Les langues de Arnold de la famille standard double : explosion des cycles dans la famille quadratique
Auteur / Autrice : | Alexandre Dezotti |
Direction : | Xavier Buff |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance en 2011 |
Etablissement(s) : | Toulouse 3 |
Résumé
La connexité des langues de Arnold de la famille standard double est démontrée par déformation quasiconforme. Je donne un équivalent pour les coefficients du développement en série de Laurent de l'inverse des coordonnées de Böttcher pour les polynômes quadratiques dont le point critique s'échappe. Une généralisation d'une inégalité qui sert à déterminer un domaine à l'intérieur duquel il n'y a pas de valeur critique de la fonction multiplicateur est obtenue en utilisant les différentielles quadratiques. Les travaux de Lévine sur une condition de non locale connexité de Julia infiniment satellite renormalisables sont repris, suivis de l'étude d'un modèle géométrique des renormalisations satellites générant un modèle topologique hypothétique d'un compact invariant dans l'ensemble de Julia de ces polynômes.