Modelisation macroscopique de mouvements de foule
Auteur / Autrice : | Aude Roudneff |
Direction : | Bertrand Maury |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 12/12/2011 |
Etablissement(s) : | Paris 11 |
Ecole(s) doctorale(s) : | Ecole doctorale Mathématiques de la région Paris-Sud (1992-2015 ; Orsay) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de mathématiques d'Orsay (1998-....) |
Jury : | Examinateurs / Examinatrices : Bertrand Maury, Alessio Figalli, Francis Filbet, Pierre Degond, Filippo Santambrogio, Vincent Calvez |
Rapporteur / Rapporteuse : Alessio Figalli, Francis Filbet |
Mots clés
Résumé
Nous étudions dans ce travail les mouvements de foule intervenant dans les situa- tions d’urgence. Nous proposons un modèle macroscopique (la foule est représentée par une densité de personnes) obéissant à deux principes très simples. Tout d’abord, chaque personne possède une vitesse souhaitée (typiquement celle qui la mène vers la sortie), qu’elle adopterait en l’absence des autres. Ensuite, la foule doit respecter une contrainte de congestion, et la densité de personnes doit rester inférieure à une valeur fixée. Cette contrainte impose une vitesse de déplacement différente de la vitesse souhaitée. Nous choisissons de prendre comme vitesse réelle celle qui est la plus proche, au sens des moindres carrés, de la vitesse souhaitée, parmi les champs de vitesses admissibles, au sens où ils respectent la contrainte de densité maximale. Le modèle obtenu s’écrit sous la forme d’une équation de transport impliquant une vitesse peu régulière a priori, et qui ne peut être étudiée par des méthodes classiques. Nous démontrons un résultat d’existence grâce à la théorie du transport optimal, tout d’abord dans le cas d’une vitesse donnée comme le gradient d’une fonction, puis dans le cas général. Nous mettons également en œuvre un schéma numérique de type catching-up : à chaque pas de temps, la densité est déplacée selon le champ de vitesse souhaitée, puis est projetée sur l’ensemble des densités admissibles. Les résultats obtenus fournissent des temps d’évacuation dont l’ordre de grandeur est proche de la réalité.