Méthodes d'analyse non linéaires appliquées aux modèles des champs neuronaux
Auteur / Autrice : | Romain Veltz |
Direction : | Renaud Keriven |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 16/12/2011 |
Etablissement(s) : | Paris Est |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-2015) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'informatique de l'Institut Gaspard Monge (1997-2009) - LIGM |
Jury : | Président / Présidente : Pascal Chossat |
Examinateurs / Examinatrices : Renaud Keriven, Olivier Faugeras, Nicolas Brunel, Yves Frégnac, Frédéric Chavane | |
Rapporteurs / Rapporteuses : Gérard Iooss, Paul Bressloff C. |
Résumé
Cette thèse traite de modèles mésoscopiques de cortex appelés champs neuronaux. Les équations des champs neuronaux décrivent l'activité corticale de populations de neurones, ayant des propriétés anatomiques/fonctionnelles communes. Elles ont été introduites dans les années 1950 et portent le nom d'équations de Wilson et Cowan. Mathématiquement, elles consistent en des équations intégro-différentielles avec retards, les retards modélisant les délais de propagation des signaux ainsi que le passage des signaux à travers les synapses et l'arbre dendritique. Dans la première partie, nous rappelons la biologie nécessaire à la compréhension de cette thèse et dérivons les équations principales. Puis, nous étudions ces équations du point de vue des systèmes dynamiques en caractérisant leurs points d'équilibres et la dynamique dans la seconde partie. Dans la troisième partie, nous étudions de façon générale ces équations à retards en donnant des formules pour les diagrammes de bifurcation, en prouvant un théorème de la variété centrale et en calculant les principales formes normales. Nous appliquons tout d'abord ces résultats à des champs neuronaux simples mono-dimensionnels qui permettent une étude détaillée de la dynamique. Enfin, dans la dernière partie, nous appliquons ces différents résultats à trois modèles de cortex visuel. Les deux premiers modèles sont issus de la littérature et décrivent respectivement une hypercolonne, /i.e./ l'élément de base de la première aire visuelle (V1) et un réseau de telles hypercolonnes. Le dernier modèle est un nouveau modèle de V1 qui généralise les deux modèles précédents tout en permettant une étude poussée des effets spécifiques des retards