Thèse soutenue

Outils statistiques pour le positionnement optimal de capteurs dans le contexte de la localisation de sources

FR  |  
EN
Auteur / Autrice : Dinh Thang Vu
Direction : Sylvie MarcosAlexandre RenauxRémy Boyer
Type : Thèse de doctorat
Discipline(s) : Traitement du signal
Date : Soutenance le 19/10/2011
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Sciences et Technologies de l'Information, des Télécommunications et des Systèmes (Orsay, Essonne ; 2000-2015)
Partenaire(s) de recherche : Laboratoire : Laboratoire des signaux et systèmes (Gif-sur-Yvette, Essonne ; 1974-....)
Jury : Examinateurs / Examinatrices : Sylvie Marcos, Alexandre Renaux, Rémy Boyer, Yide Wang, Philippe Forster, Pascal Chevalier, Jean-Philippe Ovarlez
Rapporteurs / Rapporteuses : Yide Wang, Philippe Forster

Résumé

FR  |  
EN

Cette thèse porte sur l’étude du positionnement optimale des réseaux de capteurs pour la localisation de sources. Nous avons étudié deux approches: l’approche basée sur les performances de l’estimation en termes d’erreur quadratique moyenne et l’approche basée sur le seuil statistique de résolution (SSR).Pour le première approche, nous avons considéré les bornes inférieures de l’erreur quadratique moyenne qui sont utilisés généralement pour évaluer la performance d’estimation indépendamment du type d’estimateur considéré. Nous avons étudié deux types de bornes: la borne Cramér-Rao (BCR) pour le modèle où les paramètres sont supposés déterministes et la borne Weiss-Weinstein (BWW) pour le modèle où les paramètres sont supposés aléatoires. Nous avons dérivé les expressions analytiques de ces bornes pour développer des outils statistiques afin d’optimiser la géométrie des réseaux de capteurs. Par rapport à la BCR, la borne BWW peut capturer le décrochement de l’EQM des estimateurs dans la zone non-asymptotique. De plus, les expressions analytiques de la BWW pour un modèle Gaussien général à moyenne paramétré ou à covariance matrice paramétré sont donnés explicitement. Basé sur ces expressions analytiques, nous avons étudié l’impact de la géométrie des réseaux de capteurs sur les performances d’estimation en utilisant les réseaux de capteurs 3D et 2D pour deux modèles des observations concernant les signaux sources: (i) le modèle déterministe et (ii) le modèle stochastique. Nous en avons ensuite déduit des conditions concernant les propriétés d’isotropie et de découplage.Pour la deuxième approche, nous avons considéré le seuil statistique de résolution qui caractérise la séparation minimale entre les deux sources. Dans cette thèse, nous avons étudié le SSR pour le contexte Bayésien moins étudié dans la littérature. Nous avons introduit un modèle des observations linéarisé basé sur le critère de probabilité d’erreur minimale. Ensuite, nous avons présenté deux approches Bayésiennes pour le SSR, l’une basée sur la théorie de l’information et l’autre basée sur la théorie de la détection. Ces approches pourront être utilisée pour améliorer la capacité de résolution des systèmes.