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Résumé

Cette thèse revisite les problèmes d’accessibilité et de vivacité pour les au-
tomates temporisés.

L’accessibilité est couramment résolue par le calcul d’un arbre de
recherche abstrait. L’abstraction est paramétrée par des bornes provenant
des gardes de l’automate. Nous montrons que l’abstraction a4LU de
Behrmann et al. est la plus grande abstraction saine et complète pour
les bornes LU. N’étant pas convexe, elle n’est pas mise en œuvre dans
les outils. Nous introduisons une méthode qui permet son utilisation
efficace. Finalement, nous proposons une optimisation des bornes à la volée
exploitant le calcul de l’arbre.

Le problème de vivacité requiert de détecter les exécutions Zenon/non-
Zenon. Une solution standard ajoute une horloge à l’automate. Nous mon-
trons qu’elle conduit à une explosion combinatoire. Nous proposons une so-
lution qui évite ce problème pour une grande classe d’abstractions. Pour les
abstractions LU nous montrons que détecter ces exécutions est un problème
NP-complet.

Mots clés: Automates temporisés, abstractions, algorithmes à la volée,
exécutions Zenon





Abstract

We consider the classic model of timed automata introduced by Alur
and Dill. Two fundamental properties one would like to check in this model
are reachability and liveness. This thesis revisits these classical problems.

The reachability problem for timed automata asks if there exists a run of
the automaton from the initial state to a given final state. The standard so-
lution to this problem constructs a search tree whose nodes are abstractions
of zones. For effectiveness, abstractions are parameterized by maximal lower
and upper bounds (LU-bounds) occurring in the guards of the automaton.
Such abstractions are also termed as LU-abstractions. The a4LU abstraction
defined by Behrmann et al is the coarsest known LU-abstraction. Although
it is potentially most productive to use the a4LU abstraction, it has not been
used in implementations as it could lead to non-convex sets. We show how
one could use the a4LU abstraction efficiently in implementations. Moreover,
we prove that a4LU abstraction is optimal: given only the LU-bound infor-
mation, it is the coarsest possible abstraction that is sound and complete
for reachability. We then concentrate on ways to get better LU-bounds. In
the standard procedure the LU-bounds are obtained from a static analysis
of the automaton. We propose a new method to obtain better LU-bounds
on-the-fly during exploration of the zone graph. The potential gains of pro-
posed improvements are validated by experimental results on some standard
verification case studies.

The liveness problem deals with infinite executions of timed automata.
An infinite execution is said to be Zeno if it spans only a finite amount
of time. Such runs are considered unrealistic. While considering infinite
executions, one has to eliminate Zeno runs or dually, find runs that are
non-Zeno. The Büchi non-emptiness problem for timed automata asks if
there exists a non-Zeno run visiting an accepting state infinitely often. The
standard solution to this problem adds an extra clock to take care of non-
Zenoness. We show that this solution might lead to an exponential blowup
in the search space. We propose a method avoiding this blowup for a wide
class of abstractions weaker than LU-abstractions. We show that such a
method does not exist for LU-abstractions unless P=NP. Another question
related to infinite executions of timed automata is to decide the existence
of Zeno runs. We provide the first complete solution to this problem. It
works for a wide class of abstractions weaker than LU. Yet again, we show
the solution could lead to a blowup for LU-abstractions, unless P=NP.

Keywords: Timed automata, finite abstractions, on-the-fly algorithms,
Zenoness
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Chapter 1

Introduction

Embedded computer systems are ubiquitous. Be it a vending machine serv-
ing beverages or a weather satellite keeping us well informed about the
everyday weather, a number of devices carry an embedded computer system
that receives certain inputs and executes specified actions. Additionally,
these embedded systems might be required to perform the actions within
precise time deadlines. For instance, a pacemaker used to regulate the heart
beat should respond to a missed beat within the normal beat-to-beat period,
or a car brake system should activate the necessary hardware to stop the car
within a fraction of a second. Such time-critical systems subject to real-time
constraints are commonly known as real-time systems. As is evident, it is
of utmost importance to produce reliable real-time systems and therefore it
is indispensable to have a framework verifying that the system meets the
required specifications.

Timed automata [AD94] provide a convenient formalism to model and
verify real-time systems. This formalism has been implemented in a number
of tools [BDL+06, BDM+98, Wan04] and has been used in many different
industrial case studies [HSLL97, BBP04]. A timed automaton is a finite
automaton augmented with a set of clocks. The clocks start with a value
zero and increase at the same rate along with time. Clocks can be used to
constrain transitions: every transition is supplemented with a conjunction
of inequalities, each of which compares a clock to a natural number. This
conjunction of inequalities present in a transition is called the guard of the
transition. The transition can be taken only at an instant when the values of
the clocks satisfy the guard associated to the transition. To get something
more interesting out of this finite structure, one allows for the power to reset
values of clocks back to zero after taking a transition. The reset operation
allows to measure time intervals between events. As is the case with finite
automata, there are initial and final states in a timed automaton too. An
example of a timed automaton is given in Figure 1.1.

Timed automata are the basis of many more sophisticated models. They

1
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q0 q1q2

{x}

x ≤ 2

y > 5

Figure 1.1: A timed automaton A1

can be extended with richer reset operations to give updatable timed au-
tomata [BDFP04, Bou04], with probabilistic edges to give probabilistic
timed automata [GJ95, KNSS02, KNP11] or with costs for staying in a
state to give priced timed-automata [BFLM11]. As these extended models
are strongly based on timed automata, advances in this model could highly
benefit the extensions. This brings us to study the basic timed automata
of [AD94] in this thesis.

Two fundamental properties in verification are reachability and liveness.
Reachability refers to asking if there exists an execution of the automaton
from an initial state to a final state. This is useful in checking if some bad
state of a system could possibly be reached. Liveness asks if there exists
an infinite time-diverging execution of the automaton visiting an accepting
state infinitely often. This problem is interesting since timed automata
model reactive systems that continuously interact with the environment.
Essentially, liveness asks if eventually, a good event keeps recurring forever
and is different in spirit to reachability. Many common properties can be
verified using either a reachability query or a liveness query. These two
problems are known to be decidable for timed automata [AD94]. This thesis
revisits these classical problems.

1.1 Reachability

The reachability problem, as mentioned above, asks if there exists an execu-
tion of the automaton from an initial state to a given final state. Reachabil-
ity problem has been shown to be decidable in the paper introducing timed
automata [AD94]. This is the fundamental property that makes the model
amenable for verification. The basic reachability algorithm has undergone
a lot of improvements over the years and is now the core of many real-time
verification tools [BDL+06, BDM+98, Wan04].

Consider Figure 1.2. It shows the different behaviours of the automaton
of Figure 1.1. Starting from the initial state q0 and the initial clock valuation
〈0, 0〉, the automaton can choose to spend an arbitrary amount of time at
state q0. When it takes the transition to q1, the value of x is set to 0. So,
if 1.3 time units are spent at q0, the clocks take values x = 1.3, y = 1.3.
But after taking the transition to q1 in which x is reset, the values become
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· · · · · · · · ·
· · ·

· · ·

· · ·

(q0, 〈0, 0〉)

(q1, 〈0, 0〉) (q1, 〈0, 1.3〉) (q1, 〈0, 10.9〉) (q1, 〈0, 100〉)

(q0, 〈0, 1.3〉) (q0, 〈2, 3.3〉)

· · · (q2, 〈3.75, 5.05〉) (q2, 〈12, 13.3〉)

...
...

...

...

...
...

0

1.3

100

0 2

1.75 10

10.9

Figure 1.2: Part of the transition system showing the behaviours of the timed
automaton A1 of Figure 1.1

x = 0, y = 1.3.

As we see, the space of configurations is uncountably infinite due to the
dense time component. To solve the reachability problem, one needs to
know if there is a sequence of enabled transitions leading to the final state.
To know if a transition is enabled, one needs to check if the values of clocks
before taking the transition satisfy the corresponding guard. This calls for
an effective and efficient handling of the uncountably infinite space of clock
valuations. This is the main challenge faced in the analysis.

The first solution to the reachability problem goes by a partition of the
space of clock valuations into a finite number of regions [AD94]. Two valua-
tions within a region are indistinguishable with respect to state reachability.
The definition of regions is parameterized by a bound functionM that asso-
ciates to every clock x the maximum constant appearing in a guard involving
x. For instance, the maximum bounds functionM1 for the automaton A1 of
Figure 1.1 assigns M1(x) = 2,M1(y) = 5. The maximum bounds function
also ensures finiteness of the number of regions. Once the space of valua-
tions is partitioned into this finite number of regions, a cross product with
the states of the automaton is taken to give what is called the region graph.
It has been proved that the region graph is sound and complete for state
reachability [AD94]. While this gives an effective solution to the reachabil-
ity problem for timed automata, the number of regions is generally very big
and hence the solution is impractical.

A more efficient solution uses sets of valuations called zones. Zones are
convex sets described by constraints involving only the difference between
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clocks. Due to this simple structure, zones can be efficiently represented
using Difference Bound Matrices (DBMs) [Dil89]. This data structure can
be efficiently manipulated and hence the algorithms using DBMs can be
implemented efficiently [BY04]. There are two basic approaches to solve
the reachability problem using zones: forward analysis and backward anal-
ysis [Bou09].

The forward analysis approach using zones explores the paths of the au-
tomaton starting from the initial state and collects the sets of valuations
reachable at each step. It can be shown that these sets can be represented
using zones [BY04]. The graph carved out this way is called the zone graph
of the automaton. There is an execution of the automaton reaching an ac-
cepting state if and only if there is a node with an accepting state in the zone
graph [DT98]. If the exploration of this zone graph reaches the final state,
the algorithm halts reporting success. This way, the algorithm is on-the-fly
as the entire automaton need not be explored. However, the zone graph
explored naively in this forward analysis might potentially be infinite and
the forward analysis algorithm might not terminate. The standard way out
of this problem is to consider abstractions of zones instead of zones them-
selves, and to get a finite graph capturing the behaviour of the potentially
infinite zone graph.

The backward analysis on the other hand starts from the final state
along with the entire set of valuations. The algorithm explores the automa-
ton backwards by doing a pre-computation of each transition, yielding the
set of valuations that can pass through the respective transition. If the ini-
tial state of the automaton can be reached via this backward computation,
the algorithm reports success. Contrary to the forward analysis approach,
the backward analysis always terminates. However, it has been empirically
observed that the backward analysis is computationally more expensive as
compared to the forward analysis approach. In other words, the number
of zones computed by backward analysis substantially exceeds the number
obtained by forward analysis. Therefore, tools using zones and DBMs stick
to the forward analysis approach [Bou09, BDL+06, BDM+98]. We consider
the forward analysis approach in the thesis.

As seen above, abstractions of zones are crucial for termination of the
forward reachability analysis. Figure 1.3 illustrates the idea. The picture
on the left shows the zone graph obtained by forward analysis. Each node
consists of a state of the automaton and a zone consisting of the set of
valuations. Arrows indicate the edges (the guards and resets have not been
explicitly shown). The target of the transition shows the state assumed by
the automaton and the set of valuations obtained after taking the transition.
Transitions marked with a cross are disabled as no valuation in the zone
can satisfy the corresponding guard. The picture on the right shows an
abstraction of the zone graph using an abstraction operator a that is sound.
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(q0, Z0)

(q1, Z1)

(q2, Z2)

...

(q0, a(Z0))

(q1, a(W1))

(q2, a(W2))

Figure 1.3: Abstracting the zone graph. Cross shows disabled edges.

We explain intuitively what it is to be sound. Consider the initial node
(q0, a(Z0)) of the abstract graph. Transitions disabled from (q0, Z0) should
be disabled from (q0, a(Z0)) too, as shown in the figure. Now the enabled
transition is taken from (q0, a(Z0)). Since a(Z0) is a bigger set, we would get
as a successor some (q1,W1) such that Z1 ⊆W1. Before taking the transition
from this new node, the algorithm abstracts W1 to a(W1). The abstracted
successor (q1, a(W1)) should now be sound with respect to (q1, Z1), as shown
in the figure.

The goal is to come up with a sound abstraction operator that gives a
finite abstract graph. The coarser the abstraction, the smaller is the abstract
graph obtained. Therefore the aim is to get an abstraction operator as coarse
as possible, but maintaining the criterion of soundness. To come up with an
abstraction operator, a standard method is to use a simulation relation: a
valuation v is simulated by a valuation v′ if all paths taken by v can be taken
by v′ and for each enabled transition from v, the successor of v is simulated
by the successor of v′. An abstraction based on a simulation relation adds
to a set W the set of valuations that can be simulated by some valuation
in W . By definition, the simulation relation entails soundness. Since we
normally consider abstractions based on simulation relations, the abstract
graph described above and illustrated on the right in Figure 1.3 is called a
simulation graph.

It has been observed that computing the coarsest simulation relation
given a timed automaton is Exptime-hard [LS00]. As reachability can be
solved in Pspace, this suggests that it may not be reasonable to solve reach-
ability using the abstraction based on the coarsest simulation relation. We
can get simulation relations that are computationally easier if we consider
only a part of the structure of the automaton. The common way is to look
at constants appearing in the guards of the automaton and consider them
as parameters for abstraction.

There are two ways to obtain parameters. One way is to consider the
same maximum boundsM as explained for the region graph. For every clock
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Z

Extra+M ExtraLU

ExtraM

Extra+LUa4LU

ClosureM

Figure 1.4: Hierarchy of abstractions in literature [BBLP06]. The ones starting
with Extra are convex. Extra+

LU is currently used in implementations.

x, the maximum bounds function M associates the maximum constant ap-
pearing in a guard involving x. A more refined approach is to distinguish
lower-bounding guards of the form x > c or x ≥ c from upper-bounding
guards of the form x < c or x ≤ c, giving two bound functions L and
U [BBLP06]. The bound function L associates to every clock x the maxi-
mum constant appearing in a lower-bounding guard. Similarly U associates
the maximum constant appearing in an upper-bounding guard. Abstrac-
tions using the LU-bounds are called LU-abstractions and those using the
M-bounds are called M-abstractions. The LU-abstractions are generally
coarser than the M-abstractions.

Figure 1.4 shows the sound and complete abstractions existing in the
literature. The abstractions with subscript M are the M-abstractions and
those with LU are the LU-abstractions. The figure shows the hierarchy of
abstractions with respect to inclusion. The a4LU abstraction is the coarsest
known LU-abstraction subsuming the ClosureM abstraction, which is the
coarsest known among the M-abstractions. Therefore, it is potentially most
productive to use the a4LU abstraction in implementations. However, there
is a catch. The a4LU abstraction can lead to non-convex sets, in other
words, sets that are not zones. Zones are objects that we know to efficiently
represent and manipulate. On the other hand, we do not know of efficient
ways to represent non-convex sets. Therefore, one adds the requirement
that an abstraction operator yield a set that is a zone again. This would
ensure that the simulation graph using this abstraction can be efficiently
manipulated. Abstractions which map a zone to a zone again are called
convex abstractions, as a zone is a convex set. In Figure 1.4 the abstraction
operators in the right hand side diamond beginning with Extra are convex.
Among the convex abstractions, since Extra+LU is the coarsest, it is the one
used in state-of-the-art implementations [BBLP06].

An allied line of research has been to look at ways to get better param-



1.1. Reachability 7

What we already know What we show in this thesis

Only convex abstractions
in implementations

[DT98, Bou04, BBLP06]

Efficient use of non convex abstractions
a4LU and ClosureM

a4LU is optimal with respect to
LU-bounds

ClosureM is optimal with respect to
M-bounds

Bounds for abstraction
by static analysis

[BBFL03]

A new algorithm to get bounds on-the-fly
during exploration

Table 1.1: Contributions towards the reachability problem

eters, that is better M-bounds and LU-bounds. The smaller the bounds,
the coarser is the abstraction. Hence it is important to get as small bounds
as possible, bearing in mind the constraint of soundness. The crude way
is to look at the entire automaton and search for the relevant maximum
constant. An improved approach associates a bound function to every state
of the automaton [BBFL03]. In this approach, a static analysis is done
on the automaton to search for guards relevant at a particular state. A
guard involving clock x is relevant at a state q only if there is a path in
the automaton starting from q and leading to the guard such that x is reset
nowhere in the path. It has been observed that optimizing bounds using this
static analysis reduces the size of the simulation graph substantially. The
static analysis has therefore been adopted as the state-of-the-art approach
to obtain bounds for abstraction.

Contributions of the thesis

We concentrate on two aspects of the reachability problem: efficient use
of abstractions of zones, and calculating bounds for abstractions. We have
highlighted the contributions of the thesis in Table 1.1. We explain below
in more detail.

We give an efficient method to use non-convex abstractions a4LU and
ClosureM for reachability testing. As these abstractions are coarser than
their convex counterparts, the simulation graphs obtained using these non-
convex abstractions are a priori smaller. As a surprising bonus, we prove
that a4LU is optimal: it is the coarsest abstraction depending only on LU-
bounds that is sound and complete for reachability. Similarly, ClosureM is
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x

y

Lx Ux

Ly

Uy Z :

Extra
+
LU (Z) : ∪

Closure
+
LU (Z) : ∪ ∪

a4LU(Z) : ∪ ∪ ∪

Figure 1.5: A comparison of abstraction operators for zones.

the coarsest abstraction depending on M-bounds that is sound and complete
for reachability.

Since we know that a4LU and ClosureM are optimal respectively when
LU-bounds and M-bounds are used, we cannot hope to look for better ab-
stractions. However, we can strive to get better bounds themselves. The
smaller the bounds, the coarser is the abstraction. As we have described
above, the current method to obtain bounds performs a static analysis to
assign bounds to each state of the automaton. We provide an algorithm
that uses information gathered during the reachability analysis and assigns
bounds on-the-fly to each node of the graph computed by the algorithm.
An immediate gain is that bounds in the parts of the automaton that are
unreachable become irrelevant. We have implemented our algorithm in a
prototype tool and have checked the results on standard benchmarks. We
report on some promising experimental results.

Related work

Forward analysis is the main approach for the reachability testing of real-
time systems. The use of zone-based abstractions for termination has been
introduced in [DT98]. In recent years, coarser sound abstractions have been
introduced to improve efficiency of the analysis [BBLP06]. An approxima-
tion method based on LU-bounds, called Extra+LU , is used in the current
implementation of UPPAAL [BDL+06]. In [HKSW11] it has been shown
that it is possible to efficiently use the region closure of Extra+LU , denoted
Closure+LU . This has been the first efficient use of a non-convex approxima-
tion. A comparison of these abstractions is depicted in Fig. 1.5.

We have mentioned that abstractions are not needed in backward ex-
ploration of timed systems. Nevertheless, any feasible backward analysis
approach needs to simplify constraints. For example [MPS11] does not use
approximations and relies on an SMT solver instead. Clearly this approach
is very difficult to compare with the forward analysis approach we study
here.
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Another related approach to verification of timed automata is to build
a quotient graph of the semantic graph of the automaton with respect to
some bisimulation relation [ACH+92, YL93, TY01, CHK08]. For reacha-
bility properties, this approach is not a priori competitive with respect to
forward exploration as it requires to construct the whole state space of the
automaton. It is more adapted to checking branching time properties.

1.2 Liveness

Timed automata model reactive systems that continuously interact with the
environment. These reactive systems are also assumed to function forever.
Therefore, it is interesting to consider infinite runs of a timed automaton.
The liveness problem intuitively asks if there is a behaviour of the automaton
where a good event keeps happening repeatedly.

In the case of infinite executions one has to eliminate the so called Zeno
runs. These are executions that contain infinitely many steps taken in a
finite time interval. For obvious reasons such executions are considered un-
realistic. One way to treat Zeno runs would be to say that a timed automa-
ton admitting such a run is faulty and should be disregarded. This gives
rise to the problem of detecting the existence of Zeno runs in an automa-
ton [BG06, GB07]. We call it the Zenoness problem. The other approach
to handling Zeno behaviours is to say that due to imprecisions introduced
by the modeling process one may need to work with automata having Zeno
runs. This leads to the problem: given a timed automaton decide if it has a
non-Zeno run passing through accepting states infinitely often. We call this
the Büchi non-emptiness problem. This thesis gives new solutions to both
the problems: the Büchi emptiness problem, and the Zenoness problem.

Büchi non-emptiness problem

There are two facets to the Büchi non-emptiness problem. Given a timed
automaton, we first need to decide if it has an infinite run visiting accepting
states infinitely often. Let us call this repeated state reachability. In addition
to this, we need to ensure that the infinite run is non-Zeno.

Let us first consider repeated state reachability. It can be shown that the
region graph is sound and complete for repeated state reachability [AD94]: an
infinite path in the region graph can be instantiated to an infinite run of the
timed automaton and vice versa. Due to the large size of the region graph, it
is very difficult to use it efficiently in practice. Thanks to [TYB05, Tri99] we
know that simulation graphs using M-abstractions are sound and complete
for repeated state reachability. More recently in [Li09], it was shown that
all simulation graphs using a time-abstract simulation [TAKB96] are sound
and complete for reachability. This result entails that even LU-abstractions
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s0s1 s2

x := 0 y := 0

(y ≤ 0) (x ≤ 0)

Azeno

(s0, 0 = x = y) (s1, 0 = x = y)

(s1, 0 = x < y)

(s0, 0 = x = y) (s2, 0 = y = x)

(s2, 0 = y < x)

Region graph

(s0, 0 = x = y) (s1, 0 = x ≤ y) (s0, 0 = x = y) (s2, 0 = y ≤ x)

Simulation graph with ExtraM

(s0,⊤) (s1,⊤) (s0,⊤) (s2,⊤)

Simulation graph with ExtraLU

Figure 1.6: Non-Zeno runs from abstract paths

are good for repeated state reachability. However, it does not guarantee
that the infinite run of the automaton that is obtained is non-Zeno.

Figure 1.6 shows an automaton Azeno which has all runs Zeno. Paths
of the region graph and simulation graphs using ExtraM and ExtraLU are
depicted below in the same figure. In the region graph, the only infinite
path corresponds to the run of the timed automaton taken without any
time elapse. When time is elapsed at state s0, the run cannot be continued
further from state s1. This is exactly incorporated in the region graph.
However, in the simulation graphs, both the runs of the timed automaton
are merged to a single path of the simulation graph. Moreover, the coarser
the abstraction used, the lesser is the information in the simulation graph
that one could tap to detect non-Zenoness.

Non-Zenoness can be detected directly from the region graph by check-
ing for a progress criterion that can be encoded as an extra Büchi condi-
tion [AD94]. This progress criterion is however not sound for simulation
graphs due to their coarseness as compared to regions. There exists a sim-
ple solution to this problem that amounts to transforming automata in such
a way that every run passing through an accepting state infinitely often
is non-Zeno. An automaton with such a property is called strongly non-
Zeno [TYB05, Tri99]. The transformation is easy to describe and requires
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What we already know What we show in this thesis

SNZ construction for
non-Zenoness
[TYB05, Li09]

SNZ construction can cause
exponential blowup of simulation graph

A new construction which is polynomial
for M-abstractions

Deciding non-Zenoness from
LU-abstract simulation graphs

is NP-complete

Sufficient-only condition
on automaton syntax

for Zenoness
[GB07]

A complete algorithm for Zenoness

Complexity linear in size of simulation graph
for M-abstractions

Deciding Zenoness from
LU-abstract simulation graphs

is NP-complete

Table 1.2: Contributions towards the liveness problem (SNZ refers to Strongly
non-Zeno).

addition of one new clock. Tools checking for liveness make use of this
construction to detect non-Zenoness [TYB05, Li09].

Zenoness problem

The Zenoness problem asks if there exists a Zeno run in a given timed au-
tomaton. Inspired by the strongly non-Zeno construction, a static check
on the automaton has been proposed that ensures the absence of Zeno
runs [GB07]. The method is efficient as it performs only static analysis:
it looks at the automaton itself and not at its executions. But then, the
method is not complete.

Contributions of the thesis

We focus on constructions for non-Zenoness and Zenoness in this part of the
thesis. The contributions are listen in Table 1.2. We detail them below.

We observe that the apparently simple transformation to strongly non-
Zeno automata [TYB05] can give a big overhead in the size of a simulation
graph. We closely examine the transformation to strongly non-Zeno au-
tomata, and show that it can inflict a blowup of the simulation graph; and
this blowup could even be exponential in the number of clocks, irrespective
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of the abstraction used in the simulation graph. To substantiate, we exhibit
an example of an automaton having a simulation graph of polynomial size,
whose transformed version has a simulation graph of exponential size. More-
over, we see that this is true for all the abstractions used for the liveness
problem.

We propose another solution to avoid this phenomenon. Instead of
modifying the automaton, we modify the simulation graph. We show that
this modification allows us to detect if a path in the simulation graph can
be instantiated to a non-Zeno run. Moreover when we consider simula-
tion graphs using some M-abstraction, the size of the modified graph is
|SGM (A)| · O(|X|), where |SGM (A)| is the size of the simulation graph ob-
tained from the M-abstraction under consideration and |X| is the number of
clocks. However we observe that the modified solution we propose still gives
an exponential blowup for LU-abstractions. A further investigation reveals
that this blowup is possibly unavoidable for LU-abstractions. We show that
deciding non-Zenoness from simulation graphs using LU-abstractions is NP-
complete. We propose a weakening of the LU-abstractions that avoids the
exponential blowup required for the non-Zenoness check.

As a next contribution, we propose an on-the-fly algorithm for the Büchi
non-emptiness problem. Our problem highly resembles the emptiness test-
ing of finite automata with generalized Büchi conditions. Since the most
efficient solutions for the latter problem are based on Tarjan’s algorithm
to detect strongly-connected-components (SCCs) [SE05, GS09], we take the
same route here. We additionally observe that Büchi non-emptiness can
sometimes be decided directly from the simulation graph. This permits to
restrict the use of the modified simulation graph construction only to certain
parts of the simulation graph. We also give additional optimizations that
prove to be powerful in practice. We have implemented the algorithm in
a prototype too. We report on experiments conducted on some standard
examples in the literature.

Finally, we consider the Zenoness problem. As we have seen, the current
solution gives a sufficient-only criterion for absence of Zeno runs. We propose
a complete algorithm for the Zenoness problem by considering the simulation
graph of the automaton. The solution constructs a graph that is twice as big
as the simulation graph in the case of M-abstractions. However, it turns out
that deciding Zenoness from simulation graphs using LU-abstractions is NP-
complete. We observe the reason for this blowup and propose a weakening
of the LU-abstractions that avoids this blowup.

Related work

The Büchi non-emptiness problem has been considered in the paper intro-
ducing timed automata [AD94]. The solution in this paper has been based
on regions. This showed the decidability of the problem. The zone approach
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to liveness was introduced by Tripakis et al. in [TYB05]. This paper is re-
stricted to M-abstractions. In the same paper, they introduce the strongly
non-Zenoness construction. A tool Profounder using M-abstractions and
strongly non-Zenoness construction has been implemented [TYB05]. More
recently, Li has shown that Büchi non-emptiness can be checked with every
abstraction based on a time-abstract simulation [Li09]. This makes LU-
abstractions correct for Büchi non-emptiness. For non-Zenoness, [Li09] still
makes use of the strongly non-Zeno construction. This approach has been
implemented in a tool CTAV [Li09].

Organization of the thesis

The thesis is divided into two parts: Part I on Reachability and Part II on
Liveness. Each part contains a self sufficient Preliminaries chapter recalling
the existing notions pertaining to the corresponding problem (Chapters 2
and 6). Chapters 3-5 talk about non-convex abstractions and on-the-fly
computation of bounds for the reachability analysis. Chapters 7-9 focus on
non-Zenoness and Zenoness problems. Experimental results are reported in
Chapters 5 and 8. Each of these chapters ends with a section on conclud-
ing remarks, where a comprehensive summary of the chapter is provided
with references to important definitions and results. The thesis ends with a
Conclusion including perspectives for future work in Chapter 10.
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Part I

Reachability
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Chapter 2

Preliminaries

This chapter formally introduces timed automata and describes the stan-
dard approaches to solve the reachability problem. The main challenge in
the analysis of timed automata is the uncountably infinite space of its con-
figurations. One needs an effective way to handle this infinite space.

The first solution to the reachability problem partitions this infinite space
of configurations into a finite number of regions [AD94], in such a way
that configurations within a region are indistinguishable with respect to
state reachability. Although this gives an effective procedure, the number
of regions is too big to handle in practice.

A more efficient solution involves working with sets of clock valuations
called zones. The automaton is explored for all its paths and at each step,
all valuations reachable at the particular step are collected [DT98]. These
collections can be represented by zones which in turn can be efficiently ma-
nipulated [Dil89, BY04]. The graph obtained thus is called the zone graph.
This naive exploration may not terminate as the zone graph could poten-
tially be infinite. One needs to consider the structure of the automaton
and come up with abstractions of zones that are sound and complete for
reachability.

Organization of the chapter

This chapter brings together the literature related to the reachability prob-
lem for timed automata. We begin with Section 2.1 in which we recall
timed automata and define the reachability problem formally. We discuss
the region approach in Section 2.2. Zones are handled in Section 2.3. The
following Section 2.4 shows how one could abstract zones to get a finite graph
capturing the behaviour of the potentially infinite zone graph. The same
section also discusses what parameters are useful for defining the abstraction
functions. We recall the standard abstractions existing in the literature in
Section 2.5. In Section 2.6 we describe an optimization used to get better
parameters for abstraction. Finally in Section 2.7 we present the state-

17
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of-the-art algorithm for reachability testing. We end the chapter with an
outline (Section 2.8) of our contributions to the reachability problem that
are discussed in the following chapters.

2.1 Timed automata

Let R≥0 denote the set of non-negative reals. A clock is a variable that ranges
over R≥0. Let X be a set of clocks. A clock constraint φ is a conjunction of
comparisons of a clock with a constant, given by the following grammar:

φ := x ∼ c | φ ∧ φ

where x ∈ X, ∼∈ {<,≤,=,≥, >} and c ∈ N. For example, (x ≤ 3 ∧ y > 0)
is a clock constraint. Let Φ(X) denote the set of clock constraints over the
set of clocks X.

A clock valuation over X is a function v : X → R≥0. The set of all clock
valuations is denoted by R

X
≥0. We denote by 0 the valuation that associates

0 to every clock in X. A valuation v is said to satisfy a constraint φ, written
as v � φ, when every constraint in φ holds after replacing every x by v(x).
For δ ∈ R≥0, let v + δ be the valuation that associates v(x) + δ to every
clock x. For R ⊆ X, let [R]v be the valuation that sets x to 0 if x ∈ R, and
that sets x to v(x) otherwise. For a valuation v and a clock x, we denote
the integral part of v(x) by ⌊v(x)⌋ and the fractional part of v(x) by {v(x)}.
We write ⋖ to mean either ≤ or <, and ⋗ to mean either ≥ or >.

Definition 2.1.1 (Timed automaton [AD94]) A Timed Automaton
(TA) is a tuple A = (Q, q0, X, T,Acc) where

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• X is a finite set of clocks,

• Acc ⊆ Q is a set of accepting states,

• T ⊆ Q×Φ(X)×2X ×Q is a finite set of transitions (q, g, R, q′) where
g is a clock constraint called the guard, and R is the set of clocks that
are reset on the transition.

Figure 2.1 shows an example of a simple timed automaton. There are
three states q0, q1 and q2 and two clocks x, y. Clock x ensures that the
automaton does not stay in state q1 for more than 2 time units before coming
back to q0. Clock y ensures that the automaton can go to the final state q2
only after 5 time units.
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q0 q1q2

{x}

x ≤ 2

y > 5

Figure 2.1: A timed automaton A1

Remark 2.1.2 The class of timed automata we consider is usually known
as diagonal-free since clock comparisons like x−y > 1 are disallowed. A note
about diagonal constraints is given in page 166 as part of the Conclusion.

Definition 2.1.3 (Semantics of a timed automaton) Let A be a
timed automaton. The semantics of A is given by a transition system SA
whose nodes are configurations (q, v) consisting of a state q of A and a
valuation v giving the values of clocks. The initial configuration is given by
(q0,0) with q0 being the initial state of A. The transition relation → is a
union of two kinds of transitions:

delay (q, v)→δ (q, v + δ) for some δ ∈ R≥0;

action (q, v) →t (q′, v′) for some transition t = (q, g, R, q′) ∈ T such that
v � g and v′ = [R]v.

A run of A is a finite sequence of transitions starting from the initial
configuration (q0,0). Without loss of generality, we can assume that the
first transition is a delay transition and that delay and action transitions

alternate. We write (q, v)
δ,t−→ (q′, v′) if there is a delay transition (q, v) →δ

(q, v + δ) followed by an action transition (q, v + δ) →t (q′, v′). So a run of
A can be written as:

(q0, v0)
δ0,t0−−−→ (q1, v1)

δ1,t1−−−→ (q2, v2) . . . (qn, vn)

where (q0, v0) represents the initial configuration (q0,0).

A run is accepting if it ends in a configuration (qn, vn) with qn ∈ Acc.

Definition 2.1.4 (Reachability problem) The reachability problem for
timed automata is to decide whether a given automaton has an accepting
run. This problem is known to be Pspace-complete [AD94, CY92].

Remark 2.1.5 In [HNSY94], a notion of timed automata with state in-
variants has been defined, in which every state is associated with a clock
constraint of the form x < c or x ≤ c. This gives an upper bound on the
amount of time that an automaton can spend at a state. Notice that if
we are interested in state reachability, considering timed automata without
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state invariants does not entail any loss of generality as the invariants can be
added to the guards. For state reachability, we can also consider automata
without transition labels.

Observe that the transition system SA has uncountably infinite config-
urations due to the delay transitions. Therefore, one cannot hope to work
with SA in order to solve the reachability problem.

2.2 Regions

Since the transition system determined by an automaton is infinite, the
standard solution is to find a finite approximation of this transition system
by grouping valuations together. One such grouping is given by the region
abstraction [AD94]. The space of valuations is partitioned into a finite num-
ber of regions. Two valuations within a region are indistinguishable with
respect to reachability. Having formed these finite number of regions, a cross
product with the states of the automaton is taken to give state-augmented
regions. These state-augmented regions act as nodes of what is called the re-
gion graph of the automaton whose transitions are defined in a natural way,
using the valuations present in the region. The analysis of the automaton
is then performed using this finite region graph.

Let X be a finite set of clocks. Let M : X 7→ N ∪ {−∞} be a bound
function that associates a constant Mx to every clock x.

Definition 2.2.1 (Region equivalence [AD94]) Two valuations v, v′ ∈
R
X
≥0 are region equivalent w.r.t. M , denoted v ∼M v′ iff for every x, y ∈ X:

1. v(x) > Mx iff v
′(x) > Mx;

2. if v(x) ≤Mx, then ⌊v(x)⌋ = ⌊v′(x)⌋;

3. if v(x) ≤Mx, then {v(x)} = 0 iff {v′(x)} = 0;

4. if v(x) ≤ Mx and v(y) ≤ My then {v(x)} ≤ {v(y)} iff {v′(x)} ≤
{v′(y)}.

Given an automaton A, a bound function is obtained by choosing for a
clock x, the maximum constant appearing in a guard involving x. Then, the
first three conditions in the above definition ensure that the two valuations
satisfy the same guards. The last one enforces that for every δ ∈ R≥0 there
is δ′ ∈ R≥0, such that valuations v + δ and v′ + δ′ satisfy the same guards.

Definition 2.2.2 (Region [AD94]) Let M : X 7→ N∪ {−∞} be a bound
function. A region is an equivalence class of ∼M . We write [v]M for the
region of v, and RM for the set of all regions with respect to M .
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x

y

0

My

Mx

12 corner points, e.g. (2,1)
30 open line segments, e.g. 1 < x = y < 2
18 open regions, e.g. 0 < x < y < 1

Figure 2.2: Division into regions with two clocks x and y [AD94].

Figure 2.2 shows the division into regions when there are two clocks x
and y. We also give below a constructive definition of regions which would
be useful in the later chapters.

Definition 2.2.3 (Region: constructive definition [AD94]) A region
with respect to bound function M is a set of valuations specified as follows:

1. for each clock x ∈ X, one constraint from the set:

{x = c | c = 0, . . . ,Mx}∪{c−1 < x < c | c = 1, . . . ,Mx}∪{x > Mx}

2. for each pair of clocks x, y having interval constraints: c − 1 < x < c
and d− 1 < y < d, it is specified if {x} is less than, equal to or greater
than {y}.

If r is a region then we will write r � g to mean that every valuation in
r satisfies the guard g. It is straightforward to see that if a valuation v ∈ r
satisfies the guard g, then every valuation v′ ∈ r satisfies g. We will now
show the other property with respect to time-elapse mentioned above.

Lemma 2.2.4 Let v, v′ be valuations such that v′ ∼M v. Then, for all
δ ∈ R≥0, there exists a δ′ ∈ R≥0 such that v′ + δ′ ∼M v + δ.

Proof
We know v′ ∼M v and we are given δ. We need to choose δ′. Put ⌊δ′⌋ to
be ⌊δ⌋. Clearly, we have v′ + ⌊δ′⌋ ∼M v + ⌊δ⌋: that is, valuations v′ + ⌊δ′⌋
and v+ ⌊δ⌋ have the same integral parts and the same ordering of fractional
parts (modulo M). Let x1⋖1 x2⋖2 . . .⋖k−1 xk be the ordering of fractional
parts of clocks less than M in both the valuations. Here ⋖ denotes either
< or =.

From v + ⌊δ⌋, elapsing a fractional amount {δ} might move some of the
clocks up to the next integer. Let xj , xj+1, . . . , xk be the clocks that have
their integral values increased from v+ ⌊δ⌋ due to the fractional elapse {δ}.
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Thanks to the denseness of the real line, one can choose {δ′} between the
fractional values of clocks xj−1 and xj in v′ + ⌊δ′⌋ so that v′ + δ′ has the
same integers as v + δ and the same ordering of fractional parts (modulo
M). �

Given a bound function M , the number of regions in RM is finite. Once
this finite partition of the valuations is obtained, we proceed to define a
finite graph built from these regions, that captures the behaviour of the
timed automaton.

For an automaton A, to define its region graph, we consider a bound
function MA that is obtained from the automaton’s definition.

Definition 2.2.5 (Maximal bounds) Given an automaton A, the maxi-
mal bounds function MA : X 7→ N ∪ {−∞} associates to each clock x the
biggest constant appearing in a guard of the automaton that involves x. If
there is no guard involving x, then MA(x) is assigned −∞.

We define the region graph of an automaton A using the ∼MA relation.

Definition 2.2.6 (Region graph [AD94]) Nodes of the region graph de-
noted by RG(A) are of the form (q, r) for q a state of A and r ∈ RMA a

region. There is a transition (q, r)
t−→ (q′, r′) if there are v ∈ r, δ ∈ R≥0

and v′ ∈ r′ with (q, v)
δ,t−→ (q′, v′). The initial node of the region graph is

(q0, [0]∼MA
) where [0]∼MA

represents the region to which the initial valua-
tion 0 belongs to. A node (q, r) is said to be an accepting node if q ∈ Acc.

Observe that a transition in the region graph is not decorated with a
delay. Figure 2.3 shows a part of the region graph RG(A1) of the automaton
A1 shown in Figure 2.1.

It will be important to understand the property of pre-stability of re-
gions [TYB05].

Lemma 2.2.7 (Pre-stability of regions) Let A be an automaton. Tran-

sitions in RG(A) are pre-stable: in each transition (q, r) t−→ (q′, r′), for every

v ∈ r there is a δ ∈ R≥0 and a valuation v′ ∈ r′ such that (q, v) δ,t−→ (q′, v′)

Proof
By definition of the region graph, a transition (q1, r1)

t−→ (q2, r2) exists in

RG(A) if there are v1 ∈ r1, δ ∈ R≥0 and v2 ∈ r2 with (q1, v1) δ,t−→ (q2, v2).

Let the transition t be (q1, g, R, q2). Pick a valuation v′1 ∈ r1. By
Lemma 2.2.4, there exists a δ′ such that v1+δ and v′1+δ

′ belong to the same
region. We know that valuations within the same region satisfy the same
guards. Therefore since v1 + δ � g, we get that v′1 + δ′ � g too. From the
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(q0, 0 = x = y)

(q1, 0 = x = y) (q1, 0 = x ∧ 0 < y < 1) (q1, 0 = x ∧ y > 5)

(q0, 0 < x < y < 1) (q0, 0 < x < 1 ∧ y = 1) (q0, x = 2 ∧ 2 < y < 3)

(q2, x > 2 ∧ y > 5)

· · ·

· · ·

Figure 2.3: Part of region graph of the automaton A1 shown in Figure 2.1

definition of region equivalence, we get that regions are stable under pro-
jection to a subset of clocks and in particular, this entails that [R](v′1 + δ′)
belongs to the same region as [R](v1 + δ). �

We will now establish the correspondence between paths of the region
graph and runs of the automaton. Consider two sequences

(q0, v0)
δ0,t0−−−→ (q1, v1)

δ1,t1−−−→ · · · (qn, vn) (2.1)

(q0, r0)
t0−→ (q1, r1)

t1−→ · · · (qn, rn) (2.2)

where the first is a run in A, and the second is a path in RG(A). We say
that the first is an instantiation of the second if vi ∈ ri for all i ∈ {1, . . . , n}.
Equivalently, we say that the second is an abstraction of the first. The
following lemma is a direct consequence of the pre-stability property.

Lemma 2.2.8 Every path in RG(A) is an abstraction of a run of A, and
conversely, every run of A is an instantiation of a path in RG(A).

The above lemma shows that the region graph is sound and complete for
state reachability.

Theorem 2.2.9 ([AD94]) Automaton A has an accepting run iff there is a
path in the region graph RG(A) starting from its initial node to an accepting
node.

While this theorem gives an algorithm for solving our problem, it turns
out that this method is very impractical. The number of regions obtained
using a bound function M is O

(
|X|! · 2|X| ·∏x∈X(2Mx + 2)

)
[AD94] and

constructing all of them, or even searching through them on-the-fly, has
proved to be very costly.
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2.3 Zones

Although the region abstraction gives an effective procedure to solve the
reachability problem, the size of the region graph obtained is too big to
handle in practice. A more efficient solution is to group together all the
valuations reaching a state of the automaton via a particular path. In con-
sequence, we work with configurations consisting of a state and a set of
valuations. We first define a transition relation ⇒ over nodes of the form
(q,W ) where W is a set of valuations.

Definition 2.3.1 (Symbolic transition ⇒) Let A be a timed automa-
ton. For every transition t of A and every set of valuations W , we have a
transition ⇒t defined as follows:

(q,W )⇒t (q,W ′) where W ′ = {v′ | ∃v ∈W, ∃δ ∈ R≥0. (q, v)→t→δ (q′, v′)}

The transition relation ⇒ is the union of all ⇒t.

The transition relation defined above considers each valuation v ∈ W
that can take the transition t, obtains the valuation after the transition and
then collects the time-successors from this obtained valuation. Therefore the
symbolic transition ⇒ always yields sets closed under time-successors. The
initial configuration of the automaton is (q0,0). Starting from the initial
valuation 0 the set of valuations reachable by a time elapse at the initial
state are given by {0 + δ | δ ∈ R≥0}. Call this W0. From (q0,W0) as the
initial node, computing the symbolic transition relation⇒ leads to different
nodes (q,W ) wherein the sets W are closed under time-successors.

Remark 2.3.2 Our choice of semantics in the symbolic transition⇒ of Def-
inition 2.3.1 differs from some literature [Bou09, TYB05] in the order of time
and action transitions. We explain our choice of semantics in Appendix A.

It has additionally been noticed that the sets W obtained in the nodes
(q,W ) can be described by some simple constraints involving only the dif-
ference between clocks [BY04]. This has motivated the definition of zones,
which are sets of valuations defined by difference constraints.

