Thèse soutenue

Relation structure - propriétés de commutation dans les matériaux à transition de spin : effet de nanostructuration et de dilution du cation métallique

FR  |  
EN
Auteur / Autrice : Dorathea Felicitas Mader
Direction : Claude LecomteSébastien Pillet
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 14/11/2011
Etablissement(s) : Nancy 1
Ecole(s) doctorale(s) : SESAMES - Ecole Doctorale Lorraine de Chimie et Physique Moléculaires
Partenaire(s) de recherche : Laboratoire : CRM2 - Cristallographie, Résonance Magnétique et Modélisation - UMR 7036
Jury : Président / Présidente : Kamel Boukheddaden
Examinateurs / Examinatrices : Marie-José Stébé
Rapporteurs / Rapporteuses : Jean-Louis Hodeau, Smaïl Triki

Résumé

FR  |  
EN

Ces dernières années, de nombreux travaux de recherche ont été dédiés aux matériaux moléculaires à transition de spin à base de FeII, aussi bien du point de vue de la compréhension des phénomènes fondamentaux que de la mise en forme en vue d'applications. Ces matériaux présentent deux configurations électroniques inter-commutables sous l'effet d'une perturbation extérieure (bistabilité thermique et optique). Des interactions intra- et intermoléculaires fortes au sein du réseau cristallin peuvent conférer au matériau un comportement coopératif associé à des transitions de spin abruptes et un caractère hystérétique à l'origine d'un effet mémoire. La compréhension de l'origine de la coopérativité ainsi que sa maîtrise présentent à ce jour un intérêt certain. L'effet de la dilution métallique sur les propriétés de commutation photoinduites dans les composés FexZn1-x(btr)2(NCS)2.H2O est étudié par diffraction des rayons X sur monocristal. Un modèle microscopique expliquant les différents processus mis en jeu au cours de la transition (nucléation et séparation de phase) est proposé à partir d'une analyse structurale des données. Les effets de nanostructuration sont étudiés sur le polymère de coordination unidimensionnel [Fe(Htrz)2trz](BF4). Différents milieux inverses à base de tensioactif et d'organisation structurale variée (systèmes moléculaires organisés) ont été choisis pour une synthèse en environnement confiné (milieu micellaire inverse, phase cristal liquide hexagonale inverse (HII) et lamellaire (Lalpha)). Un lien entre la taille et la morphologie des particules, leur microstructure et leurs propriétés physico-chimiques est établi. Un intérêt particulier est porté à la dynamique de la réaction en milieu cristal liquide