The terms

in the r.h.s. of (3.4.7) have the following interpretation:
∫

M ′
k,l(x

′
k, dx

′
l) ηl+1

[
(Rl+1(x

′
l, ·)ul+1)

p′
]

= E

[(
Rl+1(X

′
l , ξ

1
l+1)ul+1(ξ

1
l+1)

)p′ |X ′
k = x′k

]
.

In the above display, E(·) stands for the expectation with respect to some reference
probability measure under which X ′

l is a Markov chain with transitions M ′
l , and

ξ1l+1 is an independent random variable with distribution ηl+1. Loosely speaking,

the above quantities can be very large when the sampling distributions ηl+1 are far

from the distribution of the random states X ′
l+1 of the reference Markov chain at

time (l + 1). Next, we provide an original strategy that allows for instance to take

ηl+1 = law(X ′
l+1) as the sampling distribution, even if Rl+1 is not known (i.e. cannot

be evaluated at any point of El+1). In the sequel, we consider N independent copies

(ξi0, · · · ξin)1≤i≤N of the Markov chain (X ′
0, X

′
1, · · ·X ′

n), from the origin k = 0, up to

the final time horizon k = n. Then, for all k = 0, · · ·n, we define the associated
occupation measure η̂k =

1
N

∑N
i=1 δξik . For all k = 0, · · ·n, let Fk be the sigma field

generated by the random sequence (ξl)0≤l≤k.
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We also assume that the Markov transitions M ′
n(x

′
n−1, dx

′
n) are absolutely con-

tinuous with respect to some measures λn(dx
′
n) on E

′
n and we have

(H)0 ∀(x′n−1, x′n) ∈
(
E ′n−1 × E ′n

)
Hn(x

′
n−1, x

′
n) =

dM ′
n(x

′
n−1, .)

dλn
(x′n) > 0 ,

where Hn is supposed to be known up to a normalizing constant. In this situation,

we have ηk+1 ≪ λk+1, with the Radon-Nikodym derivative given below

ηk+1(dx
′
k+1) = ηkM

′
k+1(dx

′
k+1) = ηk

(
Hk+1(·, x′k+1)

)
λk+1(dx

′
k+1) .

Also notice that the backward recursion of the Snell envelope u′k can be rewritten

as

u′k(x
′
k) = f ′k(x

′
k) ∨

(∫

E′k+1

ηk+1(dx
′
k+1)

dM ′
k+1(x

′
k, .)

dηk+1

(x′k+1) u
′
k+1(x

′
k+1)

)

= f ′k(x
′
k) ∨

(∫

E′k+1

ηk+1(dx
′
k+1)

Hk+1(x
′
k, x

′
k+1)

ηk(Hk+1(·, x′k+1))
u′k+1(x

′
k+1)

)
.

Arguing as in (3.4.5), we define the approximated Snell envelope (û′k)0≤k≤n on the

state spaces (E ′k)0≤k≤n by setting

û′k(x
′
k) = f ′k(x

′
k) ∨

(∫

Ê′k+1

M̂ ′
k+1(x

′
k, dx

′
k+1) û

′
k+1(x

′
k+1)

)
,

with the random integral operator M̂ ′ from Ek into Êk+1 defined below

M̂ ′
k+1(x

′
k, dx

′
k+1) = η̂k+1(dx

′
k+1)

dM ′
k+1(x

′
k, .)

dη̂kM ′
k+1

(x′k+1)

= η̂k+1(dx
′
k+1)

Hk+1(x
′
k, x

′
k+1)

η̂k(Hk+1(·, x′k+1))
.

By construction, these random approximation operators M̂ ′
k+1 satisfy the zero-bias

property stated in (3.4.6), and we have

(M ′
k+1 − M̂ ′

k+1)(x
′
k, dx

′
k+1) =

1√
N

V̂k+1(dx
′
k+1) R̂k+1(x

′
k, x

′
k+1) ,

with the random fields V̂k+1 and the Fk-measurable random functions R̂k+1 defined

below

V̂k+1 :=
√
N [η̂kM

′
k+1 − η̂k+1] and R̂k+1(x

′
k, x

′
k+1) :=

Hk+1(x
′
k, x

′
k+1)

η̂k(Hk+1(·, x′k+1))
.

Furthermore, for any even integer p ≥ 1, and any measurable function f on El we

have

√
N Êη0

(∣∣∣
[
M ′

l+1 − M̂ ′
l+1

]
(f)(x′l)

∣∣∣
p

|Fl

) 1
p ≤ 2 a(p) η̂lM

′
l+1

[
(R̂l+1(x

′
l, ·)f)p

] 1
p
.
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The above estimate is valid as soon as the r.h.s. in the above inequality is well

defined. For instance, assuming that

(H)1 ‖M ′
l+1(u

2p
l+1)‖ <∞

and sup
x′l,y

′
l∈E′l

Hl+1(x
′
l, x

′
l+1)

Hl+1(y′l, x
′
l+1)

≤ hl+1(x
′
l+1) with ‖M ′

l+1(h
2p
l+1)‖ <∞ ,

we find that

√
N E

(∣∣∣
[
M ′

l+1 − M̂ ′
l+1

]
(u′l+1)(x

′
l)
∣∣∣
p

|Fl

) 1
p

≤ 2 a(p)
(
‖M ′

l+1(h
2p
l+1)‖ ‖M ′

l+1((u
′
l+1)

2p)‖
) 1

2p .

Rephrasing the proof of Theorem 3.4.1, we just proved the following result.

Theorem 3.4.2. Under the conditions (H)0 and (H)1 stated above, for any even

integer p > 1, any 0 ≤ k ≤ n, and x′k ∈ E ′k, we have

√
N E

(
|u′k(x′k)− û′k(x

′
k)|p

) 1
p (3.4.8)

≤ 2a(p)
∑

k≤l<n

(
‖M ′

l+1(h
2p
l+1)‖ ‖M ′

l+1((u
′
l+1)

2p)‖
) 1

2p .

In the end, recovering and extending results from [19], it is interesting to point

out that both the Broadie-Glasserman estimator and this new BG type adapted

estimator have positive bias.

Proposition 3.4.2. For any 0 ≤ k ≤ n and any x′k ∈ E ′k
E (û′k(x

′
k)) ≥ u′k(x

′
k) . (3.4.9)

Proof. This inequality can be proved easily by a simple backward induction. The

terminal condition û′n = u′n implies directly the inequality on instant n. Assuming

the inequality holds true in instant k, then Jensen’s inequality implies that

E (û′k(x
′
k)) ≥ fk(x

′
k) ∨ E

(
M̂ ′

k+1(û
′
k+1)(x

′
k)
)

≥ fk(x
′
k) ∨Mk+1u

′
k+1(x

′
k) = u′k(x

′
k) ,

completing the proof of the proposition.

3.5 A genealogical tree based model

3.5.1 Neutral genetic models

Using the notations of Section 3.4.1, set

Xn = (X ′
0, . . . , X

′
n) ∈ En = (E ′0 × . . .× E ′n) .
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Further assume that the state spaces E ′n are finite, and denote by ηk the distribution

of the path-valued random variable Xk on Ek, with 0 ≤ k ≤ n.

Further let M ′
k be the Markov transition from X ′

k−1 to X
′
k, and let Mk be the

Markov transition from Xk−1 to Xk. In Section 3.4.1, we have seen that

Mk((x
′
0, . . . , x

′
k−1), d(y

′
0, . . . , y

′
k)) = δ(x′0,...,x′k−1)

(d(y′0, . . . , y
′
k−1)) M

′
k(y

′
k−1, dy

′
k) .

In the further development, we fix the final time horizon n, and for any 0 ≤ k ≤ n,

we denote by πk the k-th coordinate mapping

πk : xn = (x′0, . . . , x
′
n) ∈ En = (E ′0 × . . .× E ′n) 7→ πk(xn) = x′k ∈ E ′k .

In this notation, for any 0 ≤ k < n, x′k ∈ E ′k and any function f ∈ B(E ′k+1), we

have

ηn = Law(X ′
0, . . . , X

′
n) and M ′

k+1(f)(x) :=
ηn((1x ◦ πk) (f ◦ πk+1))

ηn((1x ◦ πk))
. (3.5.1)

By construction, it is also readily checked that the flow of measure (ηk)0≤k≤n
also satisfies the following equation

ηk := Φk (ηk−1) , ∀ 1 ≤ k ≤ n, (3.5.2)

with the linear mapping Φk (ηk−1) := ηk−1Mk.

The genealogical tree based particle approximation associated with these recur-

sion is defined in terms of a Markov chain ξ
(N)
k = (ξ

(i,N)
k )1≤i≤Nk

in the product state

spaces ENk
k , where N = (Nk)0≤k≤N is a given collection of integers.

P

(
ξ
(N)
k = (x1k, . . . , x

Nk
k ) | ξk−1

)
=

∏

1≤i≤Nk

Φk


 1

Nk−1

∑

1≤i≤Nk−1

δξik−1


(

xik
)
. (3.5.3)

The initial particle system ξ
(N)
0 =

(
ξ
(i,N)
0

)
0≤i≤N0

, is a sequence of N0 i.i.d. random

copies of X0. Let FN
k be the sigma-field generated by the particle approximation

model from the origin, up to time k.

To simplify the presentation, when there is no confusion we suppress the pop-

ulation size parameter N , and we write ξk and ξik instead of ξ
(N)
k and ξ

(i,N)
k . By

construction, ξk is a genetic type model with a neutral selection transition and a

mutation type exploration

ξk ∈ ENk
k

Selection
−−−−−−−−→ ξ̂k :=

(
ξ̂ik

)
1≤i≤N̂k

∈ EN̂k
k

Mutation
−−−−−−−→ ξk+1 ∈ ENk+1

k+1 , (3.5.4)

with N̂k := Nk+1.

During the selection transition, we select randomly Nk+1 path valued particles

ξ̂k :=
(
ξ̂ik

)
1≤i≤Nk+1

among the Nk path valued particles ξk = (ξik)1≤i≤Nk
. Sometimes,
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this elementary transition is called a neutral selection transition in the literature on

genetic population models. During the mutation transition ξ̂k  ξk, every selected

path valued individual ξ̂ik evolves randomly to a new path valued individual ξik+1 = x

randomly chosen with the distribution Mk+1(ξ̂
i
k, x), with 1 ≤ i ≤ N̂k. By construc-

tion, every particle is a path-valued random variable defined by

ξik :=
(
ξi0,k, ξ

i
1,k, . . . , ξ

i
k,k

)

ξ̂ik :=
(
ξ̂i0,k, ξ̂

i
1,k, . . . , ξ̂

i
k,k

)
∈ Ek := (E ′0 × . . .× E ′k) .

By definition of the transition in path space, we also have that

ξik+1 =



(
ξi0,k+1, ξ

i
1,k+1, . . . , ξ

i
k,k+1

)
︸ ︷︷ ︸

||

, ξik+1,k+1




=

( ︷ ︸︸ ︷(
ξ̂i0,k, ξ̂i1,k, . . . , ξ̂ik,k

)
, ξik+1,k+1

)
=

(
ξ̂ik, ξ

i
k+1,k+1

)
,

where ξik+1,k+1 is a random variable with distribution M ′
k+1(ξ̂

i
k,k, ·). In other words,

the mutation transition ξ̂ik  ξik+1 simply consists in extending the selected path ξ̂
i
k

with an elementary move ξ̂ik,k  ξik+1,k+1 of the end point of the selected path.

From these observations, it is easy to check that the terminal random population

model ξk,k =
(
ξik,k

)
1≤i≤Nk

and ξ̂k,k =
(
ξ̂ik,k

)
1≤i≤Nk+1

is again defined as a genetic type

Markov chain defined as above by replacing the pair (Ek,Mk) by the pair (E
′
k,M

′
k),

with 1 ≤ k ≤ n. The latter coincides with the mean field particle model associated

with the time evolution of the k-th time marginals η′k of the measures ηk on E ′k.