Definition 2.3.3 (Zones [BY04]) A zone is a set of valuations defined by
a conjunction of two kinds of clock constraints: for x, y ∈ X

x ∼ c

x− y ∼ c

where, ∼∈ {≤, <,=, >,≥} and c ∈ Z. For example, (x > 4 ∧ y − x ≤ 1) is
a zone.
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Figure 2.4: An example of a zone

Another example of a zone is illustrated in Figure 2.4. It can be shown
that starting from a node (q,W ) with W being a zone, the transition
(q,W ) ⇒ (q′,W ′) leads to a node in which W ′ is again a zone [BY04].
Observe that the initial set of valuations W0 = {0+ δ | δ ∈ R≥0} is indeed
a zone: it is given by the constraints

∧

x,y∈X
(x ≥ 0 ∧ x− y = 0)

We will now define a symbolic semantics of timed automata which is a
transition system with nodes consisting of zones. This is called the zone
graph of the automaton. In the sequel, zones are denoted by Z,Z ′, etc.

Definition 2.3.4 (Zone graph) Given a timed automaton A = (Q, q0,
X, T , Acc), the zone graph ZG(A) of A is a transition system whose nodes
are of the form (q, Z) with q ∈ Q and Z a zone. The initial node is (q0, Z0)
where Z0 = {0 + δ | δ ∈ R≥0} is the set of valuations obtained by elapsing
time from 0. The transitions are given by the relation⇒ of Definition 2.3.1.

A part of the zone graph for the automaton of Figure 2.1 is shown in
Figure 2.5. Compare the zone graph to the region graph shown in Figure 2.3.
There is a marked decrease in the size of the graph.

Representing zones

We will now see how to represent zones and compute the successors in the
zone graph efficiently. We start by describing how to represent zones effi-
ciently. The example of a zone over two clocks x, y in Figure 2.4 gets defined
by six constraints. Now let us look at a more abstract notation. A zone over
two clocks can be defined by six constraints as shown in Figure 2.6. Due to
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q0 : (0 ≤ x = y)q2 : (5 < x = y) q1 : (0 ≤ x ≤ y)

q0 : (0 ≤ x ≤ y)q2 : (0 ≤ x ≤ y, y > 5)

y > 5 {x}

y > 5

x ≤ 2{x}

Figure 2.5: ZG(A1) for the automaton in Figure 2.1
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⋖
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0− x⋖x0 cx0

0− y ⋖y0 cy0

x
−
y
⋖
y
x
cy

x

x− 0⋖0x c0x

y − 0⋖0y c0y

Figure 2.6: An arbitrary zone over two clocks x, y

this specific structure, an arbitrary zone can be given by a Difference-Bound
Matrix (DBM) [Dil89].

Definition 2.3.5 (Matrix representation) Let X be a set of clocks. A
special variable x0 representing the constant 0 is added to the set X. A zone
is represented by a matrix (Zxy)x,y∈X in which each entry Zxy = (⋖xy, cxy)
represents the constraint y − x ⋖ cxy where cxy ∈ Z and ⋖ ∈ {≤, <} or
(⋖xy, cxy) = (<,∞). For convenience we sometimes write 0 to represent the
variable x0.

The above definition with a slight variation is the DBM representation
of a zone. In the standard DBM notation, the entry Zxy = (⋖xy, cxy) stands
for the constraint x− y ⋖xy cxy. We however choose to do it the other way:
y − x ⋖xy cxy. This is because later on in Chapter 4, we consider a graph
representation of a zone wherein the edge from x to y with weight (⋖xy, cxy)
represents the constraint y−x⋖xy cxy. The bottom-line for readers familiar
with the standard DBM notation:

Zxy = (⋖xy, cxy) denotes y − x⋖xy cxy
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Figure 2.7: The y−x⋖xy cxy constraint for the zone gets defined by the constraints
x ≥ 2 and y ≤ 4. Adding the constraint y−x ≤ c for any c ≥ 2 still gives the same
zone

in this thesis.
Consider the zone showed in Figure 2.7. It is defined by the constraints:

( x ≥ 2 ∧ y ≤ 4 ∧ x− y ≤ 0 )

If one adds y−x ≤ 6 to the above system of constraints, the solution set does
not change. In fact, one could add any constraint y − x ≤ c for c ≥ 2 and
the solution set remains the same. This is because the diagonal constraint
gets defined by x ≥ 2 and y ≤ 4. This is depicted in Figure 2.7. Adding
the constraint given by the dashed diagonals to the set of constraints given
above does not change the solution set. However, one cannot go below the
diagonal y − x ≤ 2, as doing so would alter the solution set. It is a tight
constraint.

Every zone can be represented by a canonical DBM. A canonical DBM
is one in which reducing the weight (⋖xy, cxy) would change the solution
set. In other words, each constraint is tight in the canonical representation.
Given a DBM with n rows and columns, the canonical DBM representing
the same solution set can be calculated in time O(n3) using Floyd-Warshall’s
algorithm for shortest paths [BY04].

Successor computation in the zone graph

The successor computation (q, Z)⇒t (q′, Z ′) for a transition t = (q, g, R, q′)
proceeds in the following steps.
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Operation Complexity

Z ∧ g O(|X|2) Z ∧ g = {v | v ∈ Z and v � g}
[R](Z) O(|X|.|R|) [R](Z) = {[R]v | v ∈ Z}

elapse(Z) O(|X|) elapse(Z) = {v + δ | v ∈ Z and δ ∈ R≥0}
Z ⊆ Z ′ O(|X|2)

Table 2.1: Operations on zones (note that g is diagonal free)

(q, Z)
guard−−−→ (q, Z ∧ g) reset−−−→ (q, [R](Z ∧ g)) elapse−−−−→ (q, Z ′)

In the above, Z ∧ g represents the set of valuations that satisfy the
constraints of both Z and g; the set [R](Z∧g) represents the set of valuations
obtained by resetting clocks in R from every valuation in Z ∧ g and finally
Z ′ is the set of valuations obtained by elapsing an arbitrary amount of time
from [R](Z ∧ g). All these operations can be computed efficiently using
DBMs. At each step, the canonical DBM representing the zone obtained is
computed.

The costliest operation is the computation of the intersection of a zone
with a guard. In the general case when the guards are diagonals like x−y ≤
5, the intersection takes O(|X|3) time due to the canonicalization procedure.
However when the guards are diagonal free, it has been shown in [ZLZ05]
that the canonicalization is easier and hence the intersection operation can
be done in O(|X|2) time. Another crucial operation required in algorithms
using zones is to know when a zone Z is included in another zone Z ′. We
list the common operations on zones and the complexity required to perform
these operations in Table 2.1. We direct the reader to [BY04] for more details
on implementing these operations using DBMs. From the table it can be
inferred that computing the successor in the zone graph has a complexity
quadratic in the number of clocks.

For an automaton, it appears that its zone graph is a more succinct
representation of its behaviour as compared to its region graph. Therefore,
it might be desirable to work with the zone graph instead of the region
graph. But, it is not a pretty picture as yet.

The zone graph could be infinite

Consider the automaton Ainf shown in Figure 2.8, with two clocks {x, y}
and no accepting state. The initial node is given by (q0, x = y ∧ x ≥ 0).
The transition to q1 gives the node (q1, x = y ∧ x ≥ 0). The only transition
from q1 taken from this node gives the node (q1, x− y = 1 ∧ x ≥ 0), which
is a new node. This node has its own successors and the process continues.
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q0 q1

(y = 1)

x := 0

y := 0

y := 0

Figure 2.8: Automaton Ainf and the graph of zones obtained at q1

Finally at q1 we have the following zones in the zone graph ZG(Ainf ):

( x− y = k ∧ x ≥ 0 ) for all k ∈ N

This is pictorially shown in Figure 2.8.
A standard solution to this problem of non-termination is to use abstrac-

tions.

2.4 Bounds and abstractions

In the previous section, we defined a symbolic semantics for timed automata
called the zone graph. Although the zone graph could be much smaller
than the region graph in a number of cases, it could potentially be infinite.
Therefore, we usually try to find a finite approximation of it by further
grouping valuations together. An abstraction operator is a convenient way
to express a grouping of valuations.

Definition 2.4.1 (Abstraction operator [BBFL03]) Let W be a set of

valuations. An abstraction operator is a function a : P(R|X|≥0 ) → P(R|X|≥0 )
such that W ⊆ a(W ) and a(a(W )) = a(W ).

If a has a finite range then this abstraction is finite. Note that the ab-
straction a(Z) of a zone Z is in general an arbitrary set, and not necessarily
a zone. An abstraction operator a defines an abstract semantics. We call
this abstract semantics the simulation graph of the automaton.

Definition 2.4.2 (Simulation graph)1 Let A be an automaton. Given
an abstraction operator a, the simulation graph SGa(A) is the transition
system with nodes of the form (q,W ) where q is a state of the automaton
and W is a set of valuations. The initial node of SGa(A) is (q0, a(W0))

1 In the terminology of [TYB05], a simulation graph is more generic and includes any
symbolic semantics using sets of valuations. The zone graph that we define is called the
exact simulation graph in [TYB05].
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where W0 = {0+ δ | δ ∈ R≥0}. There is a transition (q,W )⇒a (q
′, a(W ′))

when W = a(W ) and (q,W ) ⇒ (q′,W ′) is a symbolic transition (c.f. Defi-
nition 2.3.1).

We want a simulation graph to reflect some properties of the original
system. Let →∗ denote the reflexive and transitive closure of the transition
relation → on the concrete semantics SA defined in Definition 2.1.3. Simi-
larly, let⇒∗

a denote the reflexive and transitive closure of⇒a defined on the
abstract semantics SGa(A). In order to preserve reachability properties we
can require the following two properties: (W0 denotes {0+ δ | δ ∈ R≥0})

Soundness: if (q0,W0)⇒∗
a (q,W ) then there is v ∈W such that (q0,0)→∗

(q, v).

Completeness: if (q0,0) →∗ (q, v) then there is W such that v ∈ W and
(q0,W0)⇒∗

a (q,W ).

It can be easily verified that if an abstraction satisfies W ⊆ a(W ) then
the abstracted system is complete. However soundness is more delicate
to obtain. Before proceeding to look for sound abstractions, we highlight
an important remark about the size of the simulation graph with respect
to different abstractions. The coarser the abstraction, the smaller is the
simulation graph.

Remark 2.4.3 If a and b are two abstractions such that for every set of
valuations W , we have a(W ) ⊆ b(W ), we prefer to use b since the graph
induced by it is a priori smaller than the one induced by a (sic. [BBLP06]).

Therefore, the aim is to come up with a finite abstraction as coarse as
possible, that still maintains the soundness property.

Abstractions from simulations

One way to obtain abstractions is to group together valuations that are not
distinguishable by an automaton, i.e. consider a bisimulation relation. If we
are after reachability properties it has been noted in [BBLP06] that one can
even consider (time abstract) simulation relation [TAKB96]. For the rest of
the section, assume a given automaton A.

Definition 2.4.4 (Time-abstract simulation) A (state based) time-
abstract simulation between two states of transition system SA is a relation
(q, v) �t.a. (q

′, v′) such that:

• q = q′,

• if (q, v) →δ (q, v + δ) →t (q1, v1), then there exists a δ′ ∈ R≥0 such
that (q, v′) →δ′ (q, v′ + δ′) →t (q1, v

′
1) satisfying (q1, v1) �t.a. (q1, v

′
1)

for the same transition t.
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For two valuations v, v′, we say that v �t.a. v
′ if for every state q of the

automaton, we have (q, v) �t.a. (q
′, v′). An abstraction a�t.a. based on a

simulation �t.a. can be defined as follows:

Definition 2.4.5 (Abstraction based on simulation) Given a set W ,
we define a�t.a.(W ) = {v | ∃v′ ∈W. v �t.a. v

′}.

By definition of the simulation relation, an abstraction based on simula-
tion is sound. For a given automaton it can be computed if two configura-
tions are in a simulation relation. It should be noted though that computing
the coarsest simulation relation is Exptime-hard [LS00]. Since the reach-
ability problem can be solved in Pspace, this suggests that it may not be
reasonable to try to solve it using the abstraction based on the coarsest
simulation. We can get simulation relations that are computationally easier
if we consider only a part of the structure of the automaton. The common
way is to look at constants appearing in the guards of the automaton and
consider them as parameters for abstraction.

Parameters for abstraction

There are two kinds of parameters used for defining abstractions: the first is
a bound functionM that associates to every clock x the maximum constant
that appears in a guard involving x as in Definition 2.2.5; more refined is to
take the maximum separately over constants from lower bound constraints,
that is in guards of the form x > c or x ≥ c, and those from upper bound
constraints, that is in guards x < c or x ≤ c, giving two bound functions L
and U respectively. If one moreover does this for every clock x separately,
one gets for each clock two integers Lx and Ux.

Definition 2.4.6 (LU-bounds) The L bound for an automaton A is the
function assigning to every clock x a maximal constant that appears in a
lower bound guard for x in A, that is, maximum over guards of the form
x > c or x ≥ c. Similarly U is the function assigning to every clock x a
maximal constant appearing in an upper bound guard for x in A, that is,
maximum over guards of the form x < c or x ≤ c.

The maximal bounds (M-bounds) of Definition 2.2.5 is then obtained by
assigning to every clock x the maximum over the constants assigned by L
and U , that is to say, for every clock x, we have Mx = max(Lx, Ux).

Convexity

We will now point out an important additional criterion expected from an
abstraction operator. The whole purpose of finding a suitable abstraction a

is to make use of it to build the simulation graph SGa(A) for an automaton.
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Naturally, it is important to be able to efficiently compute the simulation
graph. We have seen that zones can be represented and manipulated effi-
ciently. So in addition to the requirements of soundness and completeness,
an abstraction is required to be effective, that is the abstraction of a zone is
always a zone [Bou04].

Definition 2.4.7 (Convex abstractions) An abstraction operator a is
said to be convex if for all zones Z, the set a(Z) is also a zone. Since a
zone is a convex set, the abstraction ranges over convex sets and hence the
name.

In the next section, we will see some specific abstraction operators ex-
isting in the literature.

2.5 Abstractions in literature

The solution to the reachability problem proceeds by computing the ab-
stract semantics, also known as the simulation graph, using a suitable finite
abstraction operator. As discussed in the previous section, an abstraction
operator is required to be sound, complete and additionally efficiently rep-
resentable. We have seen that abstractions based on simulation are sound
by definition. To find a suitable simulation, one could use the LU-bounds
or M-bounds. We have also noted that completeness of an abstraction is
immediate as by definition of an abstraction operator a, we have W ⊆ a(W )
for all sets W . For efficiency, the abstraction is required to be convex.

With all these criteria in mind, there have been different abstraction
operators defined in the literature. One can broadly divide these operators
into two kinds, LU-abstractions which use LU-bounds as parameters and
M-abstractions which use M-bounds as parameters.

LU-abstractions

The paper introducing LU-bounds [BBLP06] also introduced three abstrac-
tion operators: ExtraLU , Extra

+
LU and a4LU . Abstraction a4LU is the coars-

est among the three, but it could lead to non-convex sets. To circumvent this
problem, abstractions ExtraLU and Extra+LU , the finer and convex versions
of a4LU , were introduced.

We begin by recalling the definition of an LU-preorder defined
in [BBLP06]. We use a different but equivalent formulation.

Definition 2.5.1 (LU-preorder [BBLP06]) Let L,U : X → N ∪ {−∞}
be two bound functions. For a pair of valuations we set v 4LU v

′ if for every
clock x:

• if v′(x) < v(x) then v′(x) > Lx, and
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Ux Lx
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Uy
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Z :

a4LU(Z) : ∪

Figure 2.9: Zone Z is given by the grey area. Abstraction a4LU(Z) is given by the
grey area along with the dotted area

• if v′(x) > v(x) then v(x) > Ux.

It has been shown in [BBLP06] that 4LU is a simulation relation. The
a4LU abstraction is based on this LU-preorder 4LU .

Definition 2.5.2 (a4LU-abstraction [BBLP06]) Given L and U bound
functions, for a set of valuations W we define:

a4LU(W ) = {v | ∃v′ ∈W. v 4LU v
′}.

Figure 2.9 gives an example of a zone Z and its abstraction a4LU(Z). It
can be seen that a4LU(Z) is not a convex set. We will now define its convex
counterparts ExtraLU and Extra+LU , also known as LU-extrapolations. For
every zone Z, we will have ExtraLU (Z) ⊆ Extra+LU (Z) ⊆ a4LU(Z). As
a4LU(Z) is sound, the LU-extrapolations are sound too.

We give a brief intuition to the definition of the LU-extrapolations. We
know that a zone can be given by a set of constraints (c.f. Definition 2.3.5).
To define an abstraction that gives back a zone, one could say that the
abstraction operator takes each constraint y−x⋖c of the zone and transforms
it to some y−x⋖′ c′. This would yield a zone again. The LU-extrapolations
are defined keeping this in mind. However, it is required that the LU-
extrapolation of a zone Z is always contained in a4LU(Z). Let us now see
how it is achieved. Consider a constraint y − x ≤ c defining a zone Z.
Therefore, there is a valuation v′ ∈ Z that satisfies v′(y)− v′(x) = c.

Suppose c > Ly. As v
′(y) = v′(x) + c and v′(x) ≥ 0 by definition, this

gives v′(y) > Ly. From the definition of the LU-preorder Definition 2.5.1, all
valuations v such that v(y) > v′(y) and v(x) = v′(x) will satisfy v 4LU v′.
Hence one can safely add these valuations v to an abstraction of Z. After
adding all these valuations, the obtained set no longer has an upper bound
on y−x. One could therefore let ExtraLU to change y−x ≤ c to y−x <∞.
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We stay within the limits of a4LU and additionally maintain convexity. This
is depicted in Figure 2.10. Here ExtraLU works the same way as a4LU .

0 x

y

Ly

y − x ≤ cy − x ≤ c

c

y − x ≤ c :

ExtraLU (y − x ≤ c) :

a4LU(y − x ≤ c) :

∪
∪

Figure 2.10: Zone has y−x ≤ c with c > Lx, then ExtraLU changes it to y−x < −∞

Now, consider the situation when −c > Ux. Figure 2.11 depicts the set
of valuations y − x ≤ c and the a4LU abstraction applied on it. The grey
portion shows the valuations satisfying y − x ≤ c and the dotted portion
along with the cross lines shows the valuations that are added by a4LU . Note
that we cannot choose one value c′ such that y − x ≤ c′ adds exactly the
valuations added by a4LU . So the ExtraLU operator chooses to add only a
subset of it by moving the constraint up to y − x < −Ux. This is shown by
the patch drawn with cross lines. Here we see that ExtraLU does not include
all valuations of a4LU , but the transformation maintains convexity.

0 x

y

Ux

y − x ≤ cy

y − x < −Ux

y − x ≤ c :

ExtraLU (y − x ≤ c) :

a4LU(y − x ≤ c) :

∪
∪ ∪

Figure 2.11: Zone has y − x ≤ c with −c > Ux, then ExtraLU changes it to
y − x < −Ux

Observe that both the definitions are a modification of a constraint y−x
to some other value. This way, the two cases discussed above maintain con-
vexity: given a zone, ExtraLU gives a zone again. Extra+LU is an optimization
of ExtraLU which notes that if y > Ly for all valuations in Z, then irrespec-
tive of the value of c, the constraint y − x < c can be removed. Similarly
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when x > Ux for all valuations in Z, then y − x < c can be changed to
y − x < Ux.

We will now formally define ExtraLU and Extra+LU for a zone Z.

Definition 2.5.3 (LU-extrapolations) For a zone Z given by (Zxy)x,y∈X
with Zxy = (⋖, cxy), let Z

LU denote ExtraLU (Z) and let ZLU+ denote
Extra+LU (Z). Then:

ZLU
xy =







(∞, <) if cxy > L(y)

(−U(x), <) if − cxy > U(x)

Zxy otherwise

ZLU+
xy =







(∞, <) if cxy > L(y)

(∞, <) if − cy0 > L(y)

(∞, <) if − cx0 > U(x), i 6= 0

(−U(x), <) if − cx0 > U(x), i = 0

Zxy otherwise

where L(x0) = U(x0) = 0 for the special clock x0.

M-abstractions

There are three M-abstractions defined: ClosureM , ExtraM and Extra+M .
The abstractions ExtraM and Extra+M are obtained respectively from
ExtraLU and Extra+LU by setting both L and U to be the maximum bounds
M . The ClosureM abstraction of a set W is defined to be the union of
regions w.r.t ∼M intersecting W . However, we will later see in Section 3.4
of Chapter 3 that ClosureM can be obtained from a4LU by substituting
L = U =M .

Definition 2.5.4 (M-extrapolations) For a zone Z given by (Zxy)x,y∈X
with Zxy = (⋖, cxy), let Z

M denote the zone ExtraM (Z) and Z
M+ denote

Extra+M (Z). Then:

ZM
xy =







(∞, <) if cxy > M(y)

(−M(x), <) if − cxy > M(x)

Zxy otherwise

ZM+
xy =







(∞, <) if cxy > M(y)

(∞, <) if − cy0 > M(y)

(∞, <) if − cx0 > M(x), i 6= 0

(−M(x), <) if − cx0 > M(x), i = 0

Zxy otherwise
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Z

Extra+M ExtraLU

ExtraM

Extra+LUa4LU

ClosureM

Figure 2.12: Hierarchy of abstractions in literature [BBLP06]. The ones starting
with Extra are convex. Extra+

LU is currently used in implementations.
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a4LU(Z) : ∪ ∪ ∪ ∪

Figure 2.13: Comparing abstractions defined in Figure 2.12

where M(x0) = 0 for the special clock x0.

Definition 2.5.5 (Closure abstraction) For a zone Z, the abstraction
ClosureM (Z) is the union of all regions intersecting Z:

ClosureM (Z) =
⋃

{ [v]M | v ∈ Z}

Figure 2.12 depicts the hierarchy of abstraction operators with respect to
inclusion. The diamond on the right hand side shows the four extrapolations.
As Extra+LU is the coarsest among convex abstractions, it is currently used
in state-of-the-art implementations like UPPAAL [BBLP06].

A comparison of the different abstractions is shown in Figure 2.13. We
depict only Extra+LU , ClosureM and a4LU for clarity. Recall that bound
function M is the maximum over L and U . The figure illustrates that
Extra+LU and ClosureM are incomparable. Also note that a4LU subsumes
the other two.
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2.6 Optimizing bounds by static analysis

In the previous section, we have seen that abstractions using LU-bounds
are coarser and are used in implementations. Recall Remark 2.4.3 which
states the importance of having coarser abstractions. Although Extra+LU is
the coarsest abstraction used in implementations, one could get better by
providing better LU-bounds to Extra+LU . The smaller the bounds, the bigger
is the zone returned by Extra+LU . A naive way to choose L bounds is to take
for each clock the maximum constant appearing in a guard anywhere in the
automaton that lower-bounds the clock. Similarly we choose U from among
the upper bounded guards that occur anywhere in the automaton. In this
section, we will see an improved approach to choose bounds.

Consider the automaton Astat shown in Figure 2.14. The naive approach
to choosing bounds will give Lx = Ux = 106, Ly = Uy = 106.

q0 q1 q2

x = 1
{x}

{x, y}

x = 106

y = 106

Figure 2.14: Timed automaton Astat.

As there are no accepting states, the reachability algorithm, even the one
using the Extra+LU abstraction needs to explore around 106 nodes. Thanks
to the loop around q0, one gets zones given by y−x = k for k ∈ {1, . . . , 106}.
Clearly, no two of these zones are included with respect to Extra+LU due to
the large constants and the reachability algorithm needs to explore all of
them.

Consider two configurations of Astat, given by s1 := (q0, x = 107, y = 5)
and s2 := (q0, x = 10, y = 5). These two configurations are distinguished
since the values of x are on different sides of the constant 106. However, note
that the constant 106 appears only in the transition q1 −→ q2. The only path
to q1 is the edge q0 −→ q1 in which both the clocks are reset. So both the
configurations on taking the edge reach the configuration (q1, x = 0, y = 0).
There is no necessity to distinguish between s1 and s2. This has motivated
the need for a better approach to assign bound functions.

It has been observed in [BBFL03] that instead of considering global
bound functions LU for all states in an automaton, one can use different
bound functions for each state of the automaton. We write LU to denote
the two bound functions L and U . For every state q of an automaton, there
are bound functions LU(q) and in the simulation graph using Extra+LU , we
have nodes of the form (q,Extra+LU(q)(Z))

At each state q, the bound function L(q) is calculated as follows. We
consider paths of the automaton starting from q. If there is a path from
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q that contains a guard x ⋗ c and the clock x is not reset in any edge till
this guard, then the constant c is relevant. If we denote by Lx(q) the con-
stant assigned by L(q) to x, then Lx(q) is the maximum over such relevant
constants.

q −→ q1 −→ . . . −→ qn
no resets of x

x⋗c−−→ q′

The constant Ux(q) is assigned similarly, but now looking at constraints of
the form x⋖ c.

Formally, for every state q and every clock x, there are constants Lx(q)
and Ux(q) that are determined by the least solution of the following set of
inequalities: for each transition (q, g, R, q′) in the automaton, we have:

{

Lx(q) ≥ c if x⋗ c is a constraint in g

Lx(q) ≥ Lx(q
′) if x 6∈ R

(2.3)

Similar inequalities are written for U , now considering x ⋖ c. It has been
shown in [BBFL03] that such an assignment of constants is sound and com-
plete for state reachability.

Consider again the automaton Astat of Figure 2.14. By applying the
above constraints, one would get Lx(q0) = Ux(q0) = 1, and Ly(q0) =
Uy(q0) = −∞. It is only in q2 that we have Lx(q2) = Ux(q2) = 106 and
Ly(q2) = Uy(q2) = 106. With these set of constraints the simulation graph
using Extra+LU consists only of 4 nodes.

One can see that this method, that performs a static analysis on the
structure of the automaton, can indeed give very big gains.

2.7 Standard algorithm

The reachability problem for a timed automaton A can be reduced to the
problem of finding a path to a final state in a simulation graph. As Extra+LU
is the coarsest convex abstraction known, it is the abstraction used in current
implementations. Let us denote by SGLU (A) the simulation graph that uses
the convex Extra+LU abstraction. Each state of the automaton is associated
with LU-bounds obtained by static analysis of the previous section, and the
abstraction of a node (q, Z) depends on the LU-bounds of state q.

The standard algorithm to solve the reachability problem does a for-
ward exploration of the simulation graph SGLU (A) in some search order
(breadth-first search, depth-first search and the like). Starting from the
initial node (q0,Extra

+
LU (Z0)) it computes the successor nodes on-the-fly

during the search. When a new node (q′,Extra+LU (Z
′)) is obtained, it is

checked if q′ is final. If yes, the algorithm reports “Yes”. Otherwise, it is
verified if there exists an already visited node (q′,Extra+LU (Z

′′)) such that
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Algorithm 2.1: Reachability algorithm using Extra+

LU abstraction and computing
bounds by static analysis [Bou04, BBFL03]

1 Let LUi denote LU−bounds at state qi
2

3 function main()
4

5 Waiting := ∅;
6 Visited := ∅;
7

8 Add (q0,Extra
+
LU0

(Z0)) to Waiting

9

10 while (Waiting 6= ∅)
11 Remove (q, Z) from Waiting;
12 if (q is accepting)
13 exit Yes

14 else if (∃ (q, Z′) ∈ Visited s.t. Z ⊆ Z′)
15 continue
16 else

17 for each (qs,Extra
+
LUs

(Zs)) s.t. (q, Z)⇒
Extra

+

LU

(qs,Extra
+
LUs

(Zs)) do

18 if (Extra+
LUs

(Zs) 6= ∅)
19 Add (qs,Extra

+
LUs

(Zs)) to Waiting
20

21 return No

Extra+LU (Z
′) ⊆ Extra+LU (Z

′′). If there does exist one such node, the new
node is not considered for further exploration. As Extra+LU is convex, this
inclusion is just an inclusion check between two zones and can be done ef-
ficiently in time O(|X|2) (c.f.Table 2.1). Algorithm 2.1 gives the forward
exploration procedure.

2.8 Outline

We identify two shortcomings of the standard algorithm used for the reach-
ability problem: use of only convex abstractions, and obtaining bounds by
doing a static analysis.

Non-convex abstractions

Due to concerns of efficiency, the standard algorithm uses only convex ab-
stractions. However, there are two coarser non-convex abstractions a4LU

and ClosureM already defined in literature that have been of only theoreti-
cal interest. Our first contribution is to show that one can indeed use these
coarse non-convex abstractions as efficiently as the currently used convex
counterparts. To make this possible, one needs an efficient inclusion test
Z ⊆ a4LU(Z

′) and Z ⊆ ClosureM (Z
′). We give a quadratic algorithm

for these inclusion tests in Chapter 4. Incidentally, this matches with the
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complexity of checking for Z ⊆ Z ′. The resulting inclusion test is a slight
modification and can be efficiently implemented.

As a surprising bonus, we also obtain that a4LU is the coarsest ab-
straction that is sound and complete for reachability among all abstractions
that use only the LU-information. A similar optimality can be proved for
ClosureM : it is the coarsest abstraction when the only available knowledge
is M-information. Chapter 3 is devoted to prove this optimality.

Tightening the bounds

The static analysis approach mentioned in Section 2.6 is an optimized way
of getting better LU-bounds for abstraction. Bounds are assigned to each
state of the automaton. For a state q, the bounds are obtained by looking at
the paths of the automaton starting from q. However, a static analysis does
not know if some path of the automaton is indeed possible. In particular,
static analysis considers constants from unreachable parts of the automaton.

We will see in Chapter 5 how one could use the semantic information to
assign better bounds. Essentially, our aim is to assign LU-bounds for each
node in the zone graph. We propose to obtain the bounds on-the-fly during
the process of forward exploration. To achieve this, we give an algorithm
for propagating constants during the course of exploration.

We have implemented our algorithm in a prototype tool and have checked
the results on standard benchmarks in the literature. We report on some
promising results in Chapter 5.



Chapter 3

Non-convex abstractions

The state space of timed automata is infinite. We have seen in the previous
chapter that the standard solution to this problem is to use abstractions.
The abstract semantics of a timed automaton, also called its simulation
graph (Definition 2.4.2), is a finite graph that is sound and complete for
reachability. A simulation graph is constructed using an abstraction op-
erator. The coarser the abstraction, the smaller is the simulation graph
obtained. However, due to implementation concerns, the state-of-the-art
algorithms use only convex abstractions.

We do not know how to represent non-convex abstractions efficiently. We
start this chapter by giving a framework in which we can use non-convex
abstractions without having to represent them explicitly. We will see that
to be able to a use a non-convex abstraction a, one would need an efficient
inclusion test of the form Z ⊆ a(Z ′).

We have seen in Section 2.5 that abstractions using LU-bounds are in
general coarser than those using M-bounds. We have also seen that a4LU

abstraction is the coarsest known abstraction (Figure 2.12) which however
has not been implemented in tools because of its non-convexity. Before
considering how to plug in a4LU to our framework, we ask ourselves the
question: which is the coarsest abstraction using only LU-bounds that is
sound and complete for reachability? We propose an abstraction operation
absLU and prove that it is the biggest such (Theorem 3.2.10).

Quite surprisingly, it turns out that the a4LU abstraction coincides with
absLU for time-elapsed zones. As the reachability algorithm uses only time-
elapsed zones, this is indeed the optimal abstraction for reachability analysis
using only LU-bounds. To be able to implement it in reachability algorithms,
the only missing piece is an efficient inclusion test Z ⊆ a4LU(Z

′). This
inclusion test will be the subject of the next chapter.

Organization of the chapter

There are three main goals in this chapter.

41
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Goal 1: How can non-convex abstractions be used in implementations
efficiently? We answer this question in Section 3.1. We propose an
algorithm that can work with zone representations and use non-convex
abstractions indirectly.

Goal 2: Now that we know how to use non-convex abstractions efficiently
in implementations, we ask the question: which is the biggest LU-
abstraction? In Section 3.2, we propose an abstraction absLU and
prove that it is the biggest sound and complete abstraction that uses
only LU-information.

Goal 3: How far is the a4LU abstraction from this biggest absLU ab-
straction? We address this question in Section 3.3. We show that over
time-elapsed zones, absLU and a4LU actually coincide (Theorem 3.3.3).
Since we work entirely with time-elapsed zones during the reachability
analysis, we can infer that a4LU is indeed the biggest LU-abstraction
sound and complete for reachability.

Goals 2 and 3 deal with abstractions using LU-bounds. As a side effect,
we get that the non-convex ClosureM abstraction using M-bounds is the
biggest M-abstraction. We show this in Section 3.4.

We provide some concluding remarks and a comprehensive summary of
the chapter in Section 3.5.

3.1 Implementing non-convex abstractions

We propose a way to use non-convex abstractions and zone representa-
tions at the same time. Recall the definition of a simulation graph (Def-
inition 2.4.2). The nodes of a simulation graph SGa(A) are made of pairs
(q,W ) where q is a state of the automaton and W is a set of valuations. We
will only consider sets W of the form a(Z) where Z is a time-elapsed zone.

Definition 3.1.1 (Timed-elapsed zone) A zone Z is said to be time-
elapsed if it is closed under time-successors: that is Z = {v + δ | v ∈ Z, δ ∈
R≥0}.

We represent a set of the form a(Z) by just Z. This way we can represent
states of an abstract transition system efficiently: we need just to store a
zone. In order for this to work we need to be able to compute the transition
relation on this representation. We also need to know when two representa-
tions stand for the same node in the abstract system. This is summarized
in the following two requirements:

Transition compatibility: for every transition (q, a(Z)) ⇒a (q
′,W ′) and

the matching transition (q, Z)⇒ (q′, Z ′) we have W ′ = a(Z ′).
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Efficient inclusion test: for every two zones Z,Z ′, the test Z ⊆ a(Z ′) is
efficient.

The first condition also ensures that all the sets reachable by ⇒a are of
the form a(Z) where Z is a time-elapsed zone. This is because we start with
a(Z0) in the initial node that is time-elapsed and the symbolic transition
(q, Z)⇒ (q′, Z ′) always yields time-elapsed zones. This transition compati-
bility condition is also quite easy to satisfy. We show that every abstraction
defined based on a time-abstract simulation (c.f. Definitions 2.4.4 and 2.4.5)
is transition compatible. Assume that we are given an automaton A.

Lemma 3.1.2 Let a�t.a. be an abstraction based on a time-abstract sim-
ulation relation and let Z be a time-elapsed zone. For every transition
(q, a�t.a.(Z)) ⇒a�t.a.

(q′,W ′) and the matching transition (q, Z) ⇒ (q′, Z ′),
we have W ′ = a�t.a.(Z

′).

Proof
Let t be the transition corresponding to ⇒a�t.a.

and ⇒. We first prove that
W ′ ⊆ a�t.a.(Z

′). Let v′ ∈W ′. We will show that there exists a valuation in
Z ′ that simulates v′ with respect to �t.a..

According to the definition of the abstract symbolic transition
(q, a�t.a.(Z))⇒a�t.a.

(q′,W ′), there is a valuation v1 ∈ a�t.a.(Z) and a time
elapse δ1 ∈ R≥0 such that:

(q, v1)→t→δ1 (q′, v′1)

and v′ �t.a. v
′
1

Firstly consider the intermediate configuration obtained after the →t tran-
sition from (q, v1). Call it (q

′, v′1). We know that v′1 ∈ W ′. This valuation
v′1 can elapse a time δ1 and become v

′
1. Given that �t.a. is a time-abstract

simulation, this intermediate valuation v′1 can simulate v
′ too:

(q, v1)→t (q′, v′1)

and v′ �t.a. v
′
1 (3.1)

Recall that v1 ∈ a�t.a.(Z). Therefore, there exists a valuation v2 ∈ Z such
that v1 �t.a. v2. As (q, v1) can take the transition →t, by definition of time-
abstract simulation, there exists a time elapse δ2 such that (q, v2) can take
the transition after the time elapse δ2:

(q, v2)→δ2→t (q′, v′2)

and v′1 �t.a. v
′
2 (3.2)

From (3.1) and (3.2), we see that v′ �t.a. v
′
2. Note that as Z is a time-elapsed

zone and since v2 ∈ Z, we also have v2 + δ2 ∈ Z and this in turn implies
that v′2 ∈ Z ′. This shows that v′ ∈ a�t.a.(Z

′) and hence W ⊆ a�t.a.(Z
′).
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Algorithm 3.1: Reachability algorithm to incorporate non-convex abstractions
a�t.a.

based on time-abstract simulation

1 function main()
2

3 Waiting := ∅;
4 Visited := ∅;
5

6 Add (q0, Z0) to Waiting
7

8 while (Waiting 6= ∅)
9 Remove (q, Z) from Waiting;

10 if (q is accepting)
11 exit Yes

12 else if ( ∃ (q, Z′) ∈ Visited s.t. Z ⊆ a�t.a.
(Z′) )

13 continue
14 else

15 for each (qs, Zs) s.t. (q, Z)⇒ (qs, Zs) do
16 if (Zs 6= ∅)
17 Add (qs, Zs) to Waiting
18

19 return No

We will now show the converse: a�t.a.(Z
′) ⊆ W ′. Let v ∈ a�t.a.(Z

′).
Then, there exists v1 ∈ Z and a δ1 ∈ R≥0 such that (q, v1) →t→δ1 (q′, v′1)
and v �t.a. v

′
1. By the property of an abstraction operator, we will have

v1 ∈ a�t.a.(Z) too. Now, directly by the definition of (q, a�t.a.(Z)) ⇒a�t.a.

(q′,W ′), we get that v ∈W ′ and hence a�t.a.(Z
′) ⊆W ′.

�

In particular, the schema discussed above would incorporate the a4LU

abstraction which has been defined with respect to the simulation relation
4LU (c.f. Section 2.4). This gives us the following algorithm modified to
incorporate non-convex abstractions. We list our new procedure in Algo-
rithm 3.1 and explain in more detail below.

Algorithm

The standard algorithm described in Section 2.7 computes the simulation
graph SGa(A) when the abstraction operator a is convex. The same algo-
rithm cannot be used for non-convex abstractions as it requires to repre-
sent non-convex sets explicitly. We can now describe the algorithm for the
reachability problem that can incorporate non-convex abstractions. Refer
to Algorithm 3.1.

Let a�t.a. be an abstraction operator based on a time-abstract simula-
tion relation �t.a.. A forward exploration algorithm for solving the reach-
ability problem that uses a�t.a. constructs the reachability tree of the zone
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graph ZG(A) instead of the simulation graph. Starting from the initial node
(q0, Z0), the algorithm computes the successor nodes of the zone graph on-
the-fly using some search order (for instance breadth-first search, depth-first
search). When a new node (q′, Z ′) is obtained, the algorithm first checks if
there exists a visited node (q′, Z ′′) with the same discrete state q′ such that
Z ′ ⊆ a�t.a.(Z

′′). If there does exist one such node, the newly visited node
(q′, Z ′) is not considered for further exploration. This is because the set
of states reachable from Z ′ could be visited from Z ′′ itself, since for every
valuation v′ ∈ Z ′ there exists a v′′ ∈ Z ′′ such that v′ �t.a. v

′′. This inclusion
ensures termination if a�t.a. is finite.

3.2 Biggest LU-abstraction: absLU

In the previous section, we have seen how non-convex abstractions can be
used for reachability analysis. We have also seen in Section 2.5 that in
general, LU-abstractions are coarser than M-abstractions. A natural ques-
tion is to know what is the coarsest LU-abstraction sound and complete
for reachability testing. An LU-abstraction is parameterized by LU-bounds
(Definition 2.4.6). So we ask: what is the biggest possible abstraction that
uses only the LU-bound information?

Given L and U bounds, we know that the automata under consideration
have guards only of the following form:

x⋗ 0, x⋗ 1 , . . . , x⋗ Lx

x⋖ 0, x⋖ 1 , . . . , x⋖ Ux

However, we do not know the shape of the automata, in particular, the order
in which the above guards appear in the paths of the automata.

A sound abstraction adds valuations v to a set W in such a way that
for each possible path using the above guards that v can execute, there is
a representative v′ in W that can execute the same path. If this rule is
not followed, there is one possible automaton with guards respecting the
given LU-bounds for which this abstraction is not sound. We formalize
this notion of LU-information: that is, guards using given LU-bounds and
automata using only these guards.

Definition 3.2.1 (LU-guards, LU-automata) Given L, U bound func-
tions, an LU-guard is a guard where lower bound guards use only constants
bounded by L and upper bound guards use only constants bounded by U .
An LU-automaton is an automaton using only LU-guards.

Our question can now be reworded.

Given L and U bounds, what is the biggest abstraction that is
sound and complete for all LU-automata?
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We answer this question in four steps, as illustrated by the schema shown
in Figure 3.1.

Step 1. We define a generic simulation relation ⊑LU (Definition 3.2.2)
which is a union over all time-abstract simulation relations on LU-
automata. Roughly the simulation relation says that v ⊑LU v′ if all
paths, using LU-guards, executed by v can be executed by v′. We
define an abstraction absLU that is based on LU-simulation (Defini-
tion 3.2.3). The definition of LU-simulation is difficult to work with
as it talks about infinite sequences of transitions.

Step 2. The next aim is to characterize this LU-simulation using a fi-
nite sequence of transitions (Definition 3.2.7). We want to come up
with a sequence of LU-guards seq(v) executed by a valuation v for
which we can say v ⊑LU v′ iff v′ executes this characteristic sequence
seq(v). To achieve this, we go through an intermediate definition of
what we call LU-regions (Definition 3.2.4). We define this sequence in
Definition 3.2.7.

Step 3. Steps 1 and 2 have defined the necessary notions. We now observe
that the following are equivalent (Proposition 3.2.8, Corollary 3.2.9):

• v ⊑LU v′,

• v′ can elapse some time and reach the LU-region of v
• v′ can execute seq(v).

Step 4. The previous step gives a finite characterization of the generic LU-
simulation ⊑LU . We use this to prove that every sound abstraction
should be contained in absLU , in other words absLU is the biggest
abstraction sound and complete for all LU-automata (Theorem 3.2.10).

Section 3.2.1 handles Step 1; Section 3.2.2 defines the LU-regions as men-
tioned in Step 2; Sections 3.2.3 and 3.2.4 handle Steps 3 and 4 respectively.

3.2.1 LU-simulation

Using LU-bounds we define a simulation relation on valuations without re-
ferring to any particular automaton; or to put it differently, by considering
all LU-automata at the same time.

Definition 3.2.2 (LU-simulation) Let L, U be two functions giving an
integer bound for every clock. The LU-simulation relation between val-
uations is the biggest relation ⊑LU such that if v ⊑LU v′ then for every
LU-guard g, and set of clocks R ⊆ X we have

• if v
g,R−→ v1 for some v1 then v

′ g,R−→ v′1 for v
′
1 such that v1 ⊑LU v′1.
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Question

Which is the biggest abstraction

using LU-bounds?

Step 2

(Definition 3.2.7)

define a finite sequence of LU-guards

seq(v)

identifying the valuation v

Step 1

(Definitions 3.2.2 and 3.2.3)

define a generic LU-simulation

⊑LU

and an abstraction absLU based on it

Step 3

(Proposition 3.2.8, Corollary 3.2.9)

v ⊑LU v′

iff

v′ executes seq(v)

Step 4

(Theorem 3.2.10)

A sound abstraction should

preserve LU-simulation and hence

be contained in absLU :

absLU is optimal

Figure 3.1: Steps to the biggest abstraction
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where v
g,R−→ v1 means that for some δ ∈ R≥0 we have v + δ � g and

v1 = [R](v + δ).

Note that in the above definition, the time elapse δ′ required for v′ to
satisfy the guard g could be different from the time elapse δ required for
v to satisfy the guard g. One can check that ⊑LU is the biggest relation
that is a time-abstract simulation for all automata with given LU bounds.
We define abstraction operator absLU to be the abstraction based on this
LU-simulation.

Definition 3.2.3 (Abstraction based on LU-simulation) For a zone
Z we define: absLU (Z) = {v | ∃v′ ∈ Z. v ⊑LU v′}.

The definition of LU-simulation is sometimes difficult to work with since
it talks about infinite sequences of actions. We will present a useful char-
acterization implying that actually we need to consider only very particular
sequences of transitions that are of length bounded by the number of clocks
(Corollary 3.2.9). Essentially, we are interested in the following question:
given a valuation v, when does a valuation v′ LU -simulate it, that is, when is
v ⊑LU v′. We start with a preparatory definition of what we call LU -regions.

