Etude numérique de l’adsorption et de la désorption de particules colloïdales en milieu poreux : Influence de la topographie de surface et des interactions physico-chimiques
Auteur / Autrice : | Nisrine Sefrioui Chaibainou |
Direction : | Henri Bertin, Abdelaziz Omari, Azita Ahmadi-Sénichault |
Type : | Thèse de doctorat |
Discipline(s) : | Mécanique et ingéniérie |
Date : | Soutenance le 24/02/2012 |
Etablissement(s) : | Bordeaux 1 |
Ecole(s) doctorale(s) : | École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde ; 1995-....) |
Partenaire(s) de recherche : | Laboratoire : Institut de mécanique et d'ingénierie de Bordeaux |
Jury : | Examinateurs / Examinatrices : Hua-Qing Wang, Stéphane Vincent |
Rapporteur / Rapporteuse : Gérald Debenest, Patrice Creux |
Mots clés
Mots clés contrôlés
Résumé
Cette étude concerne le transport de particules colloïdales en milieu poreux. Les colloïdes (particules de taille caractéristique inférieure au micron) se rencontrent dans de nombreux domaines de la vie quotidienne (encre, cosmétiques, ...), de la biologie (bactéries, virus, protozoaires, ...) et de l’ingénierie (filtration, hydrologie, génie civil, génie pétrolier, ...). De par leur taille et leur nature, l’étude de ces systèmes nécessite de s’intéresser aux interactions qui peuvent exister entre les particules elles mêmes mais aussi avec le milieu environnant. On cite particulièrement le cas d’écoulements dans des aquifères qui concernent le transport de contaminants d’origine biologique (bactéries, virus), d’origine chimique (hydrocarbures, polluants) ou d’origine minérale (argiles, métaux, ...). Dans chacun des cas cités, il est nécessaire de s’intéresser au transport et dépôt/décollement des particules pour mieux comprendre et modéliser les mécanismes mis en jeu. Une première partie du travail est consacrée à la mise en place et à la résolution d’un modèle macroscopique de dépôt de particules. La comparaison des résultats numériques avec des données expérimentales de la littérature a permis d’établir les relations existantes entre le facteur de retard et la force ionique d’une part et le nombre de Péclet d’autre part. La seconde partie du travail concerne l’étude, à l’échelle microscopique, du transport de particules colloïdales en présence de rugosités de surface (obstacle ou cavité). Les résultats mettent en évidence le rôle joué par ces rugosités de surface sur l’adsorption et désorption de particules sous l’influence des forces hydrodynamiques et des interactions physico-chimiques.