Thèse soutenue

Formation des micro fissures aux joints des grains : influence de l'orientation sur les contraintes locales et sur la formation des micro fissures
FR  |  
DE  |  
EN
Accès à la thèse
Auteur / Autrice : Markus Theodor Welsch
Direction : Marcel Berveiller
Type : Thèse de doctorat
Discipline(s) : Mécanique et énergétique
Date : Soutenance le 04/11/2011
Etablissement(s) : Metz en cotutelle avec Universität des Saarlandes
Ecole(s) doctorale(s) : EMMA - Ecole Doctorale Energie - Mécanique - Matériaux
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (Metz)
Jury : Président / Présidente : Rolf Hempelmann
Examinateurs / Examinatrices : Walter Arnold, Frank Aubertin, Stéphane Berbenni, Xavier Feaugas, Horst Vehoff

Résumé

FR  |  
DE  |  
EN

La plupart des matériaux sont par nature anisotropies (élastiques, plastiques). Ces anisotropies peuvent présenter des directions favorables ou peuvent au contraire détériorer les propriétés mécaniques des polycristaux. Dans le second cas, les anisotropies des propriétés mécaniques entraînent des déformations élastiques, des contraintes internes, ainsi que des rotations élastiques locales supplémentaires. Ces contraintes additionnelles sont à l’origine de dommages locaux, comme par exemple des porosités ou la propagation de microfissures. L’amplitude de ces contraintes est fortement dépendante à la fois de l’alignement des joints de grains avec la direction des sollicitations mécaniques et de la désorientation entre grains. Dans ce travail, l’influence des hétérogénéités microstructurales sur les contraintes internes dans les zones proches des joints de grains après des essais de fatigue (en traction et en flexion) ont été étudiée expérimentalement et théoriquement. Pour cette étude, nous avons choisi d’étudier des tôles de nickel pur et de Fe-3%Si. Ces matériaux sont connus pour leurs facteurs d’anisotropie élastique élevés. L’utilisation d’un microscope optique a permis la détermination de l’alignement des joints de grains. L’orientation cristallographique locale est déterminée par EBSD. Ces données expérimentales sont la base d’un modèle élément fini 3D en élasticité. Ces simulations ont permis la détermination de fortes contraintes internes dans les zones proches des joints de grains. Nous avons d’ailleurs observé expérimentalement que des microfissures apparaissent dans ces zones. L’utilisation d’un microscope électronique à balayage équipé du système ECCI permet d’observer les structures de dislocation formées au cours de la déformation dans les zones proches des joints de grains. Par exemple après un essai de fatigue, on observe que les structures de dislocation ne sont pas uniformément réparties dans les grains. En parallèle, la nano-indentation a été utilisée pour déterminer localement les différences de propriétés mécaniques causées par le durcissement local. Le microscope à force magnétique s’avère également une méthode efficace pour observer les structures de dislocation dans le nickel. Le but de toutes ces caractérisations est de contribuer à la compréhension de la formation des fissures et des mécanismes de propagation de fissure et aussi de prédire la position des fissures