Furthermore, the above path-valued genetic model coincide with the genealogical

tree evolution model associated with the terminal state random variables.

Let ηNk and η̂Nk be the occupation measures of the genealogical tree model after

the mutation and the selection steps; that is, we have that

ηNk :=
1

Nk

∑

1≤i≤Nk

δξik and η̂Nk :=
1

N̂k

∑

1≤i≤N̂k

δξ̂ik
.

In this notation, the selection transition ξk, ξ̂k consists in choosing N̂k condition-

ally independent and identically distributed random paths ξ̂ik with common distri-

bution ηNk . In other words, η̂Nk is the empirical measure associated with N̂k con-

ditionally independent and identically distributed random paths ξ̂ik with common

distribution ηNk . Also observe η
N
k is the empirical measure associated with Nk con-

ditionally independent and identically distributed random paths ξik with common

distribution ηNk−1Mk.
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In practice, we can take N0 = N1 = · · · = Nn = N when we do not have any

information on the variance of Xk. In the case when we know the approximate

variance of Xk, we can take a large Nk when the variance of X
′
k is large. To clarify

the presentation, In the further development of the chapter we further assume that

the particle model has a fixed population size Nk = N , for any k ≥ 0.

In the sequel, the simulation of the path valued particle system (ξk)0≤k≤n will

be called the Forward step and is summarized in the following algorithm.

Forward algorithm

Initialization At time step k = 0, generate N i.i.d. random copies of X0 and set

ξ0 = (ξi0)0≤i≤N .

At each time step k = 1, · · · , n

1. Selection: For each i = 1, · · · , N , generate independently an indice

Ii ∈ {1, · · · , N} with probability P(Ii = j) = 1/N . Then set ξ̂ik−1 = ξIik−1.

2. Mutation: For each i = 1, · · · , N , generate independently N i.i.d. ran-

dom variables (ξik,k)0≤i≤N according to the transition kernelM ′
k(ξ̂

i
k−1,k−1, ·).

Then set ξik = (ξ̂ik−1, ξ
i
k,k).

3.5.2 Convergence analysis

For general mean field particle interpretation models (3.5.3), several estimates can

be derived for the above particle approximation model (see for instance [40]). For

instance, for any n ≥ 0, r ≥ 1, and any fn ∈ Osc1(En), and any N ≥ 1, we have

the unbiased and the mean error estimates:

E
(
ηNn (fn)

)
= ηn(fn) = E

(
η̂Nn (fn)

)
(3.5.5)

and
√
N E

(∣∣[ηNn − ηn
]
(fn)

∣∣r) 1
r ≤ 2 a(r)

n∑

p=0

β(Mp,n) ,

with the Dobrushin ergodic coefficients

β(Mp,n) := sup
(xp,yp∈Ep)

‖Mp,n(xp, ·)−Mp,n(yp, ·)‖tv ,

and the collection of constants a(p) defined in (3.2.7). Arguing as in (4.5.3), for

time homogeneous population sizes Nn = N , for any functions f ∈ Osc1(En), we

conclude that

P

(∣∣[ηNn − ηn
]
(f)

∣∣ ≥ b(n)√
N

+ ǫ

)
≤ exp

(
− Nǫ2

2b(n)2

)
(3.5.6)

with b(n) := 2
n∑

p=0

β(Mp,n) .
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For the path space models (3.5.1), we have β(Mp,n) = 1 so that the estimates (4.5.1)

and (3.5.6) takes the form

√
N E

(∣∣[ηNn − ηn
]
(fn)

∣∣r) 1
r ≤ 2 a(r) (n+ 1) (3.5.7)

and

P

(∣∣[ηNn − ηn
]
(f)

∣∣ ≥ 2(n+ 1)√
N

+ ǫ

)
≤ exp

(
− Nǫ2

8(n+ 1)2

)
.

In the next lemma we extend these estimates to unbounded functions.

Lemma 3.5.1. For any p ≥ 1, we denote by p′ the smallest even integer greater

than p. In this notation, for any k ≥ 0 and any function f , we have the almost sure

estimate

√
NE

(∣∣[ηNn − ηNk−1Mk−1,n](f)
∣∣p ∣∣FN

k−1
) 1

p (3.5.8)

≤ 2a(p)
n∑

l=k

[
ηNk−1Mk−1,l(|Ml,n(f)|p

′

)
] 1

p′

.

In particular, for any f ∈ Lp′(ηn), we have the non asymptotic estimates

√
N E

(∣∣[ηNn − ηn](f)
∣∣p)1/p ≤ 2 a(p) ‖f‖p′,ηn (n+ 1) . (3.5.9)

Proof. Writing ηN−1M0 = η0, for any k ≥ 0, we have the decomposition

[ηNn − ηNk−1Mk,n] =
n∑

l=k

[ηNl − (ηNl−1Ml)]Ml,n ,

with the semigroup

Mk,n =Mk+1Mk+2 . . .Mn .

Using the fact that

E
(
ηNl (f)

∣∣ηNl−1
)
= (ηNl−1Ml)(f) ,

we obtain that

E
(∣∣[ηNl − (ηNl−1Ml)](f)

∣∣p ∣∣FN
l−1

) 1
p ≤ E

(∣∣[ηNl − µN
l ](f)

∣∣p ∣∣FN
l−1

) 1
p ,

where µN
l := 1

N

∑N
i=1 δζil stands for a independent copy of ηNl given ηNl−1. Using

Khinchine’s type inequalities, we have

√
N E

(∣∣[ηNl − µN
l ](f)

∣∣p ∣∣FN
l−1

) 1
p ≤ 2 a(p) E

(∣∣f
(
ξ1l
)∣∣p′ | FN

l−1

) 1
p′

= 2 a(p)
[
ηNl−1Ml(|f |p

′

)
] 1

p′

.

Using the unbias property of the particle scheme, we have

∀k ≤ l ≤ n E
(
ηNl (f)

∣∣FN
k−1

)
= (ηNk−1Mk−1,l)(f) .
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This implies that

√
N E

(∣∣[ηNl − (ηNl−1Ml)](f)
∣∣p ∣∣FN

k−1
) 1

p ≤ 2 a(p) E
(
ηNl−1Ml(|f |p

′

)
∣∣FN

k−1

) 1
p′

= 2 a(p)
[
ηNk−1Mk−1,l(|f |p

′

)
] 1

p′

.

The end of the proof of (3.5.8) is now a direct application of Minkowski’s inequality,

while the proof of (3.5.9) is a direct consequence of (3.5.8).

3.5.3 Particle approximations of the Snell envelope

In Section 3.5.1, we have presented a genealogical based algorithm whose occupation

measures ηNn converge, as N ↑ ∞, to the distribution ηn of the reference Markov

chain (X ′
0, . . . , X

′
n) from the origin, up to the final time horizon n. Mimicking

formula (3.5.1), we define the particle approximation of the Markov transitions M ′
k

as follows :

M̂ ′
k+1(f)(x) :=

ηNn ((1x ◦ πk) (f ◦ πk+1))

ηNn ((1x ◦ πk))
:=

∑
1≤i≤N 1x(ξ

i
k,n) f(ξ

i
k+1,n)∑

1≤i≤N 1x(ξ
i
k,n)

,

for every state x in the support Êk,n of the measure η
N
n ◦π−1k . Note that Êk,n coincides

with the collection of ancestors ξik,n at level k of the population of individuals at

the final time horizon. This random set can alternatively be defined as the set of

states ξik,k of the particle population at time k such that η
N
n ((1ξik,k ◦ πk)) > 0; more

formally, we have

Êk,n := ∪1≤i≤N
{
ξik,k : ηNn ((1ξik,k ◦ πk)) > 0

}
. (3.5.10)

It is interesting to observe that the random Markov transitions M̂ ′
k+1 coincides with

the conditional distributions of the states X ′
k+1 given the current time states X ′

k

of a canonical Markov chain Xn := (X ′
0, . . . , X

′
n) with distribution η

N
n on the path

space En := (E ′0 × . . .× E ′n). Thus, the flow of k-th time marginal measures

ηNk,n :=
1

N

N∑

i=1

δξik,n ,

are connected by the following formula

ηNk,nM̂
′
k,l = ηNl,n , ∀ k ≤ l ≤ n,

with the semigroup M̂ ′
k,l associated with the Markov transitions M̂

′
k+1 given by

M̂ ′
k,l(f)(x) = M̂ ′

k+1M̂
′
k+1 . . . M̂

′
l (f)(x) =

ηNn ((1x ◦ πk) (f ◦ πl))
ηNn ((1x ◦ πk))

, (3.5.11)
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for every state x in Êk,n. In connection with (3.5.10), we also have the following

formula

ηNk,n =
1

N

N∑

i=1

(
N ηNn

(
1ξik,k ◦ πk

))
δξik,k =

N∑

i=1

ηNn

(
1ξik,k ◦ πk

)
δξik,k ,

with the proportion ηNn

(
1ξik,k ◦ πk

)
of individuals at the final time horizon having

the common ancestor ξik,k at level k. It is also interesting to observe that

E
(
ηNk,n(f)

∣∣FN
k

)
=

N∑

i=1

E

(
ηNn

(
1ξik,k ◦ πk

) ∣∣FN
k

)
f(ξik,k)

=
N∑

i=1

ηNk Mk,n

(
1ξik,k ◦ πk

)

︸ ︷︷ ︸
=1/N

f(ξik,k) = ηNk (f) .

The Snell envelope associated with this particle approximation model is defined

by the backward recursion:

ûk(x) =

{
fk(x) ∨ M̂ ′

k+1(uk+1)(x) ∀x ∈ Êk,n

0 otherwise .

In terms of the ancestors at level k, this recursion takes the following form

ûk
(
ξik,n

)
= fk

(
ξik,n

)
∨ M̂ ′

k+1(ûk+1)
(
ξik,n

)
, ∀ 1 ≤ i ≤ N.

In the sequel, the computation of the Snell envelope approximation (ûk)0≤k≤n
will be called the Backward step and is summarized in the following algorithm.

Backward algorithm

Initialization At time step k = n, for all i = 1, · · · , N , set ûn(ξin,n) = f(ξin,n).

At each time step k = n− 1, · · · , 0, for all i = 1, · · · , N set

ûk(ξ
i
k,n) = fk(ξ

i
k,n) ∨

∑N
j=1 ûk+1(ξ

j
k+1,n) 1ξjk,n=ξik,n∑N

j=1 1ξjk,n

.

For later use in the further development of this section, we quote a couple of

technical lemmas. The first one provides some Lp estimates of the normalizing

quantities of the Markov transitions M̂ ′
k+1. The second one allows to quantify the

deviations of M̂ ′
k+1 around its limiting values M

′
k+1, as N →∞.

Lemma 3.5.2. For any p ≥ 1, and 0 ≤ i ≤ N we have the following uniform

estimate
supN≥1 sup0≤l≤k≤n

∣∣∣
∣∣∣ηNk (1ξil,k ◦ πl)

−1
∣∣∣
∣∣∣
p
<∞ . (3.5.12)
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Lemma 3.5.3. For any p ≥ 1, and 0 ≤ i ≤ N we have the following uniform

estimate

sup
0≤l≤n

∣∣∣
∣∣∣M̂ ′

l+1(f)(ξ
i
l,n)−M ′

l+1(f)(ξ
i
l,n)

∣∣∣
∣∣∣
p
≤ cp(n)/

√
N , (3.5.13)

with some collection of finite constants cp(n) <∞ whose values only depend on the

parameters p and n.

The proofs of these lemmas are rather technical, thus there are postponed to the

appendix.

We are now in position to state and prove the main result of this section.

Theorem 3.5.1. For any p ≥ 1, and 0 ≤ i ≤ N we have the following uniform

estimate

sup
0≤k≤n

∥∥(uk − ûk)(ξ
i
k,n)

∥∥
p
≤ cp(n)/

√
N , (3.5.14)

with some collection of finite constants cp(n) <∞ whose values only depend on the

parameters p and n.

