Schémas volumes finis sur maillages généraux en milieux hétérogènes anisotropes pour les écoulements polyphasiques en milieux poreux
Auteur / Autrice : | Cindy Guichard |
Direction : | Robert Eymard |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 29/11/2011 |
Etablissement(s) : | Paris Est |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'Analyse et de Mathématiques Appliquées |
Jury : | Président / Présidente : François Bouchut |
Examinateurs / Examinatrices : Robert Eymard, Roland Masson, Pierre Samier | |
Rapporteur / Rapporteuse : Claire Chainais-Hillairet, Yves Coudière |
Résumé
Cette thèse est consacrée à l'étude de méthodes numériques pour la simulation des écoulements polyphasiques en milieu poreux, en vue de leur application à des problèmes d'ingénierie pétrolière ou environnementale. Nous présentons une formulation générique du modèle d'écoulements à nombre quelconque de composants présents dans un nombre quelconque de phases. Dans notre approche l'approximation des flux diffusifs (issus, par exemple, de la loi de Darcy) s'appuie sur de nouveaux schémas, appelés schémas gradient, qui ont plusieurs avantages sur les schémas industriels standard : ces derniers, qui sont des schémas volumes finis multi-points centrés aux mailles, ne sont généralement pas symétriques et convergent difficilement sur des cas à forts rapports d'anisotropie. Nous montrons en revanche que les schémas gradient conduisent naturellement à des approximations symétriques et convergentes. Parmi cette classe de schémas, nous étudions plus particulièrement le schéma ''VAG'' qui fait intervenir des inconnues au centre des mailles et aux sommets du maillage. Ce schéma conduit à la définition de flux entre le centre d'une maille et ses sommets, qui sont utilisés pour généraliser la méthode ''VAG'' au contexte polyphasique. Des tests numériques montrent alors que ce schéma est robuste, et conduit à un très bon compromis précision/coût, ce qui en fait un candidat idoine pour les applications industrielles. Nous présentons notamment un cas test, basé sur des observations de terrains, d'injection et de dissolution de CO2 dans la région proche d'un puits foré dans un aquifère salin. Nous montrons alors que le schéma numérique permet de simuler l'assèchement et la précipitation de minéral observée en pratique. Un chapitre de la thèse est enfin consacré à l'étude pratique et théorique d'une méthode numérique générique pour contrôler l'effet d'axe lors de l'utilisation de schémas industriels