3.2.2 LU-regions

We introduce the notion of LU-regions. The classical notion of re-
gions [AD94] (recalled in Section 2.2) depends on the maximum bounds
function M . Given only the maximum bounds M , we know that there
could be guards x ⋖ c and x ⋗ c for c ∈ {0, . . . ,Mx} in the automaton.
However, with the LU-bounds, there is more information and consequently
fewer guards: x⋖ c for c ∈ {0, . . . , Ux}, and x⋗ c for c ∈ {0, . . . , Lx}. Note
that for each x, we have Mx = max(Lx, Ux).

In the classic case, a valuation v′ belongs to the region [v]M if two prop-
erties are satisfied:

Invariance by guards: v′ satisfies the same guards as v,

Invariance by time-elapse: for every time elapse δ ∈ R≥0, there is a
δ′ ∈ R≥0 such that v′ + δ′ ∈ [v + δ]M .

We would like to define a notion of LU-regions in the same spirit, now with
the additional information on the guards. For this discussion let us fix some
L and U functions.

Definition 3.2.4 For a valuation v we define its LU-region, denoted 〈v〉LU ,
to be the set of valuations v′ such that:

• v′ satisfies the same LU -guards as v.
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x > ⌊v(x)⌋ x < ⌊v(x)⌋+ 1

y < ⌊v(y)⌋+ 1

y > ⌊v(y)⌋

Figure 3.2: Less than both the bounds

• For every pair of clocks x, y with ⌊v(x)⌋ = ⌊v′(x)⌋, ⌊v(y)⌋ = ⌊v′(y)⌋,
v(x) ≤ Ux and v(y) ≤ Ly we have:

– if 0 < {v(x)} < {v(y)} then {v′(x)} < {v′(y)}.
– if 0 < {v(x)} = {v(y)} then {v′(x)} ≤ {v′(y)}.

We take a closer look at the definition and see how it satisfies the two
invariance properties. The first invariance with respect to guards has been
directly incorporated in the first condition of the definition. We provide
some insights by looking at the case with two clocks.

• Consider a valuation v and the unit square around it as shown in
Figure 3.2. If v(x) ≤ min(Lx, Ux) and v(y) ≤ min(Ly, Uy) then all the
four constraints shown in Figure 3.2 are valid LU-guards. Therefore, in
this case, the valuations satisfying the first condition of Definition 3.2.4
belong to the unit square shown.

• Consider Figure 3.3. If v(x) > Lx, then the constraint x > ⌊v(x)⌋
is no longer a valid LU-guard, unless ⌊v(x)⌋ = Lx. In fact, the best
lower bound that one could have is x > Lx. So all the valuations in
the shaded portion of Figure 3.3 satisfy the first condition of Defini-
tion 3.2.4.

• Dually, when v(x) > Ux, as shown in Figure 3.4, the upper bound
constraint x < ⌊v(x)⌋+ 1 is no longer valid. There is no upper bound
guard that could constrain valuations with x-coordinate greater than
v(x). The set of valuations satisfying the same LU-guards as v extend
till infinity on the “right”, as shown in the figure.
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x < ⌊v(x)⌋+ 1
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Figure 3.3: v(x) > Lx
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Ux x > ⌊v(x)⌋

y < ⌊v(y)⌋+ 1

y > ⌊v(y)⌋

Figure 3.4: v(x) > Ux

As all our guards are diagonal-free, the valuations determined by the first
condition of Definition 3.2.4 are bounded by either horizontal or vertical lines
as shown in the above illustrations. In particular, there are no diagonals.
With this condition, we are able to satisfy the property concerning the
invariance by guards given in Page 48.

Let us now consider the second property which talks about invariance
by time-elapse. It is for this property that we need the second condition
in the definition of LU-regions. In the case of the classic regions, to satisfy
this property, we required that the order between non-zero fractional parts
in v and v′ match for all clocks less than the M-bounds (c.f condition 4 of
Definition 2.2.1). In the current case of LU, it is a bit more complicated.
We motivate by an illustration.

Consider again a valuation v and the unit square around it as in Fig-
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Figure 3.5: Distinguishing diagonals. The constraints x < ⌊v(x)⌋ + 1 and x >
⌊v(y)⌋+1 determine an area which includes the dotted triangle, where v can reach
after a time elapse but v cannot.

ure 3.5. Additionally we show a valuation v which is in the same unit
square, and hence satisfies the same LU-guards as v, but differs in the
ordering of the fractional parts: we have 0 < {v(x)} < {v(y)}, whereas
0 < {v(y)} < {v(x)}. Look at the dotted triangle. Valuation v can let
some time elapse and reach this dotted triangle. However, no matter what
the time-elapse is, valuation v can never reach this triangle. If one could
describe the area containing this dotted triangle by valid LU-guards, then
we need to distinguish between valuations v and v in order to maintain the
property of invariance by time-elapse (page 48).

Observe that if we can write x < ⌊v(x)⌋ + 1 and y > ⌊v(y)⌋ + 1, it
describes an area containing the dotted triangle, and additionally v can
reach nowhere in this area, for any amount of time-elapse. Therefore if
v(x) ≤ Ux and v(y) ≤ Ly, we require the ordering of fractional parts to
match for valuations in the unit square containing v. This explains the
second condition in the Definition 3.2.4 of LU-regions, which additionally
makes a subtle difference between the strictly less than relation and the
equality relation.

We show what happens if v(x) > Ux or if v(y) > Ly respectively in
Figures 3.6 and 3.7. In both cases the LU-region overshoots the diagonal and
adds the valuation v. The only case when the diagonal is indeed maintained
is when v(x) ≤ Ux and v(y) ≤ Ly. Figure 3.8 gives some examples of
LU-regions.

Remark 3.2.5 If Lx = Ux =Mx, for some bound functionM and all clocks
x, then we get just the usual definition of regions with respect to the set of
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x < ⌊v(x)⌋+ 1

y > ⌊v(y)⌋+ 1

Figure 3.6: Area shown by the dotted triangle cannot be described by LU-guards:
when v(x) > Ux the constraint x < ⌊v(x)⌋ + 1 is not valid anymore. Diagonal
overshot and v is added to 〈v〉LU shown by the shaded portion

0
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xUx
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v
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x < ⌊v(x)⌋+ 1

y > ⌊v(y)⌋+ 1

Figure 3.7: Area shown by the dotted triangle cannot be described by LU-guards:
when v(y) > Ly the constraint y > ⌊v(y)⌋ + 1 is not valid anymore. Diagonal
overshot and v is added to 〈v〉LU shown by the shaded portion

bounds defined by M (cf. Section 2.2).

We said that the second condition in the definition of LU-regions has
been added in order to obtain the invariance by time-elapse property men-
tioned in page 48. We saw an example over two clocks for which it was good
enough. But, is it sufficient? The following lemma will now show that with
the two conditions specified in the definition, one can achieve the invariance
with respect to time-elapse.
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Figure 3.8: Examples of LU-regions

Lemma 3.2.6 Let v, v′ be valuations such that v′ ∈ 〈v〉LU . For all δ ∈ R≥0,
there exists a δ′ ∈ R≥0 such that v′ + δ′ ∈ 〈v + δ〉LU .

Proof
We are given valuations v and v′ such that v′ ∈ 〈v〉LU . Therefore, v′ satisfies
the same LU-guards as v, and the following property is true for the ordering
of fractional parts (this is the second condition in Definition 3.2.4 which we
restate here for convenience):

for all x, y with ⌊v(x)⌋ = ⌊v′(x)⌋, ⌊v(y)⌋ = ⌊v′(y)⌋ (3.3)

v(x) ≤ Ux and v(y) ≤ Ly

if 0 < {v(x)} < {v(y)} then {v′(x)} < {v′(y)}
if 0 < {v(x)} = {v(y)} then {v′(x)} ≤ {v′(y)}

Additionally, we are given a time elapse δ ∈ R≥0 from the valuation v. We
need to construct a value δ′ ∈ R≥0 such that v′ + δ′ ∈ 〈v + δ〉LU .

Assume δ < 1. Without loss of generality, we can assume that δ < 1. If
δ ≥ 1, then we can put ⌊δ′⌋ = ⌊δ⌋ and consider the valuations v + ⌊δ⌋ and
v′+⌊δ′⌋. As we are not altering the fractional parts in these valuations, (3.3)
is true for v + ⌊δ⌋ and v′ + ⌊δ′⌋. It is also easy to see that as v′ satisfies the
same LU-guards as v, the valuation v′ + ⌊δ′⌋ satisfies the same LU-guards
as v+ ⌊δ⌋. This gives us v′+ ⌊δ′⌋ ∈ 〈v+ ⌊δ⌋〉LU and we need to consider the
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time elapse {δ} from v + ⌊δ⌋. Therefore, in the rest of the proof, without
loss of generality, we can assume that δ < 1.

Assume ⌊v(z)⌋ = ⌊v′(z)⌋ for all clocks z. Suppose for a clock z, we have
⌊v(z)⌋ < ⌊v′(z)⌋. Then, as v′ satisfies the same LU-guards as v, it should
be the case that v′(z) > Lz. So irrespective of what we choose for δ

′, the
LU-guards with respect to z will be satisfied. Also, z does not concern the
second condition of LU-regions (3.3) at all. Therefore, we can safely ignore
z. Similarly, if ⌊v(z)⌋ > ⌊v′(z)⌋, we know that ⌊v′(z)⌋ > Uz and we can
safely ignore this clock. In the rest of the proof, without loss of generality,
we assume that ⌊v(z)⌋ = ⌊v′(z)⌋ for all clocks z.

Assume ⌊v(z)⌋ ≤ max(Lz, Uz) for all clocks z. For a clock z such that
⌊v(z)⌋ is greater than both Lz and Uz, we know that v′(z) should be greater
than Lz in order to satisfy the same LU-guards. Hence any amount of time
elapse would maintain this property and additionally such clocks do not
concern (3.3). Hence, we assume without loss of generality that all clocks
are less than at least one of the bounds.

Constructing δ′. We now have v and v′ such that for all clocks z, the
integral parts match, that is ⌊v(z)⌋ = ⌊v′(z)⌋ and ⌊v(z)⌋ ≤ max(Lz, Uz).
Moreover, the time elapse δ < 1.

Let 0 < λ1 < λ2 < · · · < λk < 1 be the fractional parts of clocks in
v. Let us denote by Xi the set of clocks z that have have {v(z)} = λi.
Similarly, let 0 < λ′1 < λ′2 < · · · < λ′k′ < 1 denote the fractional parts in v′

and we define the set X ′i to be the set of clocks z such that {v′(z)} = λ′i.
This is pictorially illustrated below.

0 X1 X2 . . . Xk 1

In v

0 X′1 X′2
. . .X′

k′ 1

In v′

After a time elapse δ from v, some of the clocks cross the next integer,
whereas some of them do not. Let us say that clocks in Xj ∪ · · · ∪Xk have
crossed the integer. Now the fractional parts of these clocks would be smaller
than those of X1 ∪ · · · ∪Xj−1 as shown below:

0 Xj . . . Xk X1 . . . Xj−1 1

In v + δ

We need to choose a value δ′ so that for all clocks y ∈ Xj ∪ · · · ∪ Xk

such that v + δ(y) ≤ Ly, the time elapse δ
′ takes v′ to the next integer.
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Correspondingly for all the clocks x ∈ X1∪· · ·∪Xj−1 such that v+δ(x) ≤ Ux,
the time elapse δ′ still keeps v′ within the same integer. Clearly we need
this property to be satisfied so that v′ + δ′ satisfies the same LU-guards as
v + δ. To this regard, we define the following two values:

l = min{ {v′(y)} | v + δ(y) ≤ Ly and y ∈ Xj ∪ · · · ∪Xk}
u = max{ {v′(x)} | v + δ(x) ≤ Ux and x ∈ X1 ∪ · · · ∪Xj−1}

Firstly note that u < l. If not, there exist clocks y and x such that
v(y) ≤ Ly and v(x) ≤ Ux, for which the order property given by (3.3) is
not true, thus giving a contradiction. Let δ be a value between u and l. Set
δ′ = 1− δ. By construction, v′ + δ′ satisfies the same LU-guards as v + δ.

We will now see that this choice of δ′ also satisfies (3.3) for v′ + δ′ and
v + δ. Due to δ′ some clocks in v′ would have crossed the next integer. Let
us say that clocks in Xj′ ∪ · · · ∪Xk′ have crossed and the others stay within
the same integer. We pictorially depict the scenario with the two valuations
v + δ and v′ + δ′ below.

0 Xj . . . Xk X1 . . . Xj−1 1

In v + δ

0 X′
j′
. . . X′

k′ X′1
. . .X′

j′−1 1

In v′ + δ′

Pick two clocks x, y such that:

⌊v + δ(x)⌋ = ⌊v′ + δ′(x)⌋ and ⌊v + δ(y)⌋ = ⌊v′ + δ′(y)⌋ (3.4)

v + δ(x) ≤ Ux and v + δ(y) ≤ Ly

{v + δ(x)} < {v + δ(y)} (3.5)

Consider the case when both x, y ∈ X1 ∪ · · · ∪Xj−1. As they have not
crossed integer in v, they should not have crossed integer in v′ too because
of (3.4). Therefore both x, y ∈ X ′1 ∪ · · · ∪X ′j′−1. We know from (3.3) that
{v′(x)} < {v′(y)}. Clearly the time elapse of δ′ has not changed this ordering
for these clocks and hence {v′+δ′(x)} < {v′+δ′(y)}. We can prove similarly
when both x, y ∈ Xj ∪ · · · ∪Xk.

Let us now consider the case when y ∈ X1∪· · ·∪Xj−1 and x ∈ Xj ∪· · ·∪
Xk. As x has crossed integer in v, it should have crossed integer in v

′ too by
the hypothesis (3.4). Therefore x ∈ X ′j′∪· · ·∪X ′k′ . Again by hypothesis (3.4)
the clock y should not have crossed integer and hence y ∈ X ′1 ∪ · · · ∪X ′j′−1.
Hence we get that {v′ + δ′(x)} < {v′ + δ′(y)}.

This way we have proved the order property (3.3) for v + δ and v′ + δ′

for the case of the strict inequality. The case of the equality can be handled
in a similar way. �
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3.2.3 Finite paths characterizing LU-simulation

The previous section took a digression to define the notion of LU-regions.
Now, we are in a position to answer the question: given two valuations v, v′,
when is v ⊑LU v′. This section is devoted to show the link between this
question and the definition of LU-regions. For valuations v, v′, we will show
that v ⊑LU v′ if and only if v′ can elapse some amount of time and fall
into the LU-region of v (Proposition 3.2.8). Before that, we will define a
sequence of guards that succinctly describes the LU-region 〈v〉LU .

Definition 3.2.7 (LU-sequence) For a valuation v, let gint be the con-
junction of all LU guards that v satisfies. For every pair of clocks x, y such
that v(x) ≤ Ux, v(y) ≤ Ly, consider guards:

• if 0 < {v(x)} < {v(y)} then we take a guard gxy ≡ (x < ⌊v(x)⌋+ 1) ∧
(y > ⌊v(y)⌋+ 1).

• if 0 < {v(x)} = {v(y)} then we take a guard gxy ≡ (x ≤ ⌊v(x)⌋+ 1) ∧
(y ≥ ⌊v(y)⌋+ 1).

For every y with v(y) ≤ Ly put gy =
∧{gxy : v(x) ≤ Ux}. Consider all the

clocks y with v(y) ≤ Ly and suppose that y1, . . . , yk is the ordering of these
clocks with respect to the value of their fractional parts: 0 ≤ {v(y1)} ≤
· · · ≤ {v(yk)}. The LU-sequence seq(v) is defined to be the sequence of

transitions
gint−→ gyk−→ . . .

gy1−→

Proposition 3.2.8 For every two valuations v and v′:

v ⊑LU v′ iff there is δ′ ∈ R≥0 with v
′ + δ′ ∈ 〈v〉LU .

Proof
First let us take v and consider its LU-sequence seq(v). The sequence seq(v)
can be performed from v (the symbol τ denotes a time elapse):

v
gint−−→ v

τ−→ v + δk
gyk−−→ v + δk

τ−→ v + δk−1
gyk−1−−−→ . . .

. . .
τ−→ v + δ1

gy1−−→ v + δ1

when choosing δi = (1−{v(yi)}) or δi = (1−{v(yi)})+ε for some sufficiently
small ε > 0; depending on whether we test for non-strict or strict inequality
in gyi . Delay δi makes the value of yi integer or just above integer.

If v ⊑LU v′, then there exists a δ′ such that v′ + δ′ can do the sequence
of transitions given by seq(v). The guard gint ensures that v

′ + δ′ satisfies
the same LU -guards as v. Note that in particular, this entails that for every
pair of clocks x, y such that v(x) ≤ Ux, v(y) ≤ Ly and {v(x)} > 0, we have:

• ⌊v′ + δ′(x)⌋ < ⌊v(x)⌋+ 1, and
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• ⌊v′ + δ′(y)⌋ ≥ ⌊v(y)⌋.

Following transition gint, valuation v
′ + δ′ can satisfy guards gyk to gy1 by

letting some time elapse:

v′ + δ′
gint−−→ v′ + δ′

τ−→ v + δ′k
gyk−−→ v + δ′k

τ−→ v + δ′k−1
gyk−1−−−→ . . .

. . .
τ−→ v′ + δ1

gy1−−→ v′ + δ′1

Consider the clock yi. If the integral part ⌊v′ + δ′(yi)⌋ is strictly greater
than ⌊v(yi)⌋, time elapse is not necessary to cross the guard gyi . On the
other hand, if ⌊v′ + δ′(yi)⌋ = ⌊v(yi)⌋, then for the guard gyi to be crossed,
δ′i should be sufficiently large to make the value of v

′+ δ′i(yi) integer or just
above integer. But at the same time, the guard gxyi is satisfied, which entails
that for all x such that v(x) ≤ Ux, ⌊v(x)⌋ = ⌊v′ + δ′(x)⌋, we get:

• if 0 < {v(x)} < {v(yi)}, then {v′ + δ′(x)} < {v′ + δ′(yi)} and

• if 0 < {v(x)} = {v(yi)}, then {v′ + δ′(x)} ≤ {v′ + δ′(yi)}

Therefore, from the definition of LU -regions, we get that v′ + δ′ ∈ 〈v〉LU .
This shows left to right implication.

For the right to left implication we show that the relation S = {(v, v′) :
v′ ∈ 〈v〉LU} is an LU-simulation relation. For this we take any (v, v′) ∈ S,

any LU guard g, and any reset R such that v
g,R−→ v1. We show that v′

g,R−→ v′1
for some v′1 with (v1, v

′
1) ∈ S. The only non-trivial part in this is to show

that if v+δ � g for some δ, then there exists a δ′ such that (v+δ, v′+δ′) ∈ S
and v′ + δ′ � g. But this is exactly given by Lemma 3.2.6. �

In particular the proof shows the following.

Corollary 3.2.9 For two valuations v, v′:

v ⊑LU v′ iff v′ can execute the sequence seq(v).

3.2.4 Proof of optimality

We are now ready to show that absLU (Z) (Definition 3.2.3), the abstraction
based on ⊑LU simulation, is the biggest sound and complete abstraction
that uses solely the LU information.

Theorem 3.2.10 The absLU abstraction is the biggest abstraction that is
sound and complete for all LU-automata. It is also finite.

Proof
Suppose that we have some other abstraction a

′ that is not included in absLU
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Figure 3.9: Adding the sequence seq(v) to A1.

on at least one LU -automaton. This means that there is some LU automa-
ton A1 and its reachable configuration (q1, Z) such that a′(Z) \ absLU (Z) is
not empty. We suppose that a′ is complete and show that it is not sound.

Take v ∈ a
′(Z) \ absLU (Z). Consider the test sequence seq(v) as in

Corollary 3.2.9. From this corollary we know that it is possible to execute
this sequence from v but it is not possible to do it from any valuation in Z
since otherwise we would get v ∈ absLU (Z).

As illustrated in Fig 3.9 we add to A1 a new sequence of transitions
constructed from the sequence seq(v). We start this sequence from q1, and
let qf be the final state of this new sequence. The modified automaton A1
started in the initial configuration arrives with (q1, Z) in q1 and then it can
try to execute the sequence we have added. From what we have observed
above, it will not manage to reach qf . On the other hand from (q1, v) it
will manage to complete the sequence. But then by completeness of the

abstraction (q1, a
′(Z))

seq(v)−→ (qf ,W ) for a nonempty W . So a
′ is not a sound

abstraction.

That absLU is finite is easy to see. The set absLU (Z) is a union of classical
regions. Recall that we denote byM the bound function that assigns to each
clock x, the maximum of Lx and Ux. Let v

′ be a valuation in Z. If v′ ∈ [v]M
then it is easy to see that v′ ∈ 〈v〉LU and by definition v′ ∈ absLU (Z). �

Since absLU is the biggest abstraction, we would like to use it in a reach-
ability algorithm. The definition of absLU , or even the characterization
referring to LU-regions, are still too complicated to work with. It turns out
though that there is a close link to a4LU abstraction recalled in Section 2.5.

3.3 Abstraction a4LU coincides with absLU

The a4LU abstraction proposed by Behrmann et al. in [BBLP06] has a much
simpler definition. Quite surprisingly, in the context of reachability analysis
the two abstractions coincide (Theorem 3.3.3). We have defined the a4LU

abstraction in Section 2.5. The a4LU abstraction is based on a simulation
relation 4LU .

Our goal is to show that when we consider zones closed under time-
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Figure 3.10: Division into neighbourhoods. The shaded portion shows nbd(v).

successors, a4LU and absLU coincide. To prove this, we would first show that
there is a very close connection between valuations in 〈v〉LU and valuations
that simulate v with respect to 4LU . The following lemma says that if
v′ ∈ 〈v〉LU then by slightly adjusting the fractional parts of v′ we can get a
valuation v′1 such that v 4LU v

′
1. We start with a preliminary definition.

Definition 3.3.1 A valuation v1 is said to be in the neighbourhood of v,
written v1 ∈ nbd(v) if for all clocks x, y:

• ⌊v(x)⌋ = ⌊v1(x)⌋,

• {v(x)} = 0 iff {v1(x)} = 0,

• {v(x)}⋖ {v(y)} implies {v1(x)}⋖ {v1(y)} where ⋖ is either < or =.

Notice that the neighbourhood of v is the same as the region of v with
respect to the classical region definition (Section 2.2) with maximal bound
being ∞. In Figure 3.10, we illustrate the division into neighbourhoods for
the case of two clocks.

We give a brief intuition before proving the following lemma which gives
the relation between LU-regions and 4LU simulation. Consider Figure 3.11.
A valuation v is shown. Its LU-region 〈v〉LU is given by the shaded portion.
Pick a valuation v′ that belongs to 〈v〉LU and let us see if it satisfies v′ 4LU v.
We recall below Definition 2.5.1 of 4LU for convenience.

◮Definition 2.5.1. LU-preorder Let L,U : X → N be two bound func-
tions. For a pair of valuations we set v 4LU v

′ if for every clock x:

• if v′(x) < v(x) then v′(x) > Lx, and

• if v′(x) > v(x) then v(x) > Ux.

As we can see in Figure 3.11, the value of v′(x) > v(x) and additionally
v′(x) ≤ Ux. This shows that v 64LU v′ due to its x-coordinate. However,
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Figure 3.11: Intuition for the adjustment lemma.

by slightly adjusting the fractional parts,that is, reducing {v′(y)} to move
it down a bit and then reducing {v′(x)} to make v′(x) equal to v(x) leads
us to a valuation v′1 which is in the neighbourhood of v

′ but now v 4LU v
′
1.

The adjustment is depicted in Figure 3.11. Essentially, the following lemma
claims that the LU-region 〈v〉LU can be obtained as the downward closure
of 4LU over the set nbd(v), in other words, a4LU(nbd(v)).

Lemma 3.3.2 (Adjustment) Let v be a valuation and let v′ ∈ 〈v〉LU .
Then, there exists a v′1 ∈ nbd(v′) such that v 4LU v

′
1.

Proof
Let v′ ∈ 〈v〉LU . The goal is to construct a valuation v′1 ∈ nbd(v′) that
satisfies v 4LU v′1. To be in the neighbourhood, the valuation v′1 should
have the same integral parts as that of v′ and should agree on the ordering
of fractional parts. So for all x, we put ⌊v′1(x)⌋ = ⌊v′(x)⌋. It remains to
choose the fractional parts for v′1. But before, we will first see that there are
clocks for which irrespective of what the fractional part is, the two conditions
in Definition 2.5.1 would be true.

Consider a clock x that has ⌊v′(x)⌋ < ⌊v(x)⌋. Since v′ satisfies all LU-
guards as v, we should have v′(x) > Lx. The first condition of 4LU for x
becomes true and the second condition is vacuously true. Similarly, when
⌊v′(x)⌋ > ⌊v(x)⌋, we should have v(x) > Ux and the second condition of 4LU

becomes true and the first condition is vacuously true. Therefore, clocks x
that do not have the same integral part in v and v′ satisfy the 4LU condition
directly thanks to the different integral parts. Whatever the fractional parts
of v′1 are, the 4LU condition for these clocks would still be true.
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Let us therefore now consider only the clocks that have the same integral
parts: ⌊v′(x)⌋ = ⌊v(x)⌋. If this integer is strictly greater than both Lx and
Ux, the two conditions of 4LU would clearly be satisfied, again irrespective
of the fractional parts. So we consider only the clocks x that have the
same integral part in both v and v′ and additionally either ⌊v(x)⌋ ≤ Ux or
⌊v(x)⌋ ≤ Lx.

We prune further from among these clocks. Suppose there is such a
clock that has {v′(x)} = 0. To be in the neighbourhood, we need to set
{v′1(x)} = 0. If {v(x)} is 0 too, we are done as the 4LU condition becomes
vacuously true. Otherwise, we would have v′(x) = v′1(x) < v(x). But recall
that v′ ∈ 〈v〉LU and so it satisfies the same LU-guards as v does. This
entails that v′1(x) > Lx and we get the first condition of 4LU to be true.
Once again, the other condition is trivial. So we eliminate clocks that have
zero fractional parts in v′. A similar argument can be used to eliminate
clocks that have zero fractional parts in v.

So finally, we end up with the set of clocks x that have:

• ⌊v′(x)⌋ = ⌊v(x)⌋,
• {v′(x)} > 0 and {v(x)} > 0,

• v(x) < max(Ux, Lx).

Call this set Xf . The task is to select non-zero fractional values {v′1(x)}
for all clocks x in Xf so that they match with the order in v

′. This is the
main challenge and this is where we would be using the second property in
the definition of v′ ∈ 〈v〉LU , which we restate here:

∀x, y ∈ Xf such that v(x) ≤ Ux and v(y) ≤ Ly (3.6)

0 < {v(x)} < {v(y)} ⇒ {v′(x)} < {v′(y)}
0 < {v(x)} = {v(y)} ⇒ {v′(x)} ≤ {v′(y)}

Let 0 < λ′1 < λ′2 < · · · < λ′n < 1 be the fractional values taken by clocks
of Xf in v

′, that is, for every clock x ∈ Xf , the fractional value {v′(x)} = λ′i
for some i ∈ {1, . . . , n}. Let Xi be the set of clocks x ∈ Xf that have the
fractional value as λ′i:

Xi = {x ∈ Xf | {v′(x)} = λ′i}
for i ∈ {1, . . . , n}.

In order to match with the ordering of v′, one can see that for all clocks
xi in some Xi, the value of {v′1(xi)} should be the same, and if xj ∈ Xj with
i 6= j, then we need to choose {v′1(xi)} and {v′1(xj)} depending on the order
between λ′i and λ

′
j .

Therefore, we need to pick n values 0 < σ1 < σ2 < · · · < σn < 1 and
assign for all xi ∈ Xi, the fractional part {v′1(xi)} = σi. We show that it
can be done by an induction involving n steps.

After the kth step of the induction we assume the following hypothesis:
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• we have picked values 0 < σn−k+1 < σn−k+2 < · · · < σn < 1,

• for all clocks x ∈ Xn−k+1 ∪ Xn−k+2 · · · ∪ Xn, the 4LU condition is
satisfied,

• for all clocks y ∈ X1 ∪X2 · · · ∪Xn−k, we have

v(y) ≤ Ly ⇒ {v(y)} < σn−k+1 (3.7)

Let us now perform the k+1th step and show that the induction hypoth-
esis is true for k + 1. The task is to pick σn−k. We first define two values
0 < l < 1 and 0 < u < 1 as follows:

l = max
{
{v(z)} | z ∈ Xn−k and v(z) ≤ Lz

}

u = min
{
{ {v(z)} | z ∈ Xn−k and v(z) ≤ Uz } ∪ σn−k+1

}

We claim that l ≤ u. Firstly, l < σn−k+1 from the third part of the induction
hypothesis. So if u is σn−k+1 we are done. If not, suppose l > u, this
means that there are clocks x, y ∈ Xn−k with v(x) ≤ Ux and v(y) ≤ Ly

such that {v(x)} < {v(y)}. From Equation 3.6, this would imply that
{v′(x)} < {v′(y)}. But this leads to a contraction since we know they both
equal λ′n−k in v

′.
This leaves us with two cases, either l = u or l < u. When l = u, we pick

σn−k = l = u. Firstly, from the third part of the hypothesis, we should have
l < σn−k+1 and so σn−k < σn−k+1. Secondly for all z ∈ Xn−k, if v′1(z) <
v(z), then z should not contribute to l and so v(z) > Lz, which is equivalent
to saying, v′1(z) > Lz. Similarly, if v

′
1(z) > v(z), then z should not contribute

to u and so v(z) > Uz, thus satisfying the 4LU condition for z. Finally, we
should show the third hypothesis. Consider a clock y ∈ X1 ∪ · · · ∪Xn−k−1
with v(y) < Ly. If {v(y)} ≥ σn−k, it would mean that {v(y)} ≥ u and
from Equation 3.6 gives a contradiction. So the three requirements of the
induction assumption are satisfied after this step in this case.

Now suppose l < u. Consider a clock y ∈ X1 ∪ · · · ∪Xn−k−1 such that
v(y) < Ly. From Equation 3.6, we should have {v(y)} < u. Take the
maximum of {v(y)} over all such clocks:

λ = max{{v(y)} | y ∈ X1 ∪ · · · ∪Xn−k−1 and v(y) < Ly}

Choose σn−k in the interval (λ, u). We can see that all the three assumptions
of the induction hold after this step.

�

We are now ready to prove the second main result of this chapter. Re-
call that a zone is time-elapsed if it is closed with all its time-successors
(Definition 3.1.1).
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Theorem 3.3.3 If Z is time-elapsed then

absLU (Z) = a4LU(Z)

Proof
Suppose v ∈ a4LU(Z). There exists a v′ ∈ Z such that v 4LU v′. It can
be easily verified that 4LU is a LU -simulation relation. Since ⊑LU is the
biggest LU-simulation, we get that v ⊑LU v′. Hence v ∈ absLU (Z).

Suppose v ∈ absLU (Z). There exists v
′ ∈ Z such that v ⊑LU v′. From

Proposition 3.2.8, this implies there exists a δ′ such that v′ + δ′ ∈ 〈v〉LU .
As Z is time-elapsed, we get v′ + δ′ ∈ Z. Moreover, from Lemma 3.3.2, we
know that there is a valuation v′1 ∈ nbd(v′ + δ′) such that v 4LU v

′
1. Every

valuation in the neighbourhood of v′ + δ′ satisfies the same constraints of
the form y − x⋖ c with respect to all clocks x, y and hence v′1 belongs to Z
too. Therefore, we have a valuation v′1 ∈ Z such that v 4LU v′1 and hence
v ∈ a4LU(Z). �

3.4 Biggest M-abstraction

Prior to the introduction of a4LU abstraction and the use of lower-upper
bounds, it was common practice to consider only a single maximal bound
function M for an automaton. In this scenario, the largest known abstrac-
tion is ClosureM [Bou04]. As a side effect of Theorem 3.3.3, we get that
over time-elapsed zones the ClosureM abstraction is the coarsest possible.

This is because when we put L = U = M , the definition of LU -region
〈v〉LU becomes the classic region definition [v]M as defined in Section 2.2. So
Proposition 3.2.8 now reads as: v is simulated by v′ iff v′ ∈ [v]M . It is also
easy to check that v′ ∈ [v]M iff v ∈ [v′]M too. Therefore the optimal abstrac-
tion in this case would be to close the zone with the regions intersecting
it.

We define M -automata to be the set of all LU -automata with L = U =
M . We get the following corollary to Theorem 3.3.3.

Corollary 3.4.1 When time-elapsed zones are considered, ClosureM is the
biggest abstraction that is sound and complete for all M -automata.

We have shown in this chapter that when time-elapsed zones are consid-
ered, abstraction a4LU is the coarsest when the only available information
are the L and U bounds. For reachability analysis, as described in Sec-
tion 3.1, we consider only time-elapsed zones. This shows that a4LU is the
best we can do for reachability. Of course, we should not forget that such
an abstraction would be of limited use if we have no efficient algorithm for
handling it. This is the objective of the next chapter: we provide a quadratic
algorithm to solve the inclusion Z ⊆ a4LU(Z

′). Once again, as a side effect,
we would get an efficient inclusion test for Z ⊆ ClosureM (Z

′).
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3.5 Concluding remarks

We started the chapter with three goals in mind (c.f. page 3).

Goal 1. How can non-convex abstractions be used in implementations
efficiently? We answered this question in Section 3.1 where we gave
an algorithm that computes the reachability tree of the zone graph
and uses inclusion tests of the form Z ⊆ a(Z ′) for termination (Al-
gorithm 3.1). This way, one can work with the efficient algorithms
implementing zones and use the power of non-convex abstractions si-
multaneously.

Goal 2. Which is the biggest LU-abstraction? We answered this question
in Section 3.2. We first proposed an LU-simulation relation and defined
an abstraction absLU (Definitions 3.2.2 and 3.2.3). In Theorem 3.2.10,
we showed that absLU is the biggest abstraction sound and complete
for all LU-automata (c.f. Definition 3.2.1). The introduction to this
Section 3.2 has given a break-up of the steps leading to this theorem.

Goal 3. How far is the a4LU abstraction from this biggest absLU abstrac-
tion? We showed in Theorem 3.3.3 that abstractions a4LU and absLU
coincide over time-elapsed zones. As we use only time-elapsed zones in
reachability analysis, we get that a4LU is the optimal abstraction for
reachability. The important observation leading to this result is the
Adjustment Lemma (Lemma 3.3.2) that relates the two simulations
4LU and ⊑LU defining a4LU and absLU respectively.

As a corollary to Theorem 3.3.3, we can get that while considering
M-abstractions, ClosureM abstraction is optimal for reachability analysis
(Corollary 3.4.1).

The last missing piece to be able to use the a4LU abstraction is an efficient
inclusion test Z ⊆ a4LU(Z

′). This is the subject of the next chapter.



Chapter 4

Efficient inclusion with a4LU

abstraction

In the previous chapter, we proved that over time-elapsed zones, a4LU is
the biggest abstraction that is sound and complete for all LU -automata.
The objective of this chapter is to show that this biggest abstraction can
efficiently be used for checking reachability.

In this chapter, we present an efficient algorithm for the inclusion Z ⊆
a4LU(Z

′) (Theorem 4.5.3). Since a lot of tests of this kind need to be per-
formed during exploration of the zone graph, it is essential to have a low
complexity for this inclusion procedure. We are aiming at quadratic com-
plexity as this is the complexity incurred in the existing algorithms for in-
clusions of the form Z ⊆ Z ′ used in the standard reachability algorithm. It
is well known that all the other operations needed for forward exploration,
can be done in at most quadratic time (c.f. Section 2.3).

To solve the inclusion Z ⊆ a4LU(Z
′), we need to check if for every val-

uation v ∈ Z, there is a valuation v′ ∈ Z ′ such that v 4LU v′. See Defini-
tion 2.5.1 for the definition 4LU . We will show that this reduces to asking if
the LU-region (Definition 3.2.4) 〈v〉LU intersects Z ′. The question of inclu-
sion changes to a question of intersection. We show the crucial point that
this intersection can be decided by verifying if the projection on every pair
of clocks satisfies this intersection. This already gets us half way through to
the main result. Once this intersection question is solved with respect to an
LU -region, we extend the solution to zone Z thanks to a method allowing
us to quickly tell which LU -regions intersect a given zone.

Organization of the chapter

To solve the inclusion, we consider Z 6⊆ a4LU(Z
′). The main steps to get to

the inclusion are outlined in Figure 4.1.

Step 1. As a first step, we reduce the inclusion problem to a problem of

65
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(Proposition 4.1.2)

Step 1

Z 6⊆ a4LU(Z
′)

iff

there exists v in Z such that

its LU-region 〈v〉LU does not intersect Z ′

Step 2

(Proposition 4.4.1)

Simple test to check when

〈v〉LU does not intersect Z ′

Step 3

(Proposition 4.5.2)

Fast detection of the right

〈v〉LU from Z

Step 4

(Theorem 4.5.3)

Inclusion testing

Z 6⊆ a4LU(Z
′)

as efficient as Z 6⊆ Z ′

Figure 4.1: Steps to the efficient inclusion test

intersection in Section 4.1. The problem Z 6⊆ a4LU(Z
′) boils down to

asking if there exists a valuation v ∈ Z such that its LU-region 〈v〉LU

does not intersect Z ′.

Step 2. As a next step, we consider the intersection 〈v〉LU ∩ Z ′. We aim
to show that this intersection can be decided by looking at projections
on every pair of clocks (Proposition 4.4.1). This is the most difficult
step in the way to the inclusion test and spans three sections. We first
describe a convenient graph representation of zones in Section 4.2. We
call this the distance graph and will use it to represent Z ′. Subse-
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quently, in Section 4.3, we see how we can represent LU-regions as
distance graphs. This gives a distance graph representation for 〈v〉LU .
Finally, in Section 4.4, we analyze the graph representations of 〈v〉LU

and Z ′ to see when the intersection 〈v〉LU ∩ Z ′ is empty.

Step 3. The previous step gives the condition for 〈v〉LU ∩ Z ′ to be empty.
We now look at the zone Z to find out quickly the valuation v that
can potentially satisfy this condition.

Step 4. We substitute the valuation obtained from Step 3 to the condition
of Step 2 to give the efficient test for inclusion. Both steps 3 and 4
appear in Section 4.5.

As a side effect of the inclusion test for a4LU , we also get an efficient
inclusion test for the ClosureM abstraction by substituting L = U = M .
We detail this inclusion test in Section 4.6.

We direct the reader to Section 4.7 (Concluding remarks) for a quick
and comprehensive summary of the chapter.

For the rest of the chapter, we assume that an automaton A and its
LU-bounds are given.

Notation

For notational convenience, we denote v(x) by vx for a valuation v and clock
x.

4.1 Reducing inclusion to intersection

The aim of this chapter is to reduce the question of inclusion to a question
of intersection, as depicted by the first box in Figure 4.1. The adjustment
lemma (Lemma 3.3.2) shows a close connection between LU -regions and
4LU -simulation in one direction: that is, if v′ ∈ 〈v〉LU then we can find a
valuation v′1 in the neighbourhood of v

′ such that v 4LU v
′
1. We show below

a connection in the other direction too.

Lemma 4.1.1 Let v, v′ be valuations. If v 4LU v
′, then v′ ∈ 〈v〉LU .

Proof
It is not difficult to see from the definition of 4LU (Definition 2.5.1) that
both v and v′ satisfy the same LU-guards. It remains to show the second
property for v′ to be in 〈v〉LU .

Let x, y be clocks such that ⌊vx⌋ = ⌊v′x⌋, ⌊vy⌋ = ⌊v′y⌋, and vx ≤ Ux,
vy ≤ Ly. Suppose {vx} ⋖ {vy}, for ⋖ being either < or =. As v 4LU v′, if
v′x > vx, we need vx > Ux which is not true. Hence we can conclude that
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x− 0⋖0x c0x

y − 0⋖0y c0y

Figure 4.2: A zone with its boundaries

v′x ≤ vx. Similarly, for y, one can conclude that v′y ≥ vy. As the integer
parts are the same in v and v′, we get {v′x} < {v′y} or {v′x} ≤ {v′y} depending
on whether ⋖ is < or =. �

The above along with the adjustment lemma help us to reduce the ques-
tion of inclusion as a question of intersection.

Proposition 4.1.2 Let Z,Z ′ be zones. Then, Z 6⊆ a4LU(Z
′) iff there exists

a valuation v ∈ Z such that 〈v〉LU ∩ Z ′ is empty.

Proof
Consider the left-to-right direction. Suppose Z 6⊆ a4LU(Z

′). Then there
exists a valuation v ∈ Z such that for every valuation v′ ∈ Z ′ we have
v 64LU v′. Pick an arbitrary v′ ∈ Z ′. In particular, every valuation v′1 ∈
nbd(v′) satisfies v 64LU v′1. From the Adjustment lemma 3.3.2, we get that
v′ 6∈ 〈v〉LU . Since v′ is arbitrary, we get that 〈v〉LU ∩ Z ′ is empty.

Now for the right-to-left direction. Suppose 〈v〉LU ∩ Z ′ is empty. Then
by Lemma 4.1.1, we get that v 64LU v′ for every valuation v′ ∈ Z ′. This
shows that Z 6⊆ a4LU(Z

′). �

4.2 Distance graphs

Thanks to Proposition 4.1.2, we know that to solve Z 6⊆ a4LU(Z
′), we need

to check if there exists a valuation v ∈ Z such that its LU-region 〈v〉LU does
not intersect with the zone Z ′. The focus now is to study this intersection,
corresponding to Step 2 of Figure 4.1.

We will begin with a convenient representation of zones that we use to
solve this intersection question. Consider an arbitrary zone as shown in
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Figure 4.2. A zone gets defined by six constraints for every pair of vari-
ables as shown in the figure. Each constraint is a half-space. The standard
way to represent a zone is to consider a DBM specifying each half space
(Definition 2.3.5). Instead of considering zones as DBMs, we prefer to work
with distance graphs, the graph representation of a zone. We begin with the
description of distance graphs.

Definition 4.2.1 (Distance graph) A distance graph G has clocks as ver-
tices, with an additional special vertex x0 representing constant 0. Between
every two vertices there is an edge with a weight of the form (⋖, c) where

c ∈ Z and ⋖ ∈ {≤, <} or (⋖, c) = (<,∞). An edge x
⋖c−→ y represents a

constraint y − x ⋖ c: or in words, the distance from x to y is bounded by
c. We let [[G]] be the set of valuations of clock variables satisfying all the
constraints given by the edges of G with the restriction that the value of x0
is 0.

For readability, we will often write 0 instead of x0. An example of a
zone with its boundaries and its distance graph representation are shown in
Figure 4.3. A concrete example of a zone and its distance graph is given in
Figure 4.4.

Arithmetic over weights

An arithmetic over the weights (⋖, c) can be defined as follows [BY04].

Equality (⋖1, c1) = (⋖2, c2) if c1 = c2 and ⋖1 = ⋖2.

Addition (⋖1, c1) + (⋖2, c2) = (⋖, c1 + c2) where ⋖ =< iff either ⋖1 or ⋖2

is <.

Minus −(⋖, c) = (⋖,−c).

Order (⋖1, c1) < (⋖2, c2) if either c1 < c2 or (c1 = c2 and ⋖1 =< and
⋖2 =≤).

This arithmetic lets us talk about the weight of a path as a weight of the
sum of its edges.