Proof. Firstly, we use the following decomposition

|uk − ûk|1Êk,n
≤

∑

k≤l≤n−1
M̂ ′

k,l|(M̂ ′
l+1 −M ′

l+1)(ul+1)| 1Êk,n
. (3.5.15)

By construction, we have

M̂ ′
k,l|(M̂ ′

l+1 −M ′
l+1)(ul+1)|1Ê(k,n)

= M̂ ′
k,l|1Êl,n

(M̂ ′
l+1 −M ′

l+1)(ul+1)|1Êk,n
.

By (3.5.11), if we set

ũl+1 = |(M̂ ′
l+1 −M ′

l+1)(ul+1)| ,
on the set Êl,n, then we have that

M̂ ′
k,l(ũl+1)(ξ

i
k,n) =

ηNn ((1ξik,n ◦ πk) (ũl+1 ◦ πl))
ηNn ((1ξik,n ◦ πk))

.

For any p ≥ 1, we have
∥∥∥M̂ ′

k,l(ũl+1)(ξ
i
k,n)

∥∥∥
p
≤

∥∥∥ηNn ((1ξik,n ◦ πk))
−1

∥∥∥
1/p

2

×E
(
ηNn ((1ξik,n ◦ πk) (ũl+1 ◦ πl)2p)

)1/(2p)

.

This implies that
∥∥∥M̂ ′

k,l(ũl+1)(ξ
i
k,n)

∥∥∥
p
≤

∥∥∥ηNn ((1ξik,n ◦ πk))
−1

∥∥∥
1/p

2
× sup

1≤j≤N

∥∥ũl+1(ξ
j
l,n)

∥∥
2p
.

The proof of (3.5.14) is now a clear consequence of Lemma 3.5.2 and Lemma 3.5.3.
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3.5.4 Bias analysis

To end this subsection, we will prove that just as the bias of the Broadie-Glasserman

type estimators, the bias of the genealogical tree based estimator is always positive.

Note that, for any 0 ≤ k ≤ n, function f on space E ′k and any i ∈ {1, . . . , N}
we have

E
(
f(ξik+1,n)|ξk,n

)
=Mk+1f(ξ

i
k,n) . (3.5.16)

This is because in the neutral genealogical tree model, the selection steps are in-

dependent of the mutations steps. Here, ξk,n contains all the information on the

construction of the tree plus the information on the values of the nodes on this tree

at instant k. The equation (3.5.16) comes from the fact that given the information

ξk,n the particle ξ
i
k+1,n follows the distribution M

′
k+1(ξ

i
k,n, ·).

Theorem 3.5.2. For any 0 ≤ k ≤ n and any i ∈ {1, . . . , N}, we have

E
(
ûk(ξ

i
k,n)|ξk,n

)
≥ uk(ξ

i
k,n) . (3.5.17)

Proof. To prove this, we will use a simple induction argument.

For l = n, ûn = un, then we easily check that the following inequality is verified for

all i = 1, . . . , N ,

E
(
ûl(ξ

i
l,n)|ξl,n

)
≥ ul(ξ

i
l,n) . (3.5.18)

Assume that (3.5.18) is verified for all i = 1, . . . , N and let us prove that the same

inequality is valid for instant l − 1.

With the elementary decomposition:

E

(
M̂ ′

l (ûl)(ξ
i
l−1,n)|ξl−1,n

)
= E




∑N
j=1 ûl(ξ

j
l,n)1ξjl−1,n=ξil−1,n∑N

j=1 1ξjl−1,n=ξil−1,n

|ξl−1,n




=

∑N
j=1 E

(
ûl(ξ

j
l,n)|ξl−1,n

)
1ξjl−1,n=ξil−1,n∑N

j=1 1ξjl−1,n=ξil−1,n

.

By assumption (3.5.18) and equation (3.5.16), we have

E
(
ûl(ξ

j
l,n)|ξl−1,n

)
≥ E

(
ul(ξ

j
l,n)|ξl−1,n

)

= Mlul(ξ
j
l−1,n) .

Applying the preceding decomposition, it follows easily

E

(
M̂lûl(ξ

i
l−1,n)|ξl−1,n

)
≥

∑N
j=1Mlul(ξ

i
l−1,n)1ξjl−1,n=ξil−1,n∑N

j=1 1ξjl−1,n=ξil−1,n

= Mlul(ξ
i
l−1,n) .
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Then we can complete this proof by using Jensen’s inequality, getting

E
(
ûl−1(ξ

i
l−1,n)|ξl−1,n

)
≥ fl−1(ξ

i
l−1,n) ∨ E

(
M̂lûl(ξ

i
l−1,n)|ξl−1,n

)

≥ fl−1(ξ
i
l−1,n) ∨Mlul(ξ

i
l−1,n)

= ul−1(ξ
i
l−1,n) .

3.5.5 Numerical simulations

In this section, we give numerical examples to test the genealogical tree algorithm

on two types of options from dimension 1 up to 6.

Prices dynamics and options model

Our numerical examples are taken from Bouchard and Warin [14], who provided

precise approximations of option values in their examples. The asset prices are

modeled by a d-dimensional Markov process (X̃t) such that each component (i.e.

each asset) follows a geometric Brownian motion under the risk-neutral measure,

that is, for assets i = 1, · · · , d,

dX̃t(i)

X̃t(i)
= rdt+ σidz

i
t , (3.5.19)

where zi, for i = 1, · · · , d are independent standard Brownian motions. The interest
rate r is set to 5% annually. We also assume that for all i = 1, · · · , d, X̃t0(i) = 1

and σi = 20% annually.

We consider two different Bermudan options with maturity T = 1 year and 11

equally distributed exercise opportunities at dates tk = kT/n with k = 0, 1, · · · , n =
10, associated with two different payoffs:

1. a geometric average put option with strikeK = 1 and payoff (K−∏d
i=1 X̃T (i))+,

2. an arithmetic average put option with strikeK = 1 and payoff (K−1
d

∑d
i=1 X̃T (i))+.

Note that the geometric average put payoff involves the process
∏d

i=1 X̃(i) which

can be identified to a one-dimensional non standard exponential Brownian motion.

This trick was used in [14] to compute a precise benchmark option value by PDE

techniques. We report in Table 4.1 the benchmark option values computed in [14],

for both the geometric and arithmetic put options (by using respectively the one

dimensional PDE method and the least squares regression method with 8×106×d2
simulations and ten basis functions for each direction).
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Number of assets 1 2 3 4 5 6

Geometric Payoff 0.06033 0.07815 0.08975 0.09837 0.10511 0.11073
Arithmetic Payoff 0.06033 0.03882 0.02947 0.02403 0.02046 0.01830

Table 3.1: Benchmark values for the geometric and arithmetic put options (taken

from [14]).

State space discretization

The genealogical tree algorithm is designed for finite state spaces. Hence, before ap-

plying it to the aforementioned continuous space examples, we have to approximate

the continuous state space Markov chain solution of (4.7.1) by a Markov chain with

a finite state space. To this end, one can first discretize the state space using either

a random tree, or a stochastic mesh, or a Binomial tree or a quantization approach

. . . In our numerical simulations, the quantization discretization seemed to be the

most efficient.

State space partitioning Here, we propose to use a quantization-like approach for

the space discretization step. We simulate a first set of M iid paths at each n + 1

possible exercise dates t0, · · · , tn, (X̃ i
tk
)i=1,··· ,M
k=0,··· ,n according to dynamic (4.7.1). Assume

now, that there exists two integers N ′ and P such that M can be written as the

productM = N ′P . Then, at each time step tk, the particle set Sk = {X̃1
tk
, · · · , X̃M

tk
}

can be partitioned into N ′ localized subsets {S1
k , · · · ,SN ′

k } of P particles. Assume

now that there exists d integers (Q1, · · · , Qd) such that N ′ can be written as the

product N ′ = Q1 · · ·Qd. Assume for simplicity that N
′ = Qd. One way to build

this partition {S1
k , · · · ,SN ′

k } is then to apply the following procedure as in [14]:

1. sort the particles according to the first coordinate and split the sorted particles

into Q subsets containing the same number of particles Qd−1P ;

2. if d ≥ 2, for each subset, sort the particles according to the second coordinate

and split the sorted particles into Q subsets containing the same number of

particles Qd−2P , which finally leads to Q2 subsets containing the same number

of particles Qd−2P ;

3. if d ≥ 3, repeat this procedure recursively, in each direction i = 3, · · · , d.

This operation is realized with a complexity O(dM log(M)) and produces a parti-

tions of Sk into N ′ = Qd subsets S1
k , · · · ,SN ′

k with the same number P of particles.

Now, for each subset Sj
k, for j = 1, · · · , N ′, we compute a representative state, Sj

k

as the average particle over all the elements of Sj
k. Then at each time step tk for

k = 1, · · · , n, we will consider the finite state space Ek = {S1
k , · · · , SN ′

k } and we set
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E0 = {Xt0}. In the sequel, the discrete points S1
k , · · · , SN ′

k will be referred to as the

sites.

Finite state space Markov chain Assume now that a sequence of finite state spaces

Ek ⊂ Rd is given for k = 1, · · · , n (for instance by the above procedure). We

define a finite state space Markov chain (X ′
k)k=0,··· ,n such that X ′

0 = X̃t0 and for all

k = 1, · · · , n,

• X ′
k ∈ Ek;

• P
(
X ′

k = Sj
k |X ′

k−1 = Si
k−1

)
= P

(
X̃tk ∈ V j

k | X̃tk−1
= Si

k−1

)
, where V j

k denotes

the Voronoi cell associated to the site Sj
k in the the discrete set Ek and (X̃tk) is

the Markov process verifying (4.7.1) observed at the discrete times t0, · · · , tn.

To simulate a transition of the Markov Chain (X ′
k)k=0,··· ,n from the state Si

k−1 ∈ Ek−1
at the time step k − 1 to the time step k one can apply the following procedure:

1. Simulate a random variable X̃tk according to M̃k(S
i
k−1, ·), where M̃k denotes

the transition kernel of the continuous state space Markov chain verifying (4.7.1)

from time tk−1 to tk.

2. Set X ′
k = Si∗

k , where S
i∗

k is the nearest neighbor of X̃tk among the elements of

Ek.

Complexity

In comparison with the quantization method proposed in [92], the genealogical al-

gorithm based on the above space discretization only needs to simulate the finite

state space Markov chain (X ′
k) and avoids the time consuming computation of the

transition probabilities.

In terms of complexity, the major part of the computing time is spent in the forward

step described in Section 3.5.1 for simulating the discrete space Markov chain (X ′
k).

More precisely, for each transition, one has to compute a nearest neighbour among

N ′ sites which finally leads to a complexity of order O(NN ′) by time step, when

considering the whole set of N particles.

In terms of approximation error, we can decompose the error induced by the whole

procedure, on the Snell envelope approximation, into the sum of two terms:

1. The state space discretization error which can be upper bounded, according

to [92] or Proposition 3.3.3 , by c
N ′1/d

2. The error induced by the genealogical tree algorithm, which could be upper

bounded, according to the proof of Theorem 3.5.1, by c N ′β

N1/2 , for a given positive

real β > 0.
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Hence, to minimize the resulting upper bound on the global error, one has to choose

judiciously the number of sites N ′ as a function of the number of particles such that

N ′ = 0(N
d

2βd+2 ). With this choice, the complexity of the global procedure is of order

O(N
(1+2β)d+2

2βd+2 ), with an approximation error bounded by c

N
1

2βd+2
. In our numerical

simulations, we have set β = 1/2 so that the complexity grows with the dimension

from N4/3, N3/2, N8/5, · · · , N2 for dimensions d = 1, 2, 3, · · · ,∞.

On the other hand, in the backward step, (described in Section 3.5.3) consisting

of computing the Snell envelope, our algorithm only requires a complexity which is

linear in the number of particles, N . Hence, for a given underlying price process, our

approach can rapidly approximate several Bermudan options with different payoff

functions.

