Thèse soutenue

Réactivité organique : études cinétiques et optimisation de synthèses en système microfluidique

FR  |  
EN
Auteur / Autrice : Azarmidokht Gholamipour-Shirazi
Direction : Christian RolandoDidier Barbry
Type : Thèse de doctorat
Discipline(s) : Molécules et Matière Condensée
Date : Soutenance le 12/12/2011
Etablissement(s) : Lille 1
Ecole(s) doctorale(s) : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Lille ; 1992-....)

Résumé

FR  |  
EN

Les microsystèmes sont des réacteurs extraordinaires pour mettre en œuvre des réactions chimiques car ils apportent un rapport de contact entre phases très supérieur à celui en ballon, la possibilité d’hypertrempe thermique tant au chauffage qu’au refroidissement et enfin l’absence d’interaction des réactifs avec les produits. Les dimensions micro-ou nanométriques de ces réacteurs sont très largement compensées par la possibilité de parallélisation à grande échelle de ces réacteurs qui permet une montée en échelle de la production sans nouveau développement. Nous avons choisi comme réaction test l’alkylation des acides benzoïques substitués par l’iodure de méthyle en présence d’une éponge à proton (TMGN). Cette réaction a été choisie car elle suit une cinétique parfaitement du second ordre. Nous avons ainsi pu montrer que cette réaction suit la relation de Hammett, déterminer le paramètres de réactivité  pour cette réaction et en opérant à température variable mesurer l’énergie et l’entropie d’activation. Nous avons également réalisé des expériences préparatives sur des substrats bifonctionnels simples et mis en évidence la sélectivité en système microfluidique. Une étude comparative de la basicité des superbases organiques comparée à la vitesse d’alkylation par l’iodure de méthyle a effectué pour mieux cerner le rapport basicité, nucléophilie de ces bases qui est peu étudié. Parallèlement l’alkylation d’un polyphénol complexe la quercétine et de substrats à haute valeur ajoutée tels que le Trolox, l’acide clofibrique et l’acide podocarpique à l’aide de systémes microfluidiques ont été étudié à l’échelle de la millimole.