Développement de méthodes numériques multi échelle pour le calcul des structures constituées de matériaux fortement hétérogènes élastiques et viscoélastiques
Auteur / Autrice : | Anh Binh Tran |
Direction : | Qi-Chang Hé |
Type : | Thèse de doctorat |
Discipline(s) : | Génie Civil |
Date : | Soutenance le 13/10/2011 |
Etablissement(s) : | Paris Est |
Ecole(s) doctorale(s) : | École doctorale Sciences, Ingénierie et Environnement (Champs-sur-Marne, Seine-et-Marne ; 2010-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de Modélisation et Simulation Multi-Échelle - MSME |
Jury : | Président / Présidente : Marc Geers |
Examinateurs / Examinatrices : Qi-Chang Hé, Julien Sanahuja, Charles Toulemonde, Julien Yvonnet | |
Rapporteur / Rapporteuse : Patrice Cartraud, Frédéric Feyel |
Résumé
Les bétons sont des matériaux composites à la microstructure complexe et constitués de phases dont le contraste des propriétés physiques et mécaniques peut être très grand. Ces matériaux posent des difficultés aux approches macroscopiques lorsqu'il s'agit de maîtriser leurs comportements effectifs comme celui du fluage. Malgré ces difficultés, EDF doit se doter d'outils permettant de modéliser de façon prédictive l'évolution des bétons des ouvrages en service ou de prescrire lecahier des charges des bétons de nouvelles installations. Ayant pour objectif de contribuer à la résolution de ce problème, ce travail de thèse développe des méthodes numériques multi échelle pour le calcul des structures constituées de matériaux fortement hétérogènes élastiques ou viscoélastiques. Plus précisément, ce travail de thèse comporte trois parties. Dans la première partie, nous nous intéressons à un composite constitué d'une matrice élastique renforcée par des inclusionsélastiques dont les formes géométriques peuvent être quelconques et dont la fraction volumique peut être importante. Pour modéliser ce matériau composite, une première approche numérique consistant à combiner la méthode des éléments finis étendus (XFEM) standard et la méthode ''level-set'' (LS) classique est d'abord utilisée. Nous montrons que cette première approche numérique, qui apparaît naturelle, induit en fait plusieurs artefacts numériques non rapportés dans la littérature, conduisant en particulier à une convergence non optimale par rapport à la finessedu maillage. Par suite, nous élaborons une nouvelle approche numérique (μ-XFEM) basée sur la description des interfaces par des courbes de niveaux multiples et sur un enrichissement augmenté permettant de prendre en compte plusieurs interfaces dans un même élément. Nous démontrons au travers des comparaisons et exemples que la convergence est améliorée de manière substantielle par rapport à la première approche numérique. Dans la deuxième partie, nous proposons une nouvelle méthode pour calculer les déformations différées des structures composées de matériaux hétérogènes viscoélastiques linéaires. Contrairement aux approches proposées jusqu'à présent, notre méthode opère directement dans l'espace temporel et permet d'extraire de manière séquentielle le comportement homogénéisé d'un matériau hétérogène viscoélastique linéaire. Concrètement, les composantes du tenseur de relaxation effectif du matériau sont d'abord obtenues à partir d'un volume élémentaire représentatif et échantillonnées au cours du temps. Une technique d'interpolation et un algorithme implicite permettent ensuite d'évaluer numériquement la réponse temporelle du matériau par le biais d'un produit de convolution. Les déformations différées des structures sont enfin calculées par la méthode des éléments finis classique. Différents tests sont effectués pour évaluer la qualité et l'efficacité de la méthode proposée, montrant que cette dernière permet d'avoir un gain en temps de l'ordre de plusieurs centaines par rapport aux approches de type éléments finis multiniveaux. La troisième partie est consacrée à l'étude de la structure de l'enceinte de confinement d'un réacteur nucléaire. Nous prenons en compte les quatre niveaux d'échelles associés à la pâte deciment, au mortier, au béton et à la structure en béton précontraint par des câbles en acier. La méthode numérique d'homogénéisation élaborée dans la seconde partie est appliquée afin de construire les lois de comportement pour chacun des trois premiers niveaux. Les résultats obtenus présentent un intérêt pratique pour résoudre des problèmes posés par EDF