Numerical results

For each example, we have performed the algorithm for different numbers of particles

for N = 5× 103, 1× 104, 2.5× 104, 5× 104, 1× 105, 2× 105, 4× 105, 1× 106, 2× 106.

In each case, the sites were computed on the base of M = max(500000, 50×N ′) =

max(500000, 50×N d
d+2 ) simulations. Many runs of the algorithm were performed to

build box plots for our estimates: 50 runs for N < 106 and 24 runs for N = 1× 106

and N = 2× 106.

Simulations results are reported in Figure 1.1 for the geometric put payoff and in

Figure 1.2 for the arithmetic put payoff. First, notice that our algorithm has been

implemented without any control variate technique. Moreover, our implementation

has not been optimized. In particular, we have not investigated in this chapter any

parallel implementations of our algorithm. Thus, it seems not relevant to report

any running time measurements on the chapter. However, the algorithm complex-

ity gives a good indication of the number of operations required by our algorithm.

Moreover, the estimates reported on our graph correspond to the backward estimate

provided by Algorithm A2 in Bouchard and Warin [14] and should be compared to

that type of estimate. We could also obtain a forward estimate with our genealog-

ical approach by applying the backward induction on the stopping times (just as

in the Longstaff-Schwartz algorithm) with probably better performances than the

backward estimator, but this is not the subject of the present chapter.

Hence, to compare the estimation errors of the backward estimate provided by our

algorithm to a corresponding approach, we have reported, in Table 3.2, the esti-

mation errors obtained with the genealogical algorithm using N = 25000 particles

and N ′ = N
d

d+2 sites, in valuing the geometric put (on the first line) and the arith-

metic put (on the second line) and, within parenthesis, the performances of the

backward estimate provided by the quantization approach [4] implemented in [14],

with 25600 quantization points for the same options. One can observe that both

algorithms achieve similar performances for approximately the same number N of
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quantization points (for the quantization algorithm) and particles (for the genealog-

ical algorithm).

Now, notice that the complexity (per time step) of the genealogical algorithm is of

order NN ′ = N
2d+2
d+2 for the construction of the genealogical tree and of order N

for the backward induction on the prices, which is slightly smaller than the com-

plexity of the quantization approach of order N2 for the backward induction on

prices (without taking into account the complexity related to the construction of

the quantization tree and to the computation of the transition probabilities). Hence,

we can conclude that our new algorithm is competitive with respect to comparable

algorithms.

Number of assets d = 3 d = 4 d = 5 d = 6
Geometric Put error

(in % of the option value)
2 (2) 7 (8) 14 (15) 17 (22)

Arithmetic Put error
(in % of the option value)

3.5 (3.5) 10 (8) 15 (16) 14 (17)

Table 3.2: Error (in % of the option value in Table 4.1) of the genealogical algorithm

with N = 25000 particles and N ′ = N
d

d+2 sites, and within parenthesis of the quantization

algorithm with N = 25600 quantization points, (taken from [14]) for the geometric and

arithmetic put options.

Notice that one can observe on the graph, that for d = 2 or 3 the bias of our es-

timator can be negative. However, this is not in contradiction to Theorem 3.5.2.

Indeed, recall that our estimator cumulates two kinds of approximations:

1. The first approximation is the discretization of the Markov chain which can

induce a negative bias.

2. The second is the backward genealogical algorithm to compute the Snell en-

velope of the discrete Markov chain which (by theorem) induces a positive

bias.

Looking into further applications, this algorithm is also well suited for Bermudan

options with path dependent payoff. Indeed, by construction, the genealogical tree

algorithm is defined in terms of the historical process, then it is able to compute

conditional expectations with respect to the whole past of the process with no

additional complexity.

In the same vein, we believe that this algorithm and the related convergence result

could be extended, with slight modifications, to the more general case of reflected

Backward Stochastic Differential Equations (BSDE) with non zero driver that does

not depend on the z variable and which satisfies suitable regularity conditions.
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Finally, in further research, it could also be interesting to extend this algorithm for

the computation of price sensitivities for hedging purposes.

ACKNOWLEDGEMENTS:We are grateful to Laurent Plagne for his tremen-

dous help in accelerating our numerical simulations implementation.
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Chapter 4

Snell envelope with small

probability criteria

4.1 Introduction

The Snell envelope is related to the calculation of the optimal stopping time of a ran-

dom process based on a given optimality criteria. Several approximation schemes

have been proposed recently to numerically compute the Snell envelope. In this

chapter, we are interested in some specific optimality criteria related to the real-

ization of a small probability or even rare events. In other words, given a random

process (Xk)0≤k≤n and some payoff functions (fk)0≤k≤n, we want to maximize an

expected gain E(fτ (Xτ )) by choosing τ on a set of random stopping times T . When

the payoff functions fk are localized in a small region of the space, standard Monte

Carlo simulations usually fail, because of the difficulty in ensuring enough simu-

lation samples to realize the (relative-)rare events. For example, in finance, when

f(x) = (K − x)+, the so-called put option value is difficult to compute when K is

much smaller than the initial asset price x0. In even more complicated cases, we

can consider the maximization of E(fτ (Xτ )
∏τ−1

k=0Bk(Xk)) for a given class of func-

tions (Bk)0≤k≤n modeling an obstacle. For instance in the case of barrier options,

(Bk)0≤k≤n take the form of indicator functions.

In this chapter, we propose a Monte Carlo algorithm to compute the Snell en-

velope, combining the Stochastic Mesh method introduced by M. Broadie and P.

Glasserman [19] and a judicious interacting particle scheme which allows to con-

centrate the computational effort in the regions of interest w.r.t. the criteria. The

principal idea of Broadie-Glasserman model is to operate a change of measure to

replace conditional expectations by simple expectations. Besides, the change of

measures can also be used with a variance reduction purpose to accelerate Monte
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Carlo methods. However, in general, the choice of an efficient (in term of vari-

ance) change of measure, with an explicit Radon-Nikodym derivative, leading to an

easy-to-simulate distribution is difficult. Precisely, the authors in [47] proposed an

adaptive scheme based on an original interacting particle algorithm to approximate

rare event expectations, allowing us to bypass the tricky steps of guessing a correct

change of measure. In the present chapter, we extend this adaptive scheme for the

recursive computation of the conditional expectations appearing in the context of

optimal stopping problems. The main idea of the present chapter is then to mix the

interacting particle algorithm in [47] with the Stochastic Mesh algorithm of Broadie

and Glassserman [19].

This chapter is organized as follows. In Section 4.2, notations and generalities on

the Snell envelope are presented. Moreover, some specific examples are outlined to

motivate the scope of the chapter. In Section 4.3, we introduce a change of measure

which allows to concentrate the computational effort in the regions of interest w.r.t.

the criteria. In Section 4.4, we propose an interacting particle scheme to approximate

the resulting (changed) measure. Section 4.5, is devoted to the theoretical analysis

of this new Stochastic Mesh algorithm based on an interacting particle scheme.

We provide non asymptotic convergence estimates and prove that the resulting

estimator is positively biased. Finally, some numerical simulations are performed,

in Section 4.7, showing the practical interest of the proposed algorithm.

4.2 Preliminary

For the convenience of the reader, we begin by introducing some notations and basic

results that will be used all along the chapter.

4.2.1 Notations

We denote respectively by P(E), and B(E), the set of all probability measures on
some measurable space (E, E), and the Banach space of all bounded and measurable
functions f equipped with the uniform norm ‖f‖. We let µ(f) =

∫
µ(dx) f(x), be

the Lebesgue integral of a function f ∈ B(E), w.r.t. a measure µ ∈ P(E).
We recall that a bounded integral kernel M(x, dy) from a measurable space (E, E)
into an auxiliary measurable space (E ′, E ′) is an operator f 7→ M(f) from B(E ′)
into B(E) such that the functions

x 7→M(f)(x) :=

∫

E′
M(x, dy)f(y)

are E-measurable and bounded, for any f ∈ B(E ′). In the above displayed formulae,
dy stands for an infinitesimal neighborhood of a point y in E ′. Sometimes, for

indicator functions f = 1A, with A ∈ E , we also use the notation M(x,A) :=
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M(1A)(x). The kernel M also generates a dual operator µ 7→ µM fromM(E) into

M(E ′) defined by (µM)(f) := µ(M(f)). A Markov kernel is a positive and bounded

integral operator M with M(1) = 1. Given a pair of bounded integral operators

(M1,M2), we let (M1M2) be the composition operator defined by (M1M2)(f) =

M1(M2(f)). Given a sequence of bounded integral operators Mn from some state

space En−1 into another En, we set Mk,l := Mk+1Mk+2 · · ·Ml, for any k ≤ l, with

the convention Mk,k = Id, the identity operator. In the context of finite state

spaces, these integral operations coincide with the traditional matrix operations on

multidimensional state spaces.

We also assume that the reference Markov chain Xn with initial distribution η0 ∈
P(E0), and elementary transitions Mn(xn−1, dxn) from En−1 into En is defined on

some filtered probability space (Ω,F ,Pη0), and we use the notation EPη0
to denote

the expectations w.r.t. Pη0 . In this notation, for all n ≥ 1 and for any fn ∈ B(En),

we have that

EPη0
{fn(Xn)|Fn−1} =Mnfn(Xn−1) :=

∫

En

Mn(Xn−1, dxn) fn(xn)

with the σ-field Fn = σ(X0, . . . , Xn) generated by the sequence of random variables

Xp, from the origin p = 0 up to the time p = n. We also use the conventions
∏
∅ = 1,

and
∑
∅ = 0.

4.2.2 Robustness Lemma

In the discrete time setting, the Snell envelope are defined in terms of a given

Markov process (Xk)k≥0 taking values in some sequence of measurable state spaces

(En, Ek)k≥0 adapted to the natural filtration F = (Fk)k≥0. We let η0 = Law(X0)

be the initial distribution on E0, and we denote by Mk(xk−1, dxk) the elementary

Markov transition of the chain from Ek−1 into Ek. For a given time horizon n and

any k ∈ {0, . . . , n}, we let Tk be the set of all stopping times τ taking values in

{k, . . . , n}. For a given sequence of non negative measurable functions fk on Ek, we

define a target process Zk = fk(Xk). Then (Uk)0≤k≤n the Snell envelope of process

(Zk)0≤k≤n is defined by a recursive formula:

Uk = Zk ∨ E(Uk+1|Fk)

with terminal condition Un = Zn. The main property of the Snell envelope defined

as above is

Uk = sup
τ∈Tk

E(Zτ |Fk) = E(Zτ∗k
|Fk) with τ ∗k = min {k ≤ j ≤ n : Uj = Zj} ∈ Tk .

Then the computation of the Snell envelope (Uk)0≤k≤n amounts to solving the fol-

lowing backward functional equation.

uk = fk ∨Mk+1(uk+1) (4.2.1)
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for any 0 ≤ k < n with the terminal condition un = fn.

But at this level of generality, we can hardly have a closed solution of the function

uk. In this context, lots of numerical approximation schemes have been proposed.

Most of them amount to replacing in recursion (4.2.1) the pair of functions and

Markov transitions (fk,Mk)0≤k≤n by some approximation model (f̂k, M̂k)0≤k≤n on

some possibly reduced measurable subsets Êk ⊂ Ek. In paper [50], the authors

provided the following robustness lemma to estimate the error related to the result-

ing approximation ûk of the Snell envelope uk, for several types of approximation

models (f̂k, M̂k)0≤k≤n.

Lemma 4.2.1. For any 0 ≤ k < n, on the state space Êk, we have that

|uk − ûk| ≤
n∑

l=k

M̂k,l|fl − f̂l|+
n−1∑

l=k

M̂k,l|(Ml+1 − M̂l+1)ul+1| .

This lemma provides a natural way to compare and combine different approxi-

mation models. In the present chapter, this Lemma will be applied in the specific

framework for the small probability criteria.

