Thèse soutenue

Analyse des évènements aérodynamiques à l'origine des émissions sonores à partir de simulations numériques

FR  |  
EN
Auteur / Autrice : Abbas Hekmati
Direction : Philippe Druault
Type : Thèse de doctorat
Discipline(s) : Mécanique
Date : Soutenance en 2011
Etablissement(s) : Paris 6

Mots clés

FR

Mots clés contrôlés

Résumé

FR

Cette étude porte sur le développement d'outils d'analyse pour l'identification des évènements aérodynamiques à l'origine des émissions sonores dans les écoulements turbulents. Une application aux écoulements autour d'un véhicule automobile et à l'intérieur d'un habitacle automobile est proposée dans ces travaux. Ces écoulements permettent d'aborder aussi bien le rayonnement direct que le rayonnement des panneaux soumis à une excitation aéroacoustique. Pour ces analyses, des simulations numériques directes basées sur la méthode Boltzmann sur réseau ont été mises en œuvre pour analyser les phénomènes aéroacoustiques présents dans ces configurations d'écoulements tels que l'aérateur d'une voiture, l'écoulement autour d'un rétroviseur, l'écoulement autour d'une voiture (vitrages). Des premières investigations à partir de ces bases de données ont été menées en utilisant des méthodes de causalité permettant de relier les évènements aérodynamiques aux émissions sonores. Ainsi, pour l'analyse du rayonnement direct, la Décomposition Orthogonale aux valeurs Propres Etendue (EPOD) est retenue. L'utilisation de cette méthode a nécessité dans un premier temps de s'assurer de la fiabilité des grandeurs numériques disponibles en termes de convergence statistique. On a ainsi pu mettre en évidence l'importance d'une telle étude préliminaire de faisabilité pour de telles analyses aéroacoustiques. Ensuite, la procédure initiale de l'EPOD est améliorée par la prise en compte d'un temps de retard entre le bruit rayonné et le champ aérodynamique. Différentes variables (champ de vitesse, tenseur de Lighthill, pression) dans la région aérodynamique pour représenter les évènements ``sources'', ont également été testées. Il a ainsi été montré l'intérêt d'utiliser le champ de pression pour de telles analyses. Des évènements aérodynamiques à l'origine des émissions sonores émises à certaines fréquences ont ainsi pu être caractérisés. L'étude du rayonnement acoustique des panneaux est tout d'abord effectuée par un modèle éléments finis d'une plaque sous une excitation déterministe. Cette description déterministe est obtenue à l'aide d'une démarche de synthèse partant d'un modèle statistique décrivant les composantes turbulente et acoustique du champ d'excitation aéroacoustique. La réponse vibroacoustique de la plaque vis-à-vis des champs homogènes d'excitation est étudiée et comparée favorablement aux prédictions théoriques. L'application à un champ d'excitation inhomogène a également été effectuée avec succès. Ensuite, une analyse de contribution des différentes composantes (aérodynamique et acoustique) du champ d'excitation au champ acoustique rayonné est effectuée à l'aide de la fonction de cohérence. Les limitations de cette méthode de causalité qui sont dues à la nature étendue et incohérente des sources ont été démontrées. Enfin, une démarche basée sur la décomposition du champ de pression pariétale par la POD est développée afin de séparer les composantes acoustique et turbulente du champ total d'excitation. Une première application de cette méthode à des données synthétiques a montré l'efficacité de cette nouvelle approche. Cette méthode est finalement appliquée avec succès à un champ de pression pariétale issu de la simulation numérique de l'écoulement autour d'un véhicule réel. Cette dernière étape de ce travail offre de nombreuses perspectives relatives aussi bien à la modélisation des champs de pression pariétale qu'à des analyses des couplages aéroacoustiques de ces champs de pression