Structure et réarrangements conformationnels au cours de l’épissage du composant ribozyme d’un intron de groupe II
Auteur / Autrice : | Cheng-Fang Li |
Direction : | François Michel, Jenn Tu |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences du vivant |
Date : | Soutenance le 27/06/2011 |
Etablissement(s) : | Paris 11 en cotutelle avec Qing hua da xue (Pékin) |
Ecole(s) doctorale(s) : | École doctorale Gènes, Génomes, Cellules (Gif-sur-Yvette, Essonne ; 2000-2015) |
Partenaire(s) de recherche : | Laboratoire : Centre de génétique moléculaire (Gif-sur-Yvette, Essonne) |
Jury : | Examinateurs / Examinatrices : François Michel, Jenn Tu, Alain Jacquier, Woan-Yuh Tarn, Maria Costa, Daniel Gautheret, Yiu-Kay Lai, Huey-Nan Wu |
Rapporteur / Rapporteuse : Alain Jacquier, Woan-Yuh Tarn |
Mots clés
Résumé
Les introns de groupe II forment une classe d’ARN connus avant tout pour leur activité ribozymique, qui leur permet de catalyser leur propre réaction d’épissage. Sous certaines conditions, ces introns peuvent s’exciser des ARN précurseurs dont ils font partie et assurer la ligation des exons qui les bordent sans l’aide d’aucune protéine. Les introns de groupe II sont généralement excisés sous forme d’un lariat, semblable à celui formé par les introns des prémessagers nucléaires, dont l’épissage est assurée par le spliceosome. De telles similarités dans le mécanisme d’épissage suggèrent que les introns de groupe II et les introns des prémessagers nucléaires pourraient avoir un ancêtre évolutif commun.Malgré leurs séquences très diverses, les introns de groupe II peuvent être définis par une structure secondaire commune, hautement conservée. Celle-ci est formée de six domaines (domaine I à domaine VI ; D1-D6), émergeant d’une roue centrale. L’épissage des introns de groupe II comprend deux étapes, et autant de réactions de transestérification, qui produisent les exons liés et l’intron excisé sous forme lariat. Il est généralement admis que la structure du ribozyme subit des changements conformationnels entre les deux étapes de l’épissage et que le domaine VI est un acteur clé dans ce phénomène. Cependant, malgré l’identification d’un certain nombre d’interactions tertiaires entre domaines, ni la RMN, ni les études faisant appel à des modifications chimiques ne sont parvenues à déterminer l’environnement immédiat, au niveau du site actif du ribozyme, de l’adénosine qui sert de point de branchement de la structure en lariat, ainsi que des nucléotides qui entourent cette adénosine au sein du domaine VI. A l’aide d’analyses phylogénétiques et d’une modélisation moléculaire tridimensionnelle, nous avons identifié plusieurs sections du ribozyme susceptibles de constituer le site de fixation du domaine VI au cours de l’étape de branchement. Des mutations ont été introduites dans ces sites de fixation potentiels et la cinétique de réaction des ARN mutants résultants a été déterminée. Afin de démontrer formellement l’interaction du domaine VI avec le site récepteur le plus probable, une molécule de ribozyme dont la réaction de branchement est assurée par l’addition d’oligonucléotides ADN ou ARN qui positionnent correctement le domaine VI vis-à-vis de son partenaire a été construite. En combinant l’information apportée par différentes expériences de ce type, nous avons pu générer un modèle à résolution atomique du complexe formé par le domaine VI, son site de branchement et le reste de l’intron au moment où l’épissage est initié.