4.2.3 Motivations

The choice of nonhomogeneous state spaces En is not innocent. In several applica-

tion areas the underlying Markov model is a path-space Markov chain:

Xn = (X0, . . . , Xn) ∈ En = (E0 × . . .× En) . (4.2.2)

The elementary prime variables Xn represent an elementary Markov chain with

Markov transitionsMk(xk−1, dxk) from Ek−1 into Ek. In this situation, the historical

process Xn can be seen as a Markov chain with transitions given for any xk−1 =

(x0, . . . , xk−1) ∈ Ek−1 and yk = (y0, . . . , yk) ∈ Ek by the following formula

Mk(xk−1, dyk) = δxk−1
(dyk−1) Mk(yk−1, dyk) .

As we will see in this sequel, this path space framework is, for instance, well suited

when dealing with path dependent options as Asian options or Barrier options.

Besides, this path space framework is also well suited for the analysis of the Snell

envelope under different probability measures.

The multiplicatively path dependent case Now come back to the multiplicatively

path dependent Snell envelope that we mentioned in the introduction and formalize

the the path space model. For a given collection of real valued functions (fk)0≤k≤n
and (Bk)0≤k≤n, defined on (Ek)0≤k≤n, we define a class of real valued functions

(Fk)0≤k≤n defined on the path spaces (Ek)0≤k≤n by

Fk(xk) := fk(xk)
∏

0≤p≤k−1
Bp(xp) , for all 0 ≤ k ≤ n ,
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for all xk = (x0, · · · , xk) ∈ Ek. Instead of E(fτ (Xτ )) we want to maximize the

expected gain E(Fτ (Xτ )) w.r.t. τ in a set of random stopping times T . In other

words, one is interested in computing the Snell envelope (uk)0≤k≤n associated to the

gain functions (Fk)0<k≤n; it satisfies the recursion:

{
un(xn) = Fn(xn)

uk(xk) = Fk(xk) ∨Mk+1(uk+1)(xk), ∀ 0 ≤ k ≤ n− 1 .
(4.2.3)

At this stage, two difficulties may arise. First, the above recursion seems to require

the approximation of high dimensional conditional expectations, defined on the path

spaces Ek, at each time step from k = n − 1 up to k = 0. Second, when the

optimality criteria Bp is localized in a specific region of Ep, for each p, then the

product
∏k−1

p=0 Bp(xp) can be interpreted as a rare event. Hence, at first glance, the

computation of Snell envelopes in the multiplicatively path dependent case seems

to combine two additional numerical difficulties w.r.t. the standard case, related

to the computation of conditional expectations in both high dimensional and rare

event situations. The dimensionality problem is easily bypassed by considering

an intermediate standard Snell envelope without path dependent criteria, which

is directly related to the multiplicatively path dependent Snell envelope. Indeed,

consider the standard (non path dependent) Snell envelope (vk)0≤k≤n satisfying the

following recursion:

{
vn(xn) = fn(xn)

vk(xk) = fk(xk) ∨
[
Bk(xk)Mk+1(vk+1)(xk)

]
, ∀ 0 ≤ k ≤ n− 1 .

(4.2.4)

For all 0 ≤ k ≤ n, let us denote by vk the real valued functions defined on Ek, such

that vk(xk) := vk(xk)
∏k−1

p=0 Gp(xp). By construction, one can easily check that for

all 0 ≤ k ≤ n, uk ≡ vk and in particular u0(x0) = v0(x0). Indeed, one can verify

that (vk)0≤k≤n follow the same recursion (4.2.3) as (uk)0≤k≤n and have the same

terminal condition. Now that we have underlined the link between uk and vk, the

computation of the original Snell envelope uk can be done by using one of the many

approximation schemes developed for the standard (non path dependent) case.

Besides, to deal with the rare event problem, we propose a change of measure

which allows to concentrate the computational effort in the regions of interest w.r.t.

the criteria (Bk)0≤k≤n−1.

Rare event associated with Payoff function Another Snell envelope problem asso-

ciated with a small probability event comes from the payoff function when f(Xn) is

difficult to simulate. An example arises from the Bermudan put options when the

strike K is much smaller than the initial price of the underlying asset. In this case,

the standard Monte Carlo approach is not able to concentrate the computational

effort in regions where the payoff function x 7→ f(x) = (K − x)+ does not vanish to
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zero. In full generality, for a payoff function f concentrated in a relative small region

of the space, the choice of an efficient change of measure for computing the recursive

conditional expectations is difficult. This problem becomes even more tricky when

the number of the underlying assets is greater than three. In the following section,

we propose a simple adaptive scheme that allows to approximate an efficient change

of measure without requiring any a priori information.

4.3 Snell envelope and change of measure

Now, recall the reduced Snell envelope for the multiplicatively path dependent case:

{
vn(xn) = fn(xn)

vk(xk) = fk(xk) ∨
[
Bk(xk)Mk+1(vk+1)(xk)

]
, ∀ 0 ≤ k ≤ n− 1 .

The above recursion implies that it is not relevant to compute precisely the con-

ditional expectation Mk+1(vk+1)(xk) when the value of the criteria Bk(xk) is zero

or very small, or when the gain function fk is zero or very small. Hence from a

variance reduction point of view, when approximating the conditional expectation

Mk+1(vk+1)(xk) by a Monte Carlo method, it seems relevant to concentrate the sim-

ulations in the regions of Ek+1 where Bk+1 and/or fk+1 reach high values. Hence, to

avoid the potential rare events B, we consider a change of measure on the measurable

product space (E0 × · · · × En, E0 × · · · × En), with the following form

dQn =
1

Zn

[
n−1∏

k=0

Gk(Xk)

]
dPn , with Zn = E

(
n−1∏

k=0

Gk(Xk)

)
=

n−1∏

k=0

ηk(Gk) ,

(4.3.1)

where (Gk)0≤k<n is a sequence of non-negative functions defined on (Ek)0≤k<n (typ-

ically Gk := Bk, and Gk is written instead of Bk in further development of this

chapter) and ηk is the probability measure defined on Ek such that, for any mea-

surable function f on Ek

ηk(f) :=
E

(
f(Xk)

∏k−1
p=0 Gp(Xp)

)

E

(∏k−1
p=0 Gp(Xp)

) .

The measures (ηk)0≤k≤n defined above can be seen as the laws of random states

(X̄k)0≤k≤n under the probability measures (Qk)0≤k≤n. More interestingly, in Section

4.4 we will see that the sequence of random states (X̄k)0≤k≤n forms a nonlinear

Markov chain with transitions X̄k  X̄k+1 that depends on the current distribution

ηk, at time k. The behavior of this chain is dictated by the potential functions

(Gk)0≤k≤n and the Markov transitions (Mk)≤k≤n of the reference process (Xk)0≤k≤n.

Regions with high Gk−values are visited more likely.
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To illustrate this remark, we examine the situation where Gk(xk) = Bk(xk) :=

1Ak
(xk) with Ak ⊂ Ek. In this situation, law(Xk|Xp ∈ Ap, p < k) = law(X̄k) = ηk

is the conditional distribution of Xk given the fact that Xp ∈ Ap, for any p < k.

In this special case, the process (X̄k)0≤k≤n is restricted to regions related to the

choice of the sequence (Ak)0≤k≤n. This change of measure is know as the optimal

twisted measure for sampling a Markov chain restricted to the subset regions Ak.

More general change of measure are addressed in section 4.6. These models are

direct extension of 4.3.1 to potential functions that depend on the transition of the

reference Markov chain.

When the rare event problem comes from the payoff, we can construct a collection

of Gk to force the particle step by step to achieve the payoff. But in this case, there

is no more explicit obstacle Bk to help us to construct such potential functions. A

choice of Gk is provided in section 4.7.2. For further reading, readers are referred

to [47]. The authors have proposed several choices to minimize the variance.

At this stage, it is important to emphasize that the analysis of the both case

where the choice of Gk is explicit or not, are mathematically equivalent. The only

difference comes from the fact that the recursion 4.2.4 has additional term Bk com-

pared to 4.2.1. And the mathematical analysis of the later is easier and can be

induced directly from the former (by deleting all the Bk appeared in the Snell en-

velope recursion in the analysis). So only the analysis of the multiplicatively path

dependent case are provided in this chapter.

Furthermore, it is also important to observe that, for any measurable function

f on Ek

ηk(f) =
ηk−1(Gk−1Mk(f))

ηk−1(Gk−1)
. (4.3.2)

We denote the recursive relation between ηk and ηk−1 by introducing the operators

Φk such that, for all 1 ≤ k ≤ n

ηk = Φk(ηk−1) . (4.3.3)

Let us now introduce the integral operator Qk such that, for all 1 ≤ k ≤ n

Qk(f)(xk−1) :=

∫
Gk−1(xk−1)Mk(xk−1, dxk)f(xk) . (4.3.4)

In further developments of this chapter, we suppose that Mk(xk−1, ·) are equivalent
to some measures λk, for any 0 ≤ k ≤ n and xk−1 ∈ Ek−1, i.e. there exists a

collection of positive functions Hk and measures λk such that:

Mk(xk−1, dxk) = Hk(xk−1, xk)λk(dxk) . (4.3.5)

Now, we are in a position to state the following Lemma.
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Lemma 4.3.1. For any measure η on Ek, recursion (4.2.4) defining vk can be

rewritten:

vk(xk) = fk(xk) ∨Qk+1(vk+1)(xk) = fk(xk) ∨ Φk+1(η)

(
dQk+1(xk, ·)
dΦk+1(η)

vk+1

)
,

for any xk ∈ Ek, where

dQk+1(xk, ·)
dΦk+1(η)

(xk+1) =
Gk(xk)Hk+1(xk, xk+1)η(Gk)

η(GkHk+1(·, xk+1))
,

for any (xk, xk+1) ∈ Ek × Ek+1.

Proof. Under Assumption (4.3.5), we have immediately the following formula

Mk+1(xk, dxk+1) = Hk+1(xk, xk+1)
ηk(Gk)

ηk(GkHk+1(·, xk+1))
ηk+1(dxk+1) . (4.3.6)

Now, note that the above equation is still valid for any measure η,

Mk+1(xk, dxk+1) = Hk+1(xk, xk+1)
η(Gk)

η(GkHk+1(·, xk+1))
Φk+1(η)(dxk+1) . (4.3.7)

Hence, the Radon Nikodym derivative of Mk+1(xk, dxk+1) w.r.t. Φk+1(η) is such

that
dMk+1(xk, ·)
dΦk+1(η)

(xk+1) = Hk+1(xk, xk+1)
η(Gk)

η(GkHk+1(·, xk+1))
. (4.3.8)

We end the proof by applying the arguments above to recursion (4.2.4).

4.4 A particle approximation scheme

In this section, we first propose a particle model to sample the random variables

according to these distributions. This sample scheme is then combined with the

Stochastic Mesh scheme to finally provide an original particle algorithm to approx-

imate the Snell envelope (vk)0≤k≤n.

By definition (4.3.3) of Φk+1, we have the following formula

Φk(ηk−1) = ηk−1Kk,ηk−1
= ηk−1Sk−1,ηk−1

Mk = ΨGk−1
(ηk−1)Mk . (4.4.1)

Where Kk,ηk−1
, Sk−1,ηk−1

and ΨGk−1
are defined as follows:





Kk,ηk−1
(xk−1, dxk) = (Sk−1,ηk−1

Mk)(xk−1, dxk)

=
∫
Sk−1,ηk−1

(xk−1, dx′k−1)Mk(x
′
k−1, dxk) ,

Sk−1,ηk−1
(x, dx′) = ǫGk−1(x)δx(dx′) + (1− ǫGk−1(x))ΨGk−1

(ηk−1)(dx′)

ΨGk−1
(ηk−1)(dx) = Gk−1(x)

ηk−1(Gk−1)
ηk−1(dx) ,
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where the real ǫ is such that ǫG takes its values [0, 1].

More generally, the operations Ψ and S can be expressed as ΨG(η)(f) =
η(Gf)
η(G)

=

ηSη(f) with Sη(f) = ǫGf+(1−ǫG)ΨG(η)(f). We recall from [40] that ηk = law(X̄k),

where X̄k−1  X̄k is a Markov chain with transitions Kk,ηk−1
defined above.