A cycle in a distance graph G is said to be negative if the sum of the
weights of its edges is at most (<, 0); otherwise the cycle is positive. A
distance graph is in canonical form if the weight of the edge from x to y
is the lower bound of the weights of paths from x to y. For instance, the
distance graph given in Figure 4.4 (c) is not canonical. Consider the edge
from y to x. The weight of the edge is (<,∞). However there is a path

y
<−2−−−→ 0

<3−−→ x that has weight (<, 1). The tightened edge should therefore

be y
<1−−→ x. This corresponds to the diagonal x − y < 1. We depict this in

Figure 4.5.
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Figure 4.3: An arbitrary zone and its distance graph

Given a distance graph, its canonical form can be computed by using
an all-pairs shortest paths algorithm like Floyd-Warshall’s [BY04] in time
O(|X|3) where |X| is the number of clocks. Note that the number of ver-
tices in the distance graph is |X| + 1. We had listed some operations on
zones in Table 2.1. We had said that the computation of Z ∧ g involves a
canonicalization operation. However, since g has diagonal free constraints,
the canonicalization procedure involved to compute Z ∧g is easier and costs
only O(|X|2) [ZLZ05].
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Figure 4.4: A concrete zone represented pictorially by the shaded portion in (a);
by constraints defining it in (b); and by its distance graph in (c)
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Figure 4.5: Tightening the constraints: the thick gray line in the picture on the left
shows the tight diagonal bordering the shaded area, and the arrow marks the half
space given by the inequality; the corresponding constraint obtained by tightening
the distance graph is shown in by a dashed line in the graph.

Distance graphs with empty solution set

Recall that our aim is to prove the second box of Figure 4.1. For this, we
need to know when the intersection of an LU-region and a zone is empty.
In the next section we will see that an LU-region is a zone and can be
represented using a distance graph. Therefore, it boils down to asking given
two distance graphs G1 and G2 when is [[G1]]∩[[G2]] empty. Before answering
this, we examine when is the solution set [[G]] of a distance graph G empty, in
other words, when is the system of inequalities represented by the distance
graph inconsistent.

Consider the distance graph of Figure 4.5. The solution set represented
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by this graph is not empty. Now suppose we change the value of the edge
x −→ 0 to (<,−4). This will correspond to a solution set where x < 3 and
x > 4 and hence this solution set will be empty. Let us now see how this gets

reflected in the distance graph. Look at the cycle 0
<3−−→ x

<−4−−−→ 0. The sum
of the weights of edges in the cycle is (<,−1) which is a negative value. We
will now recall the folklore result that a distance graph G has a non-empty
solution set iff all cycles in G are positive.

Proposition 4.2.2 A distance graph G has only positive cycles iff [[G]] 6= ∅.

Proof
If there is a valuation v ∈ [[G]] then we replace every edge x

⋖xycxy−→ y by

x
≤d−→ y where d = vy − vx. We have d⋖xy cxy. Since every cycle in the new

graph has value 0, every cycle in G is positive.

For the other direction suppose that every cycle in G is positive. Let G
be the canonical form of G. Clearly [[G]] = [[G]], i.e., the constraints defined
by G and by G are equivalent. It is also evident that all the cycles in G are
positive.

We say that a variable x is fixed in G if in this graph we have edges

0
≤cx−→ x and x

≤−cx−→ 0 for some constant cx. These edges mean that every
valuation in [[G]] should assign cx to x.

If all the variables in G are fixed then the value of every cycle in G is
0, and the valuation assigning cx to x for every variable x is the unique
valuation in [[G]]. Hence, [[G]], and in consequence [[G]] are not empty.

Otherwise there is a variable, say y, that is not fixed in G. We will show
how to fix it. Let us multiply all the constraints in G by 2. This means that

we change each arrow x1
⋖c−→ x2 to x1

⋖2c−→ x2. Let us call the resulting graph
H. Clearly H is in canonical form since G is. Moreover [[H]] is not empty
iff [[G]] is not empty. The gain of this transformation is that for our chosen

variable y we have in H edges 0
⋖0yc0y−→ y and y

⋖y0cy0−→ 0 with cy0 + c0y ≥ 2.
This means that there is a natural number d such that (≤, d) ≤ (⋖0y, c0y)
and (≤,−d) ≤ (⋖y0, cy0). Let Hd be H with edges to and from y changed

to 0
≤d−→ y and y

≤−d−→ 0, respectively. This is a distance graph where y is
fixed. We need to show that there is no negative cycle in this graph.

Suppose that there is a negative cycle in Hd. Clearly it has to pass
through 0 and y since there was no negative cycle in H. Suppose that it

uses the edge 0
≤d−→ y, and suppose that the next used edge is y

⋖yxcyx−→ x. The
cycle cannot come back to y before ending in 0 since then we could construct
a smaller negative cycle. Hence all the other edges in the cycle come from
H. Since H is in the canonical form, a path from x to 0 can be replaced by
the edge from x to 0, and the value of the path will not increase. This means

that our hypothetical negative cycle has the form 0
≤d−→ y

⋖yxcyx−→ x
⋖x0cx0−→ 0.
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By canonicity of H we have (⋖yx, cyx) + (⋖x0, cx0) ≥ (⋖y0, cy0). Putting
these two facts together we get

(≤, 0) > (≤, d) + (⋖yx, cyx) + (⋖x0, cx0) ≥ (≤, d) + (⋖y0, cy0)

but this contradicts the choice of d which supposed that (≤, d) + (⋖y0, cy0)
is positive. The proof when the hypothetical negative cycle passes through

the edge y
≤−d−→ 0 is analogous.

Summarizing, starting from G that has no negative cycles we have con-
structed a graph Hd that has no negative cycles, and has one more variable
fixed. We also know that if [[Hd]] is not empty then [[G]] is not empty. Re-
peatedly applying this construction we get a graph where all the variables
are fixed and no cycle is negative. As we have seen above the semantics of
such a graph is not empty. �

Intersection of two distance graphs

For two distance graphs G1, G2 which are not necessarily in canonical form,
we denote by min(G1, G2) the distance graph where each edge has the weight
equal to the minimum of the corresponding weights in G1 and G2. Even
though this graph may be not in canonical form, it should be clear that
it represents intersection of the two arguments, that is, [[min(G1, G2)]] =
[[G1]] ∩ [[G2]]; in other words, the valuations satisfying the constraints given
by min(G1, G2) are exactly those satisfying all the constraints from G1 as
well as G2.

From Proposition 4.2.2, the intersection [[G1]]∩ [[G2]] is empty iff the dis-
tance graph min(G1, G2) has a negative cycle. Figure 4.6 shows an example.

4.3 LU-regions as distance graphs

Our aim is to solve Step 2 of Figure 4.1. We saw in the previous section
that zones can be conveniently and uniquely represented by distance graphs.
In this section, we see how we can canonically represent an LU -region of a
valuation as a distance graph.

Recall the classic notion of regions and the region equivalence in Sec-
tion 2.2. We repeat the constructive definition of regions below for conve-
nience.

◮Definition 2.2.3. (Region:constructive definition)
A region with respect to bound function M is the set of valuations spec-

ified as follows:

1. for each clock x ∈ X, one constraint from the set:

{x = c | c = 0, . . . ,Mx}∪{c−1 < x < c | c = 1, . . . ,Mx}∪{x > Mx}
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Figure 4.6: Two zones [[G1]] and [[G2]] are shown in the topmost figure. The corre-
sponding distance graphs are given below. Note that [[G1]] does not intersect [[G2]].
This is captured by the distance graph min(G1, G2) which has a negative cycle. Ad-
ditionally, the min(G1, G2) graph shows exactly which constraints are responsible
for non-intersection.

2. for each pair of clocks x, y having interval constraints: c − 1 < x < c
and d− 1 < y < d, it is specified if {x} is less than, equal to or greater
than {y}.

The distance graph representing a region can be constructed using the
above constructive definition of a region. Consider Figure 4.4 once again.
The shaded portion in (a) is in fact a region with respect to the bounds
represented by the thick lines x = 3 and y = 2. Figure 4.4 (b) and (c) show
the constraints and the distance graph representing the region.
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For a valuation v, let GM
v denote the canonical distance graph represent-

ing the region [v]M . We are now interested in getting the LU-region of v,
that is, 〈v〉LU as a distance graph. Let us recall the definition of LU-regions.

◮Definition 3.2.4. (LU-region)
For a valuation v we define its LU-region, denoted 〈v〉LU , to be the set

of valuations v′ such that:

• v′ satisfies the same LU -guards as v.

• For every pair of clocks x, y with ⌊v(x)⌋ = ⌊v′(x)⌋, ⌊v(y)⌋ = ⌊v′(y)⌋,
v(x) ≤ Ux and v(y) ≤ Ly we have:

– if 0 < {v(x)} < {v(y)} then {v′(x)} < {v′(y)}.
– if 0 < {v(x)} = {v(y)} then {v′(x)} ≤ {v′(y)}.

For a valuation v, we need to collect all valuations v′ satisfying the
above two conditions to get 〈v〉LU . We begin with a motivating example
in Figure 4.7. In the (a) part of the figure, we consider a valuation v such
that vx > Ux. The shaded portion in Figure 4.7 (a) shows the region [v]

M

and the finite valued constraints x− y and x− 0 bounding this region (c.f.
Figure 4.2 for information about boundaries). The LU-region 〈v〉LU is shown
in Figure 4.7 (b). Observe that it matches with the definition given above.
But more importantly, note that it can be seen as a transformation of [v]M

by moving constraints x− y and x− 0 to infinity and keeping the rest same.
We now consider a valuation v with vy > Ly in Figure 4.7 (c). Once

again, the shaded portion shows the region [v]M and the interesting bound-
aries. We depict the LU-region 〈v〉LU in Figure 4.7 (d) matching the def-
inition given above. Note that it can be seen as a transformation of [v]M

by moving the constraint x − y to infinity and the constraint 0 − y upto
Ly. However, when we move x− y to infinity, the graph that we get would
no longer be canonical. We could then consider the canonicalization of the
transformed graph.

Let GLU
v denote the canonical distance graph representing the LU -region

〈v〉LU . We will define the distance graph GLU
v as a transformation of the

distance graph GM
v .

Definition 4.3.1 (Distance graph GLU
v ) Let v be valuation. Given the

distance graph of the region [v]M in canonical form GM
v = (⋖xy, cxy)x,y∈X ,

first define the distance graph G′ = (⋖′xy, c
′
xy)x,y∈X as follows:

(⋖′yx, c
′
yx) =







(<,∞) if vx > Ux

(<,∞) if vy > Ly and x 6= 0

(<,−Ly) if vy > Ly and x = 0

(⋖yx, cyx) otherwise
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[v]M

(c)

Ly

x

y

0

v

〈v〉LU

(d)

Figure 4.7: 〈v〉LU can be thought of as a transformation of [v]M by altering select
constraints. Pictures (a) and (b) handle the case when vx > Ux; pictures (c) and
(d) handle the case when vy > Ly

Then, the distance graph GLU
v is defined to be the canonical form of G′.

The following lemma confirms that the distance graph defined above
indeed represents 〈v〉LU .

Lemma 4.3.2 Let v be a valuation. Let GLU
v be the graph obtained by

Definition 4.3.1. Then the sets 〈v〉LU and [[GLU
v ]] are equal.

Proof
Let v′ ∈ 〈v〉LU . We will now show that v′ ∈ [[GLU

v ]]. First observe that
[[GLU

v ]] = [[G′]] where G′ is the graph as in Definition 4.3.1. Therefore it
is sufficient to show that v′ satisfies the constraints given by G′. From the
definition, it is clear that an edge y −→ x is finite valued in G′ only if vx ≤ Ux.
Additionally when vy ≤ Ly, the value of the edge y −→ x is the same as that
in GM

v . Otherwise if vy > Ly, the only finite value is (<,−Ly) for the edge
y −→ x0.

Since v′ ∈ 〈v〉LU , it satisfies the same LU -guards as v. If y is a clock
such that vy > Ly then v

′
y > Ly too. So v

′ satisfies constraints of the form
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y
<−Ly−−−−→ x0. It now remains to look at edges y

⋖d−−→ x with vy ≤ Ly, vx ≤ Ux

and the weight (⋖, d) coming from GM
v . Let ⌊vx⌋ and ⌊vy⌋ be denoted as cx

and cy respectively. As v
′ satisfies the same LU -guards as v, we have:

v′x < cx + 1

v′y ≥ cy

Therefore v′x−v′y < cx+1−cy. Since GM
v represents the region containing v,

by definition of regions, the constant in the weight (⋖, d) is either cx−cy+1
or cx−cy. If it is the former, then clearly, v′ also satisfies this constraint. We
need to consider the latter case, that is, d is cx − cy. Now if either v′x < cx
or v′y ≥ cy + 1, we are done. We are left with considering the case when
⌊v′x⌋ = cx and ⌊v′y⌋ = cy. We have:

vx − vy ⋖ cx − cy
⇒ {vx} − {vy}⋖ 0

⇒ {v′x} − {v′y}⋖ 0 (as v′ ∈ 〈v〉LU)

⇒ ⌊v′x⌋+ {v′x} − (⌊v′y⌋+ {v′y})⋖ cx − cy
⇒ v′x − v′y ⋖ d

This proves that if v′ ∈ 〈v〉LU , then v′ satisfies the constraints of G′ and
hence v′ ∈ [[G′]].

Now for the other direction, assume v′ ∈ [[G′]]. We will show that v′ ∈
〈v〉LU . Let x, y be clocks such that vx ≤ Ux and vy ≤ Ly. From the
definition of [[G′]], edges of the form y −→ x0 and x0 −→ x are retained as
in GM

v . Since v
′ ∈ [[G′]], it is clear that v′ satisfies the same LU -guards as

v. We now consider the order property for LU -regions. By definition of G′,
the edge y −→ x in G′ has the same weight as that in GM

v . Further assume
⌊v′x⌋ = ⌊vx⌋ = cx and ⌊v′y⌋ = ⌊vy⌋ = cy. Let the edge weight y −→ x be
(⋖, d). We have:

vx − vy ⋖ d

⇒ {vx} − {vy}⋖ d− (cx − cy)
If {vx} < {vy} then either d− (cx − cy) < 0 or if it is 0 then ⋖ is the strict
inequality. As this edge remains in G′, the valuation v′ satisfies v′x− v′y ⋖ d.
Moreover, since the integral parts of v′ match, we get {v′x} − {v′y} ⋖ d −
(cx − cy). By the aforementioned property, we get {v′x} < {v′y}. A similar
argument follows for the case when {vx} = {vy}. �

Before we use the distance graph GLU
v for further analysis, recall that

we first defined a graph G′ in Definition 4.3.1 and then obtained GLU
v by

canonicalizing it. We will now observe some properties of GLU
v that are either

retained from G′ or obtained thanks to canonicalization. These observations
would be important in the next section when we do the analysis on the
distance graph representing LU-region 〈v〉LU and zone Z ′.



78 4. Efficient inclusion with a4LU abstraction

Lemma 4.3.3 Let v be a valuation. Let GM
v , G

LU
v be the canonical distance

graphs of [v]M and 〈v〉LU respectively. For variables x, y, if the edge y −→ x
has a finite value in 〈v〉LU , then:

1. vx ≤ Ux,

2. if vy ≤ Ly, the value of y −→ x in GLU
v and GM

v are equal,

3. if vy > Ly, the value of y −→ x in GLU
v equals the value of the path

y −→ x0 −→ x in GLU
v .

Proof
The graph GLU

v is the canonical form of the graph G′ defined in Definition
4.3.1. By definition, if vx > Ux, all incoming edges to x in G

′ have weight
(<,∞). So, the shortest path in this graph G′ from a variable y to a variable
x such that vx > Ux is (<,∞). Therefore, if in the canonical form GLU

v , the
edge y −→ x is finite valued, we should have vx ≤ Ux. This gives the first
part of the lemma.

Consider the second part of the lemma. We know that vy ≤ Ly and from
the first part of the lemma, we know that vx ≤ Ux. The weight of y −→ x
in G′ is the same as that of GM

v according to Definition 4.3.1. Note that
the finite values in the graph G′ are either the same as that of GM

v or of the
form (<,−Lz) for some edges z −→ 0. In the latter case, we also know by
definition that vz > Lz. Therefore the value (<,−Lz) is greater than the
corresponding value in GM

v . As G
M
v is canonical, the shortest path from y to

x in G′ cannot reduce from its value in GM
v and hence equals just the edge

value y −→ x. This gives the second part of the lemma.
Finally consider the third part. Assume vy > Ly. From Part 1, we know

that vx ≤ Ux. By Definition 4.3.1, the weight of y −→ x equals (<,∞) if x is
not x0. The only finite valued outgoing edge from y is y −→ x0. Therefore,
we can infer two things: the shortest path from y to x0 is given by the
edge y −→ x0; and the shortest path from y to x should contain this edge
y −→ x0. Secondly, note that variable x0 has vx0 ≤ Lx0 (vx0 = 0 = Lx0).
By definition, the value of x0 −→ x in G′ is given by the corresponding value
in GM

v and by Part 2, we know that this value stays in GLU
v , that is, the

shortest path from x0 to x in G
′ is given by the direct edge. Summing up,

the shortest path from y to x in G′ is given by y −→ x0 −→ x, where both
y −→ x0 and x0 −→ x are values coming from GLU

v . �

4.4 When does an LU-region intersect a zone.

We are now in a position to tackle Step 2 of Figure 4.1 and characterize the
intersection 〈v〉LU ∩ Z ′.

Recall that we concentrate on asking when is Z 6⊆ a4LU(Z
′). From

Proposition 4.1.2, we know that this is true iff there is a valuation v ∈ Z
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x

y

0

Z
A

B

Figure 4.8: A bounded region is either totally contained in a zone Z or totally
disjoint from it. It can never intersect partially. For example, the bounded region
B is totally inside Z, however the bounded region A is totally disjoint from Z.

such that 〈v〉LU does not intersect Z ′. Let GLU
v as defined in the previous

section be the canonical distance graph of 〈v〉LU and let GZ′ be the canonical
distance graph of Z ′. By Proposition 4.2.2, the intersection 〈v〉LU ∩ Z ′ is
empty iff min(GLU

v , GZ′) has a negative cycle.

We will now state a necessary and sufficient condition for the graph
min(GLU

v , GZ′) to have a negative cycle. We denote by Z ′xy the weight of the
edge x −→ y in GZ′ . Similarly we denote 〈v〉LU

xy for the weight of x −→ y in
GLU

v . When a variable x represents the special clock x0, we define 〈v〉LU

0x and
〈v〉LU

x0 to be (≤, 0). Since by convention x0 is always 0, this is consistent.

Proposition 4.4.1 Let v be a valuation and Z ′ a zone. The intersection
〈v〉LU ∩ Z ′ is empty iff there exist two variables x, y such that vx ≤ Ux and
Z ′xy + 〈v〉LU

yx < (≤, 0).

To prove the above proposition, we need a small but a crucial observation
that exploits the special structure of regions. A variable x is said to be
bounded in valuation v if vx ≤ max(Lx, Ux). If x, y are bounded in v, then
the projection of the region [v]M onto x, y has very specific boundaries. Call
it a bounded region. The following lemma makes use of the fact that a
bounded region is either fully contained in a zone or is totally disjoint from
it, that is, there cannot be a partial intersection of the bounded region and
zone, as illustrated in Figure 4.8.

Lemma 4.4.2 Let x, y be bounded variables of v appearing in some neg-

ative cycle N of min(GLU
v , GZ′). Let the edge weights be x

⋖xycxy−−−−→ y and

y
⋖yxcyx−−−−→ x in GM

v . If the value of the path x −→ . . . −→ y in N is strictly less

than (⋖xy, cxy), then x −→ . . . −→ y
⋖yxcyx−−−−→ x is a negative cycle.

Proof
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Let the path x −→ . . . −→ y in N have weight (⋖, c). Now, since x and y are
bounded variables in v, we can have either y − x = d or d − 1 < y − x < d
for some integer d in GM

v .

In the first case, we have edges x
≤d−−→ y and y

≤−d−−−→ x in GM
v , that is

(⋖xy, cxy) = (≤, d) and (⋖yx, cyx) = (≤,−d). Since by hypothesis (⋖, c)
is strictly less than (≤, d), we have either c < d or c = d and ⋖ is the
strict inequality. Hence (⋖, c) + (≤,−d) < (≤, 0) showing that x −→ . . . −→
y

⋖yxcyx−−−−→ x is a negative cycle.

In the second case, we have edges x
<d−−→ y and y

<−d+1−−−−→ x in GM
v , that

is, (⋖xy, cxy) = (<, d) and (⋖yx, cyx) = (<,−d). Here c < d and again

x −→ . . . −→ y
⋖yxcyx−−−−→ x gives a negative cycle. �

We can now prove Proposition 4.4.1. This is the most important obser-
vation used in getting the final inclusion test.

Proof of Proposition 4.4.1

The distance graph min(GLU
v , GZ′) represents the set 〈v〉LU ∩Z ′. By Propo-

sition 4.2.2, the intersection is empty iff min(GLU
v , GZ′) has a negative cycle.

If there exist variables x, y such that Z ′xy + 〈v〉LU
yx < (≤, 0), then there is a

negative cycle x −→ y −→ x in min(GLU
v , GZ′) and hence 〈v〉LU ∩ Z ′ is empty.

This shows the right-to-left direction.

The left-to-right direction is less trivial. Assume that 〈v〉LU∩Z ′ is empty.
Then, there is a negative cycle N in min(GLU

v , GZ′). To prove the proposi-
tion, we aim to show the following.

Aim: To show that the negative cycle N of min(GLU
v , GZ′) can be reduced

to the form:

x
Z′xy−−−→ y

〈v〉LU
yx−−−−−→ x (4.1)

Firstly, since both GLU
v and GZ′ are canonical, we can assume without

loss of generality that no two consecutive edges in N come from the same
graph.

Suppose there are two edges y1 −→ x1 and y2 −→ x2 in N with weights
coming from GLU

v :

y1
〈v〉LU

y1x1−−−−−−−→ x1 −→ · · · −→ y2
〈v〉LU

y2x2−−−−−−−→ x2 −→ · · · −→ y1 (4.2)

Since they are part of a negative cycle, their edge weights should be a finite
value and by Part 1 of Lemma 4.3.3, this means:

vx1 ≤ Ux1 and vx2 ≤ Ux2
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1. Suppose vy1 ≤ Ly1 and vy2 ≤ Ly2. By Part 2 of Lemma 4.3.3, the
edge values y1 −→ x1 and y2 −→ x2 are the same as in G

M
v . Consider the edge:

y1 −→ x2 in G
LU

v

Again, from the same lemma, this edge value comes from GM
v too.

If the value of this edge y1 −→ x2 is smaller than the value of the path
y1 −→ x1 −→ · · · −→ y2 −→ x2 in N , then this path can be replaced by the single
edge y1 −→ x2 to get a smaller negative cycle in min(G

LU
v , GZ).

However, if the value of the path y1 −→ x1 −→ · · · −→ y2 −→ x2 is less than
the edge value y1 −→ x2, then by Lemma 4.4.2:

y1 −→ x1 −→ . . . −→ y2 −→ x2 −→ y1, where x2 −→ y1 comes from GM

v

is a negative cycle. The edge x2 −→ y1 might be infinity in G
LU
v . But as GM

v

is canonical, we can replace y2 −→ x2 −→ y1 −→ x1 by y2 −→ x1. From Lemma
4.3.3, this edge is retained in GLU

v and hence we get a smaller negative cycle.
Therefore in this case, we can eliminate the two edges y1 −→ x1 and

y2 −→ x2 to get a smaller negative cycle containing either y1 −→ x2 or y2 −→ x1.
If N does not contain a variable z such that vz > Lz, this elimination can
be repeatedly applied and N can be reduced to a negative cycle of the form
y −→ x −→ y with vy ≤ Ly, vx ≤ Ux and the edge weights y −→ x coming from
GLU

v and x −→ y coming from GZ′ , exactly as required by (4.1).

2. Suppose vy1 > Ly1. Consider again the two edges y1 −→ x1 and y2 −→ x2
of (4.2) and now suppose that vy1 > Ly1 . By Part 3 of Lemma 4.3.3, the
edge y1 −→ x1 can be replaced by:

y1 −→ x0 −→ x1 of G
LU

v

If there is another variable in N that is greater than its L bound, then the
vertex x0 would occur twice in the negative cycle. From this negative cycle,
we can obtain a smaller negative cycle containing only one occurrence of x0.
Hence, without loss of generality, we can assume that x0 occurs only once
in N . In particular, this gives us that:

vy2 ≤ Ly2

Note that the special variable x0 has vx0 ≤ Lx0 as its value is always
supposed to be 0 and Lx0 is defined to be 0. Now consider the two edges:

x0 −→ x1 and y2 −→ x2

This corresponds to Case 1 as vx0 ≤ Lx0 and vy2 ≤ Ly2 . As we have seen,
these two edges can be eliminated to give a smaller negative cycle containing
either x0 −→ x2 or y2 −→ x1, with the respective value coming from GLU

v .
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If it is the latter edge y2 −→ x1, the smaller negative cycle does not
contain y1 and hence all variables are bounded by L. By Case 1, it can be
reduced to a cycle as required by the proposition.

Let us now consider the former edge x0 −→ x2. We have the cycle:

y1 −→ x0 −→ x2 −→ . . . −→ y1

All the variables other than y1 in the path x0 −→ . . . −→ y1 are bounded by
their L bound. We can therefore assume that all edges in x2 −→ . . . −→ y1
come from GZ′ , because if not, we can apply the argument of Case 1 to
further reduce the cycle. As GZ′ and G

LU
v are canonical, this cycle reduces

to y1 −→ x2 −→ y1 with y1 −→ x2 coming from GLU
v and x2 −→ y1 coming from

Z ′. This again conforms to the form of the cycle required by (4.1). �

4.5 Final steps

We will now consider Steps 3 and 4 of Figure 4.1. Proposition 4.4.1 gives a
useful characterization of when 〈v〉LU ∩Z ′ is empty. To lift this characteriza-
tion to Z 6⊆ a4LU(Z

′) and Proposition 4.1.2, we need to find the least value
of 〈v〉LU

yx from among the valuations v ∈ Z and see if this satisfies the condi-
tion given in Proposition 4.4.1. Recall that 〈v〉LU

yx is the weight of the x− y
constraint defining the LU-region 〈v〉LU , in other words, the weight of the
edge y −→ x in the canonical distance graph GLU

v representing 〈v〉LU . Before
we go ahead looking at the x− y constraints of the LU-regions intersecting
a zone, we consider the classic regions first and look at the x− y constraints
of the classic regions that intersect a zone. Let us call a line x − y = c an
xy-diagonal.

Look at Figure 4.9. We show a zone and the xy-diagonals crossing the
zone. The value of x − y decreases as we move towards the left diagonal
boundary of the zone. The left diagonal boundary is defined by the y − x
constraint of Z (c.f. Figures 4.2 and 4.3). The figure (a) on the top has
the left boundary closed, that is to say the boundary line is included in the
zone. In the bottom one, the boundary line is not included as evident by
the strict inequality constraint for y − x.

First consider Figure 4.9 (a) with the closed boundary line. The left
diagonal boundary is defined by y−x ≤ −1. In the general case, the weight
of the y − x constraint Zxy defining the left boundary will be of the form
(≤, c). Moreover, the least weight of the x − y constraint from among the
regions intersecting Z would be (≤,−c), the negation of the y − x value.

However, if the boundary line is not included in the zone as in Figure 4.9
(b), we will have Zxy to be (<, c), with a strict inequality. The region with
the least value of x − y is the one closest to the left diagonal boundary, as
illustrated in the figure. The value of the x − y constraint for this region
would be (<,−c+ 1), the negation of the y − x value added with one. Due
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Figure 4.9: Value of the xy-diagonal decreases towards the left.

to this asymmetry, we need to define the following notion to handle weights
in a convenient way. We will then use this intuition to get the least value of
the xy-diagonal from among the LU-regions.

For a weight (⋖, c) we define −(⋖, c) as (⋖,−c). We now define a ceiling
function ⌈·⌉ for weights.

Definition 4.5.1 For a real c, let ⌈c⌉ denote the smallest integer that is
greater than or equal to c. We define the ceiling function ⌈(⋖, c)⌉ for a
weight (⋖, c) depending on whether ⋖ equals ≤ or <, as follows:
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⌈(≤, c)⌉ =
{

(≤, c) if c is an integer

(<, ⌈c⌉) otherwise

⌈(<, c)⌉ =
{

(<, c+ 1) if c is an integer

(<, ⌈c⌉) otherwise

The following lemma is one of the two cores for the proof of the main
theorem. It gives the least value of 〈v〉LU

yx from among the valuations v
present in a zone Z.

Proposition 4.5.2 Let Z be a non-empty zone. The least value of 〈v〉LU
yx

for a variable x such that vx ≤ Ux and some other variable y, from among
the valuations v ∈ Z is given by:

{

(<,∞) if Zx0 < (≤,−Ux)

max{⌈−Zxy⌉, ⌈−Zx0⌉ − (<,Ly)} otherwise

Proof
Let G be the canonical distance graph representing the zone Z. We denote
the weight of an edge i −→ j in G by (⋖ij , cij). Recall that this means
Zij = (⋖ij , cij).

We are interested in computing the smallest value of the x−y constraint
defining an LU -region intersecting Z. Additionally we want to restrict to
LU -regions in which all its valuations satisfy x ≤ Ux, that is, we need to
find:

β := min{〈v〉LU

yx | v ∈ Z and vx ≤ Ux}
We call it β. Clearly, if vx > Ux for all valuations v ∈ Z, then β is (<
,∞). When Zx0 < (≤,−Ux), it means that all valuations v ∈ Z satisfy
0 − vx ⋖x0 cx0 and cx0 ≤ −Ux. Moreover ⋖x0 is the strict inequality if
cx0 = −Ux. In consequence, all valuations v ∈ Z satisfy vx > Ux when
Zx0 < (≤,−Ux). Whence β = (<,∞). This corresponds to the first case in
the statement of the lemma.

Let now restrict to the case when Zx0 ≥ (≤,−Ux). By definition of
regions (cf. Definition 4.3) and Lemma 4.3.3, we have for a valuation v:

〈v〉LU

yx =

{

⌈(≤, vx − vy)⌉ if vx ≤ Ux and vy ≤ Ly

(<,−Ly) + ⌈(≤, vx)⌉ if vx ≤ Ux and vy > Ly

(4.3)

Let G′ be the graph in which the edge 0 −→ x has weight min{(≤
, Ux), (⋖0x, c0x)} and the rest of the edges are the same as that of G. This
graph G′ represents the valuations of Z that have vx ≤ Ux: [[G

′]] = {v ∈
Z | vx ≤ Ux}. We show that this set is not empty. For this we check that G′

does not have negative cycles. Since G does not have negative cycles, every
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negative cycle in G′ should include the newly modified edge 0 −→ x. Note
that the shortest path value from x to 0 does not change due to this modified
edge. So the only possible negative cycle in G′ is 0 −→ x −→ 0. But then we
are considering the case when Zx0 ≥ (≤,−Ux), and so Zx0+(≤, Ux) ≥ (≤, 0).
Hence this cycle cannot be negative either. In consequence all the cycles in
G′ are positive and [[G′]] is not empty.

To find β, it is sufficient to consider only the valuations in [[G′]]. As seen
from Equation 4.3, among the valuations in [[G′]], we need to differentiate
between those with vy ≤ Ly and the ones with vy > Ly. We proceed as
follows. We first compute min{〈v〉LU

yx | v ∈ [[G′]] and vy ≤ Ly}. Call this β1.
Next, we compute min{[v]yx | v ∈ [[G′]] and vy > Ly} and set this as β2.
Our required value β would then equal min{β1, β2}.

To compute β1, consider the following distance graph G
′
1 which is ob-

tained from G′ by just changing the edge 0 −→ y to min{(≤, Ly), (⋖0y, c0y)}
and keeping the remaining edges the same as in G′. The set of valuations
[[G′1]] equals {v ∈ [[G′]] | vy ≤ Ly}. If [[G′1]] = ∅, we set β1 to (<,∞) and
proceed to calculate β2. If not, we see that from Equation 4.3, for every
v ∈ [[G′1]], [v]yx is given by ⌈(≤, vx − vy)⌉. Let (⋖1, w1) be the shortest path
from x to y in the graph G′1. Then, we have for all v ∈ [[G′1]], vy − vx ⋖1 w1.
If ⋖1 is ≤, then the least value of [v]yx would be (≤,−w1) and if ⋖1 is <,
one can see that the least value of [v]yx is (<,−w1 + 1). This shows that
β1 = ⌈(⋖1,−w1)⌉. It now remains to calculate (⋖1, w1).

Recall that G′1 has the same edges as in G except possibly different
edges 0 −→ x and 0 −→ y. If the shortest path from x to y has changed in
G′1, then clearly it should be due to one of the above two edges. However
note that the edge 0 −→ x cannot belong to the shortest path from x to y
since it would contain a cycle x −→ . . . 0 −→ x −→ . . . y that can be removed
to give shorter path. Therefore, only the edge 0 −→ y can potentially yield
a shorter path: x −→ . . . −→ 0 −→ y. However, the shortest path from x
to 0 in G′1 cannot change due to the added edges since that would form
a cycle with 0 and we know that all cycles in G′1 are positive. Therefore
the shortest path from x to 0 is the direct edge x −→ 0, and the shortest
path from x to y is the minimum of the direct edge x −→ y and the path
x −→ 0 −→ y. We get: (⋖1, w1) = min{(⋖xy, cxy), (⋖x0, cx0) + (≤, Ly)} which
equals min{Zxy, Zx0 + (≤, Ly)}. Finally, from the argument in the above
two paragraphs, we get:

β1 =







(<,∞) if [[G′1]] = ∅
⌈−Zxy⌉ if [[G′1]] 6= ∅ and Zxy ≤ Zx0 + (≤, Ly)

⌈−Zx0⌉+ (≤,−Ly) if [[G′1]] 6= ∅ and Zxy > Zx0 + (≤, Ly)

(4.4)

We now proceed to compute β2 = min{[v]yx | v ∈ [[G′]] and vy > Ly}.
Let G′2 be the graph which is obtained from G′ by modifying the edge y −→ 0
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to min{Zy0, (<,−Ly)} and keeping the rest of the edges the same as in G′.
Clearly [[G′2]] = min{v ∈ [[G′]] | vy > Ly}.

Again, if [[G′2]] is empty, we set β2 to (<,∞). Otherwise, from Equation
4.3, for each valuation v ∈ [[G′2]], the value of [v]yx is given by (<, ⌈vx⌉−Ly).
For the minimum value, we need the least value of vx from v ∈ [[G′2]]. Let
(⋖2, w2) be the shortest path from x to 0 in G′2. Then, since −vx⋖2w2, the
least value of ⌈vx⌉ would be −w2 if ⋖2 is ≤ and equal to ⌈−w2⌉ if ⋖2 =<
and β2 would respectively be (<,−w2 − Ly) or (<,−w2 + 1 − Ly). It now
remains to calculate (⋖2, w2).

Recall that G′2 is G with 0 −→ x and y −→ 0 modified. The shortest
path from x to 0 cannot include the edge 0 −→ x since it would need to
contain a cycle, for the same reasons as in the β1 case. So we get (⋖2, w2) =
min{Zx0, Zxy + (<,−Ly)}. If Zx0 ≤ Zxy + (<,−Ly), then we take (⋖2, w2)
as Zx0, otherwise we take it to be Zxy + (<,−Ly). So, we get β2 as the
following:

β2 =







(<,∞) if [[G′2]] = ∅
−Zxy + (<, 1) if [[G′2]] 6= ∅ and Zx0 ≥ Zxy + (<,−Ly)

⌈−Zx0⌉+ (<,−Ly) if [[G′2]] 6= ∅ and Zx0 < Zxy + (<,−Ly)

(4.5)

However, we would like to write β2 in terms of the cases used for β1 in
Equation 4.4 so that we can write β, which equals min{β1, β2}, conveniently.

Let ψ1 be the inequation: Zxy ≤ Zx0+(≤, Ly). From Equation 4.4, note
that β1 has been classified according to ψ1 and ¬ψ1 when [[G′1]] is not empty.
Similarly, let ψ2 be the inequation: Zx0 ≥ Zxy + (<,−Ly). From Equation
4.5 we see that β2 has been classified in terms of ψ2 and ¬ψ2 when [[G′2]] is
not empty. Notice the subtle difference between ψ1 and ψ2 in the weight
component involving Ly: in the former the inequality associated with Ly is
≤ and in the latter it is <. This necessitates a bit more of analysis before
we can write β2 in terms of ψ1 and ¬ψ1.

Suppose ψ1 is true. So we have (⋖xy, cxy) ≤ (⋖x0, cx0+Ly). This implies:
cxy ≤ cx0 + Ly. Therefore, cx0 ≥ cxy − Ly. When cx0 > cxy − Ly, ψ2 is
clearly true. For the case when cx0 = cxy − Ly, note that in ψ2 the right
hand side is always of the form (<, cxy − Ly), irrespective of the inequality
in Zxy and so yet again, ψ2 is true. We have thus shown that ψ1 implies ψ2.

Suppose ¬ψ1 is true. We have (⋖xy, cxy) > (⋖x0, cx0+Ly). If cxy > cx0+
Ly, then clearly cx0 < cxy − Ly implying that ¬ψ2 holds. If cxy = cx0 + Ly,
then we need to have ⋖xy equal to ≤ and ⋖x0 equal to <. Although ¬ψ2
does not hold now, we can safely take β2 to be ⌈−Zx0⌉ + (<,−Ly) as its
value is in fact equal to −Zxy + (<, 1) in this case. Summarizing the above



4.5. Final steps 87

two paragraphs, we can rewrite β2 as follows:

β2 =







(<,∞) if [[G′2]] = ∅
−Zxy + (<, 1) if [[G′2]] 6= ∅ and Zxy ≤ Zx0 + (≤, Ly)

⌈−Zx0⌉+ (<,−Ly) if [[G′2]] 6= ∅ and Zxy > Zx0 + (≤, Ly)

(4.6)

We are now in a position to determine β as min{β1, β2}. Recall that we
are in the case where Zx0 ≤ (≤,−Ux) and we have established that [[G

′]] is
non-empty. Now since [[G′]] = [[G′1]] ∪ [[G′2]] by construction, both of them
cannot be simultaneously empty. Hence from Equations 4.4 and 4.6, we get
β, the min{β1, β2} as:

β=

{

⌈−Zxy⌉ if Zxy ≤ Zx0 + (≤, Ly)

⌈−Zx0⌉+ (<,−Ly) if Zxy > Zx0 + (≤, Ly)
(4.7)

There remains one last reasoning. To prove the lemma, we need to show
that β = max{⌈−Zxy⌉, ⌈−Zx0⌉ + (<,−Ly)}. For this it is enough to show
the following two implications:

Zxy ≤ Zx0 + (≤, Ly)⇒ ⌈−Zxy⌉ ≥ ⌈−Zx0⌉+ (<,−Ly)

Zxy > Zx0 + (≤, Ly)⇒ ⌈−Zxy⌉ ≤ ⌈−Zx0⌉+ (<,−Ly)

We prove only the first implication. The second follows in a similar fash-
ion. Let us consider the notation (⋖xy, cxy) and (⋖x0, cx0) for Zxy and Zx0

respectively. So we have:

(⋖xy, cxy) ≤ (⋖x0, cx0) + (≤, Ly)

⇒ (⋖xy, cxy) ≤ (⋖x0, cx0 + Ly)

If the constant cxy < cx0 + Ly, then −cxy > −cx0 − Ly and we clearly get
that ⌈−Zxy⌉ ≥ ⌈−Zx0⌉+(<,−Ly). If the constant cxy = cx0+Ly and if ⋖x0

is ≤, then the required inequation is trivially true; if ⋖x0 is <, it implies
that ⋖xy is < too and clearly ⌈(<,−cxy)⌉ equals ⌈(<,−cx0)⌉+ (<,−Ly). �

We have now established Step 2 and 3 of the schema shown in Figure 4.1.
We have a simple method that tells us when an LU-region 〈v〉LU does not
intersect a zone Z ′ (Proposition 4.4.1). We have also characterized the
potential valuation v from Z that could satisfy the non-intersection condition
with Z ′ (Proposition 4.5.2). This gives the necessary tools to solve the final
Step 4 of Figure 4.1. The following theorem presents the efficient inclusion
test Z 6⊆ a4LU(Z

′).
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Theorem 4.5.3 Let Z,Z ′ be non-empty zones. Then, Z 6⊆ a4LU(Z
′) iff

there exist two variables x, y such that:

Zx0 ≥ (≤,−Ux) and Z
′
xy < Zxy and Z ′xy + (<,−Ly) < Zx0

Proof
From Proposition 4.1.2, we know that Z 6⊆ a4LU(Z

′) iff there exists a valu-
ation v ∈ Z such that 〈v〉LU does not intersect Z ′.

From Proposition 4.4.1, we know that 〈v〉LU ∩Z ′ is empty iff there exists
a variable x such that vx ≤ Ux and a variable y such that:

Z ′xy + 〈v〉LU

yx < (≤, 0) (4.8)

This is possible for variables x, y iff the least value of 〈v〉LU
yx from among the

valuations in Z satisfies the inequation (4.8) with Z ′xy.
This is where we use Proposition 4.5.2. According to this proposition,

for (4.8) to be true for some valuation v ∈ Z, we would need Zx0 ≥ (≤,−Ux)
and:

Z ′xy + ⌈−Zxy⌉ < (≤, 0) and Z ′xy + ⌈−Zx0⌉ − (<,Ly) < (≤, 0) (4.9)

Consider the first inequality: Z ′xy + ⌈−Zxy⌉ < (≤, 0). Let Zxy be
(⋖xy, cxy). If ⋖xy is the weak inequality ≤, then ⌈−Zxy⌉ is (≤,−cxy) and
hence the condition becomes: Z ′xy+(≤,−cxy) < (≤, 0). This is equivalent to
saying Z ′xy < (≤, cxy), that is, Z ′xy < Zxy. Now, if ⋖xy is the strict inequality
<, then ⌈−Zxy⌉ becomes (<,−cxy + 1) and hence the condition becomes:
Z ′xy+(<,−cxy+1) < (≤, 0). This is equivalent to saying Z ′xy < (<, cxy). In
both cases, the first inequality of Equation (4.9) becomes Z ′xy < Zxy.

By a similar reasoning, the second inequality of Equation (4.9) can be
seen to correspond to Z ′xy + (<,−Ly) < Zx0. This proves the theorem. �

Clearly, the test involves a comparison of corresponding edges in the
distance graphs GZ and GZ′ and takes a worst case of O(|X|2) number of
steps. Notice that in fact the test requires only two tests for every pair of
clocks.

4.6 Efficient inclusion Z ⊆ ClosureM(Z ′)

As a continuation to the discussion in Section 3.4, from Theorem 4.5.3,
we get the inclusion test Z ⊆ ClosureM (Z

′) as a bonus. By definition,
ClosureM (Z

′) is the union of [v′]M for all v′ ∈ Z ′. When L = U = M ,
the LU -region 〈v〉LU becomes the classic region [v]M . To know if Z 6⊆
ClosureM (Z

′), we need to know if there exists a valuation v ∈ Z such that
v does not belong to [v′]M for every valuation v′ ∈ Z ′. It can be easily seen
that this is equivalent to saying no valuation v′ ∈ Z ′ belongs to the region
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[v]M , that is [v]M ∩ Z ′ is empty. This gives us a characterization exactly
similar to Proposition 4.1.2. We thus get the inclusion test for ClosureM by
just substituting L = U =M in the above theorem.

Corollary 4.6.1 Let Z,Z ′ be non-empty zones. Then, Z 6⊆ ClosureM (Z
′)

iff there exist variables x, y such that:

Zx0 ≥ (≤,−Mx) and Z
′
xy < Zxy and Z

′
xy + (<,−My) < Zx0

4.7 Concluding remarks

In this chapter, we have given an efficient inclusion test Z 6⊆ a4LU(Z
′) in

Theorem 4.5.3 that has the same complexity as Z 6⊆ Z ′. Not only the
complexities are the same, the test is a slight modification of the edge by
edge comparison used for Z 6⊆ Z ′. To know if Z 6⊆ Z ′ we need to check if
there are x, y such that Z ′xy < Zxy. In the a4LU inclusion, in addition to this
there are two tests: Zx0 ≥ (≤,−Ux) and Z

′
xy + (<,−Ly) < Zx0. This shows

that the test Z 6⊆ a4LU(Z
′) can be implemented as efficiently as Z 6⊆ Z ′.

