Optimisation sous contraintes de problèmes distribués par auto-organisation coopérative
Auteur / Autrice : | Elsy Kaddoum |
Direction : | Marie-Pierre Gleizes, Jean-Pierre Georgé |
Type : | Thèse de doctorat |
Discipline(s) : | Intelligence artificielle |
Date : | Soutenance en 2011 |
Etablissement(s) : | Toulouse 3 |
Mots clés
Résumé
Quotidiennement, divers problèmes d'optimisation : minimiser un coût de production, optimiser le parcours d'un véhicule, etc sont à résoudre. Ces problèmes se caractérisent par un degré élevé de complexité dû à l'hétérogénéité et la diversité des acteurs en jeu, à la masse importante des données ainsi qu'à la dynamique des environnements dans lesquels ils sont plongés. Face à la complexité croissante de ces applications, les approches de résolution classiques ont montré leurs limites. Depuis quelques années, la communauté scientifique s'intéresse aux développements de nouvelles solutions basées sur la distribution du calcul et la décentralisation du contrôle plus adaptées à ce genre de problème. La théorie des AMAS (Adaptive Multi-Agents Systems) propose le développement de solutions utilisant des systèmes multi-agents auto-adaptatifs par auto-organisation coopérative. Cette théorie a montré son adéquation pour la résolution de problèmes complexes et dynamiques, mais son application reste à un niveau d'abstraction assez élevé. L'objectif de ce travail est de spécialiser cette théorie pour la résolution de ce genre de problèmes. Ainsi, son utilisation en sera facilitée. Pour cela, le modèle d'agents AMAS4Opt avec des comportements et des interactions coopératifs et locaux a été défini. La validation s'est effectuée sur deux problèmes clés d'optimisation : le contrôle manufacturier et la conception de produit complexe. De plus, afin de montrer la robustesse et l'adéquation des solutions développées, un ensemble de critères d'évaluation permettant de souligner les points forts et faibles des systèmes adaptatifs et de les comparer à des systèmes existants a été défini.