The particle approximation provided in the present chapter is defined in terms of

a Markov chain ξ
(N)
k = (ξ

(i,N)
k )1≤i≤N on the product state spaces EN

k , where the given

integer N is the number of particles sampled in every instant. The initial particle

system, ξ
(N)
0 =

(
ξ
(i,N)
0

)
1≤i≤N

, is a collection of N i.i.d. random copies of X0. We

let FN
k be the sigma-field generated by the particle approximation model from the

origin, up to time k. To simplify the presentation, when there is no confusion we

suppress the population size parameter N , and we write ξk and ξ
i
k instead of ξ

(N)
k

and ξ
(i,N)
k . By construction, ξk is a particle model with a selection transition and

a mutation type exploration i.e. the evolution from ξk to ξk+1 is composed by two

steps:

ξk ∈ EN
k

Selection
−−−−−−−−→

S
k,ηN

k

ξ̂k :=
(
ξ̂ik

)
1≤i≤N

∈ EN
k

Mutation
−−−−−−−→

Mk+1

ξk+1 ∈ EN
k+1 . (4.4.2)

Then we define ηNk and η̂Nk as the occupation measures after the mutation and the

selection steps. More precisely,

ηNk :=
1

N

∑

1≤i≤N
δξik and η̂Nk :=

1

N

∑

1≤i≤N
δξ̂ik

.

During the selection transition Sk,ηNk
, for 0 ≤ i ≤ N with a probability ǫGk(ξ

i
k)

we decide to skip the selection step i.e. we leave ξ̂ik stay on particle ξik, and with

probability 1 − ǫGk(ξ
i
k) we decide to do the following selection: ξ̂

i
k randomly takes

the value in ξjk for 0 ≤ j ≤ N with distribution
Gk(ξ

j
k)∑N

l=1 Gk(ξ
l
k)
. Note that when ǫGk ≡ 1,

the selection is skipped ( i.e. ξ̂k = ξk) so that the model corresponds exactly to the

Broadie-Glasserman type model analysed by P. Del Moral and P. Hu et al. [50].

Hence, the factor ǫ can be interpreted as a level of selection against the rare events.

During the mutation transition ξ̂k  ξk+1, every selected individual ξ̂ik evolves

randomly to a new individual ξik+1 = x randomly chosen with the distribution

Mk+1(ξ̂
i
k, dx), for 1 ≤ i ≤ N .

It is important to observe that by construction, ηNk+1 is the empirical measure asso-

ciated with N conditionally independent and identically distributed random indi-

vidual ξik+1 with common distribution Φk+1(η
N
k ).

Now, we are in a position to describe precisely the new approximation scheme

proposed to estimate the Snell envelope (vk)0≤k≤n. The main idea consists in taking

η = ηNk , in Lemma 4.3.1, then observing that Snell envelope (vk)0≤k≤n is solution of
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the following recursion, for all 0 ≤ k < n,

vk(xk) = fk(xk) ∨ Φk+1(η
N
k )

(
dQk+1(xk, ·)
dΦk+1(ηNk )

vk+1

)
.

Now, if Φk+1(η
N
k ) is well estimated by η

N
k+1, it is relevant to approximate vk by v̂k

defined by the following backward recursion





v̂n = fn

v̂k(xk) = fk(xk) ∨ ηNk+1

(
dQk+1(xk, ·)
dΦk+1(ηNk )

v̂k+1

)
for all 0 ≤ k < n ,

(4.4.3)

Note that in the above formula (4.4.3), the function vk is defined not only on E
N
k

but on the whole state space Ek.

To simplify notations, we set

Q̂k+1(xk, dxk+1) = ηNk+1(dxk+1)
dQk+1(xk, ·)
dΦk+1(ηNk )

(xk+1) .

Finally, with this notation, the real Snell envelope (vk)0≤k≤n and the approximation

(v̂k)0≤k≤n are such that, for all 0 ≤ k < n,

vk = fk ∨Qk+1(vk+1)

v̂k = fk ∨ Q̂k+1(v̂k+1) .

In the change of measure interpretation presented in section 4.3, the particle al-

gorithm developed above can be seen as a stochastic acceptance-rejection technique

with recycling transitions. This type of particle sampling model has been used in

other contexts, including financial risk analysis in [24, 23]. For an overview of these

novel particle algorithms in financial mathematics, we refer the interested reader to

the book [22].

4.5 Convergence and bias analysis

By the previous construction, we can approximate Φk+1(η
N
k ) by η

N
k+1. In this section,

we will first analyze the error associated with that approximation and then derive

an error bound for the resulting Snell envelope approximation scheme. To simplify

notations, in further development, we consider the random fields V N
k defined as

V N
k :=

√
N
(
ηNk − Φk(η

N
k−1)

)
.

The following lemma shows the conditional zero-bias property and mean error esti-

mates for the approximation ηNk+1 of Φk+1(η
N
k ).
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Lemma 4.5.1. For any integer p ≥ 1, we denote by p’ the smallest even integer

greater than p. In this notation, for any 0 ≤ k ≤ n and any integrable function f

on Ek+1, we have

E
(
ηNk+1(f)|FN

k

)
= Φk+1(η

N
k )(f)

and

E
(∣∣V N

k (f)
∣∣p |FN

k

) 1
p ≤ 2 a(p)

[
Φk+1(η

N
k )(|f |p

′

)
] 1

p′

with the collection of constants

a(2p)2p = (2p)p 2
−p and a(2p+ 1)2p+1 =

(2p+ 1)p+1√
p+ 1/2

2−(p+1/2) .

Proof : The conditional zero-bias property is easily proved as follows

E
(
ηNk+1(f)|ηNk

)
=

1

N

N∑

i=1

E(f(ξik+1)|ηNk )

=
1

N

N∑

i=1

Kk+1,ηNk
(f)(ξik)

= (ηNk Kk+1,ηNk
)(f) = Φk+1(η

N
k )(f) .

Then the above equality implies

E
(∣∣[ηNk+1 − Φk+1(η

N
k )
]
(f)
∣∣p |FN

k

) 1
p ≤ E

(∣∣[ηNk+1 − µN
k+1

]
(f)
∣∣p |FN

k

) 1
p ,

where µN
k+1 :=

1
N

∑N
i=1 δY i

k+1
stands for an independent copy of ηNk+1 given η

N
k . Using

Khintchine’s type inequalities yields that

√
N E

(∣∣[ηNk+1 − µN
k+1](f)

∣∣p ∣∣FN
k

) 1
p ≤ 2 a(p) E

(∣∣f
(
ξ1k+1

)∣∣p′ | FN
k

) 1
p′

= 2 a(p)
[
Φk+1(η

N
k )(|f |p

′

)
] 1

p′

.

We end the proof by combining the above two inequalities.

A consequence of the zero-bias property proved in Lemma 4.5.1 is that

E(Q̂k+1(f)(xk)|ηNk ) = Qk+1(f)(xk) .

To estimate the error between vk and the approximation v̂k, it is useful to introduce

the following random integral operator RN
k such that for any measurable function

on Ek+1,

RN
k+1(f)(xk) =

√
N
(
Q̂k+1(f)(xk)−Qk+1(f)(xk)

)
.
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Note that

RN
k+1(f)(xk) :=

∫
V N
k+1(dxk+1)

dQk+1(xk, .)

dΦk+1(ηNk )
(xk+1) f(xk+1) ,

then, applying again Lemma 4.5.1 implies the following Khintchine’s type inequality

E(
∣∣RN

k+1(vk+1)(xk)
∣∣p |ηNk )

1
p

≤ 2 a(p)

[∫

Ek+1

Φk+1(η
N
k )(dxk+1)

(
dQk+1(xk, ·)
dΦk+1(ηNk )

(xk+1)vk+1(xk+1)

)p′
] 1

p′

Let Q̂k,l = Q̂k+1Q̂k+2 . . . Q̂l for any 0 ≤ k < l ≤ n, then it follows easily, by recursion,

that

E(Q̂k,l(f)(xk)|ηNk ) = Qk,l(f)(xk) .

Now, by Lemma 4.2.1, we conclude

√
N |(vk − v̂k)| ≤

∑

k<l<n

Q̂k,l|(RN
l+1)(vl+1)| . (4.5.1)

We are now in position to state the main result of this chapter.

Theorem 4.5.1. For any 0 ≤ k ≤ n and any integer p ≥ 1, we have

sup
x∈Ek

‖(v̂k − vk)(x)‖Lp
≤
∑

k<l<n

2 a(p)√
N

qk,l

[
Qk,l+1(h

p′−1
l+1 v

p′

l+1)(x)
] 1

p′

,

with a collection of constants qk,l and functions hk defined as

qk,l :=

[
‖hk+1‖

l∏

m=k

‖Gm‖
] p′−1

p′

and hk(xk) := sup
x,y∈Ek−1

Hk(x, xk)

Hk(y, xk)
. (4.5.2)

Proof : First, decomposition (4.5.1) yields

√
N ‖(v̂k − vk)(x)‖Lp

≤
∑

k<l<n

∥∥∥Q̂k,l|(RN
l+1)(vl+1)|(x)

∥∥∥
Lp

, for all x ∈ Ek .

Note that

‖Q̂k,l(1)‖ ≤ bk,l , where bk,l := ‖hk+1‖
l−1∏

m=k

‖Gm‖ .

Then it follows easily that for any integrable function f on El

(Q̂k,l(f))
p ≤ (bk,l)

p−1Q̂k,l(f
p) .

This yields that

∥∥∥Q̂k,l

∣∣(RN
l+1))(vl+1)

∣∣ (x)
∥∥∥
Lp

≤ (bk,l)
p−1
p E

(
Q̂k,l

(∣∣(RN
l+1))(vl+1)

∣∣)p (x)
) 1

p
.
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Applying Lemma 4.5.1 to the right-hand side of the above inequality, we obtain for

any xl ∈ El

E
(∣∣(RN

l+1))(vl+1)(xl)
∣∣p |ηNl

) 1
p

≤ 2 a(p)

[∫

El+1

Φl+1(η
N
l )(dxl+1)

(
dQl+1(xl, ·)
dΦl+1(ηNl )

(xl+1)vl+1(xl+1)

)p′
] 1

p′

from which we find that

E
(∣∣(RN

l+1))(vl+1)(xl)
∣∣p |ηNl

) 1
p

≤ 2 a(p)

[∫

El+1

Ql+1(xl, dxl+1)

(
dQl+1(xl, ·)
dΦl+1(ηNl )

(xl+1)

)p′−1
vl+1(xl+1)

p′

] 1
p′

By definition (4.5.2) of functions hl+1 and in developing the Radon Nikodym deriva-

tive, we obtain

dQl+1(xl, ·)
dΦl+1(ηNl )

(xl+1) =
ηNl (Gl)Gl(xl)Hl+1(xl, xl+1)

ηNl (GlHl+1)(·, xl+1)
≤ ‖Gl‖hl+1(xl+1) ,

which implies

E
(∣∣(RN

l+1))(vl+1)(xl)
∣∣p |ηNl

) 1
p

≤ 2 a(p)‖Bl‖
p′−1
p′

[∫

El+1

Ql+1(xl, dxl+1) (hl+1(xl+1))
p′−1 vl+1(xl+1)

p′

] 1
p′

Gathering the above arguments, we conclude that

‖(v̂k − vk) (x)‖Lp
≤
∑

k<l<n

2 a(p)√
N

qk,l

(
Qk,l+1(h

p′−1
l+1 v

p′

l+1)(x)
) 1

p′

.

Remarks : The constants qk,l could be largely reduced. In fact, qk,l comes from

bounding ‖∏m η
N
m(Gm)‖Lp . In [29], the authors proved ‖

∏
mGm‖L2 +

constant
N

as a

non asymptotic boundary for ‖∏m η
N
m(Gm)‖L2 . In most cases, the functions G take

their values in [0, 1], then the boundary ‖∏mGm‖ ≤ 1 holds, but ‖∏mGm‖L2 is

very small.

