Thèse soutenue

Surveillance des systèmes mécatronique d'automobile par des méthodes d'apprentissage

FR  |  
EN
Auteur / Autrice : Mourad Benkaci
Direction : Andrei DoncescuBruno Jammes
Type : Thèse de doctorat
Discipline(s) : Systèmes embarqués
Date : Soutenance en 2011
Etablissement(s) : Toulouse 3

Résumé

FR  |  
EN

La surveillance des systèmes mécatroniques, en particulier, ceux intégrés sur les véhicules d'aujourd'hui est de plus en plus difficile. Les interconnexions de ces systèmes en vue de l'accroissement des performances et du confort de véhicule augmentent la complexité de l'information nécessaire à la prise de décision en temps réel. Cette thèse est consacrée à la problématique de détection et d'isolation (FDI, Fault Detection & Isolation) de pannes automobiles en utilisant des systèmes de recherche et d'évaluation de l'information par des approches monocritères. Les variables pertinentes pour la détection rapide des pannes sont sélectionnées d'une manière automatique en utilisant deux approches différentes : I. La première consiste à introduire la notion de conflit entre toutes les variables mesurables du système mécatronique et les analyser à partir des projections dans des espaces de classification hyper-rectangles. II. La deuxième approche consiste à utiliser la complexité de Kolmogorov comme outil de classification des signatures de pannes. L'estimation de la complexité de Kolmogorov par des algorithmes de compression sans perte d'information permet de définir un dictionnaire de pannes et de donner un score de criticité par rapport au bon fonctionnement du véhicule. Les deux approches proposées ont été appliquées avec succès sur plusieurs types de données automobiles dans le cadre du projet ANR-DIAPA.