We now summarize the important steps leading to our result. A pictorial
representation has already been given in Figure 4.1. We will now list in more
detail.

1. We first modified the question of inclusion Z 6⊆ a4LU(Z
′) to a question

of intersection in Proposition 4.1.2. The proposition states that Z 6⊆
a4LU(Z

′) iff there exists v ∈ Z such that 〈v〉LU ∩ Z ′ is empty.

2. We then proceeded to study the intersection 〈v〉LU ∩Z ′. Our first step
was to define a convenient representation to study this intersection. To
this regard, we defined distance graphs in Section 4.2 and characterized
when a distance graph has an empty solution set in Proposition 4.2.2.
Given distance graphs G1, G2, we denoted by min(G1, G2) the graph
representing the intersection [[G1]]∩ [[G2]]. From Proposition 4.2.2, the
intersection [[G1]]∩ [[G2]] is empty iff min(G1, G2) has a negative cycle.

3. For a zone Z ′, we know the canonical distance graph representation,
say GZ′ . In Definition 4.3.1, we gave the canonical distance graph G

LU
v

representation of an LU-region 〈v〉LU so that we could use the result
of the previous step.

4. Having the distance graphs GZ′ and G
LU
v , we analyzed min(GZ′ , G

LU
v )

for negative cycles in Section 4.4 and came up with Proposition 4.4.1
that says that there is a negative cycle iff there are two variables x, y
with vx ≤ Ux such that Z

′
xy + 〈v〉LU

yx < (≤, 0). Thus, this intersection
reduces to looking at pairs of clocks.
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5. The final step involved transferring Proposition 4.4.1 and Proposi-
tion 4.1.2 to the final goal Z 6⊆ a4LU(Z

′). In Proposition 4.5.2, we
give the least value of 〈v〉LU

yx from among the valuations v ∈ Z with
vx ≤ Ux. If Z 6⊆ a4LU(Z

′) then this least value should satisfy the
condition Z ′xy+ 〈v〉LU

yx < (≤, 0). We use this value and end up with the
efficient inclusion test in Theorem 4.5.3.

6. As a corollary to a4LU inclusion, we also get the ClosureM inclusion
test by substituting L = U =M (Corollary 4.6.1).

From Theorem 4.5.3, one can see that the larger the L and U bounds,
the higher the chance that Z 6⊆ a4LU(Z

′). Therefore, if one gets as small
LU -bounds as possible, one could expect more inclusions to happen during
the reachability algorithm. Of course, if a zone Z is included into a4LU(Z

′)
of an already visited zone Z, the algorithm does not further explore Z. One
therefore hopes that the algorithm terminates faster when the LU -bounds
are smaller. This is the topic of the next chapter where we see how to obtain
tight LU -bounds.



Chapter 5

Tightening the bounds

Previous chapters have shown that the a4LU abstraction is the coarsest pos-
sible abstraction when using only LU-bounds. We have also seen how to use
the a4LU abstraction efficiently in implementations. The optimality shows
that one cannot do better than the a4LU abstraction if we have only the LU-
bounds. The question now is if we can do something about the LU-bounds
themselves. As we noted in the concluding remarks of the previous chapter,
the test for a4LU (Theorem 4.5.3) shows that the bigger the LU-bounds,
the greater is the possibility for non-inclusion. Therefore, the smaller the
LU -bounds, the better are the chances for inclusion, and hence one would
hope to get a smaller reachability tree. The goal of this chapter is to get
LU -bounds as tight as possible so that reachability tree we obtain is a still
sound approximation of the behaviour.

In Section 2.6, we recalled the state-of-the-art method to compute
bounds by performing a static analysis on the automaton. By this method,
a bound function is assigned to every state q of the automaton. Paths in
the automaton starting from q are analyzed. All guards that occur before
a corresponding reset are considered and the maximum constant among
these guards is assigned at state q. Automaton Astat shown in Figure 2.14
gives very good gains by using the static analysis approach.

However, one could do better. Consider the automaton shown in Fig-
ure 5.1.

q0 q1 q2 q3

x = 1
{x}

x ≥ 2 x ≤ 1

x = 106

y = 106

Figure 5.1: Timed automaton Asem.

Automaton Asem does not have resets of clocks x and y on the transition
from q0 to q1 as in the automaton of Figure 2.14. By the static analysis ap-

91
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proach, one would get Ly(q0) = Uy(q0) = 106. Same for clock x. This gives
once again an order of 106 nodes in the zone graph. However, a closer look
reveals that the state q2 is not at all reachable from q0. We need to know
the semantics. But we do not know this unless we run the reachability algo-
rithm. In the following section, we will show how to calculate better bounds
on-the-fly during the exploration of the zone graph. The bounds we calculate
make use of the extra information gained during the exploration procedure.
We have implemented this on-the-fly constant propagation algorithm along
with the coarser a4LU abstraction discussed in the previous chapter. We
validate the gains of our proposed improvements by experimental results on
some standard verification case studies (c.f.Table 5.1).

Organization of the chapter

There are two sections in this chapter. Section 5.1 describes a new algo-
rithm for reachability that calculates bounds on-the-fly during exploration.
In Section 5.2, we report on some experiments conducted with the new algo-
rithm and the a4LU abstraction. We compare the results the new algorithm
with the state-of-the-art algorithm that uses the static analysis approach to
calculate bounds, and uses the convex abstraction Extra+LU .

5.1 Constant propagation

We can improve on the idea of static analysis (c.f. Section 2.6) that computes
a bound function for each state q. We will compute these bounding functions
on-the-fly and they will depend also on a zone and not just a state. We wish
to associate bound functions LU for every node (q, Z) in the zone graph
ZG(A). We look at paths starting from (q, Z) in ZG(A) and search for a
relevant constant that appears before a corresponding reset.

(q, Z) −→ (q1, Z1) −→ . . . −→ (qn, Zn)

no resets of x

x⋗c−−→ (q′, Z ′)

An obvious gain is that we will never consider constraints coming from un-
reachable transitions. But the question is how do we know the constants
before actually running the reachability algorithm. This is the main chal-
lenge in the algorithm that we propose below.

Our modified algorithm is given in Algorithm 5.1. It computes a tree
whose nodes are triples (q, Z, LU) where (q, Z) is a node of ZG(A) and
LU are bound functions. Each node (q, Z, LU) has as many child nodes
(qs, Zs, LsUs) as there are successors (qs, Zs) of (q, Z) in ZG(A). Notice
that this includes successors with an empty zone Zs, which are however
not further unfolded. These nodes must be included for correctness of our
constant propagation procedure. By default bound functions map each clock
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Algorithm 5.1: Reachability algorithm with on-the-fly bound computation and
a4LU abstraction.

1 function main ( ) :
2 Add (q0, Z0, L0U0) to the s tack
3 while ( s tack 6= ∅) do

4 Remove (q, Z, LU) from the stack
5 exp lo r e (q, Z, LU )
6 r e s o l v e ( )
7 return ”empty”
8

9 function exp lo r e (q, Z, LU ) :
10 i f (q i s a ccept ing )
11 exit ”not empty”
12 i f (∃ (q, Z′, L′U ′) nontenta t ive s . t . Z ⊆ a4L′U′(Z′))
13 mark (q, Z, LU) t e n t a t i v e wrt (q, Z′, L′U ′)
14 LU := L′U ′

15 propagate (parent(q, Z, LU))
16 else

17 propagate (q, Z, LU )
18 for each (qs, Zs, LsUs) s . t . (q, Z, LU)⇒ (qs, Zs, LsUs) do

19 i f (Zs 6= ∅)
20 exp lo r e (qs, Zs, LsUs )
21

22 function r e s o l v e ( ) :
23 for each (q, Z, LU) t e n t a t i v e w. r . t . (q, Z′, L′U ′) do

24 i f (Z 6⊆ a4L′U′(Z′))
25 mark (q, Z, LU) nontenta t ive
26 LU := −∞ ;
27 propagate (parent(q, Z, LU))
28 Add (q, Z, LU) to s tack
29

30 function propagate (q, Z, LU ) :
31 LU := max

(q,Z,LU)
g;R
⇒ (q′,Z′,L′U′)

maxedge (g,R, L′U ′ )

32 i f (LU has changed )
33 for each (qt, Zt, LtUt) t e n t a t i v e wrt (q, Z, LU) do

34 LtUt := LU ;
35 propagate (parent(qt, Zt, LtUt))
36 i f ((q, Z, LU) 6= (q0, Z0, L0U0))
37 propagate (parent(q, Z, LU))
38

39 function maxedge (g,R, LU ) :
40 l et LR = λx. i f x ∈ R then −∞ else Lx

41 l et UR = λx. i f x ∈ R then −∞ else Ux

42 l et Lg = λx. i f x > c or x ≥ c in g then c else −∞
43 l et Ug = λx. i f x < c or x ≤ c in g then c else −∞
44 L = λx. max(LR(x), Lg(x))
45 U = λx. max(UR(x), Ug(x))
46 return (LU)
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to −∞. They are later updated as explained below. Each node is further
marked either tentative or nontentative. The leaf nodes (q, Z, LU) of the
tree are either deadlock nodes (either there is no transition out of state q or Z
is empty), or tentative nodes. All the other nodes are marked nontentative.

Our algorithm starts from the root node (q0, Z0, L0U0), consisting of the
initial state, initial zone, and the function mapping each clock to −∞. It
repeatedly alternates an exploration and a resolution phase.

Exploration phase

Before exploring a node n = (q, Z, LU) the function explore checks if q
is accepting and Z is not empty; if it is so then A has an accepting run.
Otherwise the algorithm checks if there exists a nontentative node n′ =
(q′, Z ′, L′U ′) in the current tree such that q = q′ and Z ⊆ a4L′U′(Z

′). If yes,
n becomes a tentative node and its exploration is temporarily stopped as
each state reachable from n is also reachable from n′, with respect to the
current values L′U ′ of n′. If none of these holds, the successors of the node
are explored. The exploration terminates since a4LU has a finite range.

When the exploration algorithm gets to a new node, it propagates the
bounds from this node to all its predecessors. The goal of these propagations
is to maintain the following invariant. For every node n = (q, Z, LU):

1. if n is nontentative, then α is the maximum of the LsUs from all
successor nodes (qs, Zs, LsUs) of n (taking into account guards and
resets as made precise in the function maxedge);

2. if n is tentative with respect to (q′, Z ′, L′U ′), then LU is equal to L′U ′.

The result of propagation is analogous to the inequalities seen in the static
guard analysis [BBFL03], however now applied to the zone graph, on-the-
fly. Hence, the bounds associated to each node (q, Z, LU) never exceed those
that are computed by the static guard analysis.

A delicate point about this procedure is handling of tentative nodes.
When a node n is marked tentative, we have LU = L′U ′. Indeed, exploring
n would have resulted in bounds LU not bigger than L′U ′ and hence n is
covered by (q′, Z ′, L′U ′). However the value of L′U ′ may be updated when
the tree is further explored. Thus each time we update the bounds function
of a node n′, it is not only propagated upward in the tree but also to the
nodes that are tentative with respect to n′. When bounds get updated, n
may not be covered by n′ anymore. This is taken care of in the resolution
phase.

Each exploration phase terminates as in the explore procedure the
bound functions in each node never decrease and are bounded. From the in-
variants above, we get that in every node, LU is a solution to the equations
in (2.3) applied on ZG(A).
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It could seem that the algorithm will be forced to do a high number
of propagations of bounds. The experiments reported in Section 5.2 show
that the present very simple approach to bound propagation is good enough.
Since we propagate the bounds as soon as they are modified, most of the
time, the value of LU does not change in line 31 of function propagate.
In general, bounds are only propagated on very short distances in the tree,
mostly along one single edge. For this reason we do not concentrate on opti-
mizing the function propagate. In the implementation we use the presented
function augmented with a minor “optimization” that avoids calculating
maximum over all successors in line 31 when it is not needed.

Resolution phase

Finally, as the bounds may have changed since n has been marked tentative,
the function resolve checks for the consistency of tentative nodes. If Z ⊆
a4L′U′(Z

′) is not true anymore, n needs to be explored. Hence it is viewed
as a new node: the bounds are set to −∞ and n is pushed on the stack for
further consideration in the function main. Setting α to −∞ is safe as α
will be computed and propagated when n is explored. We perform also a
small optimization and propagate this bound upward, thereby making some
bounds decrease.

The resolution phase may provide new nodes to be explored. The algo-
rithm terminates when this is not the case, that is when all tentative nodes
remain tentative. We can then conclude that no accepting state is reachable.
Note that the overall algorithm should terminate, that is, at some point of
time, all the tentative nodes should remain tentative. As we have seen, the
bounds in a node (q, Z) are not bigger than the bounds obtained for q by
static analysis. So at some point of time, every tentative node should be
covered by a non-tentative node, as a4LU is a finite abstraction.

Theorem 5.1.1 An accepting state is reachable in ZG(A) iff the algorithm
reaches a node with an accepting state and a non-empty zone.

The right to left direction is straightforward, so we concentrate on the
opposite direction. The left to right implication of the theorem follows from
the next lemma.

Lemma 5.1.2 For every (q, Z) reachable in ZG(A), there exists a non ten-
tative node (q, Z1, L1U1) in the tree constructed by the LU-algorithm, such
that Z ⊆ a4L1U1

(Z1).

Proof
The hypothesis is vacuously true for (q0, Z0). Assume that the hypothesis is
true for a node (q, Z) ∈ ZG(A). We prove that the lemma is true for every
successor of (q, Z).
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From hypothesis, there exists a node (q, Z1, L1, U1) in the tree con-
structed by Algorithm 5.1 such that Z ⊆ a4L1U1

(Z1). Let t = (q, g, r, q′)
be a transition of A and let (q, Z) ⇒t (q′, Z ′) ∈ ZG(A). There are two
cases.

(q, Z1) is not tentative The scenario of this case is depicted in the figure
below:

(q, Z) (q, Z1, L1U1)

(q′, Z ′) (q′, Z ′1, L
′
1U

′
1)

⇒ ⇒

t t

Z ⊆ a4L1U1
(Z′)

Is Z′ ⊆ a4
L′

1
U′

1

(Z′1)?

ZG(A) Algorithm 5.1

We know that Z ⊆ a4L1U1
(Z1). We want to prove that Z ′ ⊆ a4L′1U

′
1
(Z ′1).

For this, we need to show that for every valuation v′ ∈ Z ′ there is a valuation
v′1 ∈ Z ′1 that is simulating v′ with respect to the bounds L′1U ′1, that is:

v′ 4L′1U
′
1
v′1

Recall the definition of the transition relation ⇒t given in Defini-
tion 2.3.1. According to the definition:

Z ′ = {v′ | ∃v ∈ Z, ∃δ ∈ R≥0 : v →t→δ v′}

Let v′a be a valuation in Z
′ such that it is obtained from Z by the action

transition →t:

there exists v ∈ Z such that v →t v′a

By hypothesis, we have Z ⊆ a4L1U1
(Z1). Hence for the valuation v that

belongs to Z, there exists v1 ∈ Z1 such that:

v 4L1U1
v1

Since the transition →t is enabled from v, it is enabled from v1 too. The
successor of v after →t is v′a. Let v1 →t v′1. Since 4L1U1

is a simulation
relation, we have:

v′a 4L1U1
v′1
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We now want to show that the above simulation is true with respect to
the bounds L′1U

′
1. From the invariants of Algorithm 5.1, we know that for all

x not reset in the transition t, we have L′1(x) ≤ L1(x) and U
′
1(x) ≤ U1(x).

For all x reset in the transition, we have v′a(x) = v′1(x) = 0. Therefore, from
Definition 2.5.1 of the 4LU simulation relation, we get that:

v′a 4L′1U
′
1
v′1

v′a + δ 4L′1U
′
1
v′1 + δ

for all δ ∈ R≥0. Recall that v′a is a valuation obtained from some v ∈ Z by
an action transition. By the definition of ⇒t, every valuation in Z ′ is of the
form v′a + δ. Thus, we get that Z ′ ⊆ a4L′1U

′
1
(Z ′1).

(q, Z1) is tentative If it is a tentative node, we know that there exists a
non-tentative node (q, Z2, L2U2) in the tree constructed by the LU-algorithm
such that Z1 ⊆ a4L2U2(Z2). The rest of the argument is the same as in the
previous case with (q, Z2, L2U2) instead of (q, Z1, L1U1).

�

5.2 Experiments

We have implemented the a4LU inclusion test (Theorem 4.5.3) and the con-
stant propagation Algorithm 5.1 on a prototype tool and have tested it on
classical benchmarks. The results are presented in Table 5.1, where the ef-
fect of the a4LU abstraction and on-the-fly bounds are compared separately.
Detailed explanations follow.

Let us consider columns 4-5 showing the effect of the a4LU abstraction.
The FDDI protocol shows a noticeable gain due to the a4LU abstraction.
The situation observed on the FDDI protocol is explained in Figure 5.2 on
the left. For the zone Z in the figure, by definition Extra+LU (Z

′) = Z ′, and
in consequence Z 6⊆ Extra+LU (Z

′). However, Z ⊆ a4LU(Z
′). This leads to

quicker inclusions and hence fewer nodes. Note that in the FDDI protocol
with n processes, the DBMs are rather big square matrices of order 3n+ 2.
But still, our inclusion test based on a4LU is competitive in the running
time. In the other benchmarks that we have tried, the a4LU abstraction
does not seem to give a significant gain, but nevertheless the inclusion test
does not take much extra time either. More importantly, this inclusion
test and the structure of the algorithm has enabled the application of the
constant propagation algorithm which gives us substantial gains.

We now consider the columns 6-7 that tabulate the experiments per-
formed with the constant propagation algorithm. The improvement comes
from the on-the-fly computation of the LU-bounds as demonstrated by the
examples A2 (Figure 5.2), Fischer and CSMA/CD that correspond to three
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Model Extra
+
LU

, sa a4LU , sa a4LU , otf UPPAAL
nodes s. nodes s. nodes s. nodes s.

A1 10003 0.09 10002 0.11 2 0.00 10003 0.07
A2 2003 0.32 2002 0.73 6 0.00 2003 0.01
A3 10004 0.39 10003 0.81 3 0.00 10004 0.32

CSMA/CD7 5923 0.38 5923 0.40 5832 0.48 - T.O.
CSMA/CD8 19017 1.48 19017 1.60 18701 2.00 - T.O.
CSMA/CD9 60783 5.91 60783 6.48 59816 10.65 - T.O.
FDDI10 525 0.04 421 0.04 421 0.04 12049 2.43
FDDI20 2045 0.62 1641 0.64 1641 0.60 - T.O.
FDDI30 4565 3.16 3661 3.46 3661 3.10 - T.O.
Fischer7 18353 0.56 18353 0.61 11372 0.56 18374 0.35
Fischer8 85409 2.80 85409 3.14 39412 2.30 85438 1.53
Fischer9 397989 14.04 397989 16.38 133503 9.17 398685 8.95
Fischer10 - T.O. - T.O. - T.O. 1827009 53.44

Table 5.1: Effect of a4LU and on-the-fly bounds listed separately. Columns 2-3 show
results of the state-of-the-art algorithm with Extra+

LU abstraction, and bounds by
static analysis (Section 2.6). Columns 4-5 change the abstraction to a4LU and keep
the bounds from static analysis. Columns 6-7 consider both the a4LU abstraction
and on-the-fly bounds (Algorithm 5.1). Columns 8-9 consider the tool UPPAAL
4.1.3 with options (-n4 - C -01). Experimental results: number of visited nodes
and running time with a timeout (T.O.) of 60 seconds. Experiments done on a
MacBook with 2.4GHz Intel Core Duo processor and 2GB of memory running
MacOS X 10.6.7.

different situations. In the A2 example, the transition that yields the big
bounds Ly = Uy = 104 on y in q0 is not reachable from any (q0, Z), hence
we just get the lower bound Ly = 20 on y in (q0, Z), and a subsequent gain
in performance.

The automaton A1 in Figure 5.2 illustrates the gain on the CSMA/CD
protocol. The transition from q0 to q1 is disabled as it must synchronize on
letter a!. The static analysis algorithm ignores this fact, hence it associates
bound Ly = 104 to y in q0. Since our algorithm computes the bounds on-the-
fly, y is associated only the bound Uy = 10 in every node (q0, Z). We observe
that algorithms using static analysis visit 10003 nodes on ZG(A1) whereas
using on-the-fly bounds needs to visit only 2 nodes. The same situation
occurs in the CSMA/CD example. However despite the improvement in the
number of nodes the cost of computing the bounds impacts the running time
negatively.

The gains that we observe in the analysis of the Fischer’s protocol are
explained by the automaton A3 in Figure 5.2. A3 has a bounded integer
variable n that is initialized to 0. Hence, the transitions from q0 to q2, and
from q1 to q2, that check if n is equal to 10 are disabled. This is ignored by
the static analysis algorithm that associates the bound Ly = 104 to clock
y in q0. Our algorithm however associates only the bound Uy = 10 to y in
every node (q0, Z). We observe that static analysis requires visits to 10004
nodes whereas on-the-fly constant propagation algorithm only visits 3 nodes.
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Figure 5.2: Examples explaining gains obtained with the algorithm.

A similar situation occurs in the Fischer’s protocol.

We have also included a comparison of our algorithm with the tool UP-
PAAL itself. In columns 8-9 we present the results of UPPAAL 4.1.3 with
the options (-n4 -C -o1). Since we have not considered symmetry reduc-
tion [HBL+04] in our tool, we have not used it in UPPAAL either.

The comparison to UPPAAL is not meaningful for the CSMA/CD and
the FDDI protocols. Indeed, UPPAAL runs out of time even if we signifi-
cantly increase the time allowed; switching to breadth-first search has not
helped either. We suspect that this is due to the order in which UPPAAL
takes the transitions in the automaton. For this reason in columns 1 and 2,
we provide results from our own implementation of UPPAAL’s algorithm
that takes transitions in the same order as the implementation of our algo-
rithm. We include the last row to underline that our implementation is not
as mature as UPPAAL. We strongly think that UPPAAL could benefit from
methods presented here. Although RED [Wan04] also uses approximations,
it is even more difficult to draw a meaningful comparison with it, since it
uses symbolic state representation unlike UPPAAL or our tool. Since this
thesis is about approximation methods, and not tool comparison, we leave
more extensive comparisons as further work.

5.3 Concluding remarks

In this chapter, we have seen a new algorithm to obtain bounds on-the-
fly during the exploration of the zone graph (Algorithm 5.1). We have
proved the correctness of our approach in Theorem 5.1.1. The static analysis
approach assigns bounds to every state q of the automaton; in our approach,
we assign bounds to every (q, Z) of the zone graph. The bounds we assign
to each (q, Z) are never bigger than the ones obtained by static analysis
for the state q. The immediate gain is that we do not consider guards on
transitions from unreachable states.
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We have discussed in Section 5.2 the gains observed by our algorithm
using a4LU abstraction and on-the-fly bounds computation. We see that
most of the observed gains come from on-the-fly bounds. These on-the-fly
bounds help to prune the search to a considerable extent. We believe that
over bigger models, the gains would be much more conspicuous. These gains
also show that for future, one could try to use more information from the
reachability tree than just LU-bounds to cut the search sooner.

On the other hand, it remains to understand better the effect of a4LU . In
the examples that we have considered, a4LU has a gain in one of them. In the
future, we would like to find examples where a4LU wins over its convex coun-
terpart by a bigger margin. This would in particular help understand the
extra power of the non-convex a4LU abstraction in the reachability analysis.
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Chapter 6

Preliminaries

In this part, we consider infinite behaviours of timed automata. Since timed
automata model reactive systems that continuously interact with the en-
vironment, it is interesting to consider questions related to their infinite
executions. In particular, the liveness question asks if some property occurs
repeatedly throughout the execution of the automaton. A standard way to
model liveness is by using a Büchi condition.

While considering infinite executions, one has to eliminate the so-called
Zeno runs. A run is said to be Zeno if an infinite number of events happen
in a finite time interval. During verification of a liveness property, one asks
if there exists an infinite run that violates the property. If this run turns out
to be a Zeno run, then it is not a realistic counter-example to the property.
Therefore, the aim during verification of a liveness property is to detect if
there exists a non-Zeno run that violates the property. The first goal of this
part of the thesis is to study this problem: given a timed automaton, does
there exist a non-Zeno run satisfying the Büchi accepting condition. We call
this the Büchi non-emptiness problem for timed automata.

As we saw in the previous part, state reachability has been handled by
making use of regions, zones and simulation graphs (Sections 2.2, 2.3, 2.4).
This has been possible since every finite run of the automaton corresponds
to a finite run of the simulation graph and vice versa. It has been shown
that the convex abstractions of Figure 2.12 are sound and complete even
for repeated state reachability, that is, every infinite run of the automaton
corresponds to an infinite run of the simulation graph and vice versa [TYB05,
Li09]. To detect non-Zeno runs, the automaton can be transformed to what
is called a strongly non-Zeno automaton [TYB05]. This transformation adds
an extra clock to take care of non-Zenoness. Our problem then reduces to
checking emptiness of an untimed Büchi automaton. This problem has been
extensively studied. The best known algorithms for solving this problem
rely on a variant of Tarjan’s algorithm for detecting strongly connected
components, known as the Couvreur’s algorithm [CDLP05, Cou99, GS09].

103
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On a parallel note, while implementing timed automata, it is required
to check for the presence of pathological Zeno runs. Note that this is not
the negation of the non-Zenoness problem. For this case, a sufficient-only
condition on the syntax of the automaton that ensures the absence of Zeno
runs has been proposed [GB07].

Organization of the chapter

This chapter brings together the literature related to the problem of de-
tecting infinite runs of the automaton and classifying them as non-Zeno or
Zeno. We start with the notion of timed Büchi automata in Section 6.1 and
define the problems that we are interested in. In Section 6.2, we will see that
regions are sound and complete for repeated state reachability. In the next
Section 6.3, we will see this is true for zones and abstractions defined using
a time-abstract simulation. Subsequently, we recall the strongly non-Zeno
construction in Section 6.4. This is followed by Section 6.5 which details the
techniques known for the detection of Zeno-runs. We end this chapter with
an outline (Section 6.6) that summarizes our results presented the following
chapters.

6.1 Büchi non-emptiness problem

Let X be a set of clocks. We will now consider infinite runs of a timed
automaton. Let A = (Q, q0, X, T,Acc) be a timed automaton as in Defini-
tion 2.1.1.

An infinite run of A is an infinite sequence of configurations connected
by transitions, starting from the initial state q0 and the initial valuation
v0 = 0:

(q0, v0)
δ0,t0−−−→ (q1, v1)

δ1,t1−−−→ · · ·

While considering infinite runs, we need to define a different notion of
acceptance. We consider the Büchi accepting condition.

Definition 6.1.1 (Büchi condition, Zeno runs and non-Zeno runs)
A run σ satisfies the Büchi condition if it visits accepting configurations
infinitely often, that is configurations with a state from Acc. The duration
of the run is the accumulated delay:

∑

i≥0 δi. An infinite run σ is Zeno if
it has a finite duration. Otherwise, it is non-Zeno.

The problem we are interested is termed the Büchi non-emptiness prob-
lem.

Definition 6.1.2 (Büchi non-emptiness) The Büchi non-emptiness
problem is to decide if A has a non-Zeno run satisfying the Büchi condition.
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The Büchi non-emptiness problem is known to be Pspace-complete
thanks to [AD94]. As in the case of reachability, we consider diagonal free
timed automata, where clock constraints like x−y ≤ 1 are disallowed. Since
we are interested in the Büchi non-emptiness problem, we can consider au-
tomata without an input alphabet. Also, we consider automata without
invariants since they can be simulated by guards.

Remark 6.1.3 (Timed Büchi automata) In this part of the thesis, we
refer to timed automata as timed Büchi automata (TBA) whenever we talk
about the Büchi non-emptiness problem.

6.2 Regions

We have seen in Chapter 2 that the analysis of timed automata requires an
abstraction of its uncountable space of configurations into a finite graph that
captures the behaviour of the automaton with respect to a certain property.
For reachability, we have seen different abstractions in the previous part of
the thesis. We will now see the different abstractions that are sound and
complete with respect to Büchi emptiness.

Recall the notion of regions and region graph RG(A) as defined in Sec-
tion 2.2 for timed automata. We use the same definitions for a timed Büchi
automaton. By definition of the region graph, for every run of the automa-
ton, there is a run of the region graph. This is true even for infinite runs.
In Lemma 2.2.7, we showed that the transitions in the region graph are
pre-stable. This allowed us to conclude that every path in the region graph
can be instantiated to a run of the timed automaton. Lemma 2.2.8 proves
it for finite paths. However, the same argument holds for infinite paths of
the region graph too. We begin by defining the notions of abstraction and
instantiation for infinite runs.

Consider two sequences

(q0, v0)
δ0,t0−−−→ (q1, v1)

δ1,t1−−−→ · · · (6.1)

(q0, r0)
t0−→ (q1, r1)

t1−→ · · · (6.2)

where the first is a run in A, and the second is a path in RG(A). We say that
the first is an instantiation of the second if vi ∈ ri for all i ≥ 0. Equivalently,
we say that the second is an abstraction of the first. The following lemma
is a direct consequence of the pre-stability property of Lemma 2.2.7.

Lemma 6.2.1 Given a TBA A, Every path in RG(A) is an abstraction of
a run of A, and conversely, every run of A is an instantiation of a path in
RG(A).
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The above lemma shows that the region graph is sound and complete
for repeated state reachability. It also allows us to relate the existence of
an accepting run of A to the existence of paths with special properties in
RG(A). We say that a path as in (6.2) satisfies the Büchi condition if it has
infinitely many occurrences of states from Acc.

Definition 6.2.2 (Progressive path [AD94]) For an automaton A let
M : X 7→ N ∪ {−∞} be the bound function assigning to each clock the
maximum constant appearing in a guard of A (c.f. Definition 2.2.5). Let
RG(A) be the region graph of A defined using the bound function M . A
path of RG(A) as in (6.2) is called progressive if for every clock x ∈ X:

• either x is almost always above Mx: there is n with ri � x > Mx for
all i > n;

• or x is reset infinitely often and strictly positive infinitely often: for
every n there are i, j > n such that ri � (x = 0) and rj � (x > 0).

It has been shown that a progressive path of the region graph instantiates
to a non-Zeno run of the automaton and vice-versa.

Theorem 6.2.3 ([AD94]) A TBA A has a non-Zeno run satisfying the
Büchi conditions iff RG(A) has a progressive path satisfying the Büchi con-
dition.

Moreover, the progress criterion above can be encoded by adding an extra
Büchi accepting condition [AD94, TYB05]. Although this gives a procedure
to solve the Büchi non-emptiness problem, the number of regions obtained
using a bound function M is O

(
|X|! · 2|X| ·∏x∈X(2Mx + 2)

)
[AD94]. This

makes this solution impractical.

6.3 Zones and abstractions

As in the case of reachability, we resort to zones for solving the Büchi non-
emptiness problem. In Section 2.3, we defined a symbolic semantics for
timed automata called its zone graph ZG(A) (Definition 2.3.4). The zone
graph could potentially be infinite, as illustrated by the example of Fig-
ure 2.8. Therefore, we need to abstract zones further using abstraction
operators. An abstraction operator defines an abstract symbolic semantics
called the simulation graph SGa(A) (Definition 2.4.2). We have seen differ-
ent abstractions that are sound and complete for reachability in Section 2.5.

We have classified abstraction operators to fall into broadly two classes:
M-abstractions and LU-abstractions, which use maximal bounds and LU-
bounds respectively as parameters. A more detailed explanation about M-
abstractions and LU-abstractions can be found in Section 2.4. It has been
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shown in [TYB05] that the M -abstractions are sound and complete for re-
peated state reachability. Few years later, it has been shown in [Li09] that
even the LU-abstractions are sound and complete for repeated state reacha-
bility. To handle non-Zenoness from simulation graphs, Tripakis et al have
proposed a construction adding an extra clock to the automaton [TYB05].
This non-Zenoness construction is the topic of the next section. In this sec-
tion, we will recall the proof of [Li09] that every abstraction that is defined
using a time-abstract simulation is sound and complete for repeated state
reachability. All the standard abstractions (Figure 2.12) are defined using a
simulation relation and hence turn out to be sound and complete even for
infinite runs.

We recall below the definitions of time-abstract simulation and abstrac-
tions based on simulations (Definitions 2.4.4 and 2.4.5). Let us assume a
given automaton A. The transition system SA describing the semantics of
A has been defined in Definition 2.1.3.

◮Definition 2.4.4. (Time-abstract simulation) A (state based) time-
abstract simulation between two states of transition system SA is a relation
(q, v) �t.a. (q

′, v′) such that:

• q = q′,

• if (q, v) →δ (q, v + δ) →t (q1, v1), then there exists a δ′ ∈ R≥0 such
that (q′, v′) →δ′ (q′, v′ + δ′) →t (q′1, v

′
1) satisfying (q1, v1) �t.a. (q

′
1, v

′
1)

for the same transition t.

For two valuations v, v′, we say that v �t.a. v
′ if for every state q of the

automaton, we have (q, v) �t.a. (q
′, v′).

◮Definition 2.4.5. (Abstraction based on simulation) Given a zone
Z, we define a�t.a.(Z) = {v | ∃v′ ∈ Z. v �t.a. v

′}.
In the following two lemmas, we show that a cycle in the simulation

graph can be instantiated to an infinite run of the automaton.

Lemma 6.3.1 Let A be a TBA and let b be an abstraction operator defined
using a time-abstract simulation �b. Let:

(q1,W1)⇒t1
b
(q2,W2)⇒t2

b
. . . (qn,Wn)

be a path in the simulation graph SGb(A). Then, for every valuation vn ∈
Wn there is a valuation v

′
1 ∈W1 and δ1, δ2, · · · ∈ R≥0 such that:

(q1, v
′
1)

δ1,t1−−−→ (q2, v
′
2)

δ2,t2−−−→ . . . (qn, v
′
n)

is a run of A with vn �b v
′
n and v

′
i ∈Wi for all i ∈ {1, . . . , n}

Proof
We prove the lemma by induction.
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Base case. For the base case, consider a single transition (q1,W1) ⇒t1
b

(q2,W2) and let v2 ∈ W2 be a valuation. By definition of transitions in the
simulation graph, there exist v′1 ∈W1 and δ

′
1 ∈ R≥0 such that:

(q1, v
′
1)→t1 (q2, v)→δ′1 (q2, v

′
2) and v2 �b v

′
2

As �b is a time-abstract simulation relation, the intermediary valuation

v can simulate v2, that is: v2 �b v. This gives us a run (q1, v1)
δ1,t1−−−→ (q2, v)

with δ1 = 0. This is of the required form, thus proving the base case.

Induction case. Let us now consider the induction case. Let vn ∈Wn be
a valuation. For some i ∈ {2, . . . , n− 1}, let v′′i ∈Wi and let there exist the
following path:

(qi, v
′′
i )→ti→δ′′i . . . (qn, v

′′
n) (6.3)

such that vn �b v
′′
n. Consider the transition (qi−1,Wi−1)⇒ti−1

b
(qi,Wi) and

the valuation v′′i ∈ Wi. Applying the argument of the base case to this
transition, we get a valuation v′i−1 ∈Wi−1 and δ′i−1 ∈ R≥0 such that:

(qi−1, v
′
i−1)→ti−1→δ′i−1 (qi, v

′
i)

and v′′i �b v
′
i. By definition of time-abstract simulation, we will get that

there is a path corresponding to (6.3) from (qi, v
′
i):

(qi−1, v
′
i−1)→ti−1→δi−1 (qi, v

′
i)→ti→δ′i . . . (qn, v

′
n)

and v′′n �b v
′
n. By transitivity of �b, we get that vn �b v

′
n. It can be seen

that the above path can be converted to the run of the required form in a
straightforward manner. �

Lemma 6.3.2 Let A be a TBA and let b be an abstraction operator defined
using a time-abstract simulation �b. Let:

(q,W )⇒t1
b
. . .⇒tn

b
(q,W )

be a path in the simulation graph SGb(A). Then, there exists a valuation
v ∈ W such that starting from (q, v) there is a run of A visiting state q
infinitely often.

Proof
We first introduce some notations. We write (q,W )⇒1...n

b
(q,W ) to denote

the path: (q,W ) ⇒t1
b
. . . ⇒tn

b
(q,W ). Similarly we write (q, v) →1...n (q, v′)

to denote that there exists a run (q, v)
δ1,t1−−−→ . . .

δn,tn−−−→ (q, v′).
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Consider the given simulation graph path: (q,W ) ⇒1...n
b

(q,W ). For
some index i ∈ N let vi ∈W . By Lemma 6.3.1, there exists a valuation v′i−1
such that:

(q, v′i−1)→1...n (q, v′i)

is a run of the automaton and vi �b v
′
i. Using the fact that b is based on a

simulation relation and applying the above inductively, we can get valuations
v′1, . . . , v

′
i−1 such that:

(q1, v
′
1)→1...n (q2, v

′
2)→1...n . . . (q, v′i−1)→1...n (q, v′i) (6.4)

is a run of the automaton and vi �b v
′
i. Note that this is possible for an

arbitrary i ∈ N.

Let M be the maximal bounds function for A and RM denotes the set
of regions obtained using this bound function. In particular, if we take
i > |RM |, then in the run given by (6.4), there are two valuations v′k and
v′l such that v

′
k ∼M v′l and there is a run of the automaton from (q, v′k) to

(q, v′l). Therefore, there is a cycle in the region graph with the node (q, r)
where r is the region containing v′k and v′l. By Lemma 2.2.8, we get an
infinite run of the automaton that visits state q infinitely often. �

This brings us to the main result of the section that simulation graphs
constructed using abstraction operators based on some time-abstract simu-
lation are sound and complete for repeated state reachability.

Theorem 6.3.3 ([Li09]) Let A be a TBA and b an abstraction operator
defined using a time-abstract simulation. Then, A has a run satisfying the
Büchi condition iff SGb(A) has a path satisfying the Büchi condition.

Proof
If A has a run satisfying the Büchi condition, then by completeness of ab-
straction b, there exists a path of SGb(A) that satisfies the Büchi condition.

For the converse, suppose there is a path of SGb(A) that satisfies the
Büchi condition. This means that there is a cycle in SGb(A) with a node
(q,W ) where q ∈ Acc. Moreover, (q,W ) is reachable from the initial node
(q0,W0). By Lemma 6.3.2, there exists v ∈W and a run of A starting from
(q, v) satisfying the Büchi condition. As (q,W ) is reachable in SGb(A), there
exists a path from the initial valuation (q0,0) to (q, v

′) such that v �b v
′.

But, by definition of simulation relation, there exists a path from (q, v′) that
satisfies the Büchi condition. �

Although the above generic theorem shows that all the standard ab-
stractions defined in literature (c.f. Figure 2.12), are sound and complete
for repeated state reachability, only convex abstractions are used in imple-
mentations. However, in this part of the thesis we do not focus on the usage
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Figure 6.1: Automaton Azeno with only Zeno runs

(0, 0 = x = y) (1, 0 = x = y)

(1, 0 = x < y)

(0, 0 = x = y) (2, 0 = y = x)

(2, 0 = y < x)

(0, 0 = x = y) · · ·

Figure 6.2: A part of the region graph for the automaton Azeno

(0, 0 = x = y) (1, 0 = x ≤ y) (0, 0 = x = y) (2, 0 = y ≤ x) (0, 0 = x = y) · · ·

Figure 6.3: A part of the simulation graph for the automaton. Azeno

of non-convex abstractions in the implementations of liveness checking al-
gorithms. Instead, the goal of this part of the thesis is to look more closely
at another subtle point: how does one efficiently determine non-Zenoness
from these abstract simulation graphs.

Remark 6.3.4 (Notation) Since all the known abstraction operators we
deal with are based on time-abstract simulation, in the subsequent part of
the thesis, whenever we refer to a generic simulation graph SGa(A), it is
assumed that a is an abstraction defined using a time-abstract simulation.

6.4 Existence of non-Zeno runs

Theorem 6.3.3 tells that every path in the simulation graph can be instanti-
ated to a path of the automaton. However, it does not guarantee that a path
we find in a simulation graph has an instantiation that is non-Zeno. This
cannot be decided from a simulation graph SGa(A) by using the progress
criterion of Definition 6.2.2 as we show now.

Consider for instance the automaton Azeno in Figure 6.1 which has only
Zeno runs as both x and y must remain equal to 0 on every run. Figure 6.2
shows a part of RG(Azeno). The infinite path starting from node (0, 0 =
x = y) is not progressive as none of the clocks can have a positive value.
Moreover, it can be seen that every node where a clock has a positive value
is a deadlock node.

Figure 6.3 depicts the corresponding part of SGa(Azeno) with the ab-
straction operator a taken to be ExtraM , the most “precise” abstraction
(Figure 2.12). This path satisfies the progress criterion as both x and y are
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Figure 6.4: Strongly non-Zeno construction (z is a new clock).

reset and may have positive values infinitely often, despite all its instantia-
tions being Zeno. The progress criterion fails due to the loss of pre-stability
in SGa(Azeno): valuations with either x > 0 or y > 0 which do not have any
successor. Note that all other abstractions contain ExtraM and hence suffer
from the same problem.

Strongly non-Zeno construction

A common solution to deal with Zeno runs is to transform an automaton into
one where all runs satisfying the Büchi condition are guaranteed to be non-
Zeno. The automaton obtained as a result of this transformation is called
the strongly non-Zeno automaton. Consider an automaton A. The main
idea behind the transformation of A into a strongly non-Zeno automaton
SNZ(A) is to ensure that on every accepting run, time elapses for 1 time
unit infinitely often. Hence, it is sufficient to check for the existence of an
accepting run as it is non-Zeno for granted.

The transformation depicted in Figure 6.4 adds one clock z and dupli-
cates accepting states. One copy is no longer accepting whereas the other
is accepting, but it can be reached only when z ≥ 1. Moreover, when an
accepting state is reached z is reset to 0.

Definition 6.4.1 (Strongly non-Zeno automaton [TYB05]) Given a
timed automaton A = (Q, q0, X, T,Acc), the strongly non-Zeno automaton
SNZ(A) is given by (Q′, q0, X ∪ {z}, T ′,Acc) where z /∈ X and Q′ includes
the states Q along with a state q′acc for every state qacc ∈ Acc. This state q′acc
does not belong to Acc. For every transition t = (q, g, R, qacc) to an accept-
ing state qacc, we add the transition (q, g, R, q

′
acc) and modify the guard and

reset of t to give (q, g ∧ z ≥ 1, R ∪ {z}, qacc). All transitions (qacc,−,−,−)
are replaced by (q′acc,−,−,−) and an extra transition (qacc, true, ∅, q′acc) is
added.

As a result, every accepting run in SNZ(A) has a corresponding run in
A where every occurrence of qacc is replaced by an occurrence of either itself
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or its non-accepting copy q′acc. Since two occurrences of the accepting copy
qacc have to be separated by at least one time unit, every accepting run in
SNZ(A) is necessarily non-Zeno. This leads us to the following theorem.

Theorem 6.4.2 [TYB05] Automaton A has an accepting non-Zeno run iff
SNZ(A) has an accepting run.

Therefore, to solve the Büchi non-emptiness problem for a TBA A, the
standard solution is to construct the strongly non-Zeno TBA SNZ(A) and
analyze the simulation graph of this strongly non-Zeno automaton.

6.5 Existence of Zeno runs

Another interesting problem relevant for the implementation of timed au-
tomata is the question of existence of Zeno runs. Given an automaton, does
there exist a Zeno run? A bulk of the literature directs to work of Bowman
and Gomez. In [BG06], they provide a syntactic criterion on the automa-
ton that is sufficient to ensure the absence of Zeno runs. This procedure is
inspired by the strongly non-Zeno construction of Tripakis et al. However it
is a sufficient-only criterion, that is, there are examples where the criterion
is not satisfied but still Zeno runs are absent. We recall this criterion below,
and show an example that does not satisfy this criterion and yet is free from
Zeno runs.