When the function G vanishes in some regions of the state space, we also mention

that the particle model is only defined up to the first time τN = k such that

ηNk (Gk) = 0. We can prove that the event {τN ≤ n} has an exponentially small

probability to occur, with the number of particlesN . In fact, the estimates presented

in the above theorems can be extended to this singular situation by replacing v̂k by

the particle estimates v̂k1τN≥n. The stochastic analysis of these singular models are

127



CHAPTER 4. SNELL ENVELOPE WITH SMALL PROBABILITY CRITERIA

quite technical, for further details we refer the reader to section 7.2.2 and section

7.4 in the book [40].

It is also very natural to assume the functions (vk)0≤k≤n are bounded by M in

the sense that (
Qk,l+1(v

p
l+1)(x)

) 1
p < M

, for any integer p. Then a new weak boundary

2 a(p) (n− k)√
N

M
(
1 ∨

(
‖h‖2‖G‖n−k

))

is provided to simplify the notations, where ‖h‖ = maxk ‖hk‖ and ‖G‖ = maxk ‖Gk‖
To understand better the Lp-mean error bounds in the theorem, we deduce the

following exponential concentration inequality:

Proposition 4.5.2. For any 0 ≤ k ≤ n and any ǫ > 0, we have

sup
x∈Ek

P

(
|vk(x)− v̂k(x)| >

c√
N
+ ǫ

)
≤ exp

(
−Nǫ2/c2

)
, (4.5.3)

with constant c = 2(n− k)M
(
1 ∨

(
‖hk‖2‖G‖n−k

))
.

Proof : This result is a direct consequence from the fact that for any non negative

random variable U such that

∃b <∞ s.t. ∀r ≥ 1 E (U r)
1
r ≤ a(r) b ⇒ P (U ≥ b+ ǫ) ≤ exp

(
−ǫ2/(2b2)

)
.

To check this claim, we develop the exponential and verify that

∀t ≥ 0 E
(
etU
)
≤ exp

(
(bt)2

2
+ bt

)
⇒ P(U ≥ b+ ǫ) ≤ exp

(
− sup

t≥0
(ǫt− (bt)2

2
)

)

Similarly to Broadie-Glasserman model, the following proposition shows that in

this model we also over-estimate the Snell envelope.

Proposition 4.5.3. For any 0 ≤ k ≤ n and any xk ∈ Ek

E (v̂k(xk)) ≥ vk(xk) . (4.5.4)

Proof. We can easily prove this inequality with a simple backward induction. The

terminal condition v̂n = vn implies directly the inequality at instant n. Assuming

the inequality at time k + 1, then the Jensen’s inequality implies

E (v̂k(xk)) ≥ fk(xk) ∨ E

(
Q̂k+1v̂k+1(xk)

)

= fk(xk) ∨ E

(∫

EN
k+1

Q̂k+1(xk, dxk+1)E
(
v̂k+1(xk+1)|FN

k+1

)
)

.
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By the induction assumption at time k + 1, we have

E

(∫

EN
k+1

Q̂k+1(xk, dxk+1)E
(
v̂k+1(xk+1)|FN

k+1

)
)

≥ E

(
Q̂k+1vk+1(xk)

)

= Qk+1vk+1(xk) .

Then the inequality still holds at time k, which completes the proof.

4.6 Applications and extensions

In this section, we apply the Feynman-Kac methodology developed in section 4.4

to two type of importance sampling Monte Carlo techniques. We start with some

important observation related to potential functions on transitions spaces.

For potential functionsGk(Xk, Xk+1) depending on the local transitions (Xk, Xk+1)

of the reference process, the change of measure has the same form as in 4.3.1, replac-

ing Xk by the Markov chain Xk = (Xk, Xk+1). In this situation, the Snell envelop

vk(x0, . . . , xk) associated with the payoff functions given bellow:

Fk(x0, . . . , xk) = fk(xk)
∏

0≤p<k

Gp(xp, xp+1),

has the form

vk(x0, . . . , xk) = vk(xk)
∏

0≤p<k

Gp(xp, xp+1). (4.6.1)

The sequence of functions (uk)0≤k≤n satisfies the backward recursion:

un = fn

uk(xp) = fp(xp) ∨
∫
Mk+1(xk, dxk+1)Gk(xk, xk+1)uk+1(xk+1). (4.6.2)

This equation has exactly the same form as 4.2.4, by replacing the function Bk(xk)

by the function Gk(xk, xk+1).

We illustrate these properties in two situations.

The first one concerns the design of more general change of reference measure.

For instance, let us suppose we are given a judicious Markov transitionM ′
k(xk−1, xk)

such that M ′
k(xk−1, ·) is absolutely continuous w.r.t. Mk(xk−1, ·). In this situation,

we have

E(fn(Xn)
∏

0≤p<n

Gp(Xp))

= E

(
fn(X

′
n)
∏

0≤p<n

[
Gp(X

′
p)
dMp+1(X

′
p, ·)

dM ′
p+1(X

′
p, ·)

(X ′
p+1)

])
, (4.6.3)
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where (X ′
p)0≤p≤n is a Markov chain with initial condition η

′
0 = η0 = law(X0), and

Markov transitions M ′
p. We can rewrite 4.6.3 as follows:

E(fn(Xn)
∏

0≤p<n

Gp(Xp)) = E(fn(X
′
n)
∏

0≤p<n

G′p(X
′
p, X

′
p+1)),

with G′p(xp, xp+1) = Gp(xp)
dMp+1(xp,·)
dM ′

p+1(xp,·)(xp+1).

The second example concerns the design of an importance sampling strategy.

Suppose we are given a sequence of positive payoff functions (fk)0≤k≤n, with f0 ≡ 1.

In this situation, we have

E(fn(Xn)) = E(
∏

0≤p<n

Gp(Xp, Xp+1))

, with the potential function Gp(xp, xp+1) =
fp+1(xp+1)

fp(xp)
. In this context, the Snell

envelop 4.6.1 and 4.6.2 are given by the backward recursion:

un = 1

up(xp) = 1 ∨
∫
Mp+1(xp, dxp+1)Gp(xp, xp+1)up+1(xp+1).

4.7 Numerical simulations

In this section, we give numerical examples to test our new algorithm, the Stochastic

Mesh with Change of Measure (SMCM), on Bermudan options from dimension 1 up

to 5, compared with the standard Stochastic Mesh (SM) algorithm without change

of measure.

4.7.1 Prices dynamics and options model

In our numerical tests we have considered a simple Black-Scholes price model. How-

ever, notice that both algorithms (SM and SMCM ) can be applied in a general

Markovian framework. The asset prices are modeled by a d-dimensional Markov

process (St) such that each component (i.e. each asset) follows a geometric Brown-

ian motion under the risk-neutral measure, that is, for assets i = 1, · · · , d,

dSt(i) = St(i)(rdt+ σdzit) , (4.7.1)

where zi, for i = 1, · · · , d are independent one dimensional standard Brownian

motions. Unless otherwise specified, the interest rate r is set to 10% annually and

the volatility is supposed to be the same for all assets, σ = 20% annually. The

starting prices of the assets are for all i = 1, · · · , d, St0(i) = 1. We consider two

types of Bermudan options with maturity T = 1 year and 11 equally distributed

exercise opportunities at dates tk = kT/n with k = 0, 1, · · · , n = 10, associated

with two different payoffs:
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1. Geometric average put option with payoff (K −∏d
i=1 ST (i))+,

2. Arithmetic average put option with payoff (K − 1
d

∑d
i=1 ST (i))+,

Note that the geometric average put payoff involves the process
∏d

i=1 S(i) which can

be identified to a one-dimensional non standard exponential Brownian motion. For

this specific case of geometric put payoff, we chose to vary, in our simulations, the

short term interest rate and the volatility with the number of underlying assets d,

such that the option value remains the same for all d:

r(d) = r/d , and σ(d) = σ/
√
d . (4.7.2)

Then, we chose as a benchmark value the estimate obtained by the standard Stochas-

tic Mesh approach with N = 6400 mesh points for d = 1 asset. These benchmark

values are reported on Table 4.1.

Strike K = 0.95 K = 0.85 K = 0.75

Option value 0.0279 0.0081 0.0015

Table 4.1: Benchmark values for the geometric put option obtained by using the Stochas-

tic Mesh method with 10000 particles. n = 11 exercise opportunities, T = 1, S0 = 1 and

r = 10%/d, σi = 20%/
√
d for the geometric payoff and r = 10%, σi = 20% for the

arithmetic payoff.

4.7.2 Choice of potential functions

We consider the Markov chain (Xk)0≤k≤n, taking values on Ek = R+d, obtained by

discretization of the time-continuous process S defined by (4.7.1) at times of exercise

opportunities, 0 = t0 < · · · < tn = T , such that for all k = 0, · · · , n , Xk = Stk .

Now, we can introduce the sequence of positive functions (Gk)1≤k≤n, defining the

change of measure (4.3.1), as follows:




G0(x1) = (f1(x1) ∨ ε)α ,

Gk(xk, xk+1) =
(fk+1(xk+1)∨ε)α

(fk(xk)∨ε)α , for all k = 1 , · · · , n− 1 ,

(4.7.3)

where fk are the payoff functions and α ∈ (0, 1] and ε > 0 are parameters fixed in

our simulations to the values α = 1/5 and ε = 10−7.

4.7.3 Numerical results

For each example, we have performed the algorithm for different numbers of mesh

points N = 100 , 200 , 400 , 800 , 1600 , 3200 , 6400. 1000 runs of both algorithms (
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Stochastic Mesh (SM) and Stochastic Mesh with Change of Measure (SMCM)) were

performed to compute the mean and confidence intervals of each estimate.

Simulations results are reported in Figure 1.3, 1.4 and 1.5 for the geometric and

arithmetic put payoff, with strikes corresponding to standard out of the money puts

to deep out of the money puts: K = 0.95, K = 0.85 and K = 0.75. Notice that

both algorithms (the Stochastic Mesh algorithm with and without Change of Mea-

sure) have been implemented without any standard variance reduction technique

(control variate, stratification, . . . ). In term of complexity, the Stochastic Mesh

algorithm with Change of Measure is equivalent to the standard Stochastic Mesh

algorithm: the complexity is in both cases quadratic with the number of mesh points

O(N2) since the number of operations required to operate the change of measure is

negligible.

We have reported on our graphs to types of estimates:

• the Positively-biased estimator provided by the backward induction on the

value function;

• the Negatively-biased estimator provided by the associated optimal exercise

policy. This estimate is obtained via a two-step procedure: first, the optimal

policy is approximated in the backward induction on the value function, then

the policy is evaluated using the standard forward Monte Carlo procedure.

Note that the resulting estimator is known to provide a lower bound (in av-

erage) to the option price. In our simulation, we have used Nforward = 10000

Monte Carlo forward simulations.

As expected, one can observe on Table 4.2, that the SMCM algorithm allows to

obtain an estimate, v̂SMCM , with the same complexity but with a smaller variance

than the standard SM algorithm estimate, v̂SM , especially for deep out the money

options.

More surprisingly, one can observe on Table 4.2 and Figure 1.3, 1.4 and 1.5 that

the SMCM algorithm also allows to reduce significantly the estimator bias which is

known to compose the growing part of the error when the number of underlying as-

sets increases. For instance, one can notice that the SMCM algorithm achieves the

convergence in average of the Positively-biased estimate to the Negatively-biased

estimate for a number of mesh points much smaller than for the SM algorithm.

