Problèmes d'interaction discret-continu et distances de Wasserstein

par Emmanuel Boissard

Thèse de doctorat en Mathématiques

Sous la direction de Patrick Cattiaux et de Pierre Degond.

Soutenue en 2011

à Toulouse 3 .


  • Résumé

    On étudie dans ce manuscrit plusieurs problèmes d'approximation à l'aide des outils de la théorie du transport optimal. Les distances de Wasserstein fournissent des bornes d'erreur pour l'approximation particulaire des solutions de certaines équations aux dérivées partielles. Elles jouent également le rôle de mesures de distorsion naturelles dans les problèmes de quantification et de partitionnement ("clustering"). Un problème associé à ces questions est d'étudier la vitesse de convergence dans la loi des grands nombres empirique pour cette distorsion. La première partie de cette thèse établit des bornes non-asymptotiques, en particulier dans des espaces de Banach de dimension infinie, ainsi que dans les cas où les observations sont non-indépendantes. La seconde partie est consacrée à l'étude de deux modèles issus de la modélisation des déplacements de populations d'animaux. On introduit un nouveau modèle individu-centré de formation de pistes de fourmis, que l'on étudie expérimentalement à travers des simulations numériques et une représentation en terme d'équations cinétiques. On étudie également une variante du modèle de Cucker-Smale de mouvement d'une nuée d'oiseaux : on montre le caractère bien posé de l'équation de transport de type Vlasov associée, et on établit des résultats sur le comportement en temps long de cette équation. Enfin, dans une troisième partie, on étudie certaines applications statistiques de la notion de barycentre dans l'espace des mesures de probabilités muni de la distance de Wasserstein, récemment introduite par M. Agueh et G. Carlier.

  • Titre traduit

    Discrete-continuous interactions and Wasserstein distances


  • Résumé

    We study several problems of approximation using tools from Optimal Transportation theory. The family of Wasserstein metrics are used to provide error bounds for particular approximation of some Partial Differential Equations. They also come into play as natural measures of distorsion for quantization and clustering problems. A problem related to these questions is to estimate the speed of convergence in the empirical law of large numbers for these distorsions. The first part of this thesis provides non-asymptotic bounds, notably in infinite-dimensional Banach spaces, as well as in cases where independence is removed. The second part is dedicated to the study of two models from the modelling of animal displacement. A new individual-based model for ant trail formation is introduced, and studied through numerical simulations and kinetic formulation. We also study a variant of the Cucker-Smale model of bird flock motion : we establish well-posedness of the associated Vlasov-type transport equation as well as long-time behaviour results. In a third part, we study some statistical applications of the notion of barycenter in Wasserstein space recently introduced by M. Agueh and G. Carlier.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (159 p.)
  • Annexes : Bibliogr. p. 155-159

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2011 TOU3 0195

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2011TOU30195
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.