A loop lp of an automaton is a sequence of states and edges: q1
g1,R1−−−→

q2
g2,R2−−−→ . . .

gn,Rn−−−−→ qn such that q1 = qn. We denote by Guards(lp) the
set {g1, . . . , gn} of guards appearing in the transitions of lp. We define
Resets(lp) to be the set of clocks reset in some transition of the loop. The
following definition is inspired by the construction of the previous section.

Definition 6.5.1 A loop lp of an automaton is strongly non-Zeno if there
is a clock x ∈ Resets(lp) that is bounded from below in some guard g ∈
Guards(lp): that is g � x ≥ 1.

It can then be proved that if all the loops in an automaton are strongly
non-Zeno, then the automaton has no Zeno runs.

Lemma 6.5.2 [Gom06, BG06] If all loops of an automaton A are strongly
non-Zeno, then A does not have Zeno runs.

However it is sufficient-only due to a very simple reason. Consider the
automaton shown in Figure 6.5. The automaton has no strongly non-Zeno
loop, but yet there are no Zeno runs: the loop cannot be completed at all.
We see that there is a need to consider information about the executions of
the automaton, and not just the automaton.
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q1 q2

x > 2

x < 1

Figure 6.5: Example showing an automaton with a loop that is not strongly non-
Zeno, yet there are no Zeno runs

6.6 Outline

In this part of the thesis, we consider infinite runs of timed automata. We
have recalled that even to detect infinite runs, one can use simulation graphs
thanks to Theorem 6.3.3 (note that all the abstractions we consider are based
on time-abstract simulation). The goal of this part of the thesis is to study
the constructions used for detecting non-Zeno runs and Zeno runs. Before
we elaborate on our contributions, we start with an important remark about
the conventions adopted for the subsequent part of the thesis.

Remark 6.6.1 In this part of the thesis, we consider only convex abstrac-
tions. Hence we choose to call simulation graphs as abstract zone graphs
in this rest of the thesis. Additionally we do not consider the optimiza-
tion of bounds using static analysis (c.f. Section 2.6). Instead we assume
global bound functions common to all states of the automaton. The results
of this part can be easily extended to static analysis bounds. As regards
the new techniques developed for non-convex abstractions and on-the-fly
bounds propagation in Chapters 3, 4 and 5, we postpone their adaptability
to liveness for future work.

We provide better methods to detect existence of non-Zeno runs. These
new methods give us an improved algorithm for the Büchi non-emptiness
problem. For the case of Zeno runs, we give the first complete solution to
detect existence of Zeno runs in an automaton. More details follow.

Non-Zenoness problem

The current procedure for detecting non-Zenoness modifies the automaton
by adding an auxiliary clock. Although the modification is simple, we give
an example where this leads to an abstract zone graph that is exponentially
bigger than the abstract zone graph of the original automaton. This is the
starting point of our work and leads us to investigating solutions that avoid
this blowup. We propose a solution that does not modify the automaton and
instead works with the abstract zone graph directly (Theorem 7.2.8). We no-
tice that this construction gives a polynomial complexity for M-abstractions
(Theorem 7.3.5). However, we notice that even this new construction could
give an exponential blowup for the LU-abstractions. Further investigation
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reveals that the problem of deciding if an automaton has a non-Zeno run
given its LU-abstract zone graph as input is NP-complete (Theorem 7.4.2).
As a final observation related to the non-Zenoness problem, we see that
weakening the LU-abstraction slightly gives polynomial complexity.

Efficient emptiness check for timed Büchi automata

An important module in the emptiness check for TBA is the procedure to
check non-Zenoness. The analysis in the previous chapter shows that the
standard construction is costly. We provide an on-the-fly algorithm that
starts by exploring the abstract zone graph of the original automaton and
uses our new non-Zenoness construction only when it is necessary. We see
that in most cases, non-Zenoness can be verified directly without any extra
construction. We justify with some benchmarks.

Zenoness problem

As a final goal, we consider the problem of detecting zeno runs. Currently
there is only a partial solution to this problem. This solution looks at the
automaton and gives a sufficient condition for the absence of zeno runs. We
propose a complete solution to this problem by considering the abstract zone
graph of the automaton (Theorem 9.1.6). The solution has an extra linear
cost for the M-abstractions. However for the LU-abstractions, the solution
might cost an extra exponential. Yet again, it turns out that this problem is
NP-complete for the LU-abstractions (Theorem 9.2.3). We study the reason
for this blowup and propose a weakening of the LU-abstractions that avoids
this blowup.



Chapter 7

Non-Zenoness problem

We are interested in the Büchi non-emptiness problem for timed automata
which asks if a given timed automaton has a non-Zeno run satisfying the
Büchi accepting condition. To solve this problem, one could analyze either
the region graph or an abstract zone graph (see Remark 6.6.1 for terminol-
ogy). To be able to use these graphs, one should first know if an infinite
path in these graphs instantiates to an infinite run of the automaton and
vice-versa. We have seen that this property is true for region graph and
abstract zone graphs using the standard abstractions. However, one cannot
guarantee if the instantiation yields a non-Zeno run of the automaton.

In the case of the region graph, this problem can be solved by checking a
simple progressiveness property on the path obtained [AD94]. This property
can conveniently be encoded as a Büchi condition. A property of this kind
works for region graphs because of the pre-stability condition (Lemma 2.2.7):
if a transition can be taken from one valuation of a region, the transition can
be taken from every valuation of the region. Such a property holds no more
for zones and abstracted zones and hence the progressiveness property is no
longer sound for zones and abstract zones. To take care of non-Zenoness,
the standard solution is to modify the automaton instead. An auxiliary
clock is added to ensure that there is at least a unit time elapse between
two visits to an accepting state occurring infinitely often. This trick known
as the strongly non-Zeno construction is currently the state-of-the-art for
non-Zenoness checking [TYB05]. We have recalled this construction in Sec-
tion 6.4. Given an automaton, the algorithm first converts it to its strongly
non-Zeno counterpart and then analyzes the abstract zone graph of this
strongly non-Zeno automaton.

In this chapter, we closely examine this strongly non-Zeno construction.
We observe that this seemingly simple transformation could potentially lead
to an exponential blowup to the size of the abstract zone graph. Subse-
quently, we propose a new construction and analyze its complexity with
respect to different abstractions.

115
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Organization of the chapter

We elucidate below the goals of the chapter and the corresponding sections
that discuss these goals.

Goal 1. The first goal of this chapter is to show that the standard trick of
adding a clock, although very simple, might lead to an automaton with
an abstract zone graph that is exponentially bigger than the abstract
zone graph of the original automaton. Additionally, this holds for
any standard abstraction operator that is used. The problem comes
from the fact that this additional clock allows to remember distances
between clocks and this could proliferate to give a large number of
zones. We explain this in more detail in Section 7.1.

Goal 2. The second goal of this chapter is to propose a construction for
non-Zenoness that avoids the blowup. We propose a construction that
modifies the abstract zone graph instead of modifying the automaton.
The construction that we propose is called the guessing zone graph
construction. We prove that this construction is correct for detect-
ing non-Zeno runs (Theorem 7.2.8). We detail this construction in
Section 7.2.

Goal 3. The next goal would be to analyze the complexity of this pro-
posed construction. As it deals with a modification of the abstract
zone graph, one could expect the complexity to depend on the spe-
cific abstraction used. We will see that this construction applied di-
rectly avoids the blowup only for the simplest M-abstraction (Theo-
rem 7.3.5). So as a next step, we modify the construction slightly to
get what is called the reduced guessing zone graph. We character-
ize the abstractions that would maintain a low polynomial complex-
ity using this construction (Theorem 7.3.11). In particular, both the
M-abstractions satisfy this criterion. This would be the subject of
Section 7.3.

Goal 4. The coarser LU-abstractions do not satisfy the criterion for poly-
nomial complexity using the reduced guessing zone graph. The final
goal of this chapter would be to investigate this marked fact that
both the strongly non-Zeno and the guessing zone graph constructions
blowup the LU-abstract zone graphs exponentially. A further analysis
shows that this blowup for the LU-abstractions is possibly unavoid-
able. In Section 7.4 we show that given the automaton and the abstract
zone graph with respect to LU-abstractions, deciding if the automaton
has a non-Zeno run is NP-complete (Theorem 7.4.2). We propose a
weakening of the LU-abstractions that can avoid NP-completeness.
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Figure 7.1: The gadgets Vk (left) and Wk = SNZ(Vk) (right).

We direct the reader to Section 7.5 on concluding remarks for a detailed
summary of this chapter, including references to important definitions and
results.

7.1 Adding a clock leads to exponential blowup

We discuss why the strongly non-Zeno construction of Section 6.4, although
simple, may add an exponential factor in the algorithm. A slightly different
construction is mentioned in [AM04]. Of course one can also have other
modifications, and it is impossible to treat all the imaginable constructions
at once. Our objective here is to show that the constructions proposed in
the literature produce a phenomenon causing proliferation of zones that can
sometimes be exponential in the number of clocks. The discussion below will
focus on the construction from [TYB05], but the one from [AM04] suffers
from the same problem.

The strongly non-Zeno construction of Section 6.4 is illustrated by an
example in Figure 7.1. The problem comes from the fact that the constraint
z ≥ 1 may be a source of rapid multiplication of the number of zones in
the zone graph of SNZ(A). We will now show an example of an automa-
ton where this rapid multiplication indeed occurs. Before we proceed to
the example, we wish to give the following remark about the bounds and
abstractions considered.

Remark 7.1.1 For ease of presentation, we will assume that the bound
function M associates the same constant to every clock, which is obtained
by looking at the maximum constant out of all the guards of the automaton.
We will first restrict to only M-abstractions. The case of LU-abstractions,
different bounds for each clock, and bounds obtained by static analysis are
addressed in the end of this section, where by adding a simple gadget to this
example, all the cases are taken care of.
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Figure 7.2: Part of ZG(V2)

A small gadget illustrating the idea

Consider Vk and Wk from Figure 7.1 and let us say that k = 2. Starting at
the state b2 of V2 with the zone 0 ≤ y ≤ x1 ≤ x2, there are two reachable
zones with state b2. This is depicted in Figure 7.2 where after two traversals
of the cycle formed by b2 and a2, we reach a zone that is invariant for the
cycle. Moreover, from the two zones with state b2 in Figure 7.2, reseting x1
followed by y as R1 (in Figure 7.4) does, we reach the same zone 0 ≤ y ≤
x1 ≤ x2.

In contrast starting in b2 of W2 = SNZ(V2) from 0 ≤ y ≤ x1 ≤ x2 ≤ z
gives at least d zones. The part of ZG(W2) in Figure 7.3 gives the sequence of
transitions in the zone graph ofW2 starting from the zone (b2, 0 ≤ y ≤ x1 ≤
x2 ≤ z) by successive iterations of the cycle that goes through b2, a21 and
a22. After a certain point, every traversal induces an extra distance between
the clocks y and z. Clearly, there are at least d zones in this case. Resetting
x1 followed by y as R1 (in Figure 7.4) does still yields d zones. Note that
whenM is the bound function associating the maximum constant d to every
clock and when we consider the M-abstractions, the abstracted zones still
maintain this distance. It is not difficult to add extra dummy transitions to
get constants that maintain this phenomenon for LU-abstractions and other
refined ways of obtaining bound functions. We will address this issue in the
end of this section.

Automaton exhibiting the blowup

We now exploit this situation observed in V2 and W2 to give an example of
a TBA An whose zone graph has a number of zones linear in the number
of clocks, but Bn = SNZ(An) has a zone graph of size exponential in the
number of clocks.

Automaton An, in Figure 7.5, is constructed from the automata gadgets
Vk and Rk as shown in Figures 7.1 and 7.4. Observe that the role of Rk is to
enforce an order 0 ≤ y ≤ x1 ≤ · · · ≤ xk between clock values. By induction
on k one can compute that there are only two zones at locations bk since
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Figure 7.3: Part of ZG(W2).
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Figure 7.4: The gadget Rk.
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Figure 7.5: Automata An (left) and Bn = SNZ(An) (right).
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Rk+1 made the two zones in b
k+1 collapse into the same zone in bk. Hence

the number of nodes in the zone graph of An is O(n).
Let us now consider Bn, the strongly non-Zeno automaton obtained from

An following [TYB05]. Every gadget Vk gets transformed to Wk as shown
in Figure 7.5. While exploring Wk, one introduces a distance between the
clocks xk−1 and xk. So when leaving it one gets zones with xk − xk−1 ≥ c,
where c ∈ {0, 1, 2, . . . , d}. The distance between xk and xk−1 is preserved
by Rk−1. In consequence, Wn produces at least d + 1 zones. For each of
these zones Wn−1 produces d+1 more zones. In the end, the zone graph of
Bn has at least (d+1)n−k+1 zones at the state bk. The zones obtained with
the state bk are of the form

0 ≤ x1 = . . . = xk−1 ≤ z ≤ y ≤ xk ≤ . . . ≤ xn

∧
∧

i∈{k,...,n−1}
xi+1 − xi ≥ ci where each ci ∈ {0, 1, . . . , d}

So the zone graph has at least (d + 1)n−1 zones at state b2. Hence, the
zone graph of Bn contains at least (d+ 1)n−1 zones.

We have thus shown that zone graph of An has O(n) zones while that
of Bn = SNZ(An) has an exponential number of zones even when the
constant d is 1. One could argue that the transformation in [TYB05] can
be transformed in such a way to prevent the combinatorial explosion. In
particular, it is often suggested to replace z ≥ 1 by a guard that matches
the biggest constant in the automaton, that is z ≥ d in our case. However,
this would still yield an exponential blowup as every zone with state bk

yields two different zones with state bk−1 that do not collapse going through
Rk−1. Observe also that the construction shows that even with two clocks
the number of zones blows exponentially in the binary representation of
d. Note that the automaton An does not have a non-Zeno accepting run.
Hence, every search algorithm is compelled to explore all the zones of Bn.

The case of general bound functions

For the above example, we considered a simple maximum bounds function.
A small modification will give the same constant d for every clock and in
fact even the LU-abstractions will boil down to the M-abstraction thanks to
this modification. Consider the gadget Vdummy shown in Figure 7.6. From
every state of An draw a transition to the state q of this gadget. This
ensures that every clock has the bound d in every state. As this includes
both lower and upper bounded guards, the LU abstractions are identical to
the M-abstractions. In fact, even static analysis gives the same bounds.
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Figure 7.6: Gadget to be added for LU-abstractions and bounds by static analysis

7.2 A new construction

We have seen that the strongly non-Zeno construction, that modifies the syn-
tax of the automaton, could potentially give rise to an exponential blowup.
Our solution stems from a realization that we only need one non-Zeno run
satisfying the Büchi condition and so in a way transforming an automaton
to strongly non-Zeno is excessive. We propose not to modify the automaton,
but to introduce additional information to the simulation graph. As we are
considering only convex abstractions in this part of the thesis, the nodes in
the simulation graph would indeed consist only of zones.

Remark 7.2.1 Recall Remark 6.6.1 about terminology. As we consider
only convex abstractions, we will write abstract zone graph to mean a sim-
ulation graph. Additionally, we will write ZGa(A) instead of SGa(A).

We aim to decide if a given path in an abstract zone graph has a non-
Zeno instantiation. We first check when could all instantiations of a path
be Zeno. There are essentially two reasons for this:

• blocking clocks: there may be clocks x that are reset finitely many
times but bound infinitely many times by guards x ≤ c:

• x≤1−−→ • {x}−−→ • −→ · · ·−→ • x≤2−−→ • −→ • x≤1−−→ • −→ · · ·
︸ ︷︷ ︸

suffix with no reset of x

• zero checks: time may not be able to elapse at all due to infinitely
many transitions that check x = 0, forcing x to stay at 0:

• {y}−−→ • x=0−−→ • {x}−−→ • y=0−−→ • {y}−−→ • x=0−−→ · · ·

The task is to find if there exists an infinite run in ZGa(A) that does not
have blocking clocks and zero-checks that prevent time elapse. The method
that we propose tackles these two problems as follows. Blocking clocks are
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handled by first detecting a maximal strongly connected component (SCC)
of the abstract zone graph and repeatedly discarding the transitions that
bound some blocking clock until a non-trivial SCC with no such clocks is
obtained. This algorithm runs in time polynomial in the size of the zone
graph for every abstraction. For zero checks, we introduce a guessing zone
graph construction to detect nodes where time can elapse.

Guessing zone graph GZG
a(A)

The necessary and sufficient condition for time elapse in a node in spite of
zero-checks is to have every reachable zero-check from that node preceded
by a corresponding reset.

•

√

• • • •{x} (x = 0)

Figure 7.7: Time can elapse in the node
√

Therefore, the aim is to check if there exists a node (q, Z) in ZGa(A)
such that there is a path from (q, Z) back to itself in which every zero-check
is preceded by a corresponding reset. This would instantiate to an infinite
run of A that can elapse time despite the zero-checks. This is what the
guessing zone graph construction achieves.

The nodes will now be triples (q, Z, Y ) where Y ⊆ X is the set of clocks
that can potentially be equal to 0. It means in particular that other clock
variables, i.e. those from X − Y are assumed to be bigger than 0. We write
(X − Y ) > 0 for the constraint saying that all the variables in X − Y are
not 0. The role of Y sets will become obvious in the construction below.
In short, from a node (q, Z, ∅), that is with Y = ∅, every reachable zero-
check will be preceded by the reset of the variable that is checked, and hence
nothing prevents a time elapse in this node.

Definition 7.2.2 Let A be a TBA over a set of clocks X. The guessing
zone graph GZGa(A) has nodes of the form (q, Z, Y ) where (q, Z) is a node
in ZGa(A) and Y ⊆ X. The initial node is (q0, Z0, X), with (q0, Z0) the
initial node of ZGa(A). In GZGa(A) there are transitions:

• (q, Z, Y )⇒t
a (q

′, Z ′, Y ∪R) if there is a transition (q, Z)⇒t
a (q

′, Z ′) in
ZGa(A) with t = (q, g, R, q′), and there are valuations v ∈ Z, v′ ∈ Z ′,
and δ ∈ R≥0 such that v + δ � (X − Y ) > 0 and (q, v)

δ,t−→ (q′, v′);

• (q, Z, Y ) ⇒τ
a (q, Z, Y ′), on a new auxiliary letter τ , for Y ′ = ∅ or

Y ′ = Y .

The additional component Y expresses some information about possible
valuations with which we can take a transition. The first case is about
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transitions that are realizable when clocks outside Y are positive. While it
is formulated in a more general way, one can think of this transition as being
instantaneous: δ = 0. Then we have the second kind of transitions, namely
the transitions on τ , that allow us to nondeterministically guess when time
can pass.

It will be useful to distinguish some nodes and transitions of GZGa(A).
We begin by formally defining the notion of zero-check.

Definition 7.2.3 (Zero-check) We call a transition (q, g, R, q′) a zero-
check if the guard g implies x = 0 for some clock x. We lift this definition to

GZGa(A) to say that a transition (q, Z, Y ) (q,g,R,q′)−−−−−−→ (q′, Z ′, Y ′) of GZGa(A)
is a zero-check if (q, g, R, q′) is a zero-check. This implies that for all v ∈ Z,
and all δ ∈ R≥0 such that v + δ � g we have (v + δ)(x) = 0.

We will be particularly interested in the following types of nodes to find
non-Zeno accepting runs.

Definition 7.2.4 A node (q, Z, Y ) of GZGa(A) is clear if the third com-
ponent is empty: Y = ∅. A node is accepting if q is an accepting state.

Example 7.2.5 Figure 7.8 depicts a TBA A1 along with its zone graph
ZGa(A1) and its guessing zone graph GZGa(A1) where τ -loops have been
omitted.

a

b

x ≥ 1
x ≤ 1
{x}

A1

a, x ≥ 0

b, x ≥ 1

x ≥ 1
x ≤ 1
{x}

ZGa(A1)

a, x ≥ 0, {x} a, x ≥ 0, ∅

b, x ≥ 1, {x} b, x ≥ 1, ∅

x ≥ 1

τ

x ≥ 1
x ≤ 1
{x}

τ

x ≤ 1{x}

GZGa(A1)

Figure 7.8: A TBA A1 and the guessing zone graph GZG
a(A1) (with τ self-loops

omitted for clarity).

Notice that directly from the definition it follows that a path inGZGa(A)
determines a path in ZGa(A) obtained by removing τ transitions and the
third component from nodes.

In order to state the main theorem succinctly we need some extra notions.

Definition 7.2.6 A variable x is bounded by a transition (q, g, R, q′) if the
guard g implies x ≤ c for some constant c. This definition can be lifted to

GZGa(A): variable x is bounded by the (q, Z, Y )
(q,g,R,q′)−−−−−−→ (q′, Z ′, Y ′) if it

is bounded by (q, g, R, q′). This would imply that for all v ∈ Z and δ ∈ R≥0
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such that v + δ � g, we have (v + δ)(x) ≤ c for some c ∈ N. A variable is
reset by the transition if it belongs to the reset set R of the transition.

Definition 7.2.7 We say that a path is blocked if there is a variable that is
bounded infinitely often and reset only finitely often by the transitions on
the path. Otherwise the path is called unblocked.

Obviously, paths corresponding to non-Zeno runs are unblocked.

Theorem 7.2.8 A TBA A has a non-Zeno run satisfying the Büchi condi-
tion iff there exists an unblocked path in GZGa(A) visiting both an accepting
node and a clear node infinitely often.

The proof of Theorem 7.2.8 follows from Lemmas 7.2.9 and 7.2.10 be-
low. It is in Lemma 7.2.10 that the third component of states is used. In
Section 6.2 we had recalled the progress criterion [AD94] stated in Defini-
tion 6.2.2 that characterizes the paths in region graphs that have non-Zeno
instantiations. We had mentioned that it cannot be directly extended to
zone graphs since their transitions are not pre-stable. Lemma 7.2.10 below
shows that by slightly complicating the zone graph we can recover a result
very similar to Lemma 4.13 in [AD94].

Lemma 7.2.9 If A has a non-Zeno run satisfying the Büchi condition, then
in GZGa(A) there is an unblocked path visiting both an accepting node and
a clear node infinitely often.

Proof
Let ρ be a non-Zeno run of A:

(q0, v0)
δ0,t0−−−→ (q1, v1)

δ1,t1−−−→ · · ·

By Theorem 6.3.3, it is a concretization of a path σ in ZGa(A):

(q0, Z0)⇒t0
a (q1, Z1)⇒t1

a · · ·

Let σ′ be the following sequence:

(q0, Z0, Y0)⇒τ
a (q0, Z0, Y

′
0)⇒t0

a (q1, Z1, Y1)⇒τ
a (q1, Z1, Y

′
1)⇒t1

a · · ·

where Y0 = X, Yi is determined by the transition, and Y
′
i = Yi unless δi > 0

when we put Y ′i = ∅. We need to see that this is indeed a path in GZGa(A).
For this we need to see that every transition (qi, Zi, Y

′
i )⇒ti

a (qi+1, Zi+1, Yi+1)
is realizable from a valuation v such that v � (X − Y ′i ) > 0. But an easy
induction on i shows that actually vi � (X − Y ′i ) > 0.

Since ρ is non-Zeno there are infinitely many i with Y ′i = ∅. Since the
initial run is non-Zeno, σ′ is unblocked.

�
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Lemma 7.2.10 Suppose GZGa(A) has an unblocked path visiting
infinitely often both a clear node and an accepting node then A has a
non-Zeno run satisfying the Büchi condition.

Proof
Let σ be a path in GZGa(A) as required by the assumptions of the lemma
(without loss of generality we assume every alternate transition is a τ tran-
sition):

(q0, Z0, Y0)⇒τ
a (q0, Z0, Y

′
0)⇒t0

a · · · (qi, Zi, Yi)⇒τ
a (qi, Zi, Y

′
i )⇒ti

a · · ·

Take a corresponding path in ZGa(A) and one instantiation
ρ = (q0, v0), (q1, v1) . . . that exists by Theorem 6.3.3. If it is non-
Zeno then we are done.

Suppose ρ is Zeno. We now show how to build a non-Zeno instantiation
of σ from ρ. Let Xr be the set of variables reset infinitely often on σ. As σ
is unblocked, every variable not in Xr is bounded only finitely often. Since
ρ is Zeno, there is an index m such that the duration of the suffix of the run
starting from (qm, vm) is bounded by 1/2, and no transition in this suffix
bounds a variable outside Xr. Let n > m be such that every variable from
Xr is reset between m and n. Observe that vn(x) < 1/2 for every x ∈ Xr.

Take positions i, j such that i, j > n, Yi = Yj = ∅ and all the variables
from Xr are reset between i and j. We look at the part of the run ρ:

(qi, vi)
δi,ti−−→ (qi+1, vi+1)

δi+1,ti+1−−−−−→ . . . (qj , vj)

and claim that for every ζ ∈ R≥0 the sequence of the form

(qi, v
′
i)

δi,ti−−→ (qi+1, v
′
i+1)

δi+1,ti+1−−−−−→ . . . (qj , v
′
j)

is a part of a run of A where v′k for k = i, . . . , j satisfy:

1. v′k(x) = vk(x) + ζ + 1/2 for all x 6∈ Xr,

2. v′k(x) = vk(x) + 1/2 if x ∈ Xr and x has not been reset between i and
k.

3. v′k(x) = vk(x) otherwise, i.e., when x ∈ Xr and x has been reset
between i and k.

Before proving this claim, let us explain how to use it to conclude the proof.
The claim shows that in (qi, vi) we can pass 1/2 units of time and then
construct a part of the run of A arriving at (qj , v

′
j) where v

′
j(x) = vj(x) for

all variables in Xr, and v′j(x) = vj(x) + 1/2 for other variables. Now, we
can find l > j, so that the pair (j, l) has the same properties as (i, j). We
can pass 1/2 units of time in j and repeat the above construction getting a
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longer run that has passed 1/2 units of time twice. This way we construct a
run that passes 1/2 units of time infinitely often, hence it is non-Zeno. By
the construction it passes also infinitely often through accepting nodes.

It remains to prove the claim. Take a transition (qk, vk)
δk,tk−−−→

(qk+1, vk+1) and show that (qk, v
′
k)

δk,tk−−−→ (qk+1, v
′
k+1) is also a transition

allowed by the automaton. Let g and R be the guard of tk and the reset of
tk, respectively.

First we need to show that v′k + δk satisfies the guard of tk. For this, we
need to check if for every variable x ∈ X the constraints in g concerning x
are satisfied. We have three cases:

• If x 6∈ Xr then x is not bounded by the transition tk, that means
that in g the constraints on x are of the form (x > c) or (x ≥ c).
Since (vk + δk)(x) satisfies these constraints so does (v

′
k + δk)(x) ≥

(vk + δk)(x).

• If x ∈ Xr and it is reset between i and k then v′k(x) = vk(x) so we are
done.

• Otherwise, we observe that x 6∈ Yk. This is because Yi = ∅, and then
only variables that are reset are added to Y . Since x is not reset
between i and k, it cannot be in Yk. By definition of transitions in
GZGa(A) this means that g ∧ (x > 0) is consistent. We have that
0 ≤ (vk+ δk)(x) < 1/2 and 1/2 ≤ (v′k+ δk)(x) < 1. So v′k+ δk satisfies
all the constraints in g concerning x as vk + δk does.

This shows that there is a transition (qk, v
′
k)

δk,tk−−−→ (qk+1, v
′) for the

uniquely determined v′ = [R](v′k + δk). It is enough to show that v′ = v′k+1.
For variables not in Xr it is clear as they are not reset. For variables that
have been reset between i and k this is also clear as they have the same
values in v′k+1 and v

′. For the remaining variables, if a variable is not reset
by the transition tk then its value is the same in v

′ and v′k. If it is reset then
its value in v′ becomes 0; but so it is in v′k+1, and so the third condition
holds. This proves the claim. �

Examples

Figure 7.8 depicts a TBA A1 along with ZGa(A1) and GZGa(A1) (where
the τ -loops have been omitted). In order to fire transition b

x≤1,{x}−−−−−→ a time
must not elapse in b. The third component Y does not help to detect that
time cannot elapse in b as in GZGa(A1) the transition is allowed for both
Y = {x} and Y = ∅. However, as soon as a strongly-connected component
(SCC) contains a transition x ≥ 1 and a transition that resets x, it has a
non-Zeno run, and the third component does not play any role.
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The third component is only useful for the case where an SCC contains
a zero-check for some clock x that is also reset on some transition in the
SCC. In such a case, zero-checks may prevent time to elapse. We illustrate
this case on the next two examples that emphasize how the third component
added to the states of the zone graph allows to distinguish between Zeno
runs and non-Zeno runs.

The TBA A2 shown in Figure 7.9 has only runs where the time cannot
elapse at all. This is detected in GZGa(A2) as all states in the only non-
trivial SCC have Y = {x, y} as the third component. This means that
from every state there exists a reachable zero-check that is not preceded
by the corresponding reset, hence preventing time to elapse. Notice that
the correctness of this argument relies on the fact that for every (q, Z, Y )
in GZGa(A2), and for every transition t = (q, g, R, q′), even if t is fireable
in ZGa(A2) from (q, Z), it must also be fireable under the supplementary
hypothesis (X − Y ) > 0 given by Y in GZGa(A2).

The TBA A3 in Figure 7.9 admits a non-Zeno run. This can be read
from GZGa(A3) since the SCC composed of the four zones with Y = {x, y}
together with (z2, ∅) and (z3, {y}) contains a clear node. This is precisely
the state where time can elapse as every reachable zero-check is preceded by
the corresponding reset.

The guessing zone graph construction therefore provides a way to infer
existence of non-Zeno runs directly from the abstract zone graph. However,
the solution requires adding an extra component Y which is a set of clocks.
If the Y sets are added arbitrarily, then this solution causes an exponential
blowup too. In the next section, we will see that if the abstractions satisfy
a certain criterion then we need to add only a polynomial number of Y sets
for each node of the zone graph.

7.3 Complexity

We provide an explanation as to why the proposed solution does not produce
an exponential blowup. At first it may seem that we have gained nothing
because when adding arbitrary sets Y we have automatically caused ex-
ponential blowup to the zone graph. We will first consider an easy case:
abstraction ExtraM and the bound function M assigns the same maximum
constant to every clock. In this case, we will show that the reachable part
of the guessing zone graph from the initial node is still polynomial in the
size of the original zone graph. This analysis would help us understand the
crucial point that makes the construction efficient for ExtraM . With this
gained knowledge, we will prune the construction later on in this section
and characterize the abstractions that maintain polynomial complexity.

Remark 7.3.1 (Notation) We denote by ZGM (A) the abstract zone
graph obtained using ExtraM . Similarly for GZG

M (A). We denote by ⇒M



128 7. Non-Zenoness problem
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Figure 7.9: Examples of guessing zone graphs (τ self-loops have been omitted for
clarity)
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the abstract symbolic transition induced by ExtraM . We assume that M is
a bound function that associates the same constant d ≥ 0 to every clock.

We say that a zone orders clocks if for every two clocks x, y, the zone
implies that at least one of x ≤ y, or y ≤ x holds.

Lemma 7.3.2 Let Z be a zone and letM be a bound function that assigns
the same constant to every clock. Then, if Z orders clocks, ExtraM (Z)
orders clocks.

Proof
Suppose for clocks x, y, we have Z � y ≤ x. Therefore we have y − x ≤ c
for some c ≤ 0 as one of the constraints defining Z. By the definition of
ExtraM abstraction as given in Definition 2.5.4, the constraint y − x ≤ c is
removed by the abstraction only if c > My and is changed to y − x < −Mx

if −c > Mx. As we have seen that c ≤ 0, the former case is not possible.
Hence in ExtraM (Z), we still have y − x ≤ 0 and so y ≤ x. �

Lemma 7.3.3 If a node with a zone Z is reachable from the initial node
of the zone graph ZGM (A) then Z orders clocks. The same holds for
GZGM (A).

Proof
First notice that in the initial zone, all the clocks are equal to each
other. Now, consider a zone Z that orders clocks. Let (q, Z) ⇒t

M (q′, Z ′)
be a transition of ZGM (A). This means that there exists a transition
(q, Z) ⇒t (q′, Z ′1) in the (unabstracted) zone graph ZG(A) such that
Z ′ = ExtraM (Z

′
1). Directly from the definition of transitions we have

that Z ′1 orders clocks. It remains to check that, the clock ordering in Z ′1
is preserved in Z ′ = ExtraM (Z

′
1). This is true by Lemma 7.3.2. For the

second statement observe that for every node (q, Z, Y ) in GZGM (A), (q, Z)
is reachable in ZGM (A). �

Suppose that Z orders clocks. We say that a set of clocks Y respects the
order given by Z if whenever (y ∈ Y and Z implies x ≤ y) then x ∈ Y . In
other words, Y is downward closed with respect to the ordering constraint
in Z.

Lemma 7.3.4 If a node (q, Z, Y ) is reachable from the initial node of the
guessing zone graph GZGM (A) then Y respects the order given by Z.

Proof
The proof is by induction on the length of a path. In the initial node
(q0, Z0, X), the set X obviously respects the order as it is the set of all
clocks. Now take a transition (q, Z, Y ) ⇒t

M (q′, Z ′, Y ′) with Y respecting
the order in Z. We need to show that Y ′ respects the order in Z ′. By the
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definition of transitions in GZGM (A) there are v ∈ Z, v′ ∈ Z ′ and δ ∈ R≥0

such that (q, v)
δ,t−→ (q′, v′) and v+δ � (X−Y ) > 0. Take y ∈ Y ′ and suppose

that Z ′ implies x ≤ y for some clock x. There are three cases depending on
which of the variables y, x are being reset by the transition.

• If x is reset by the transition then, by definition x ∈ Y ′.

• If y is reset and Z ′ implies x ≤ y, then x must be checked for 0 on t.
Hence x ∈ Y and x ∈ Y ′.

• The remaining case is when none of the two variables is reset by the
transition. As v′ ∈ Z ′, we have that v′ � x ≤ y; and in consequence
v � x ≤ y. Since Z orders clocks and v ∈ Z, we must have that Z
implies x ≤ y. As y has not been reset, y ∈ Y . By assumption that Y
orders clocks, x ∈ Y . Hence x ∈ Y ′.

�

The above two lemmas give us the desired bound.

Theorem 7.3.5 Let |ZGM (A)| be the size of the zone graph, and |X| be
the number of clocks in A. The number of reachable nodes of GZGM (A) is
bounded by |ZGM (A)|.(|X|+ 1).

The theorem follows directly from the above two lemmas. Of course, impos-
ing that zones have ordered clocks in the definition of GZGM (A) we would
get the same bound for the entire GZGM (A).

Generalization

We have seen above that the number of guess sets for every node (q, Z)
reachable in ZGM (A) is bounded by |X|+1 when the bound function M is
a special one associating the same constant to every clock. The case of the
general bound function M and other abstractions was not considered. The
same construction does not give polynomial complexity in the general case.
We first optimize this construction, considering an arbitrary abstraction and
a general bound function that could associate different constants to different
clocks. The results of this section also hold for the case of bounds obtained
by static analysis (Section 2.6) where there is a bound function for each
state of the automaton.

We prune the construction to obtain what is called the reduced guessing
zone graph. The reduced guessing zone graph is a slight modification that
restricts the guess sets to a particular set of clocks. A clock that is never
checked for zero need not be remembered in sets Y . We restrict Y sets to
only contain clocks that can indeed be checked for zero and we show that
this is sound and complete for non-Zenoness.



7.3. Complexity 131

We say that a clock x is relevant if it is checked for zero in the automaton,
that is, if there exists a guard x ≤ 0 or x = 0 in the automaton. We denote
the set of relevant clocks by Rl(A). For a zone Z, let C0(Z) denote the set of
clocks x such that there exists a valuation v ∈ Z with v(x) = 0. The clocks
that can be checked for zero before being reset in a path from (q, Z), lie in
Rl(A) ∩ C0(Z).

Definition 7.3.6 (Reduced guessing zone graph) Let A be a timed
automaton with clocks X. The reduced guessing zone graph rGZGa(A)
has nodes of the form (q, Z, Y ) where (q, Z) is a node in ZGa(A) and
Y ⊆ Rl(A) ∩ C0(Z). The initial node is (q0, Z0,Rl(A)), with (q0, Z0)
the initial node of ZGa(A). For t = (q, g, R, q′), there is a transition
(q, Z, Y ) ⇒t

a (q′, Z ′, Y ′) with Y ′ = (Y ∪ R) ∩ Rl(A) ∩ C0(Z ′) if there
is (q, Z) ⇒t

a (q′, Z ′) in ZGa(A) and some valuation v ∈ Z such that
v � (Rl(A)− Y ) > 0 and v � g. A new auxiliary letter τ is introduced that
adds transitions (q, Z, Y )⇒τ

a (q, Z, Y
′) for Y ′ = ∅ or Y ′ = Y .

Observe that rGZGa(A) is the guessing zone graph GZGa(A) restricted
to the clocks that are relevant and are equal to 0 in the respective zone, given
by the set Rl(A) ∩ C0(Z). For example, in the automaton A1 of Figure 7.8,
the set of relevant clocks Rl(A1) is empty.

We use the same notion of clear nodes and unblocked paths as in Defi-
nitions 7.2.4 and 7.2.7. We get the following theorem.

Theorem 7.3.7 A timed automaton A has a non-Zeno run iff there exists
an unblocked path in rGZGa(A) visiting a clear node infinitely often.

The proof of Theorem 7.3.7 is in the same lines as for the guessing zone
graph, from the following two lemmas.

Lemma 7.3.8 If A has a non-Zeno run, then in rGZGa(A) there is an
unblocked path visiting a clear node infinitely often.

Proof
Let ρ be a non-Zeno run of A:

(q0, v0)
δ0,t0−−−→ (q1, v1)

δ1,t1−−−→ · · ·

Since a is complete, ρ is an instantiation of a path π in ZGa(A):

(q0, Z0)⇒t0
a (q1, Z1)⇒t1

a · · ·

Let σ be the following sequence of transitions:

(q0, Z0, Y0)⇒τ
a (q0, Z0, Y

′
0)⇒t0

a (q1, Z1, Y1)⇒τ
a (q1, Z1, Y

′
1)⇒t1

a · · ·
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where Y0 = Rl(A), Yi is determined by the transition relation in rGZGa(A),
and Y ′i = Yi unless δi > 0 when we put Y ′i = ∅. We need to see that σ is
indeed a path in rGZGa(A). For this we need to see that every transition
(qi, Zi, Y

′
i ) ⇒ti

a (qi+1, Zi+1, Yi+1) is realizable from a valuation v ∈ Zi such
that both v � (Rl(A) − Y ′i ) > 0 and v � gi where gi is the guard of ti. We
prove this by an induction on the run. As by the definition of ρ, vi+ δi � gi
for all i ≥ 0, we only need to prove that vi + δi � (Rl(A)− Y ′i ) > 0. This is
clearly true for valuation v0 + δ0 ∈ Z0.

Assume that vi+δi � (Rl(A)−Y ′i ) > 0. We now prove that vi+1+δi+1 �
(Rl(A)−Y ′i+1) > 0. Firstly, observe that Yi+1 = (Y ′i ∪Ri)∩C0(Zi+1)∩Rl(A).
Therefore a clock x ∈ Rl(A)−Yi+1 either belongs to Rl(A)−Y ′i in which case
it is greater than 0 by induction hypothesis, or otherwise we have x ∈ Y ′i
but x /∈ C0(Zi+1). By the definition of C0(Zi+1), all valuations v ∈ Zi+1

satisfy v(x) > 0 and so in particular, vi+1(x) > 0. This leads to vi+1 �

(Rl(A)−Yi+1) > 0 which easily extends to vi+1+ δi+1 � (Rl(A)−Y ′i+1) > 0.
Since ρ is non-Zeno there are infinitely many i with Y ′i = ∅. It is also

straightforward to check that σ′ is unblocked. �

Lemma 7.3.9 Suppose rGZGa(A) has an unblocked path visiting infinitely
often a clear node then A has a non-Zeno run.

Proof
The proof follows the same lines as the proof of Lemma 7.2.10 with the
additional information that for all clocks x that do not belong to Rl(A), we
have g ∧ (x > 0) consistent for all guards g.

Let π : (q0, Z0, Y0) ⇒t0
a . . . be the unblocked path of rGZGa(A) that

visits a clear node infinitely often. Since a is sound, take an instantiation

ρ : (q0, v0)
δ0,t0−−−→ . . . of A. If ρ is non-Zeno, we are done.

Suppose ρ is Zeno, there exists an index m such that all clocks vn(x) <
1/2 for all x ∈ Xr and for all n ≥ m. Take indices i, j ≥ m such that
Yi = Yj = ∅ and all clocks in Xr are reset between i and j. We look at the

sequence (qi, vi)
δi,ti−−→ . . . (qj , vj) and claim that every sequence of the form

(qi, v
′
i)

δi,ti−−→ (qi+1, v
′
i+1)

δi+1,ti+1−−−−−→ . . . (qj , v
′
j)

is a part of a run of A provided there is ζ ∈ R≥0 such that the following
three conditions hold for all k = i, . . . , j:

1. v′k(x) = vk(x) + ζ + 1/2 for all x 6∈ Xr,

2. v′k(x) = vk(x) + 1/2 if x ∈ Xr and x has not been reset between i and
k.

3. v′k(x) = vk(x) otherwise, i.e., when x ∈ Xr and x has been reset
between i and k.
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It is easy to see that the run obtained by replacing every such i − j
interval of ρ by the above sequence gives a non-Zeno run, since a 1/2 time
unit has been elapsed infinitely often.

We now show that the above is indeed a valid run of A. For this we need
to first show that v′k + δk satisfies the guard in tk. Let g be the guard.

For x 6∈ Xr, from the assumption that ρ is unblocked, we know that g
could only be of the form x > c or x ≥ c. So v′k(x) clearly satisfies g. If
x ∈ Xr and is reset between i and k, v′k(x) = vk(x) and so we are done.
Consider the case when x ∈ Xr and is not reset between i and k. Observe
that x 6∈ Yk. This is because Yi = ∅, and then only variables that are reset
are added to Y . Since x is not reset between i and k, it cannot be in Yk.
By definition of transitions in rGZGa(A), if x ∈ Rl(A) this means that
g ∧ (x > 0) is consistent. But for x 6∈ Rl(A) by definition, g ∧ (x > 0) is
consistent. We have that 0 ≤ (vk+δk)(x) < 1/2 and 1/2 ≤ (v′k+δk)(x) < 1.
So v′k + δk satisfies all the constraints in g concerning x as vk + δk does.

It can also be seen that the valuation obtained from v′k by resetting the
clocks in transition tk is the valuation v

′
k+1. �

Abstractions with polynomial complexity

We have seen in the simple case of ExtraM and simple bounds that the
number of Y sets that occur for every node is just |X|+1. This was possible
due to the crucial fact that the zones obtained in reachable part of the zone
graph ordered the clocks. The abstraction ExtraM maintained the order
when the M was a simple bound. In the reduced guessing zone graph case,
we require the abstraction to maintain the order on a restricted set of clocks.

Definition 7.3.10 (Weakly order-preserving) An abstraction a weakly
preserves orders if for all clocks x, y ∈ Rl(A) ∩ C0(Z), Z � y ≤ x iff a(Z) �
y ≤ x.

Assume that a weakly preserves orders, then for every reachable node
(q, Z, Y ) in rGZGa(A), the zone Z orders the clocks in Rl(A) ∩ C0(Z). We
now show that Y is downward closed with respect to this order given by Z:
for clocks x, y ∈ Rl(A) ∩ C0(Z), if Z � x ≤ y and y ∈ Y , then x ∈ Y . This
entails that there are at most |Rl(A)|+1 downward closed sets to consider,
thus giving a polynomial complexity.

Theorem 7.3.11 Let A be a timed automaton. If a weakly preserves orders,
then the reachable part of rGZGa(A) is O(|Rl(A)|) bigger than the reachable
part of ZGa(A).

