Modélisation de la croissance d'une tumeur après traitement par radiothérapie
Auteur / Autrice : | Roukaya Keinj |
Direction : | Pierre Vallois, Thierry Bastogne |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 02/12/2011 |
Etablissement(s) : | Nancy 1 |
Ecole(s) doctorale(s) : | École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....) |
Partenaire(s) de recherche : | Laboratoire : Institut Élie Cartan (1953-1996 ; Nancy, Vandoeuvre-lès-Nancy, Meurthe-et-Moselle) |
Jury : | Président / Présidente : Jean-Luc Gouzé |
Rapporteurs / Rapporteuses : Loïc Chaumont, Stéphane Robin |
Résumé
Nous avons proposé dans cette thèse une nouvelle approche de modélisation des réponses cellulaire et tumorale durant la radiothérapie. Cette modélisation est fondée sur les chaînes de Markov. Elle se situe dans le cadre de la théorie de cible qui suppose qu'il existe dans la cellule des régions sensibles appelées cibles, qui doivent toutes être désactivées pour tuer la cellule. Un premier travail est consisté à proposer un modèle à temps discret en tenant compte non seulement des phases de réparations cellulaires entre les fractions de dose mais également de l'hétérogénéité des dommages cellulaires.Nous avons ensuite proposé un modèle stochastique de la durée de vie cellulaire. Cette modélisation fut également étendue à une population de cellules et a permis d'établir de nouvelles expressions des probabilités d'efficacité et de complication thérapeutique. Nos derniers travaux portent sur le développement d'un modèle de type chaîne de Markov à temps continu qui pourrait être appliqué aux réponses des tumeurs traitées par la thérapie photodynamique