Hence, the SMCM could also be a way to deal with high dimensional optimal stop-

ping problems since the algorithm complexity remains insensitive to the dimension

whereas the convergence rate is not significantly reduced.
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Payoff K d = 1 d = 2 d = 3 d = 4 d = 5
Geometric 0.95 1 (1%) 1 (3%) 1 (6%) 1 (9%) 1 (10%)

Put 0.85 5 (2%) 8 (6%) 6 (11%) 4 (14%) 3 (14%)
0.75 18 (6%) 28 (11%) 18 (17%) 16 (18%) 11 (16%)

Arithmetic 0.95 1 (1%) 3 (2%) 3 (7%) 4 (13%) 5 (18%)
Put 0.85 5 (2%) 13 (6%) 24 (19%) 56 (24%) 100 (20%)

0.75 18 (6%) 71 (15%) 363 (14%) 866 (16%) − (−)

Table 4.2: Variance ratio ( V ar(v̂SM )
V ar(v̂SMCM )) and Bias ratio (E(v̂SM )−E(v̂SMCM )

E(v̂SM ) ) (within paren-

theses) computed over 1000 runs for N = 3200 mesh points. (For the arithmetic put,

when d = 5 and K = 0.75, the 1000 estimates provided by the standard SM algorithm

were all equal to zero, hence the associated variance ratio has not been reported).
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Appendix

A.1 Proof of Lemma 3.5.2

Set

δl,n(N) := inf
x∈E′l

ηNn (gl,x) ,

with the function gl,x defined in (A.2.2). Note that

P (δl,n(N) = 0) ≤
∑

x∈E′l

P
(
ηNn (gl,x) = 0

)
.

On the other hand, for any ǫ ∈ [0, 1) we have

P
(
ηNn (gl,x) = 0

)
≤ P

(∣∣ηNn (gl,x)− ηn(gl,x)
∣∣ > ǫ ηn(gl,x)

)
.

Arguing as in (3.5.7), for any x ∈ E ′l s.t. ηn(gl,x) (= P (X ′
l = x)) > 0 we prove that

√
N E

(∣∣ηNn (gl,x)− ηn(gl,x)
∣∣r) 1

r ≤ 2 a(r) (n+ 1) ηn(gl,x)
−1 (A.1.1)

and therefore

P

(∣∣ηNn (gl,x)− ηn(gl,x)
∣∣ ≥

(
2(n+ 1)√

N
+ ǫ

)
ηn(gl,x)

)
≤ exp

(
− Nǫ2

8(n+ 1)2

)
.

For any N ≥ (2(n+ 1)/(1− ǫ))2, this implies that

P (δl,n(N) = 0) ≤ Card(E ′l) exp

(
− Nǫ2

8(n+ 1)2

)
.

If we choose, ǫ = 1/2 and N ≥ (4(n+ 1))2, we conclude that

P (δl,n(N) = 0) ≤ Card(E ′l) exp

(
− N

32(n+ 1)2

)
.
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On the other hand, by construction we have the almost sure estimate

ηNn (gl,ξil,n) =
∑

x∈E′l

ηNn (gl,x) 1ξil,n=x ≥ δl,n(N) 1δl,n(N)>0 +
1

N
1δl,n(N)=0 ,

from which we find that

ηNn (gl,ξil,n)
−1 ≤ δl,n(N)

−1 1δl,n(N)>0 +N 1δl,n(N)=0 .

Therefore, we have
∣∣∣
∣∣∣ηNn (gl,ξil,n)

−1
∣∣∣
∣∣∣
p
≤ ||δl,n(N)−1 1δl,n(N)>0||p +N ||1δl,n(N)=0||p

≤
∑

x∈E′l

||ηNn (gl,x)−1 1ηNn (gl,x)>0||p +N P(δl,n(N) = 0)1/p .

If we set gl,n(x) = gl,x/ηn(gl,x), using the fact that

1

1− u
= 1 + u+ u2 +

u3

1− u
,

for any u 6= 1, and ηNn (gl,x)
−1 1ηNn (gl,x)>0 ≤ N ηn(gl,x), we find that

ηNn (gl,x)
−1 1ηNn (gl,x)>0 ≤ 1 +

∣∣1− ηNn (gl,x)
∣∣+

(
1− ηNn (gl,x)

)2

+N ηn(gl,x)
∣∣1− ηNn (gl,x)

∣∣3 .

Combining this estimate with (A.1.1), for any p ≥ 1 we prove the following upper

bound

‖ηNn (gl,x)−1 1ηNn (gl,x)>0‖p ≤ 1 +
1√
N

2a(p)(n+ 1) + (2a(2p)(n+ 1))2
1

N

+
1√
N
(2a(3p)(n+ 1))3 ,

from which we find the rather crude estimates

‖ηNn (gl,x)−1 1ηNn (gl,x)>0‖p ≤ 1 +
3√
N

a′(p) (n+ 1)3 ,

with the collection of finite constants a′(p) := 2a(p) + (2a(2p))2 + (2a(3p))3. Using

the above exponential inequalities, we find that
∣∣∣
∣∣∣ηNn (gl,ξil,n)

−1
∣∣∣
∣∣∣
p

≤∑
x∈E′l

1
ηn(gl,x)

[
1 + 3√

N
a′(p) (n+ 1)3

]
+N Card(E ′l)

1/p exp
(
− N

32p(n+1)2

)
,

completing the proof of the lemma.
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A.2 Proof of Lemma 3.5.3

By construction, we have

∀x ∈ Êl,n M ′
l+1(f)(x) =

ηNl Ml,n((1x ◦ πl) (f ◦ πl+1))

ηNl Ml,n((1x ◦ πl))
. (A.2.1)

Thus, by (A.2.1) we have

M̂ ′
l+1(f)(x)−M ′

l+1(f)(x) :=
ηNn (gl,xfl+1)

ηNn (gl,x)
− ηNl Ml,n(gl,xfl+1)

ηNl Ml,n(gl,x)
,

for any x ∈ Êl,n, with the collection of functions

gl,x := 1x ◦ πl and fl+1 := f ◦ πl+1 . (A.2.2)

It is readily checked that

M̂ ′
l+1(f)(x)−M ′

l+1(f)(x) =
1

ηNn (ḡ
N
l,x)

[
ηNn (f̄

N
l+1,x)− ηNl Ml,n(f̄

N
l+1,x)

]
,

for any x ∈ Êl,n, with the pair of FN
l -measurable functions

f̄N
l+1,x :=

gl,x
ηNl Ml,n(gl,x)

[
fl+1 −

ηNl Ml,n(gl,xfl+1)

ηNl Ml,n(gl,x)

]
and ḡNl,x =

gl,x
ηNl Ml,n(gl,x)

.

It is also important to observe as gl,x varies only on E
′
l , then

ηNl Ml,n(gl,x) = ηNl (gl,x) ≤ 1 .

In this notation, for any 0 ≤ i ≤ N and any p ≥ 1, we have
∣∣∣
∣∣∣M̂ ′

l+1(f)(ξ
i
l,n)−M ′

l+1(f)(ξ
i
l,n)

∣∣∣
∣∣∣
p

≤
∣∣∣
∣∣∣ηNn (gl,ξil,n)

−1
∣∣∣
∣∣∣
2p

∣∣∣
∣∣∣ηNn (f̄N

l+1,ξil,n
)− ηNl Ml,n(f̄

N
l+1,ξil,n

)
∣∣∣
∣∣∣
2p
. (A.2.3)

The collection of random functions f̄N
l+1,ξjl,l

are well defined and we have

(
ηNn (f̄

N
l+1,ξil,n

)− ηNl Ml,n(f̄
N
l+1,ξil,n

)
)β

= 1

ηNl

(
g
l,ξi

l,n

) 1
N

∑N
j=1

[
ηNn (f̄

N
l+1,ξjl,l

)− ηNl Ml,n(f̄
N
l+1,ξjl,l

)

]β
1ξjl,l=ξil,n

,

for any β ≥ 0. Combining the above formula for β = 2p and Holder’s inequality, we

prove that
∣∣∣
∣∣∣ηNn (f̄N

l+1,ξil,n
)− ηNl Ml,n(f̄

N
l+1,ξil,n

)
∣∣∣
∣∣∣
2p

≤
∥∥∥∥ηNl

(
gl,ξil,n

)−1∥∥∥∥
1/(2p)

q

× sup1≤j≤N

∥∥∥∥ηNn (f̄N
l+1,ξjl,l

)− ηNl Ml,n(f̄
N
l+1,ξjl,l

)

∥∥∥∥
2pq′

,
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for any q, q′ ≥ 1, with 1
q
+ 1

q′
= 1.

We observe that, as (ξjl,l, (ξ
i
l,l)0≤i≤N , (ξ

i
l,n)0≤i≤N) have the same distribution, for

any 1 ≤ j ≤ N , then for any function h and any 1 ≤ j, j′ ≤ N we have:

E
(
h(ξjl,l, (ξ

i
l,l)0≤i≤N , (ξ

i
l,n)0≤i≤N)

)
= E

(
h(ξj

′

l,l, (ξ
i
l,l)0≤i≤N , (ξ

i
l,n)0≤i≤N)

)
,

which implies that

sup
1≤j≤N

∥∥∥ηNn (f̄N
l+1,ξjl,l

)− ηNl Ml,n(f̄
N
l+1,ξjl,l

)
∥∥∥
2pq′

=
∥∥∥ηNn (f̄N

l+1,ξjl,l
)− ηNl Ml,n(f̄

N
l+1,ξjl,l

)
∥∥∥
2pq′

.

As this equation works for any 1 ≤ j ≤ N , in further development we take j = 1 to

simplify the notation.

Using Lemma 4.5.1, and recalling that ηNl Ml,n(gl,x) = ηNl (gl,x), for any 1 ≤ j ≤ N

we prove the almost sure estimate

√
N E

(∣∣∣[ηNn − ηNl Ml,n](f̄
N
l+1,ξ1l,l

)
∣∣∣
2pq′ ∣∣FN

l

) 1
2pq′

≤ 2 a(2pq′)(n− l)

[
ηNl Ml,n

(∣∣∣f̄N
l+1,ξ1l,l

∣∣∣
2pq′

)] 1
2pq′

≤ 4 a(2pq′)(n− l) ‖fl+1‖
(
ηNl Ml,n(gl,ξ1l,l)

) 1
2pq′

−1
.

This yields that

√
NE

(∣∣∣[ηNn − ηNl Ml,n](f̄
N
l+1,ξ1l,l

)
∣∣∣
2pq′ ∣∣FN

l

) 1
2pq′

≤ 4 a(2pq′)(n− l)‖fl+1‖ ηNl (gl,ξ1l,l)
−1 ,

and therefore
√
N

∥∥∥ηNn (f̄N
l+1,ξil,n

)− ηNl Ml,n(f̄
N
l+1,ξil,n

)
∥∥∥
2pq′

≤ 4 a(2pq′)(n− l)‖fl+1‖
∥∥∥∥ηNl

(
gl,ξil,n

)−1∥∥∥∥
1/(2p)

q

∥∥∥ηNl (gl,ξ1l,l)
−1

∥∥∥
2pq′

.

Finally, by (A.2.3), we conclude that
√
N

∣∣∣
∣∣∣M̂ ′

l+1(f)(ξ
i
l,n)−M ′

l+1(f)(ξ
i
l,n)

∣∣∣
∣∣∣
p

≤ 4 a(2pq′)(n− l)‖fl+1‖
∣∣∣
∣∣∣ηNn (gl,ξil,n)

−1
∣∣∣
∣∣∣
2p

∥∥∥∥ηNl
(
gl,ξil,n

)−1∥∥∥∥
1/(2p)

q

×
∥∥∥ηNl (gl,ξ1l,l)

−1
∥∥∥
2pq′

.
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We prove (3.5.13), by taking q = 1 + 2p and q′ = 1 + 1/(2p) so that q = 2pq′ ≥ 2p

√
N

∣∣∣
∣∣∣M̂ ′

l+1(f)(ξ
i
l,n)−M ′

l+1(f)(ξ
i
l,n)

∣∣∣
∣∣∣
p

≤ 4 a(1 + 2p)(n− l)‖fl+1‖ supl≤k≤n

∣∣∣
∣∣∣ηNk (gl,ξ1l,k)

−1
∣∣∣
∣∣∣
2+1/(2p)

1+2p
.

This end of proof is now a direct consequence of Lemma 3.5.2.
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