Thèse soutenue

Couplage pour l'aéroacoustique de schémas aux différences finies en maillage structuré avec des schémas de type éléments finis discontinus en maillage non structuré

FR  |  
EN
Auteur / Autrice : Raphaël Léger
Direction : Serge Piperno
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 05/12/2011
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....)
Partenaire(s) de recherche : Laboratoire : Centre d'enseignement et de recherche en mathématiques et calcul scientifique (Champs-sur-Marne, Seine-et-Marne)
Jury : Président / Présidente : Pascal Frey
Examinateurs / Examinatrices : Serge Piperno, Christophe Bailly, Alois Sengissen, Christophe Peyret
Rapporteur / Rapporteuse : Jean-Pierre Croisille, Stéphane Lantéri

Résumé

FR  |  
EN

Cette thèse vise à étudier le couplage entre méthodes de Galerkine discontinue (DG) et méthodes de différences finies (DF) en maillages hybrides non structuré / cartésien, en vue d'applications en aéroacoustique numérique. L'idée d'une telle approche consiste à pouvoir tirer profit localement des avantages respectifs de ces méthodes, soit, en d'autres termes, à pouvoir prendre en compte la présence de géométries complexes par une méthode DG en maillage non structuré, et les zones qui en sont suffisamment éloignées par une méthode DF en maillage cartésien, moins coûteuse. Plus précisément, il s'agit de concevoir un algorithme d'hybridation de ces deux types de schémas pour l'approximation des équations d'Euler linéarisées, puis d'évaluer avec attention le comportement numérique des solutions qui en sont issues. De par le fait qu'aucun résultat théorique ne semble actuellement atteignable dans un cas général, cette étude est principalement fondée sur une démarche d'expérimentation numérique. Par ailleurs, l'intérêt d'une telle hybridation est illustré par son application à un calcul de propagation acoustique dans un cas réaliste