Proof
We prove by induction on the transitions in rGZGa(A) that for every reach-
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able node (q, Z, Y ) the set Y is downward closed with respect to Z on the
clocks in Rl(A) ∩ C0(Z). This is true for the initial node (q0, Z0,Rl(A)).

Now, assume that this is true for (q, Z, Y ). Take a transition (q, Z, Y )⇒t
a

(q′, Z ′, Y ′) with t = (q, g, R, q′). By definition, Y ′ = (Y ∪R)∩Rl(A)∩C0(Z ′).
Suppose Z ′ � x ≤ y for some x, y ∈ Rl(A) ∩ C0(Z ′) and suppose y ∈ Y ′.
This could mean y ∈ Y or y ∈ R. If y ∈ R, then x is zero-checked since
Z ′ � x ≤ y. This gives x ∈ Y and hence x ∈ Y ′. If y /∈ R then we get y ∈ Y
and Z � x ≤ y. By hypothesis that Y is downward closed, x ∈ Y . In both
cases x ∈ Y ′. �

The following lemma shows that the M -extrapolations weakly preserve
orders, for a general M .

Lemma 7.3.12 The abstractions ExtraM and Extra+M weakly preserve or-
ders.

Proof
For a zone Z, consider clocks x, y ∈ Rl(A) ∩ C0(Z) such that Z � y ≤ x.
Clearly Mx and My are greater than or equal to 0 as they are relevant
clocks and there are zero-checks involving these clocks. Therefore, by the
same argument as in Lemma 7.3.2, we can get that ExtraM (Z) satisfies
y ≤ x.

We now prove this for Extra+M . Firstly note that for a clock x in Rl(A)
we have M(x) ≥ 0. Moreover if x ∈ C0(Z) we have that Z is consistent with
x ≤ 0. Hence, for a clock x ∈ Rl(A)∩C0(Z), Z is consistent with x ≤M(x).
Therefore, by definition, Extra+M (Z) restricted to clocks in Rl(A)∩ C0(Z) is
identical to ExtraM (Z) restricted to the same set of clocks. Since ExtraM

weakly preserves orders, we get that Extra+M weakly preserves orders too. �

The LU-extrapolations are not weakly order preserving. Let x1, . . . , xn
be the set of clocks. Consider the zone Z0 given by x1 = x2 = · · · = xn and
x1 ≥ 0. Now assume that all clocks are relevant due to guards of the form
xi ≤ 0 for all i ∈ {1, . . . , n}. However assume that there are no other guards
in the automaton. So we have U(xi) = 0 and L(xi) = −∞. With these
bounds, ExtraLU (Z0) = R≥0. The order information present in Z is lost in
ExtraLU and hence the LU-extrapolations are not weakly order preserving.
This shows that even the guessing zone graph construction could lead to an
exponential blowup. We will show in the next section that this blowup is
unavoidable.

7.4 NP-completeness for LU-abstractions

We have seen in the last section that our new construction for non-Zenoness
might lead to an exponential blowup. Along with the observation of Sec-
tion 7.1, we see that both the constructions for non-Zenoness discussed so
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q0 q1 q2 q3 r0 r1 r2

{x1}

{x1}

{x2}

{x2}

{x3}

{x3}

x1 ≤ 0

x2 ≤ 0

x3 ≤ 0

x1 ≤ 0

x2 ≤ 0

x3 ≤ 0

Figure 7.10: ANZ
φ for φ = (p1 ∨ ¬p2 ∨ p3) ∧ (¬p1 ∨ p2 ∨ p3)

far could potentially lead to an exponential blowup. This motivates us to
study the complexity of the following decision problem:

Input A and ZGa(A)
Non-Zenoness problem (NZPa) Does A have a non-Zeno run?

Thanks to Theorem 7.3.11 and Lemma 7.3.12, we know that NZP
a is

polynomial for a being one of the M-abstractions. Let us denote NZP
LU

to be the non-Zenoness problem NZP
a when abstraction a refers to either

ExtraLU or Extra+LU . We will now show that NZPLU is NP-complete.

We give a reduction from the 3SAT problem: given a 3CNF formula φ,
we build an automaton ANZ

φ that has a non-Zeno run iff φ is satisfiable. The
size of the automaton will be linear in the size of φ. We will then show that
the abstract zone graph ZGLU (ANZ

φ ) is isomorphic to ANZ
φ , thus completing

the polynomial reduction from 3SAT to NZP
LU .

Automaton ANZ
φ

Let P = {p1, . . . , pk} be a set of propositional variables and let φ = C1 ∧
· · ·∧Cn be a 3CNF formula with n clauses. We define the timed automaton
ANZ

φ as follows. Its set of clocks X equals {x1, . . . , xk, x1, . . . , xk}. For a
literal λ, let cl(λ) denote the clock xi when λ = pi and the clock xi when
λ = ¬pi. The set of states of ANZ

φ is {q0, . . . , qk, r0, . . . , rn} where q0 is the
initial state. The transitions are as follows:

• for each pi we have transitions qi−1
{xi}−−→ qi and qi−1

{xi}−−→ qi,

• for each clause Cm = λm1 ∨ λm2 ∨ λm3 , m = 1, . . . , n, there are three

transitions rm−1
cl(λ)≤0−−−−−→ rm where λ ∈ {λm1 , λm2 , λm3 },

• transitions qk −→ r0 and rn −→ q0 with no guards and resets.

Figure 7.10 shows the automaton for the formula (p1∨¬p2∨p3)∧ (¬p1∨
p2 ∨ p3). Intuitively, a reset of xi represents pi 7→ true and a reset of xi
means pi 7→ false. From r0 to r2 we check if the formula is satisfied by
this guessed assignment. This formula is satisfied by every assignment that
maps p3 to true. This can be seen from the automaton by picking a cycle
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containing the transitions q2
{x3}−−−→ q3, r0

x3≤0−−−→ r1 and r1
x3≤0−−−→ r2. On that

path, time can elapse for instance in state q0, since x3 is reset before being
zero-checked. Conversely, consider the assignment p1 7→ false, p2 7→ true
and p3 7→ false that does not satisfy the formula. Take a cycle that resets
x1, x2 and x3 corresponding to the assignment. Then none of the clocks
that are checked for zero on the transitions from r0 to r1 has been reset.
Notice that these transitions come from the first clause in the formula that
evaluates to false according to the assignment. To take a transition from
r0, one of x1, x2 and x3 must be zero and hence time cannot elapse.

Lemma 7.4.1 below states that if the formula is satisfiable, there exists
a sequence of resets that allows time elapse in every loop. Conversely, if the
formula is unsatisfiable, in every iteration of the loop, there is a zero-check
that prevents time from elapsing.

Lemma 7.4.1 A 3CNF formula φ is satisfiable iff ANZ
φ has a non-Zeno run.

Proof
Let φ be a conjunction of n clauses C1, . . . , Cn. Assume that φ is satisfiable.
Then, there exists a variable assignment χ : P 7→ {true, false} that eval-
uates φ to true. This entails that in every clause Cm there is a literal λm
that evaluates to true with χ.

We will now build a non-Zeno run ρ of ANZ
φ using this variable assign-

ment χ. Let ρ be a run such that:

• from each configuration (qi−1, v) for i ∈ [1; k], ρ takes the transition

qi−1
{xi}−−→ qi when χ(pi) = true and the transition qi−1

{xi}−−→ qi other-
wise;

• from each configuration (rm−1, v) for m ∈ [1;n], ρ takes a transition

rm−1
cl(λm)≤0−−−−−−→ rm where λm is a literal evaluating to true with respect

to χ;

• and ρ lets 1 time unit elapse from each configuration with state rn and
moves to the state q0; in all other states, there is no time elapse.

Note that as rn occurs infinitely often, the run ρ is non-Zeno. It remains
to prove that ρ is indeed a valid run of ANZ

φ . For this, we need to prove
that all zero-checked transitions can be crossed regardless of the unit time
elapse. Consider the part of ρ between two successive configurations with
state rn.

· · · (rn, v) 1−→ · · · {cl(λm)}−−−−−→ · · · (rm−1, v′′)
cl(λm)≤0−−−−−−→ (rm, v

′′) · · · (rn, v′) 1−→ · · ·

By definition of ρ, λm is a literal that evaluates to true according to χ.
Hence, clock cl(λm) is reset before in the corresponding qj−1 −→ qj transition.
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As cl(λm) is reset and since ρ does not elapse time in states other than rn,
we have v′′(cl(λmj )) = 0. This permits the transition from rm−1 to rm for
all m ∈ [1;n] and shows that the run ρ exists.

For the other direction, consider a non-Zeno run ρ ofANZ
φ . Since ρ is non-

Zeno, time elapses on infinitely many transitions in the run. Every infinite
run of ANZ

φ visits a configuration with state rn infinitely often. Consider two
consecutive occurrences of rn in ρ such that time elapses on some transition
in the segment in between:

· · · (rn, v) −→ · · · (qk, v′) −→ · · · (rm−1, v′′)
cl(λm)≤0−−−−−−→ (rm, v

′′) · · · −→ (rn, v
′′) · · ·

By construction, for each i ∈ [1; k] either xi or xi is reset on the segment
from (rn, v) to (qk, v

′). Let χ be the variable assignment that associates true
to pi when xi is reset, and false otherwise, that is when xi is reset. We
prove that χ satisfies φ.

Consider the transition (rm−1, v′′)
cl(λm)≤0−−−−−−→ (rm, v

′′). For the transition
to be enabled, we need to have v′′(cl(λm)) = 0. Let (qj−1, vj−1) −→ (qj , vj)
be the transition that resets either cl(λm) or cl(λm). Notice that time can-
not elapse between (qj , vj) and (rm−1, v′′). So the time elapse should have
occurred between (rn, v) to (qj−1, vj−1). Thus it should be clock cl(λm) that
is reset in the transition (qj−1, vj−1) −→ (qj , vj). From the above definition
of χ, we have λm evaluating to true with χ and hence Cm evaluates to true
with χ too. This holds for all the clauses. This shows that φ is satisfiable
with χ being the satisfying assignment.

�

The NP-hardness of NZPLU then follows due to the small size of the
zone graph ZGLU (ANZ

φ ).

Theorem 7.4.2 The abstract zone graph ZGLU (ANZ
φ ) is isomorphic to

ANZ
φ . The non-Zenoness problem NZP

a is NP-complete for abstractions

ExtraLU and Extra+LU .

Proof
We first prove that ZGLU (ANZ

φ ) is isomorphic to ANZ
φ . For every clock

x, Lx = −∞, hence ExtraLU abstracts all the constraints xi − xj 4ij cij to
xi−xj <∞ except those of the form x0−xi 40i c0i that are kept unchanged.
Due to the guards in ANZ

φ , for every reachable zone Z in ZG(ANZ
φ ) we have

x0 − xi ≤ 0 (i.e. xi ≥ 0). Therefore ExtraLU (Z) is the zone defined by
∧

x∈X x ≥ 0 which is RX
≥0. For each state of ANZ

φ , the zone RX
≥0 is the only

reachable zone in ZGLU (ANZ
φ ), hence showing the isomorphism. The result

transfers to Extra+LU as it is coarser than ExtraLU .
The NP-hardness of NZPLU then follows from Lemma 7.4.1. The mem-

bership to NP will be proved in Lemma 7.4.3 in the next section. �
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Notice that the type of zero checks in ANZ
φ is crucial to Theorem 7.4.2.

Replacing zero-checks of the form x ≤ 0 by x = 0 does not modify the se-
mantics of ANZ

φ . However, this yields Lx = 0 for every clock x. Hence, the
constraints of the form xi − xj ≤ 0 are not abstracted: ExtraLU then pre-
serves the ordering among the clocks. Each sequence of clock resets leading
from q0 to qk yields a distinct ordering on the clocks. Thus, there are ex-
ponentially many LU-abstracted zones with state qk. As a consequence, the
polynomial reduction from 3SAT is lost. Indeed, when Lx = 0 for all clocks,
the abstraction becomes weakly order preserving and hence Theorem 7.3.11
can be applied to give a polynomial algorithm.

Lemma 7.4.3 The abstractions ExtraLU and Extra+LU do not weakly pre-
serve orders. The non-Zenoness problem NZP

a is in NP for ExtraLU and
Extra+LU .

Proof
The proof of Theorem 7.4.2 gives an example that illustrates that LU -
extrapolations do not weakly preserve orders. This also holds for Extra+LU
as it is coarser than ExtraLU .

For the NP membership, let N be the number of nodes in ZGLU (A).
Let us non-deterministically choose a node (q, Z). We assume that (q, Z) is
reachable as this can be checked in polynomial time on ZGLU (A).

We augment (q, Z) with an empty guess set of clocks. From the node
(q, Z, ∅), we non-deterministically simulate a path π of the (non-reduced)
guessing zone graph as in Definition 7.2.2. We avoid taking τ transitions on
this path. This ensures that the guess sets accumulate all the resets on π.
During the simulation, we also keep track of a separate set U containing all
the clocks that are bounded from above on a transition in π.

We write ⇒∗
a to denote the transitive closure of ⇒a. If during the sim-

ulation one reaches a node (q, Z, Y ) such that U ⊆ Y , then we have a cycle
(q, Z, ∅) ⇒∗

a (q, Z, Y ) ⇒τ
a (q, Z, ∅) that is unblocked and that visits a clear

node infinitely often. Also, since (q, Z) is reachable in ZGLU (A), (q, Z,X)
is reachable in the guessing zone graph. Then (q, Z, ∅) is reachable from
(q, Z,X) with a τ transition. From Theorem 7.2.8 and from the fact that
ExtraLU and Extra+LU are sound and complete [BBLP06] we get a non-Zeno
run of A.

Notice that it is sufficient to simulate N × (|X|+1) transitions since we
can avoid visiting a node (q′, Z ′, Y ′) twice in π. �

7.4.1 Weakening the LU-abstractions

The LU -extrapolations do not weakly preserve orders in zones due to rel-
evant clocks with Lx = −∞ and Ux ≥ 0. We show that this is the only



7.5. Concluding remarks 139

reason for NP-hardness. We slightly modify ExtraLU to get an abstraction
ExtraLU that is coarser than ExtraM , but it still weakly preserves orders.

Definition 7.4.4 (Weak L bounds) Let A be a timed automaton. Given
the bounds Lx and Ux for every clock x ∈ X, the weak lower bound L is
given by: Lx = 0 if x ∈ Rl(A), Lx = −∞ and Ux ≥ 0, and Lx = Lx

otherwise.

We denote ExtraLU the ExtraLU abstraction obtained by choosing L
instead of L. Notice that ExtraLU and ExtraLU coincide when zero-checks
are written x = 0 instead of x ≤ 0 in the automaton. By definition of
ExtraLU , we get the following.

Lemma 7.4.5 The abstraction ExtraLU weakly preserves orders.

ExtraLU coincides with ExtraLU for a wide class of automata. For in-
stance, when the automaton does not have a zero-check, ExtraLU is exactly
ExtraLU , and the existence of a non-Zeno run can be decided in polyno-
mial time. Similar to ExtraLU we can define Extra+

LU
which again weakly

preserves orders.

The abstraction ExtraLU makes use of weak L bounds for every clock. If
all clocks that are checked for x ≤ 0 have a guard of the form x ≥ c then the
weak abstraction coincides with ExtraLU . Notice that this is particularly
the case for timed automata that do not have zero checks (i.e. guards like
x ≤ 0).

7.5 Concluding remarks

We have considered the question of detecting non-Zeno runs from an au-
tomaton. We have shown that the standard construction for non-Zenoness
could cause a combinatorial blowup. We have proposed a solution avoiding
this blowup for a class of abstractions weaker than LU-abstractions. For
LU-abstractions, we show that a blowup is unavoidable unless P=NP.

We started the chapter with clearly distinguished goals (c.f. page 116).
We will now summarize how we have achieved these goals.

1. The first goal was to examine the strongly non-Zeno construction of
[TYB05], that has been recalled in Section 6.4. In Section 7.1, we have
given an example of a gadget Vk and its strongly non-Zeno transforma-
tion Wk (Figure 7.1) which illustrate a property of this construction:
the extra clock z allows to maintain distances. The zone graph of Vk
has only four nodes (Figure 7.2), however the zone graph of Wk has d
nodes (Figure 7.3) where d ≥ 1 is a constant present in a guard of Vk
and Wk. We exploited this situation to give an automaton An with
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O(n) zones in its zone graph, whereas its strongly non-Zeno transfor-
mation Bn has O((d+ 1)n) zones.

2. We then proceeded to give a new solution which modifies the
zone graph instead of the automaton. To this regard, we defined
a guessing zone graph (Definition 7.2.2) and showed that this
“inflated” zone graph could be used for checking Büchi non-emptiness
(Theorem 7.2.8).

3. The following Section 7.3 dealt with analyzing the complexity of the
guessing zone graph construction. We showed that the new con-
struction induces only a polynomial blowup for zone graphs using the
ExtraM abstraction (Theorem 7.3.5). A scrupulous optimization of the
guessing zone graph construction gave us the reduced guessing zone
graph (Definition 7.3.6) which was again shown to be sound and com-
plete for deciding non-Zenoness (Theorem 7.3.7). This reduced guess-
ing zone graph maintains polynomial complexity for a class of abstrac-
tions called weakly order preserving (Theorem 7.3.11) and this includes
the abstraction Extra+M too. We noticed that the LU-extrapolations
ExtraLU and Extra+LU are not weakly order preserving.

4. In Section 7.4.4, we show that deciding non-Zenoness from LU-abstract
zone graphs is NP-complete (Theorem 7.4.2). We give a weakening of
the LU-extrapolations that is weakly order preserving (Definition 7.4.4
and Lemma 7.4.5).

To summarize, in this chapter, we have proposed a new construction for
non-Zenoness. We will use this construction to give an on-the-fly algorithm
for the Büchi non-emptiness problem in the next chapter.

In Appendix B, we consider the decision problem:

Given an automaton A, does it have a non-Zeno run?

Note the difference in the inputs to the problem from the decision prob-
lem NZP

a defined in page 135. In the above problem, the input is only
A whereas in NZP

a the inputs were A and ZGa(A). We show that the
above decision problem is Pspace-complete. This implies that for infer-
ring non-Zeno runs from an automaton, we need an object as complex as
the zone graph. However, given our analysis of NZPa, it is surprising that
the non-Zenoness question depends so heavily on abstractions that from a
polynomial complexity to M-abstractions, we attain NP-completeness for
LU-abstractions. This complexity analysis has also led to an interesting
optimization for the reachability and liveness problems.

Recall the proof of NP-completeness of NZPLU given in Theorem 7.4.2.
For a 3CNF formula φ we built an automaton Aφ that has a non-Zeno run
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iff φ is satisfiable. The rest of the proof relied on the crucial fact that the
zone graph ZGLU (Aφ) was isomorphic to A. This was indeed possible as
Lx was −∞ for all x thanks to the guards of the form x ≤ 0. Note that
modifying x ≤ 0 to x = 0 does not change the semantics of the automaton,
but changes Lx to be 0 for all clocks. In this case, the zone graph ZG

LU (Aφ)
is no longer isomorphic to Aφ and in fact it is exponentially larger than Aφ.

This gives us the easy optimization for analyzing an automaton A for
reachability and liveness. Since both these algorithms go through the zone
graph construction, changing all guards in A of the form x = 0 to x ≤ 0
and removing all the guards x ≥ 0 can produce a considerable gain. This
modification has been incorporated in UPPAAL 4.1.5. Experimental results
have shown a remarkable gain, in particular for timed Petri nets as the
translation to timed automata may generate many guards like x = 0 and
x ≥ 0. For instance, checking reachability on a model of Fischer’s protocol
only explored 2541 nodes instead of 23042 nodes thanks to this optimization.
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Chapter 8

Efficient Büchi emptiness

The Büchi non-emptiness problem for timed automata asks if there exists
an accepting non-Zeno run in the automaton. We have seen in Section 6.3
that if there is an accepting run in the abstract zone graph1 then there is an
accepting run in the automaton. To detect non-Zenoness we have proposed
a new construction in the previous chapter and analyzed its complexity for
various abstractions.

In this chapter, we provide an on-the-fly algorithm for the Büchi non-
emptiness problem using the guessing zone graph construction. Subse-
quently, we observe that in most cases, non-Zenoness could be detected
directly from the standard abstract zone graph, without extra construc-
tions. We provide an optimized on-the-fly algorithm taking into account
these observations. We validate the gains of our approach by experimental
results on some standard benchmarks.

Organization of the chapter

This chapter is divided into three sections.

• In Section 8.1, we give an on-the-fly algorithm for the Büchi non-
emptiness problem by adapting Couvreur’s on-the-fly algorithm for
detecting strongly connected components in a graph [CDLP05].

• In Section 8.2, we provide an optimized on-the-fly algorithm that uses
the guessing zone graph construction only when necessary.

• Finally, in Section 8.3, we include some experiments done with a pro-
totype implementation of our algorithms.

1See Remark 6.6.1 for terminology

143
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8.1 On-the-fly algorithm

We will use Theorem 7.2.8 to algorithmically check if an automaton A has
a non-Zeno run satisfying the Büchi condition. The theorem requires to
find an unblocked path in GZGa(A) visiting both an accepting node and
a clear node infinitely often. This problem is similar to that of testing
for emptiness of automata with generalized Büchi conditions as we need to
satisfy two infinitary conditions at the same time. The requirement of a
path being unblocked adds additional complexity to the problem. The best
algorithms for testing emptiness of automata with generalized Büchi con-
ditions are based on Tarjan’s algorithm for strongly connected components
(SCC) [SE05, GS09]. So this is the way we take here. In particular, we
adopt the variant given by Couvreur [Cou99, CDLP05]. We have recalled
the Couvreur’s algorithm in Appendix C.

In general, the verification problem for timed systems involves checking
if a network of timed automata A1, . . . ,An satisfies a given property φ. As-
suming that φ can be translated into a (timed) Büchi automaton A¬φ, we
reduce the verification problem to the emptiness of a timed Büchi automaton
A defined as a product A1 ×A2 × · · · ×An ×A¬φ for some synchronization
policy. Couvreur’s algorithm is an extension of Tarjan’s algorithm for com-
puting maximal SCCs in a graph. One of its main features is that it stops
as soon as an SCC with an accepting state has been found. In addition, it
handles multiple accepting conditions efficiently. To this regard, the algo-
rithm computes the set of accepting conditions in each visited SCC of A.
Initially, each state s in A is considered as a trivial SCC labelled with the
accepting conditions of s. The algorithm computes the states of A on-the-fly
in a depth-first search (DFS) manner starting from the initial state. During
the search, when a cycle is found, all the SCCs in the cycle are merged into
a bigger SCC Γ that inherits their accepting conditions. If Γ contains all
the required accepting conditions, the algorithm stops declaring A to be
not empty. Notice that Γ need not be maximal. Otherwise it resumes the
DFS on A. We direct the reader to Appendix C for further details on the
Couvreur’s algorithm.

We will now show how to enhance Couvreur’s algorithm to detect runs
that are not only accepting but also non-Zeno. It is achieved by associating
extra information to the SCCs in A. This information is updated when
SCCs are merged similar to the method for accepting conditions.

Adapting Couvreur’s algorithm

We apply Couvreur’s algorithm for detecting SCCs in GZGa(A). During the
computation of the SCCs, we keep track of whether an accepting node and
a clear node have been seen. For the unblocked condition we use two sets of
clocks UΓ and RΓ that respectively contain the clocks that are bounded from
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above and the clocks that are reset in the SCC Γ. A clock from UΓ −RΓ is
called blocking since being bounded and not reset it puts a limit on the time
that can pass on paths in Γ. At the end of the exploration of Γ we check if:

1. we have passed through an accepting node and a clear node,

2. there are no blocking clocks: UΓ ⊆ RΓ.

If the two conditions are satisfied then we can conclude saying that A has
an accepting non-Zeno run. Indeed, a path passing infinitely often through
all the nodes of Γ would satisfy the conditions of Theorem 7.2.8, giving a
required run of A. If the first condition does not hold then the same theorem
says that Γ does not have a witness for a non-Zeno run of A satisfying the
Büchi condition.

The interesting case is when the first condition holds but not the second.
The following lemma yields an algorithm in that case.

Lemma 8.1.1 Let Γ be an SCC in GZGa(A) with an accepting node and
a clear node, and such that UΓ 6⊆ RΓ. There exists an unblocked path in Γ
that visits both an accepting node and a clear node infinitely often iff there
exists a sub-SCC Γ′ ⊆ Γ with an accepting node and a clear node and such
that UΓ′ ⊆ RΓ′ .

Proof
Assume that Γ has an unblocked path that visits both an accepting node
and a clear node infinitely often. Then, define Γ′ as the set of nodes and
edges that are visited infinitely often on that path.

Conversely, if such a sub-SCC Γ′ exists, then consider an infinite path
in Γ′ that goes infinitely often through each node and each transition in Γ′.
This path is unblocked and visits both an accepting node and a clear node.
This path is also a path in Γ. �

We call blocking edges all the edges in Γ that upper-bound a clock from
UΓ \ RΓ. We proceed as follows. We discard all the blocking edges from Γ
as every unblocked path in Γ goes only finitely many times through these
edges. In general, this yields several candidates for Γ′. Each of them is
a proper sub-SCC of Γ. Then, we restart our algorithm on each such Γ′.
Since we have discarded some edges from Γ (hence some resets), a clock
may be now blocking in Γ′. If this is the case, the blocking edges in Γ′ will
be discarded, and the resulting sub-SCCs of Γ′ will be explored, and so on.
Observe that each transition in GZGa(A) will be visited at most |X| + 1
times, as we eliminate at least one clock at each restart. If after exploring
the entire graph, the algorithm has not found a subgraph satisfying the
two conditions then it declares that there is no run of A with the desired
properties. The correctness of the procedure is based on Theorem 7.2.8.
The entire procedure: exploring Γ, discarding blocking edges, exploring all
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Γ′ candidates, etc, can be done on-the-fly without storing Γ as described
in [HS10].

The complexity of the algorithm given above follows from the linear
complexity of Couvreur’s algorithm and the remark about the bound on the
number of times each transition is visited. We hence obtain the following.

Theorem 8.1.2 The above algorithm is correct and runs in time
O(|GZGa(A)| · |X|).

By Theorem 7.3.5, we know that the size of the guessing zone graph
|GZGa(A)| is |ZGa(A)| · O(|X|) for abstraction ExtraM . A similar result
is obtained for abstraction Extra+M when we consider the reduced guess-
ing zone graph rGZGa(A) thanks to Theorem 7.3.11. However, for LU-
abstractions, we know from Theorem 7.4.2 that the guessing zone graph
could be |ZGa(A)| · O(2|X|). We will now see an optimized algorithm that
runs well in practice even for LU-abstractions.

8.2 Optimizing use of non-Zenoness construction

Although the guessing zone graph provides a way to detect non-Zeno paths,
it is useful only when the automaton indeed contains zero-checks. The next
challenge therefore lies in optimizing the use of the guessing zone graph
construction, that is, applying Couvreur’s algorithm directly on the stan-
dard zone graph and using the guessing zone graph construction only when
required.

The idea is to apply Couvreur’s algorithm directly on ZGa(A) and find
an SCC with an accepting node. An SCC is said to be unblocked if it contains
no blocking clock; recall that it is a clock x that is checked for a guard which
implies x ≤ c for a constant c and that is reset in no transition of the SCC.

Non-Zenoness can be ensured if the SCC in ZGa(A) satisfies one of the
following conditions:

• It is unblocked and free from zero-checks.

• There is a clock x that is reset in the SCC and one of the transitions
in the SCC implies x ≥ 1.

For the second condition, note that such a reachable SCC instantiates
into a path ρ of A whose suffix corresponds to repeated traversal of this
SCC. Every traversal resets x and checks for a guard that implies x ≥ 1.
Therefore, at least 1 time unit elapses in each traversal, implying that ρ is a
non-Zeno run. Notice that this relies on the same principle as the one used
in the strongly non-Zeno construction [TYB05] (see Section 6.4). However,
in our case we exploit the information from A: we do not add any new clock.
Our algorithm will compute on the fly the set LΓ of clocks x such that x ≥ 1
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is implied by some guard in Γ. This is done in the same way as for UΓ in the
previous subsection. Then, Γ satisfies the second condition above if LΓ∩RΓ
is not empty.

The first condition is justified by the following lemma.

Lemma 8.2.1 If ZGa(A) has an unblocked path that visits an accepting
node infinitely often, and has only finitely many transitions with zero-checks,
then A has a non-Zeno run satisfying the Büchi condition.

Proof
Let σ be the path in ZGa(A) as required by the assumptions of the lemma:

(q0, Z0)⇒t0
a . . . (qi, Zi)⇒ti

a . . .

Since zero-checks occur only finitely often in σ, we can find j such that
the suffix (qj , Zj)⇒tj

a . . . of σ contains no zero-checks in its transitions. Let
σ′ be the following sequence:

(q0, Z0, Y0)⇒τ
a (q0, Z0, Y

′
0)⇒t0

a (q1, Z1, Y1)⇒τ
a (q1, Z1, Y

′
1)⇒t1

a · · ·
where Y0 = X, Yi is determined by the transition, and Y ′i = Yi for all

i ≤ j and for i > j, Y ′i = ∅. Note that σ′ is a path in GZGa(A). For
this to be true, each transition (qi, Zi, Y

′
i ) ⇒ti

a (qi+1, Zi+1, Yi+1) should be
realizable from a valuation vi such that vi � (X−Y ′i ) > 0. This is vacuously
true if i ≤ j since Y ′i = X for all i ≤ j. For i > j, Y ′i = ∅ and since ti does
not contain a zero-check, the transition is realizable from a valuation vi in
which all clocks are strictly greater than 0.

Since σ is unblocked, σ′ is unblocked too. By definition all but finitely
many nodes for σ′ are clear. Finally, σ′ visits an accepting node infinitely
often. By Theorem 7.2.8, A has a non-Zeno run satisfying the Büchi condi-
tion. �

The above two observations give a sufficient condition for terminating
with a success when an SCC Γ with an accepting node is found in ZGa(A).
If the above two conditions do not hold, then Γ has no clock bounded from
below (i.e. x ≥ 1) that is reset and Γ either has blocking clocks or zero-
checks. If it has only blocking clocks, we apply the procedure that restarts
the exploration with blocking edges removed, as described in Section 8.1.
If Γ has zero-checks, we indeed use the guessing zone graph construction,
however restricted only to the nodes of Γ. The problem is to know the initial
set of clocks that need to be zero. We first define a few notations.

Let (qΓ, ZΓ) be a node of Γ. Let GZG|Γ(A) be the part of GZG(A)
rooted at (qΓ, ZΓ, X) and restricted only to the nodes and transitions that
occur in Γ. We say that a run ρ of A is trapped in an SCC Γ of ZGa(A)
if a suffix of ρ is an instantiation of a path in Γ. The following lemma
justifies the use of the restricted guessing zone graph construction starting
from (qΓ, ZΓ, X).
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Lemma 8.2.2 The automaton A has an accepting non-Zeno run trapped
in an SCC Γ of ZGa(A) iff GZG|Γ has an SCC that is accepting, unblocked
and contains a clear node.

Proof
For the left-right direction, consider the following run ρ of A trapped in Γ:

(q0, v0)
δ0,t0−−−→ . . . (qm, vm)

δm,tm−−−−→ . . .

where qm = qΓ, vm ∈ ZΓ and (qΓ, ZΓ) is a node of Γ. Consider the sequence
σ′:

(q0, Z0, Y0)⇒τ
a (q0, Z0, Y

′
0)⇒t0

a (q1, Z1, Y1)⇒τ
a (q1, Z1, Y

′
1)⇒t1

a · · ·

where

• (q0, Z0) is the initial node of ZG
a(A), the zone Zi is determined by

the transition ti,

• Y0 = X, Yi is determined by the transition,

• Y ′i = Yi for all i ≤ m; for i > m, Y ′i = ∅ if δi > 0 and Y ′i = Yi
otherwise.

Observe that Ym = X and the suffix of σ′ starting from (qm, Zm, Ym) is a
path of GZG|Γ(A). Since there are infinitely many i with δi > 0, this suffix
corresponds to an SCC that has a clear node. It is accepting and unblocked
since the run ρ that we started with is accepting and non-Zeno.

For the right-left direction, note that an accepting, unblocked SCC with
a clear node in GZG|Γ(A) corresponds to an accepting, unblocked path of
GZG(A) starting from (qΓ, ZΓ, X) that visits a clear node infinitely often.
It is straightforward to see that (qΓ, ZΓ, X) is reachable from the initial
node (q0, Z0, X) of GZG(A) through a path in which for all transitions
(q, Z, Y )

τ−→ (q′, Z ′, Y ′), Y ′ = Y . Indeed, the restriction of GZG(A) to its
nodes with Y = X is isomorphic to the zone graph ZGa(A). From this
path of GZG(A) and using Lemma 7.2.10, we can construct a accepting,
non-Zeno run of A that is trapped in Γ. �

Based on the above observations, we give the schema of the overall op-
timized algorithm in Figure 8.1. In the worst case, for ExtraM abstraction,
the algorithm runs in time O(|ZGa(A)| · |X|2). When the automaton does
not have zero-checks it runs in time O(|ZGa(A)| · |X|), irrespective of the
abstraction used. When the automaton further has no blocking clocks, it
runs in time O(|ZGa(A)|), again, irrespective of the abstraction.
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A

Compute ZGa(A)
using Couvreur’s algorithm

⋆
Finish A is empty

Found SCC Γ
with accepting node

Γ has lower-bounded clock?

or is Γ
unblocked,free from zero-checks?

Yes A is non-empty

No

Is Γ maximal?
No

Continue ⋆

Yes

Γ has zero-checks?

No Yes

Is there a sub-SCC

with accepting node &

no blocking clocks?

GZG|Γ(A) has SCC

with accepting node,

clear node &

no blocking clocks?

No

Continue ⋆

No

Continue ⋆

Yes Yes

A is non-empty

Figure 8.1: Algorithm to check for Büchi emptiness of A. “Continue” loops back
to computing ZGa(A) using Couvreur’s Algorithm.

8.3 Experiments

We have implemented our algorithms in a prototype verification tool. We
have considered only the abstraction ExtraM . The goal was to verify the
effect of the guessing zone graph construction over the strongly non-Zeno
construction. We see that the guessing zone graph construction applied
naively induces a systematic polynomial increase in the zone graph. This
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performs worse than the strongly non-Zeno in many cases. However, the
optimized algorithm explained in the previous section performs substantially
better than both the strongly non-Zeno and the naive guessing zone graph
constructions. In many cases, we notice that non-Zenoness can be inferred
from just the abstract zone graph itself.

Table 8.1 presents the results that we obtained on several classical ex-
amples. The “Models” column represents the product of the network of
Timed Büchi Automata and the property to verify. We give the number of
processes in the network for each model. A tick in the “Sat.” columns tells
that the property is satisfied by the model. The “Zone Graph” column gives
the number of nodes in the zone graph (abstracted with ExtraM ). Next, for
the “Strongly non-Zeno” construction, we give the size of the resulting zone
graph followed by the number of nodes that are visited during verification
using the Couvreur’s algorithm. Similarly for the “Guessing Zone Graph”
but using the algorithm in section 8.1. Finally, the last column corresponds
to our fully optimized algorithm as described in section 8.2.

We have considered three types of properties: reachability properties
(mutual exclusion, collision detection for CSMA/CD), liveness properties
(access to the resource infinitely often), and bounded response properties
(which are reachability properties with real-time requirements). Reacha-
bility properties require to find a path to a target state starting from the
initial state. Although this path is a finite sequence, it is realistic only if
this finite sequence can be extended to a non-Zeno path of the automaton.
Therefore, while verifying reachability properties, we check if the automaton
has a non-Zeno path that contains the target state.

The strongly non-Zeno construction outperforms the guessing zone graph
construction for reachability properties. This is particularly the case for
mutual exclusion on the Fischer’s protocol and collision detection for the
CSMA/CD protocol. For liveness properties, the results are more balanced.
On the one hand, the strongly non-Zeno construction is once again more
efficient for the CSMA/CD protocol. On the other hand the differences are
tight in the case of Fischer protocol. The guessing zone graph construction
distinguishes itself for bounded response properties. Indeed, the Train-Gate
model is an example of exponential blowup for the strongly non-Zeno con-
struction.

We notice that on-the-fly algorithms perform well. Even when the graphs
are big, particularly in case when automata are not empty, the algorithms are
able to conclude after having explored only a small part of the graph. Our
optimized algorithm outperforms the two others on most examples. Partic-
ularly, for the CSMA/CD protocol with 5 stations our algorithm needs to
visit only 4841 nodes while the two other methods visited 8437 and 21038
nodes. This confirms our initial hypothesis: most of the time, the zone
graph contains enough information to ensure time progress. As a conse-
quence, checking non-Zenoness and emptiness is done at the same cost as
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Models (A) Sat.
ZGa(A) ZGM (SNZ(A)) GZGM (A) Opt
size size visited size visited visited

Train-Gate2 (mutex)
√

134 194 194 400 400 134
Train-Gate2 (bound. resp.) 988 227482 352 3840 1137 292
Train-Gate2 (liveness) 100 217 35 298 53 33
Fischer3 (mutex)

√
1837 3859 3859 7292 7292 1837

Fischer4 (mutex)
√

46129 96913 96913 229058 229058 46129
Fischer3 (liveness) 1315 4962 52 5222 64 40
Fischer4 (liveness) 33577 147167 223 166778 331 207
FDDI3 (liveness) 508 1305 44 3654 79 42
FDDI5 (liveness) 6006 15030 90 67819 169 88
FDDI3 (bound. resp.) 6252 41746 59 52242 114 60
CSMA/CD4 (collision)

√
4253 7588 7588 20146 20146 4253

CSMA/CD5 (collision)
√

45527 80776 80776 260026 260026 45527
CSMA/CD4 (liveness) 3038 9576 1480 14388 3075 832
CSMA/CD5 (liveness) 32751 120166 8437 186744 21038 4841

Table 8.1: Experimental Results. The “Sat.” column tells which properties are
satisfied by the model. The “size” columns give the number of nodes in the cor-
responding graphs. The “visited” columns give the number of nodes that are vis-
ited by the corresponding algorithm. The results correspond to the Couvreur’s
algorithm for ZGa(SNZ(A)), the algorithm in Section 8.1 for GZG(A) and the
algorithm in Section 8.2 for the “Optimized” column.

checking emptiness only. This is in turn achieved at a cost that is similar to
reachability checking.

Our optimization using lower bounds (that is x ≥ 1) on clocks also proves
useful for the FDDI protocol example. One of its processes has zero-checks,
but since some other clock is bounded from below and reset, it was not
necessary to explore the guessing zone graph to conclude non-emptiness.

8.4 Concluding remarks

In this chapter, we have given an on-the-fly algorithm for the Büchi non-
emptiness problem using the guessing zone graph construction for non-
Zenoness (Section 8.1). The solution proceeds by an adaptation of Cou-
vreur’s algorithm for detecting SCCs in a graph. The exact implementation
details of Couvreur’s algorithm have been deferred to Appendix C.

In the following Section 8.2, we provided an optimized use of the guess-
ing zone graph construction. This optimized use lets us detect non-Zenoness
directly from the zone graph in most cases. The optimized algorithm outper-
forms the strongly non-Zeno construction and the naive guessing zone graph
by a substantial margin, as validated by experimental results in Section 8.3.

The experiments have been performed using the ExtraM abstraction
only. We plan to implement the reduced guessing zone graph construc-
tion (Definition 7.3.6) for LU-abstractions in a future implementation. As
the initial experiments with ExtraM are promising and in particular, in most
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cases we infer non-Zenoness from the zone graph itself without extra con-
structions, our approach could be good in practice even for LU-abstractions,
albeit the NP-completeness.



Chapter 9

Zenoness problem

Zeno runs portray unrealistic behaviours. It is therefore important to detect
their existence before implementing timed automata. The current solution
to this problem involves a check on the automaton syntax to ensure absence
of Zeno runs (Section 6.5). The method is efficient as it is a static analysis,
but it is not complete. We provide the first complete solution to this problem
in this chapter.

We consider this syntactic check once again. It looks for loops in the
automaton in which there is a clock that is reset and is bounded from below
by some guard. The procedure suffers from being sufficient-only because it
is applied on the automaton syntax. We consider the zone graph instead.
A zone obtained after a transition x ≥ c maintains this information, as all
valuations in this zone have the value of x bigger than c. If additionally, the
abstraction of the zone maintains this information too, then one could get
an efficient on-the-fly algorithm linear in the size of the abstract zone graph
for the problem of detecting zeno runs.

We notice that the LU-abstractions do not always maintain the infor-
mation about a clock x having a value greater than c in every valuation of
the zone. The construction given above therefore cannot be used on the
LU-abstract zone graph. It turns out that the problem of deciding Zeno
runs given the automaton and the LU-abstract zone graph is NP-complete.
However, a slight weakening of the LU-abstractions removes this problem of
NP-completeness.

Organization of the chapter

In Section 9.1 we describe our new algorithm for Zenoness checking. It is
called the slow zone graph construction. We follow up in Section 9.2 with the
results on the Zenoness problem for LU-abstractions. We end the chapter
with some concluding remarks in Section 9.3.
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9.1 A new algorithm

We propose a new algorithm to detect existence of Zeno runs in an automa-
ton. This new algorithm can be implemented on-the-fly. We begin with a
definition.

Definition 9.1.1 (Lifting transitions) A transition t = (q, g, R, q′) is
said to be lifting if the guard g implies x ≥ 1 for some clock x.

The idea is to find if there exists a run of an automaton A in which
every clock x that is reset infinitely often is lifted only finitely many times.
In other words, after some point of time, all clocks that are reset are never
lifted. This ensures that the automaton can take this run in a Zeno fashion.
This amounts to checking if there exists a cycle in ZG(A) where every clock
that is reset is not lifted. Observe that when (q, Z)

x≥c
=⇒ (q′, Z ′) is a transition

of ZG(A) that does not reset x, the target zone Z ′ entails x ≥ c. Therefore,
if a node (q, Z) is part of a cycle in the required form, then in particular, all
the clocks that are greater than 1 in Z should not be reset in the cycle.

Based on the above intuition, our solution begins with computing
the zone graph on-the-fly. At some node (q, Z) the algorithm non-
deterministically guesses that this node is part of a cycle that yields a zeno
run. This node transits to what we call the slow mode. In this mode, a
reset of x in a transition is allowed from (q′, Z ′) only if Z ′ ∧ g is consistent
with x < 1, where g is the guard of the transition. Note that Z ′ ∧ g gives
the set of valuations that actually cross the transition.

Before we define our construction formally, recall that we would be work-
ing with the abstract zone graph ZGa(A) and not ZG(A). Therefore for our
solution to work, the abstraction operator a should remember the fact that a
clock has a value greater than 1. For an automaton A over the set of clocks
X, let Lf(A) denote the set of clocks that appear in a lifting transition of
A.

Definition 9.1.2 (Lift-safe abstractions) An abstraction a is called lift-
safe if for every zone Z and for every clock x ∈ Lf(A), Z � x ≥ 1 iff
a(Z) � x ≥ 1.

We are now in a position to define our slow zone graph construction to
decide if an automaton has a Zeno run.

Definition 9.1.3 (Slow zone graph) Let A be a timed automaton over
the set of clocks X. Let a be a lift-safe abstraction. The slow zone graph
SZGa(A) has nodes of the form (q, Z, l) where l ∈ {free, slow}. The initial
node is (q0, Z0, free) where (q0, Z0) is the initial node of ZG

a(A). For every
transition (q, Z) ⇒t

a (q
′, Z ′) in ZGa(A) with t = (q, g, R, q′), we have the

following transitions in SZGa(A):
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• a transition (q, Z, free)⇒t
a (q

′, Z ′, free),

• a transition (q, Z, slow) ⇒t
a (q

′, Z ′, slow) if for all clocks x ∈ R, Z ∧ g
is consistent with x < 1,

A new letter τ is introduced that adds transitions (q, Z, free)⇒τ
a (q, Z, slow).

