Système de contrôle pour microscope à force atomique basé sur une boucle à verrouillage de phase entièrement numérique
Auteur / Autrice : | Jeremy Bouloc |
Direction : | Christian Loppacher |
Type : | Thèse de doctorat |
Discipline(s) : | Micro et nanoélectronique |
Date : | Soutenance le 29/05/2012 |
Etablissement(s) : | Aix-Marseille |
Ecole(s) doctorale(s) : | École Doctorale Sciences pour l'ingénieur : Mécanique, Physique, Micro et Nanoélectronique (Marseille) |
Jury : | Examinateurs / Examinatrices : Christian Loppacher, Daniel Alquier, Wenceslas Rahajandraibe, Lakhdar Zaïd, Palmino Frank |
Rapporteurs / Rapporteuses : Christian Hedayat, Sébastien Gauthier |
Mots clés
Résumé
Un microscope à force atomique (AFM) est utilisé pour caractériser des matériaux isolant ou semi-conducteur avec une résolution pouvant atteindre l'échelle atomique. Ce microscope est constitué d'un capteur de force couplé à une électronique de contrôle pour pouvoir correctement caractériser ces matériaux. Parmi les différents modes (statique et dynamique), nous nous focalisons essentiellement sur le mode dynamique et plus particulièrement sur le fonctionnement sans contact à modulation de fréquence (FM-AFM). Dans ce mode, le capteur de force est maintenu comme un oscillateur harmonique par le système d'asservissement. Le projet ANR Pnano2008 intitulé : ”Cantilevers en carbure de silicium à piézorésistivité métallique pour AFM dynamique à très haute fréquence'' a pour objectif d'augmenter significativement les performances d'un FM-AFM en développant un nouveau capteur de force très haute fréquence. Le but est d'augmenter la sensibilité du capteur et de diminuer le temps nécessaire à l'obtention d'une image de la surface du matériau. Le système de contrôle associé doit être capable de détecter des variations de fréquence de 100mHz pour une fréquence de résonance de 50MHz. Etant donné que les systèmes présents dans l'état de l'art ne permettent pas d'atteindre ces performances, l'objectif de cette thèse fut de développer un nouveau système de contrôle. Celui-ci est entièrement numérique et il est implémenté sur une carte de prototypage basée sur un FPGA. Dans ce mémoire, nous présentons le fonctionnement global du système ainsi que ses caractéristiques principales. Elles portent sur la détection de l'écart de fréquence de résonance du capteur de force.