Relaxométrie du proton pour l'étude de fluides à l'intérieur de milieux poreux
Auteur / Autrice : | Emilie Steiner |
Direction : | Daniel Canet, Sabine Bouguet-Bonnet |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie |
Date : | Soutenance le 18/11/2011 |
Etablissement(s) : | Nancy 1 |
Ecole(s) doctorale(s) : | SESAMES - Ecole Doctorale Lorraine de Chimie et Physique Moléculaires |
Partenaire(s) de recherche : | Laboratoire : CRM2 - Cristallographie, Résonance Magnétique et Modélisation - UMR 7036 |
Jury : | Président / Présidente : Jean-Luc Blin |
Examinateurs / Examinatrices : Marc Fleury | |
Rapporteur / Rapporteuse : Pascal Fries, Lothar Helm |
Résumé
Pour caractériser la mobilité moléculaire au sein de structures complexes, la relaxométrie RMN consiste à déterminer les temps de relaxation dans une gamme de fréquence aussi large que possible et notamment à très basse fréquence où se manifestent les mouvements lents. L'évolution de la vitesse de relaxation longitudinale R1 (qui correspond à l'inverse du temps de relaxation longitudinale T1) en fonction de la fréquence de mesure conduit à ce que l'on appelle une courbe de dispersion. Les travaux présentés dans cette thèse sont entièrement dédiés à cette technique que nous avons décidé d'appliquer à l'étude de fluides introduits à l'intérieur de milieux poreux et ceci constitue une première au laboratoire. Les systèmes ayant servi de support à cette étude sont de nature très différente puisqu'ils concernent 1) des matériaux mésoporeux silicatés qui ont été hydratés dans le but d'étudier le comportement des molécules d'eau introduites à l'intérieur du matériau et 2) des organogels formés dans le toluène pour lesquels nous avons mené une étude du comportement dynamique du solvant à l'issue du processus de gélification. Pour caractériser au mieux la dynamique des fluides à l'intérieur de ces systèmes, des méthodes expérimentales originales, nécessitant l'utilisation de plusieurs instruments, ont été développées, permettant ainsi d'obtenir des courbes de dispersion allant de 0 à 400 MHz. Grâce à des développements méthodologiques et théoriques, nous avons été capables d'identifier les différents mécanismes de relaxation à l'origine de ces courbes de dispersion et de donner une signification physique aux paramètres issus de cette interprétation