Arbres proprement et faiblement arêtes-coloriées dans les graphes et multigraphes arêtes-coloriées
Auteur / Autrice : | Valentin Borozan |
Direction : | Yannis Manoussakis |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 30/09/2011 |
Etablissement(s) : | Paris 11 |
Ecole(s) doctorale(s) : | Ecole doctorale Informatique de Paris-Sud |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de recherche en informatique (Orsay, Essonne ; 1998-2020) |
Jury : | Président / Présidente : Dominique Barth |
Examinateurs / Examinatrices : Yannis Manoussakis, Dominique Barth, Éric Angel, Eric Sopena, Hao Li, Marina Groshaus | |
Rapporteur / Rapporteuse : Éric Angel, Eric Sopena |
Résumé
Dans la présente thèse nous étudions l'extraction d'arbres dans des graphes arêtes-coloriés.Nous nous concentrons sur la recherche d'arbres couvrants proprement arête-coloriés et faiblement arête-coloriés, notée PST et WST. Nous montrons que les versions d'optimisation de ces problèmes sont NP-Complete dans le cas général des graphes arêtes-coloriés, et nous proposons des algorithmes pour trouver ces arbres dans le cas des graphes arêtes-coloriés sans cycles proprement arêtes-coloriés.Nous donnons également quelques limites de nonapproximabilité. Nous proposons des conditions suffisantes pour l'existence de la PST dans des graphes arêtes-coloriés (pas forcément propre), en fonction de différents paramètres de graphes, tels que : nombre total de couleurs, la connectivité et le nombre d'arêtes incidentes dedifférentes couleurs pour un sommet. Nous nous intéressons aux chemins hamiltoniens proprement arêtes-coloriés dans le casdes multigraphes arêtes-coloriés. Ils présentent de l'intérêt pour notre étude, car ce sontégalement des arbres couvrants proprement arêtes-coloriés. Nous établissons des conditions suffisantes pour qu'un multigraphe contienne un chemin hamiltonien proprement arêtes-coloriés, en fonction de plusieurs paramètres tels que le nombre d'arêtes, le degré d'arêtes, etc. Puisque l'une des conditions suffisantes pour l'existence des arbres couvrants proprement arêtes-coloriés est la connectivité, nous prouvons plusieurs bornes supérieures pour le plus petit nombre de couleurs nécessaires pour la k-connectivité-propre. Nous énonçons plusieurs conjectures pour les graphes généraux et bipartis, et on arrive à les prouver pour k = 1.