Super-algèbres non associatives avec des structures homogènes
Auteur / Autrice : | Imen Ayadi |
Direction : | Saïd Benayadi |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 10/03/2011 |
Etablissement(s) : | Metz |
Ecole(s) doctorale(s) : | École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....) |
Partenaire(s) de recherche : | Laboratoire : LMAM - Laboratoire de Mathémathiques et Applications de Metz - UMR 7122 (....-2012) |
Jury : | Président / Présidente : Richard Kerner |
Examinateurs / Examinatrices : Helena Albuquerque, Ignacio Bajo, Michel Goze, Salah Mehdi, Angela Pasquale |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Le but de cette thèse est d'étudier certaines super-algèbres non associatives qui sont munies des structures homogènes.Dans la première partie de cette thèse, nous avons étudié les super-algèbres associatives symétriques homogènes. Nous avons généralisé, au cas des super-algèbres associatives, la double extension des algèbres associatives symétriques introduite par A. Aubert.Nous avons utilisé un cas particulier de cette nouvelle notion de double extension pour étudier les super-algèbres de Novikov symétriques paires. En particulier, nous avons donné une description inductive de ces super-algèbres.Ensuite, nous avons montré que toutes les super-algèbres associatives simples possèdent des structures symétriques homogènes. Plus précisément, nous avons donné explicitement sur chaque super-algèbre associative simple une structure symétrique homogène. Ce résultat nous a permis de donner une description inductive complète des super-algèbres associatives symétriques homogènes.Nous avons terminé cette partie en donnant une description inductive des super-algèbres associatives super-commutatives symétriques homogènes symplectiques homogènes. Dans la deuxième partie de cette thèse, nous avons complété l'étude des super-algèbres de Lie quadratiques homogènes symplectiques homogènes commencée par E. Barriero et S. Benayadi. Ensuite, à l'aide des différentes types de double extensions introduites dans la première et la deuxième partie, nous avons introduit la notion de la double extension des super-algèbres Poisson-admissibles quadratiques homogènes symplectiques homogènes. Finalement, en utilisant ces nouvelles notions de double extensions, nous avons obtenu des descriptions inductives des super-algèbres Poisson-admissibles quadratiques homogènes symplectiques homogènes.