Thèse soutenue

Condensation de l'ADN par la spermine en solution et dans la capside de bactériophage : une étude par cryo-microscopie électronique

FR  |  
EN
Auteur / Autrice : Baeckkyoung Sung
Direction : Françoise Livolant
Type : Thèse de doctorat
Discipline(s) : Biophysique, pharmacotechnie et biopharmacie
Date : Soutenance le 25/08/2011
Etablissement(s) : Paris 11 en cotutelle avec Seoul National University
Ecole(s) doctorale(s) : Ecole doctorale Innovation Thérapeutique : du Fondamental à l'Appliqué (Châtenay-Malabry, Haut-de-Seine ; 2000-2015)
Partenaire(s) de recherche : Laboratoire : Laboratoire de physique des solides (Orsay, Essonne)
Jury : Examinateurs / Examinatrices : Yun Hee Jang, Soong Ho Um, Kwang-Sup Soh
Rapporteur / Rapporteuse : Denis Chrétien, Yves Lansac

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Nous avons analysé par cryomicroscopie électronique la morphologie et la structure de longues chaines d’ADN condensées par un polycation tétravalent, la spermine (polyamine). Les expériences ont été réalisées i) avec des solutions de chaînes diluées et ii) avec des chaines isolées confinées dans la capside d’un virus.Les expériences ont été réalisées avec de l’ADN Lambda (48kbp) en solution diluée (0.03 mM Ph) et à faible concentration ionique (10 mM Tris HCl, 1 mM EDTA, pH 7.6). Nous avons exploré une large gamme de concentrations en spermine, allant du seuil de précipitation (0.05 mM sp) jusqu’à la limite de re-solubilization et au-delà (400 mM sp). Seize minutes après mélange de l’ADN et de la spermine, les échantillons sont piégés en film mince et vitrifiés à basse température pour garder intactes les conditions ioniques, puis imagés à basse température sous faibles doses d’électrons (cryoMET). La plupart des chaînes d’ADN forment des agrégats de tores de structure hexagonale avec des interdistances entre hélices de 2.93, 2.88, et 2.95 nm pour des concentrations en spermine respectivement égales à 0.05, 1 et 100 mM spermine, ce qui est en bon accord avec les données collectées précédemment par diffraction des rayons X. A concentration plus élevée en spermine (200mM), les tores hexagonaux sont remplacés par des faisceaux cholestériques de structure plus lâche (3.32 nm entre hélices). Nous en déduisons que la forme comme la structure des condensats cristallins liquides ADN-sp sont liées aux interdistances entre hélices et déterminés par les conditions ioniques i.e. par l’énergie cohésive entre chaînes d’ADN. En dehors du domaine de précipitation (400mM sp), les molécules d’ADN forment un réseau soluble de fines fibres (4-6nm de diamètre) qui nous amènent à reconsidérer l’état de ces chaiînes en présence de spermine. Nous avons également conçu des expériences pour visualiser les agrégats formés 6 à 60 sec après addition de la spermine dans les mêmes conditions de tampon. Parmi les nombreuses formes originales que nous avons observées (absentes après 16 min), la présence de fibres étirées ou en hélice, visibles seulement après 9sec, nous conduit à proposer que les chaines d’ADN soient immédiatement étirées après addition de spermine puis relaxent sous forme de fibres hélicoïdales qui donnent naissance à de petits toroids (comprenant quelquefois moins d’une chaine) qui grandissent et fusionnent. Nous avons également analysé les dimensions de l’ensemble des tores observés et montré l’existence de contraintes géométriques qui restent à élucider. Puisqu’il était généralement impossible de prévenir l’agrégation des chaines d’ADN, nous avons choisi une autre approche pour analyser le collapse de chaines d’ADN individuelles. Nous avons utilisé une population de virus T5 contenant une fraction de leur génome initial (12-54 kbp). La molécule d’ADN, initialement confinée dans le petit volume de la capside (de de 80nm diamètre) est collapsée par addition de spermine. Par comparaison avec le premier jeu de données, nous avons travaillé à concentration plus élevée en ADN (0.45 mM Phosphates dans l’ensemble de l’échantillon) et la concentration en spermine a été ajustée entre 0.05 et 0.5 mM (ce qui correspond à des rapports de charges +/- bien inférieurs). Ces expériences ont donc été réalisées au voisinage de la ligne de précipitation, dans la « région de coexistence », entre le domaine où les chaines sont en condition de pelote et le domaine ou les chaines sont toutes collapsées sous forme de tores. Nous avons montré l’existence de formes intermédiaires entre ces deux états que nous appelons « tores chevelus » dans lesquels une partie de la molécule est condensées dans le tore alors que l’autre partie reste non condensée. Les distances entre hélices ont également été mesurées. Elles sont plus grandes dans ces structures intermédiaires que dans les tores formés à plus forte concentration en spermine. Ces deux séries d’expériences montrent l’intérêt des méthodes de cryo-microscopie pour étudier la structure locale des phases condensées de l’ADN. Nous avons montré comment le confinement modifie le comportement de l’ADN en solution et l’intérêt d’étudier ces effets compte tenu de son importance dans le contexte biologique.