Thèse soutenue

Modélisation dynamique de systèmes complexes pour le calcul de grandeurs fiabilistes et l’optimisation de la maintenance

FR  |  
EN
Auteur / Autrice : William Lair
Direction : Sophie Mercier
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 18/11/2011
Etablissement(s) : Pau
Ecole(s) doctorale(s) : École doctorale sciences exactes et leurs applications (Pau, Pyrénées Atlantiques ; 1995-)

Résumé

FR  |  
EN

L’objectif de cette thèse est de proposer une méthode permettant d’optimiser la stratégie de maintenance d’un système multi-composants. Cette nouvelle stratégie doit être adaptée aux conditions d’utilisation et aux contraintes budgétaires et sécuritaires. Le vieillissement des composants et la complexité des stratégies de maintenance étudiées nous obligent à avoir recours à de nouveaux modèles probabilistes afin de répondre à la problématique. Nous utilisons un processus stochastique issu de la Fiabilité Dynamique nommé processus markovien déterministe par morceaux (Piecewise Deterministic Markov Process ou PDMP). L’évaluation des quantités d’intérêt (fiabilité, nombre moyen de pannes...) est ici réalisé à l’aide d’un algorithme déterministe de type volumes finis. L’utilisation de ce type d’algorithme, dans ce cadre d’application, présente des difficultés informatiques dues à la place mémoire. Nous proposons plusieurs méthodes pour repousser ces difficultés. L’optimisation d’un plan de maintenance est ensuite effectuée à l’aide d’un algorithme de recuit simulé. Cette méthodologie a été adaptée à deux systèmes ferroviaires utilisés par la SNCF, l’un issu de l’infrastructure, l’autre du matériel roulant.