Les glutathion peroxydases et protéine disulfure isomérases de peuplier : potentialités du repliement thiorédoxine pour la catalyse des réactions redox
Auteur / Autrice : | Benjamin Selles |
Direction : | Jean-Pierre Jacquot, Nicolas Rouhier |
Type : | Thèse de doctorat |
Discipline(s) : | Biologie végétale et forestière |
Date : | Soutenance le 29/06/2011 |
Etablissement(s) : | Nancy 1 |
Ecole(s) doctorale(s) : | RP2E - Ecole Doctorale Sciences et Ingénierie des Ressources, Procédés, Produits, Environnement |
Partenaire(s) de recherche : | Laboratoire : IAM - Interactions Arbres Micro-organismes - UMR 1136 |
Jury : | Président / Présidente : Pierre Leroy |
Examinateurs / Examinatrices : Jean-François Collet, Pascal Rey, Florence Vignols |
Mots clés
Résumé
La formation de ponts disulfure constitue une modification post-traductionnelle des protéines importante pour de nombreux processus physiologiques, jouant un rôle particulier dans le repliement, la catalyse et la régulation de leur activité. Ce travail concerne l'étude des relations structure-fonction d'oxydoréductases de peuplier appartenant à deux familles de la superfamille des thiorédoxines, les glutathion peroxydases (Gpxs) et les protéine disulfure isomérases (PDIs).L'étude biochimique fine de la Gpx5 a permis de montrer que cette peroxydase réduit le peroxynitrite, propriété inconnue pour ce type de Gpx et de détailler plusieurs étapes du mécanisme catalytique (formation de l'acide sulfénique, changement structural entre formes réduites et oxydées, régénération par les Trxs). La dimérisation de la Gpx5 n'est pas requise pour son activité mais pourrait jouer un rôle dans la reconnaissance de certains substrats. Enfin, l'inactivation de la cystéine peroxydatique par suroxydation suggère que les Gpxs pourraient également avoir une fonction dans la signalisation en réponse aux peroxydes.Concernant les PDIs, suite à une analyse phylogénétique détaillée amenant à proposer une nouvelle classification en 9 classes chez les organismes photosynthétiques, la caractérisation biochimique de plusieurs isoformes présentant des organisations modulaires distinctes et appartenant à trois classes de PDIs a été entreprise. Aucune activité enzymatique typique n'a été identifiée pour la PDI-A, alors que les PDI-L1a et -M possèdent à la fois une activité oxydase et réductase. Les deux modules a de la PDI-M catalysent des réactions spécifiques, de réduction ou d'oxydation.