A node of the form (q, Z, slow) is said to be a slow node. A path of
SZGa(A) is said to be slow if it has a suffix consisting entirely of slow
nodes. The τ -transitions take a node (q, Z) from the free mode to the slow
mode. Note that the transitions of the slow mode are constrained further.
A transition (q, Z, slow) ⇒t

a (q
′, Z ′, slow) can reset a clock x only when the

set of valuations crossing the transition is consistent with x < 1. We say
Z ∧ g (and not just Z) should be consistent with x < 1. This is to cater
to transitions that have both a reset of x and a guard of the form x ≥ 1.
So, even if the zone Z is consistent with x < 1, the valuations crossing the
transition will have the clock value x ≥ 1. In the slow mode, such transitions
should not be allowed.

The correctness follows from the fact that there is a cycle in SZGa(A)
consisting entirely of slow nodes iff A has a Zeno run. This is detailed in
the following two lemmas.

Lemma 9.1.4 If A has a Zeno run, then there exists an infinite slow path
in SZGa(A).

Proof
Let ρ be a Zeno run of A:

(q0, v0)
δ0,t0−−−→ (q1, v1)

δ1,t1−−−→ . . .

Let π be the corresponding path in ZGa(A):

(q0, Z0)⇒t0
a (q1, Z1)⇒t1

a . . .

We construct an infinite slow path in SZGa(A) from the path π. Let
X l be the set of clocks that are lifted infinitely often in π and let Xr be the
set of clocks that are reset infinitely often in π. Let πi denote the suffix of
π starting from the position i.

Clearly, there exists an index m such that all the clocks that are lifted
in πm belong to X l and the ones that are reset in πm belong to Xr. Since
ρ is Zeno, we have X l ∩ Xr = ∅. This shows that all the clocks that are
reset in πm are never lifted in its transitions. Let ρk denote the suffix of ρ
starting from (qk, vk). There exists an index k ≥ m such that for all j ≥ k,
Zj is consistent with x < 1 for all clocks x ∈ Xr and we get the following
path of SZGa(A):
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(q0, Z0, free)⇒t0
a . . .⇒tj−1

a (qj , Zj , free)

⇒τ
a (qj , Zj , slow)⇒tj

a (qj+1, Zj+1, slow)⇒tj+1
a . . .

�

Lemma 9.1.5 If SZGa(A) has an infinite slow path, then A has a Zeno
run.

Proof
Let π be the slow path of SZGa(A):

(q0, Z0, free)⇒t0
a . . .⇒tj−1

a (qj , Zj , free)

⇒τ
a (qj , Zj , slow)⇒tj

a (qj+1, Zj+1, slow)⇒tj+1
a . . .

Take the corresponding path in ZGa(A) and an instance ρ = (q0, v0)
δ0,t0−−−→

(q1, v1) . . . which is a run of A, as we have assumed that a is a sound
abstraction.

Let Xr be the set of clocks that are reset infinitely often and let X l be
the set of clocks that are lifted infinitely often in ρ. By the semantics of the
slow mode and from our hypothesis of a being lift-safe, after the index j, all
clocks that are lifted once can never be reset again. Therefore, there exists
an index k ≥ j such that the following hold:

• all clocks that are reset in ρk belong to Xr and all clocks that are lifted
in a transition of ρk belong to X l,

• for all x ∈ X l and for all i ≥ k, vi(x) ≥ c where c is the maximum
constant appearing in a lifting transition of ρk.

We now modify the time delays of ρk to construct a run that elapses a
bounded amount of time. Pick an increasing sequence of indices i1, i2, . . .
in ρk such that δim > 0, for all m ∈ N. Define the new delays δ′i for all i ≥ k
as follows:

δ′i =

{

min(δi,
1
2j
) if i = ij for some j

0 otherwise

Consider the run ρ′ obtained by elapsing δ′i time units after the index k:

(q0, v0)
δ0,t0−−−→ . . .

δk−1,tk−1−−−−−−→ (qk, vk)
δ′
k
,tk−−−→ (qk+1, v

′
k+1)

δ′
k+1,tk+1−−−−−−→ . . .

Clearly, ρ′ is Zeno. It remains to prove that ρ′ is a run of A. Denote vk
by v′k. We need to show that for all i ≥ k, v′i + δ′i satisfies the guard in the
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transition ti. Call this guard gi. Clearly, since v
′
i+ δ

′
i ≤ vi+ δi by definition,

if gi is of form x < c or x ≤ c then it is satisfied by the new valuation. Let us
now consider the case when gi is of the form x ≥ c or x > c. If c ≥ 1, then
we know that x ∈ X l from the assumption on k. But since vk(x) ≥ c and x
is not reset anywhere in ρk, v′i(x) ≥ c for all i and hence the new valuation
satisfies gi. We are left with the case when gi is of the form x > 0. However
this follows since by definition of the new δ′i, v

′
i + δ′i = 0 iff vi + δi = 0. �

From the definition of SZGa(A) it follows clearly that for each node
(q, Z) of the zone graph there are two nodes in SZGa(A): (q, Z, free) and
(q, Z, slow). We thus get the following theorem.

Theorem 9.1.6 Let a be a lift-safe abstraction. The automaton A has a
Zeno run iff SZGa(A) has an infinite slow path. The number of reach-
able nodes of SZGa(A) is at most twice the number of reachable nodes in
ZGa(A).

We now turn our attention towards some of the abstractions existing
in the literature. We observe that both ExtraM and Extra+M are lift-safe
and hence the Zenoness problem can be solved using the slow zone graph
construction. However, in accordance with the announced NP-hardness of
the problem for ExtraLU , we get that ExtraLU is not lift-safe.

Lemma 9.1.7 The abstractions ExtraM and Extra+M are lift-safe.

Proof
Observe that for every clock that is lifted, the bound M is at least 1. It is
now direct from the definitions that ExtraM and Extra+M are lift-safe. �

The LU-abstractions are not lift-safe. Consider an automaton in which
there is a single clock x which is present in a guard x ≥ 1. There are no other
guards involving x, which gives Ux = −∞. So for a zone Z := x ≥ 1, by
definition we will have ExtraLU (Z) = Extra+LU (Z) = R≥0, clearly showing
that LU-extrapolations are not lift-safe.

9.2 NP-completeness for LU-extrapolations

We have seen that the LU-abstractions are not lift-safe and hence our new
algorithm cannot be applied. This motivates us to consider the following
decision problem:

Input A and ZGa(A)
Zenoness problem (ZPa) Does A have a Zeno run?

By our slow zone graph construction of the previous section, this prob-
lem is polynomial for M-abstractions. As in the case of non-Zenoness (Sec-
tion 7.4), this problem turns out to be NP-complete when the abstraction
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operator a is ExtraLU . We first show that the slow zone graph construction
puts this problem in NP for LU-abstractions.

Lemma 9.2.1 The Zenoness problem ZP
a is in NP for abstractions

ExtraLU and Extra+LU .

Proof
We show the NP-membership using a technique similar to the slow zone
graph construction. Let ZGLU (A) denote an abstract zone graph obtained
using either ExtraLU or Extra+LU . Since ExtraLU is not lift-safe, the reach-
able zones in ZGLU (A) do not maintain the information about the clocks
that have been lifted. Therefore, at some reachable zone (q, Z) we non-
deterministically guess the set of clocks W that are allowed to be lifted in
the future and go to a node (q, Z,W ). From now on, there are transitions
(q, Z,W )⇒t

a (q
′, Z ′,W ) when:

• (q, Z)⇒t
a (q

′, Z ′) is a transition in ZGLU (A),

• if t contains a guard x ≥ c with c ≥ 1, then x ∈W ,

• if t resets a clock x, then x /∈W

If a cycle is obtained that contains (q, Z,W ), then the clocks that are reset
and lifted in this cycle are disjoint and hence A has a Zeno run.

This shows that if A has a Zeno run we can non-deterministically choose
a path of the above form and the length of this path is bounded by twice
the number of zones in ZGLU (A) (which is our other input). This proves
the NP-membership. �

For NP-hardness, similar to Section 7.4, we show a reduction from the
3SAT problem. Let P = {p1, . . . , pk} be a set of propositional variables.
Let φ = C1 ∧ · · · ∧ Cn be a 3CNF formula with n clauses. Each clause Cm,
m = 1, 2, . . . , n is a disjunction of three literals λm1 , λ

m
2 and λm3 . We construct

in polynomial time an automaton AZ
φ and its zone graph ZGLU (AZ

φ ) such

that AZ
φ has a Zeno run iff φ is satisfiable, thus proving the NP-hardness.

The automaton AZ
φ has clocks {x1, x1, . . . , xk, xk} with xi and xi cor-

responding to the literals pi and ¬pi respectively. We denote the clock
associated to a literal λ by cl(λ). The set of states of AZ

φ is given by
{q0, q1, . . . , qk}∪{r0, r1, r2, . . . , rn} with q0 being the initial state. The tran-
sitions are as follows:

• transitions qi−1
{xi}−−→ qi and qi−1

{xi}−−→ qi for i = 1, 2, . . . , k,

• a transition qk −→ r0 with no guards and resets,

• for each clause Cm there are three transitions rm−1
cl(¬λ)≥1−−−−−→ rm for

each literal λ ∈ {λm1 , λm2 , λm3 },
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q0 q1 q2 q3 r0 r1 r2

{x1}

{x1}

{x2}

{x2}

{x3}

{x3}

x1 ≥ 1

x2 ≥ 1

x3 ≥ 1

x1 ≥ 1

x2 ≥ 1

x3 ≥ 1

Figure 9.1: AZ
φ for φ = (p1 ∨ ¬p2 ∨ p3) ∧ (¬p1 ∨ p2 ∨ p3)

• a transition rn −→ q0 with no guards and resets. This transition creates
a cycle in AZ

φ .

As an example, Figure 9.1 shows the automaton for the formula (p1 ∨
¬p2 ∨ p3) ∧ (¬p1 ∨ p2 ∨ p3). Observe that the transitions rm−1

cl(¬λ)≥1−−−−−→ rm
check if the clock corresponding to the negation of λ is greater than 1. That
is, cl(¬λ) = cl(λ).

Clearly, AZ
φ can be constructed from φ in O(|φ|) time. We now show

that φ is satisfiable iff AZ
φ has a Zeno run.

Lemma 9.2.2 A 3CNF formula φ is satisfiable iff AZ
φ has a Zeno run.

Proof
For the left-to-right direction, suppose that φ is satisfiable. Then there exists
a variable assignment χ : P 7→ {true, false} that evaluates φ to true. We
now build the Zeno run of AZ

φ using χ.

Pick an infinite run ρ of AZ
φ . Clearly, it should have the following se-

quence of states repeated infinitely often:

q0 −→ . . . qk −→ r0 −→ r1 −→ . . . rn (9.1)

We choose the transitions for ρ that allow time elapse only by a finite

amount. If χ(pi) = true, then we put qi−1
{xi}−−→ qi wherever qi−1 −→ qi occurs

in ρ. Otherwise χ(pi) = false and we put qi−1
{xi}−−→ qi. We now need to

choose the transitions rm−1 −→ rm for m = 1, . . . , n. Since χ is a satisfying
assignment, every clause Cm has a literal λ that evaluates to true with χ.

We choose the corresponding transition rm−1
cl(¬λ)≥1−−−−−→ rm. Observe that if

λ evaluates to true, it implies that cl(λ) was reset in one of the qi −→ qi+1
transitions but not cl(¬λ).

Therefore, the above construction yields a sequence of transitions with
the property that all clocks that are reset are never checked for greater than
1. This sequence can be taken by elapsing 1 time unit in the very first state,
and then subsequently elapsing no time at all, thus giving a Zeno run in AZ

φ .

We now prove the right-to-left direction. Let ρ be an infinite Zeno run
of AZ

φ . An infinite run should repeat the sequence of states given in (9.1).
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Since ρ is Zeno, it has a suffix ρs such that for every clock x that is reset in
ρs, x ≥ 1 never occurs in the transitions of ρs. This is because if every suffix
of ρ contains a clock that is both reset and checked for greater than 1, this
would mean that there is a time elapse of one time unit occurring infinitely
often, contradicting the hypothesis that ρ is Zeno.

Consider a segment S = q0 −→ . . . qn −→ r0 −→ r1 −→ . . . rk in ρs. We
construct a satisfying assignment χ : P 7→ {true, false} for φ from S.

• if S contains qi−1
{xi}−−→ qi then set χ(pi) = true

• otherwise, it implies that S contains qi−1
{xi}−−→ qi in which case we set

χ(pi) = false.

This shows that for a literal λ, if cl(λ) is reset in S, then χ(λ) = true. From
the property of ρs that no clock that is reset is checked in a guard, for every

transition rm−1
cl(¬λ)≥1−−−−−→ rm in S, it is clock cl(λ) that is reset and hence

χ(λ) = true. By construction of AZ
φ , λ is a literal in Cm. Therefore, we get

a literal that is true in every clause evaluating φ to true. �

It remains to show that ZGLU (AZ
φ ) can also be calculated in polynomial

time from AZ
φ . We indeed note that the size of the ZGLU (AZ

φ ) is the same
as that of the automaton. That will conclude the proof that a polynomial
algorithm for ZPLU yields a polynomial algorithm for the 3SAT problem.

Theorem 9.2.3 The zone graph ZGLU (AZ
φ ) is isomorphic to AZ

φ . The

Zenoness problem ZP
a is NP-complete for ExtraLU and Extra+LU .

Proof
By looking at the guards in the transitions, we get that for each clock x,
L(x) = 1 and Ux = −∞. The initial node of the zone graph ZGLU (AZ

φ ) is
(q0,ExtraLU (Z0)) where Z0 is the set of valuations given by (x1 ≥ 0)∧(x1 =
x1 = · · · = xk = xk). By definition, since for each clock x, Ux = −∞, we
have ExtraLU (Z0) = R

X
≥0, the non-negative half-space.

On taking a transition with a guard x ≥ 1 from R
X
≥0, we come to a zone

R
X
≥0 ∧ x ≥ 1. However, since Ux = −∞, ExtraLU (R

X
≥0 ∧ x ≥ 1) gives back

R
X
≥0. Same for transitions that reset a clock. It follows that ZG

LU (AZ
φ ) is

isomorphic to AZ
φ . This extends to Extra+LU as it is coarser. NP-hardness

then comes from Lemma 9.2.2. NP-membership is proved in Lemma 9.2.1.
�

9.2.1 Weakening the LU-abstractions

We saw in Lemma 9.2.1 that the extrapolation ExtraLU is not lift-safe. This
is due to clocks x that are lifted but have Ux = −∞. These are exactly
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the clocks x with Lx ≥ 1 and Ux = −∞. We propose to weaken the U
bounds so that the information about a clock being lifted is remembered in
the abstracted zone.

Definition 9.2.4 (Weak U bounds) Given the bounds Lx and Ux for
each clock x ∈ X, the weak upper bound Ux is given by: Ux = 1 if Lx ≥ 1
and Ux = −∞, and Ux = Ux otherwise.

Let ExtraLU denote the ExtraLU abstraction, but with U bound for each
clock instead of U . This definition ensures that for all lifted clocks, that is,
for all x ∈ Lf(A), if a zone entails that x ≥ 1 then ExtraLU (Z) also entails
that x ≥ 1. This is summarized by the following lemma, the proof of which
follows by definitions.

Lemma 9.2.5 For all zones Z, ExtraLU is lift-safe.

From Theorem 9.1.6, we get that the Zenoness problem is polynomial for
ExtraLU . However, there is a price to pay. Weakening the U bounds leads
to zone graphs exponentially bigger in some cases. For example, for the
automaton AZ

φ that was used to prove the NP-completeness of the Zenoness

problem with ExtraLU , note that the zone graph ZGLU (AZ
φ ) obtained by

applying ExtraLU is exponentially bigger than ZGLU (AZ
φ ). This leads to a

slow zone graph SZGLU (AZ
φ ) with size polynomial in ZG

LU (AZ
φ ).

For the abstraction ExtraLU , the abstraction makes use of weak U
bounds. Notice that if all clocks that are checked for a lower bound guard
are also checked for an upper bound then the two abstractions coincide.
So, the wide class of systems where each clock is both bounded from above
(i.e. x ≤ c) and from below (i.e. x ≥ c′) have polynomial-time detection of
Zeno runs, even using ExtraLU and Extra+LU .

9.3 Concluding remarks

In this chapter, we have provided the first complete solution to the Zenoness
problem. For an automaton A, we construct on-the-fly its slow zone graph
SZGa(A) (Definition 9.1.3). We have shown that the automaton has a Zeno
run iff its slow zone graph has cycle of a particular form (Theorem 9.1.6).
The slow zone graph solution works with a complexity linear in the size of
the abstract zone graph ZGa for a class of abstractions called lift-safe ab-
stractions (Definition 9.1.2). We have shown that the abstractions ExtraM

and Extra+M are lift-safe (Lemma 9.1.7). However, the LU-abstractions are
not lift-safe and in particular, we have shown that given the automaton A
and its LU-abstract zone graph, deciding Zenoness is NP-complete (Theo-
rem 9.2.3). We have provided a weakening of the LU-abstractions that is
still lift-safe (Definition 9.2.4, Lemma 9.2.5).
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In Appendix B, we consider the decision problem:

Given an automaton A, does it have a Zeno run?

Note the difference in the inputs to the problem from the decision problem
ZP

a defined in page 157. In the above problem, the input is only A whereas
in ZP

a the inputs were A and ZGa(A). We show that the above decision
problem is Pspace-complete. This implies that for inferring Zeno runs from
an automaton, we need an object as complex as the zone graph.

As in the case of non-Zenoness, it is very striking that the question of
Zenoness should depend heavily on abstractions, to the extent of moving
from polynomial to NP-complete. In contrast, the fundamental notions of
reachability and Büchi emptiness over abstract zone graphs have a mere lin-
ear complexity, independent of the abstraction. While working with abstract
zone graphs, coarse abstractions (and hence small abstract zone graphs) are
essential to handle big models of timed automata. These, as we have seen,
work against the Zenoness questions in the general case. Our results there-
fore provide a theoretical motivation to look for cheaper substitutes to the
notion of Zenoness.
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Conclusion

We considered the reachability and liveness problems for the timed automata
model introduced by [AD94].

The first part of the thesis deals with the reachability algorithm. We
have recalled the state-of-the-art algorithm for reachability Section 2.7. The
standard algorithm uses the convex Extra+LU abstraction (Figure 2.12). The
LU-bounds are computed for each state q of the automaton by means of
a static analysis. This static analysis approach has been discussed in Sec-
tion 2.6.

We have shown that non-convex abstractions can be used as efficiently
as the currently used convex abstractions. To be able to use a non-convex
abstraction a, we need an efficient inclusion test Z ⊆ a(Z ′) (Section 3.1). We
have given such efficient inclusion tests for non-convex abstractions a4LU and
ClosureM (Theorem 4.5.3, Corollary 4.6.1). If X denotes the set of clocks,
the inclusion test involves an O(|X|2) number of simple checks as in the
case of Z ⊆ Z ′ and hence can be efficiently implemented in practice. As
a4LU and ClosureM are coarser than their convex counterparts, they could
potentially yield fewer nodes during the forward exploration.

As a surprising bonus, we have proved that a4LU is optimal: it is the
biggest abstraction that is sound and complete for reachability, if the only
knowledge about an automaton is the LU-information. This has been the
topic of Section 3.2 and the final result appears in Theorem 3.2.10. As
a corollary, we obtain that ClosureM is the optimal sound and complete
M-abstraction (Theorem 3.4.1).

This optimality result shows that given the LU-bounds or M-bounds
information, we cannot do better than a4LU or ClosureM respectively. How-
ever, we could still try for better bounds themselves. The smaller the
bounds, the bigger the abstractions are. The current method for comput-
ing bounds performs a static analysis on the automaton and assigns bound
functions to each state q. We propose a new algorithm in Section 5.1 that
assigns bound functions on-the-fly during the reachability analysis to every
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node (q, Z) of the tree computed. The immediate gain is that constants
from unreachable parts of the automaton are taken out of consideration.
We have implemented our algorithm in a prototype tool. We have com-
pared results of our algorithm with the standard algorithm in Table 5.1 and
have discussed on the gains obtained in Section 5.2.

Relevant publications include [HKSW11] and [HSW12a]. The former
contains the constant propagation algorithm and an efficient inclusion test
for a non-convex abstraction Closure+LU which is the region closure of the
Extra+LU abstraction. The latter paper contains the results with the a4LU

abstraction: its optimality and the efficient inclusion test.

The second part of the thesis deals with the liveness questions for timed
automata. While considering infinite executions of timed automata, it is
important to detect Zeno and non-Zeno runs. We considered two problems
in this part: Büchi non-emptiness problem and the problem of deciding
existence of Zeno runs.

The Büchi non-emptiness problem asks if there exists a non-Zeno infinite
run of the automaton visiting an accepting state infinitely often. The stan-
dard solution to this problem involves adding an extra clock to take care of
non-Zenoness. This is called the strongly non-Zeno construction. We have
recalled this construction in Section 6.4. We have shown that this seemingly
harmless construction can lead to an exponential blowup: we have exhibited
an example of an automaton An whose simulation graph has size linear in
the number of clocks, but the strongly non-Zeno transformation SNZ(An)
has a simulation graph whose size is exponential in the number of clocks
(Section 7.1).

Subsequent to this observation, we proposed a different solution to non-
Zenoness checking in Section 7.2 that makes use of an intermediary guessing
zone graph to detect non-Zenoness. For the ExtraM abstraction, the guess-
ing zone graph has size bounded by |ZGM (A)|.(|X| + 1) where |ZGM (A)|
is the size of the zone graph obtained using ExtraM abstraction (The-
orem 7.3.5). We have generalized the guessing zone graph construction
and identified a class of abstractions that maintain a polynomial complex-
ity (Theorem 7.3.11). We observed that for LU-extrapolations, the non-
Zenoness problem is NP-complete (Theorem 7.4.2). However, a slight weak-
ening of the LU-extrapolations deems the non-Zenoness problem polynomial
(Lemma 7.4.5).

Following this complexity analysis, we proceeded to give an on-the-fly
algorithm for the Büchi emptiness problem in Chapter 8 using the guessing
zone graph construction. We noticed that although the guessing zone graph
provides a way to detect non-Zeno runs, it is useful only when the automaton
indeed contains zero-checks. We then provided an optimized algorithm to
use the guessing zone graph construction only when necessary in Section 8.2.
Experimental results showing the gain of our algorithm over the standard
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strongly non-Zeno constructions have been reported in Section 8.3.
In Chapter 9, we considered the problem of deciding existence of Zeno

runs given a timed automaton. The current solution to this problem involves
a static check on the automaton to find loops satisfying certain conditions. If
every loop of the automaton satisfies this condition, then there are no Zeno
runs in the automaton. However, there could be automata with loops not
satisfying this condition, but still there are no Zeno runs in the automata.
We have recalled this criterion in detail in Section 6.5. We have proposed
a complete solution to this problem by lifting this syntactic criterion to the
zone graph. The solution we propose is linear in the size of the zone graph for
a class of abstractions called lift-safe (Theorem 9.1.6). The M-extrapolations
and a slight weakening of LU-extrapolations fall in this class (Lemmas 9.1.7
and 9.2.5). For LU-extrapolations, the Zenoness problem turns out to be
NP-complete (Theorem 9.2.3).

Relevant publications include [HSW12b] and [HS11]. The former con-
tains the guessing zone graph construction and the on-the-fly algorithm. It
considers only M-abstractions. It is a combined long version of [HSW10]
and [HS10]. The latter work [HS11] deals with non-Zenoness problem on
bigger abstractions. The NP-completeness of LU-abstractions appears here.
The results on the Zenoness problem appear in this work too.

Perspectives

The results developed in the thesis open roads to numerous research direc-
tions. We list a selected few below.

More than LU

The optimality of a4LU with respect to LU-bounds may seem to suggest
that the topic is closed. Indeed, it shows that one cannot do better from the
abstractions side when the only available knowledge includes just the LU-
bounds. We have circumvented this situation to some extent by giving a
way to obtain better LU-bounds by propagating constants on-the-fly during
exploration. This constant propagation algorithm has a very convenient
property that it maintains the original unabstracted zones at each node.
The structure of this algorithm gives the liberty to abstract the zone on-
the-fly using whatever information one can garner during the reachability
analysis. The current algorithm collects constants occurring in guards. Let
us say that this algorithm assigns Lx to be 10 at some node. Then this
means that in the subtree below the node, all guards x⋗ 1, x⋗ 2, . . . , x⋗ 10
are potentially present and additionally paths using different orders of these
guards are possible. The simulation relation 4LU on which a4LU is based
on is defined assuming all these possibilities. However, in the course of the
reachability analysis, we know a lot more than this. We know the exact
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subtree present below the node; the exact guards that are present and the
exact order in which they occur. An interesting line of research could be to
come up with efficient abstractions using more of the semantic information
than just LU-bounds.

Diagonal constraints

Automata with diagonal constraints have till date been very challenging.
These are timed automata in which guards of the from x−y ∼ c are allowed.
It is known that diagonal constraints do not add expressive power to timed
automata and can be removed [AD94, BDPG98]. However, the resulting
automaton blows up the original automaton by a size exponential in the
number of diagonal constraints. This construction is not feasible in practice.

The standard forward analysis algorithm using ExtraM had been in use
even for automata with diagonal constraints in the late 90s [DT98]. But this
abstraction was shown not to be sound for diagonal constraints by [Bou03,
Bou04]. A way to split zones abstracted with ExtraM by diagonal constraints
occurring in the automaton was proposed in [BY04]. In the worst case
the complexity of this algorithm is the same as that of the region graph
construction. An abstraction-refinement based method has been proposed
by [BLR05], which is the most recent work on diagonal constraints, to our
knowledge.

In [Bou04], a new region construction is given that is sound and complete
for automata with diagonal constraints. Call it d-regions. A Closured ab-
straction which for a zone takes the union of all these d-regions intersecting
it, is shown to be sound and complete. This Closured abstraction is known
to be non-convex as well. An immediate question would be to try an efficient
inclusion test for the Closured abstraction. Looking at LU-abstractions for
automata with diagonal constraints could follow.

Extensions of timed automata

Timed automata are the basis of many different models: updatable timed
automata [BDFP04, Bou04]; probabilistic timed automata [KNP11, CHK08,
Bou09] and priced timed automata [BFLM11]. Model-checking algorithms
for these extensions go via a zone based approach. This immediately implies
that abstractions are of prime importance in these models too. To what
extent the results of this thesis apply to these extended models, is another
non-trivial task on hand.

Efficient liveness

In the liveness part of the thesis, we concentrated solely on the questions
related to Zeno and non-Zeno executions. In particular, we restricted our
focus towards convex abstractions as is the case with standard literature
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on the problem. Theorem 6.3.3 proposed by [Li09] shows that repeated
state reachability can be decided by using any abstraction based on a time-
abstract simulation. This is a very generic theorem and in particular, it
allows the use of non-convex a4LU and ClosureM abstractions. However,
the standard algorithm requires to represent these abstractions and hence
would not be efficient. We need our proposed schema for non-convex ab-
stractions as in Section 3.1 to efficiently use these abstractions: that is, store
the unabstracted zones and use non-convex abstractions indirectly through
inclusion tests. The generic theorem along with the transition compatibility
condition (c.f. Section 3.1) would ensure correctness of this approach for live-
ness checking. However, we don’t yet have an implementation of non-convex
abstractions for liveness, validating the gains of using them. Additionally,
the other optimization in the reachability part involving on-the-fly calcula-
tion of bounds needs to be investigated for liveness checking. We plan to
combine these two optimizations: non-convex abstractions and on-the-fly
bounds for liveness, in a future implementation.

Timed games

There is a lot of literature on timed games [MPS95, DAFH+03, CHP10,
CDF+05]. A tool UPPAAL-TIGA [BCD+07] has been implemented to solve
games with respect to reachability and safety properties. A direction for fu-
ture work would be to consider the question of a zone-based approach for
liveness properties in timed games and in particular, synthesis of non-Zeno
strategies using the constructions developed in this thesis. The liveness ques-
tion has been considered in [DAFH+03] and [CHP10], but the algorithms
are not zone based. Additionally, the question of non-Zenoness is solved by
adding an extra clock, that as we show here, may induce an exponential
blowup.

This brings us to the final concluding remarks. In this thesis, we have
seen how to efficiently handle abstractions for timed automata, and to what
extent can one push abstractions to facilitate correct verification of some of
the fundamental properties. We have proposed modifications to the stan-
dard reachability and liveness algorithms and have noticed substantial gains
in our approaches. A common feature in the observed gains for reachability
and liveness is the role of “semantic information” in pruning the search. A
lot more of it remains to be exploited.
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148–161, 2010.

[HSW12a] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Bet-
ter abstractions for timed automata. In LICS, 2012.

[HSW12b] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Effi-
cient emptiness check for timed büchi automata. Formal Meth-
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Appendix A

Choice of semantics

The choice of semantics for the symbolic transition of Definition 2.3.1 differs
from standard semantics in the literature [DT98, Bou09, TYB05] in the order
of time and action transitions. We would like to briefly explain our choice
of semantics.

Let
−→
W denote the set of all time-successors of W :

−→
W = {v + δ | v ∈W, δ ∈ R≥0}

We say that a set W is time-elapsed if W =
−→
W .

Let us denote the symbolic transition relation (Postt) of [Bou09] as ⇒t
s.

For every transition t and every set of valuations W , there is a transition
(q,W )⇒t

s (q
′,W ′) where:

W ′ = {v′ | ∃v ∈W, ∃δ ∈ R≥0. (q, v)→δ→t (q′, v′)}

The only difference is that in ⇒t
s we consider the set of valuations v

′

such that there is a valuation v ∈ W that can elapse some time δ and
take transition t, that is: (q, v) →δ→t (q′, v′). The set W ′ therefore is not
necessarily time-elapsed.

In the symbolic transition ⇒t that we defined above, we chose to have
the set of valuations v′ such that there is a valuation v ∈ W from which
we can directly take the transition t and then elapse some time δ, that is:
(q, v)→t→δ (q′, v′). The set W ′ obtained here is therefore time-elapsed.

Consider the following path given by the relation ⇒t
s:

(q0,W0)⇒t1
s (q1,W1)⇒t2

s . . .⇒tn
s (qn,Wn)

In our case, we start with a time-elapsed set
−→
W0 and we get the corre-

sponding time-elapsed sets when the same sequence of transitions is consid-
ered.

(q0,
−→
W0)⇒t1 (q1,

−→
W1)⇒t2 . . .⇒tn (qn,

−→
Wn)

175



176 A. Choice of semantics

Consider the forward exploration algorithm to compute the transition
system. When a node (qi,Wi) is reached for which there is an already
computed node (qj ,Wj) such that qi = qj and Wi ⊆ Wj , this node is not
considered for further computation as both ⇒t

s and ⇒t are monotone with
respect to inclusion.

Observe that if Wi ⊆ Wj then
−→
Wi ⊆

−→
Wj but the converse is not true.

We illustrate an example in the figure shown below.

0

y

x

W2

W1

The figure shows two setsW1,W2. The dashed lines show the boundaries

of
−→
W1 and

−→
W2. Observe that

−→
W1 ⊆

−→
W2 but W1 6⊆W2. Therefore we hope to

get faster inclusions by maintaining time-elapsed sets. This motivates our
definition of the symbolic transition (Definition 2.3.1).

Another common notion of semantics has been to differentiate between
time-elapse transitions and action transitions [BBLP06, BBFL03]. Yet
again, in this semantics, it is sufficient for the reachability algorithm to
store only time-elapsed zones and in fact by the previous discussion, is
potentially more productive.

There is another important reason for keeping time-elapsed zones. As
we see in Theorem 3.3.3, the a4LU abstraction of [BBLP06] is the optimal
abstraction when time-elapsed zones are considered.



Appendix B

Pspace-completeness of
(non-)Zeno run detection

We prove the following theorem.

Theorem B.0.1 Given an automaton A, deciding if there exists a non-
Zeno run is Pspace-complete. Similarly for deciding if there exists a Zeno
run.

Our proof follows the same lines as the proof of Pspace-completeness of
the emptiness problem for timed automata [AD94, CY92].

Pspace-membership

In Lemmas 7.4.3 and 9.2.1 we have proved that given A and ZGLU (A),
there is a non-deterministic polynomial algorithm for NZP

LU and ZP
LU .

Essentially both the algorithms do the following. They begin by non-
deterministically guessing a node (q, Z) of ZGLU (A) and augmenting it
with a guessed subset of clocks S ⊆ X to give the node (q, Z, S). Starting
from this node, the algorithms construct a cycle of ZGLU (A) containing
(q, Z) and satisfying certain constraints specified by this newly augmented
component:

(q, Z, S)⇒t1 (q1, Z1, S1)⇒t2 . . .⇒tn (qn, Zn, Sn)⇒t (q, Z, S′)

Since Z can be represented in space O(|X|2) using a DBM, nodes of the
form (q, Z, S) can be represented in space polynomial in the size of A. To
find the above cycle, it is enough to maintain the initially guessed node
(q, Z, S) and the current node whose successor has to be computed. Clearly,
the non-deterministic algorithm needs space that is polynomial in the size
of the input A. By Savitch’s theorem, this shows that deciding if a timed
automaton has a non-Zeno run, or dually a Zeno run, is in Pspace.
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Pspace-hardness

The problem of deciding if a deterministic Linear Bounded Automaton1

(LBA) B accepts a word w is known to be Pspace-complete [HU79]. We
reduce the acceptance problem for deterministic LBAs to the problem of
deciding if a timed automaton has a Zeno or a non-Zeno run.

Let B be a deterministic LBA and let w be a finite word on the input
alphabet of B. Without loss of generality, we can assume that B has a single
accepting state qF from which there are no outgoing transitions. We also
assume that the tape alphabet of B is Γ = {1, . . . , k − 1}. Let n be the
length of the input word w (hence the size of the tape of B).

We build a timed automaton A that reads the sequence σ of configura-
tions of B on input w encoded as:

γ01γ
0
2 · · · γ0n k γ11γ

1
2 · · · γ1n k · · · k γi1γ

i
2 · · · γin k · · ·

where:

• γ01γ02 · · · γ0n is the word w, which is the initial content in the tape;

• γi1γi2 · · · γin is the content in the tape after the first i transitions of B.

For every word w, there is a unique encoding σ as B is deterministic.
Observe that σ is a sequence of integers in 1, . . . , k and k acts as a separator
between successive configurations. The automaton A that we construct
below accepts the sequence σ iff B accepts w.

Call γi1γ
i
2 · · · γin as the ith block. Each block i can be mapped to a position

pi ∈ {1, . . . , n} which represents the position of the tape head after the ith
transition. The position p0 is the initial position of the tape head which is
1. Similarly, each block i can be mapped to a state qi of the the LBA B
representing the state of B after the first i transitions.

We construct the automaton A as follows.

States.

The states of the automaton encode the state of B and the position of the
tape head. So each state of the automaton is of the form (q, p) where q is
a state of B and p ∈ {1, . . . , n} is a position of the tape head. There is an
extra auxiliary state (qinit, 0) to read the initial block of σ which is the word
w itself. The goal is to make the automaton come to (qi, pi) after reading
the first i blocks:

1Linear Bounded Automata are Turing Machines with tape bounded by the length of
the input word.
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γ01γ
0
2 · · · γ0n k

︸ ︷︷ ︸

(qinit,0)

γ11γ
1
2 · · · γ1n k

︸ ︷︷ ︸

(q0,p0)

· · · k γi1γ
i
2 · · · γin k

︸ ︷︷ ︸

(qi−1,pi−1)

γi+11 γi+12 · · · γi+1n k
︸ ︷︷ ︸

(qi,pi)

· · ·

The initial block is read in the initial state (qinit, 0) after which the
automaton moves to (q0, p0). In general, after reading block i, the automaton
should move to (qi, pi) which represents the state qi of B and the position pi
of the tape head at the time of taking the ith transition. While reading the
i + 1th block from state (qi, pi) the automaton has to check if the symbol
at position pi of the block corresponds to the modification of the i + 1th

transition of B which is of the form (qi, γ, γ
′,∆, qi+1).

Clocks.

We intend to make the automaton A spend k+1 time units at each symbol.
This is facilitated by a clock x. Spending k + 1 time units will also help
us to recognize the current symbol which is a number between 1 and k. To
this regard, to read a symbol s ∈ σ, we use a transition with guard (x = s)
followed by a transition with guard (x = k + 1) that resets x. As reading
a symbol requires (k+ 1) time units, reading a tape configuration (followed
by separator symbol k) takes (n+ 1).(k + 1) time units.

To store the currently read symbol, we introduce a clock xj for each cell
j of the tape. If the currently read symbol is γij , then clock xj is reset on

the transition with guard x = γij . Hence, when the symbol γ
i+1
j is read, the

previous content of the cell j, given by the symbol γij , is remembered in xj

by the value (n+ 1).(k + 1)− γij + γi+1j . This is illustrated in (B.1).

· · ·

γi
j t.u.

︷ ︸︸ ︷

(x=γi
j),{xj}−−−−−−−→ (x=k+1),{x}−−−−−−−−→ · · ·

︸ ︷︷ ︸

(n+1)·(k+1) time units

γi+1
j t.u.

︷ ︸︸ ︷

(x=γi+1
j ),{xj}−−−−−−−−−→ (x=k+1),{x}−−−−−−−−→ · · · (B.1)

Transitions.

Consider a state (q, p) of A. For each transition (q, γ, γ′,∆, q′) of B, there
is a sequence of transitions in A that reads a block and does the following:

• ensures that the pth symbol corresponds to the modification of the pth

tape cell forced by this transition,

• ensures that all other symbols are left unchanged corresponding to all
other cells being unchanged,

• moves to state (q′, p+∆) after reading the block, if p+∆ ∈ {1, . . . , n}.
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q, p

•

•

• q′, p+∆

x = 1, . . . , k − 1
xj = (n+ 1).(k + 1), j 6= p, n

{xj}

x = k + 1
{x}

x = γ′

xp = (n+ 1).(k + 1)− γ + γ′

{xp}

x = k + 1
{x}

x = k & xn = (n+ 1).(k + 1){xn} x = k + 1{x}

Figure B.1: Widget for transition (q, γ, γ′,∆, q′) on state (q, p).

Moreover, the cells have to be read in the right order, that is, cell 1 should
be read followed by cell 2, etc. Recall that xj is the clock associated with
cell j. For every j 6= p, we check if xj = (n + 1).(k + 1) and for j = p we
check if xj = (n+1).(k+1)−γ+γ′. This will ensure the first two conditions
above and will also ensure that the cells are read in the correct succession.

The complete widget for transition (q, γ, γ′,∆, q′) is depicted in Fig-
ure B.1. There is one such widget in A for each state (q, p) such that p+∆
is a valid position (i.e. p+∆ ∈ {1, . . . , n}).

Initialization

We need to read the word w from state (qinit, 0) and assign the initial value
of the clocks x1, . . . , xn to w1, . . . , wn where wj represents the j

th symbol of
w. As w is given as an input, we can easily add transitions from (qinit, 0) to
ensure this and jump to (q0, 1).

Observe that since B is deterministic, A is also deterministic. Further-
more, A is time-deterministic as all the guards are equalities. Hence, A has
a single run given the word w. Furthermore, if B does not terminate on w,
the corresponding run of A is infinite and non-Zeno.

Recall that qF is the sole accepting state of B and there are no transitions
outgoing from qF . From the construction described above, one easily gets
the following theorem:

Theorem B.0.2 A reaches a state (qF , p) iff B reaches qF on input w. The
size of A is polynomial in the size of B and w.

Existence of a Non-Zeno Run

We show that an algorithm for deciding if A has a non-Zeno run yields an
algorithm to decide if B accepts w. This algorithms has two phases.

In the first phase, it determines if A has a non-Zeno run:
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• if the answer is yes, we can conclude that B does not accept w. Indeed,
if A has a non-Zeno run, then it does not reach (qF , p) for any p as
the run is infinite, hence B neither reaches qF ;

• if the answer is no, we cannot conclude. We only gain information
that A has no infinite run, but it may stop in a state (qF , p) as well
as in a non-accepting state.

In the second phase, we transform A into A′ by adding a loop on all
(qF , p) with guard (x ≥ 1) and that resets x. Now, if the run of A′ is
infinite, then it visits some (qF , p). Furthermore, it is the only non-Zeno run
in A′ as we know from the first phase that A has no infinite run. We now
ask if A′ has a non-Zeno run:

• if the answer is yes, we can conclude that B accepts w;

• if the answer is no, the run of A′ is finite and does not reach any
(qF , p). We can conclude that B does not accept w.

Existence of a Zeno Run

Now, we show that an algorithm that decides if A has a Zeno run yields an
algorithm to decide if B accepts w. Recall that A is deterministic: it has a
unique run and if that run is infinite, then it is non-Zeno.

We transform A into A′ by adding a loop on all states (qF , p) with guard
(x ≤ 0). Then we asks if A′ has a Zeno run:

• if the answer is yes, then some (qF , p) has to be reachable, hence B
reaches qF and accepts w;

• if the answer is no, then no (qF , p) is reachable, and B does not accept
w.



182 B. Pspace-completeness of (non-)Zeno run detection



Appendix C

Couvreur’s algorithm

The Couvreur’s algorithm shown in Figure C.1, can be viewed as three func-
tions check scc, merge scc and close scc. The algorithm annotates every
node with an integer dfsnum and a boolean opened. The variable dfsnum
is assigned based on the order of appearance of the nodes during the depth-
first search. The opened bit is set to true when the node is just opened for
exploration by check scc and is set to false by close scc when the maximal
SCC of the node has been completely explored. The algorithm uses two
stacks Roots and Active. The Roots stack stores the root of each SCC in
the current search path. The root is the node of the SCC that was first
visited by the DFS. If the roots stack is s0s1 . . . sn, then for 0 ≤ i ≤ n − 1,
si is the root of the SCC containing all the nodes with dfsnum between
si.dfsnum and si+1.dfsnum that have opened set to true and sn is the root
of the SCC containing all nodes with dfsnum greater than sn.dfsnum which
have opened set to true.

The main function check scc proceeds by exploring the graph in depth-
first search (DFS) order. When a successor t of the current node s is found,
t.dfsnum being zero implies t has not been visited yet and t.opened being
true implies that t belongs to the same SCC as s. When t belongs to the
SCC of s, all the nodes visited in the path from t to s also belong to the
SCC of s. These nodes are collected by the function merge scc, which finds
the root si of t and repeatedly pops the Roots stack so that si comes to
the top, signifying that it is the root of the SCC containing all the nodes
visited from t to s. A maximal SCC is detected when all the transitions of
the current node s have been explored, with s being on the top of the Roots
stack. The close scc function is now called that sets the opened bit of all
nodes in the SCC rooted at s to false. To identify these nodes, the Active
stack is used, which stores all the nodes of the partially explored SCCs, in
the order of the dfsnum.
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1 function emptiness check()
2 count := 0; Roots, Active := ∅
3 check scc(s0)
4 report L(A) = ∅
5

6 function check scc(s)
7 count++; s.dfsnum := count
8 s.opened := ⊤;
9 Add (s, s.labels) to Roots

10 Add s to Active
11 for all s→ t do

12 if (dfsnum = 0)
13 check scc(t)
14 else if (t.opened)
15 merge scc(t)
16 if top(Roots) = (s,· · ·)
17 close scc()
18

19 function merge scc(t)
20 A:=∅;
21 repeat

22 Remove (s,a) from (Roots)
23 A:=A∪a
24 until s.dfsnum ≤ t.dfsnum
25 Add (s, A) to Roots
26 if (Acc⊆A)
27 report L(A) 6= ∅
28

29 function close scc()
30 Remove (s, a) from Roots
31 repeat

32 Remove u from Active
33 u.opened := ⊥
34 until u = s

Figure C.1: The Couvreur’s Algorithm for Emptiness Check of Büchi Automata.
States of the automaton are denoted s,t,... The transition relation is →. The set
of accepting states is Acc. The initial state is s0. The accepting label on state s is
given by s.labels


