Identification et caractérisation des perturbations affectant les réseaux électriques HTA.
Auteur / Autrice : | Mathieu Caujolle |
Direction : | Daniel Sadarnac |
Type : | Thèse de doctorat |
Discipline(s) : | Traitement du Signal (STIC) |
Date : | Soutenance le 27/09/2011 |
Etablissement(s) : | Supélec |
Ecole(s) doctorale(s) : | Ecole doctorale Sciences et Technologies de l'Information, des Télécommunications et des Systèmes (Orsay, Essonne ; 2000-2015) |
Jury : | Président / Présidente : Frédéric Bouillault |
Examinateurs / Examinatrices : Gilles Fleury, Jérôme Idier, Jean Martinon, Marc Petit | |
Rapporteur / Rapporteuse : Jean-Claude Maun, William Grady |
Mots clés
Résumé
La reconnaissance des perturbations survenant sur les réseaux HTA est une problématique essentielle pour les clients industriels comme pour le gestionnaire du réseau. Ces travaux de thèse ont permis de développer un système d’identification automatique. Il s’appuie sur des méthodes de segmentation qui décomposent de manière précise et efficace les régimes transitoires et permanents des perturbations. Elles utilisent des filtres de types Kalman linéaire ou anti-harmoniques pour extraire les régimes transitoires. La prise en compte des variations harmoniques et de la présence de transitoires proches se fait à l’aide de seuils adaptatifs. Des méthodes de correction du retard a posteriori permettent d’améliorer la précision de la décomposition. Des indicateurs adaptés à la dynamique des régimes de fonctionnement analysés sont utilisés pour caractériser les perturbations. Peu sensibles aux erreurs de segmentation et aux perturbations harmoniques, ils permettent une description fiable des phases des perturbations. Deux types de systèmes de décision ont également été étudiés : des systèmes experts et des classifieurs SVM. Ces systèmes ont été mis au point à partir d’une large base de perturbations simulées. Leurs performances ont été évaluées sur une base de perturbations réelles : ils déterminent efficacement le type et la direction des perturbations observées (taux de reconnaissance moyen > 98%).