Etude de l'effet Hall quantique dans le graphène exfolié en vue d'une application en métrologie quantique
Auteur / Autrice : | Jérémie Guignard |
Direction : | Denis-Christian Glattli |
Type : | Thèse de doctorat |
Discipline(s) : | Physique de la matière condensée |
Date : | Soutenance le 08/07/2011 |
Etablissement(s) : | Paris 11 |
Ecole(s) doctorale(s) : | École doctorale Physique de la région parisienne (....-2013) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire national de métrologie et d'essais (France) - Service de physique de l'état condensé (Gif-sur-Yvette, Essonne) - Laboratoire national de métrologie et d'essais - Service de Physique de l'Etat Condensé |
Jury : | Président / Présidente : Claude Pasquier |
Examinateurs / Examinatrices : Claude Pasquier, Beat Jeckelmann, Christophe Chaubet, Wilfrid Poirier, Stefano Borini | |
Rapporteurs / Rapporteuses : Beat Jeckelmann, Christophe Chaubet |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
L’effet Hall quantique (EHQ), observé par exemple dans des gaz bidimensionnels d’électrons (2DEGS) à basse température et sous fort champ magnétique, a révolutionné la métrologie des résistances car il permet d’obtenir un étalon quantique de résistance qui ne dépend que de e et h (respectivement la charge de l’électron et la constante de Planck). Une des missions des métrologues est de développer les étalons en améliorant leurs performances ou en les rendant plus facile à mettre en oeuvre (travaillant à plus haute température ou plus faible champ magnétique). Dans ce contexte, la physique du graphène suscite l’intérêt pour une application en métrologie. Une monocouche de graphène est une feuille d’un seul atome d’épaisseur constituée d’atomes de carbone disposés en nid d’abeille. Une bicouche de graphène est formée par empilement de deux monocouches. Les écarts en énergie entre les premiers niveaux de Landau dans la monocouche et dans la bicouche sont supérieurs par rapport à ceux dans GaAs ce qui rend l’EHQ dans le graphène plus robuste et laisse envisager le développement d’un étalon plus pratique. Durant ma thèse, nous avons mis en place un protocole de fabrication de barres de Hall en graphène exfolié comprenant un repérage optique, des lithographies électroniques, la métallisation, la gravure plasma… L’utilisation de substrat de silicium oxydé en surface rend possible l’utilisation d’une grille en face arrière. En outre la géométrie des échantillons répond au mieux aux critères métrologiques (canal central large, prises de tension bien définies, …). A basse température, le dopage résiduel obtenu après le recuit in situ est de l’ordre de 3-4x1011 cm-2. Les mobilités sont proches de 3000 cm2/(V.s) et 4000 cm2/(V.s) respectivement pour les échantillons monocouche et bicouche à la fois pour les électrons et les trous. Le transport mésoscopique a été caractérisé à basse température par des mesures de localisation faible et de fluctuations universelles de conductance. La longueur de cohérence que nous avons extraite est de l’ordre de 0.5 µm à 1.5 K. La résistance des contacts mesurée en régime d’EHQ est plutôt faible (typiquement quelques ohms). L’EHQ a été étudié en détail à basse température (300 mK < T <1.5 K) et sous fort champ magnétique (jusqu’à 18.5T) à la fois dans la monocouche et la bicouche en mesurant de manière précise la résistance de Hall (RH) et la résistance longitudinale (Rxx). Les mesures fines de RH sont réalisées à l’aide d’un pont de comparaison basé sur un Comparateur Cryogénique de Courant ; elles consistent à comparer indirectement l’EHQ dans l’échantillon de graphène à l’EHQ obtenu dans une barre de Hall en GaAs/AlGaAs qui est supposée fournir la valeur exacte RH/2. Nos mesures révèlent un accord entre la résistance de Hall dans le graphène et la valeur attendue avec une incertitude de quelques 10-7. Au plus faible courant et dans l’état de dissipation minimale (Rxx→0), nous avons obtenu un accord avec une incertitude relative de 3.10-7. Ce niveau de précision est principalement limité par la petite taille de nos échantillons et par les inhomogénéités de la densité qui y sont présents, ces deux caractéristiques amenant de faibles courants de rupture de l’EHQ (1-2 µA). Toutefois, nos résultats sont à ce jour les tests les plus précis concernant l’EHQ dans du graphène exfolié et les premiers tests sur une bicouche. Ils confirment le potentiel de l’EHQ dans le graphène pour une application en métrologie.