Lambda-modules et algébroïdes de Lie holomorphes
FR |
EN
Auteur / Autrice : | Pietro Tortella |
Direction : | Dimitri Markouchevitch, Ugo Bruzzo |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 06/10/2011 |
Etablissement(s) : | Lille 1 en cotutelle avec International School for Advanced Studies |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'ingénieur (Lille) |
Mots clés
FR
Résumé
FR |
EN
La thèse est consacrée à la construction et à l'étude des espaces de modules des connexions holomorphes algébroïdes de Lie sont étudiés.On commence par une classification des faisceaux d'algèbres filtrées quasi-polynômiales sur une variété complexe lisse projective en termes d'algébroïdes de Lie holomorphes et de leurs classes de cohomologie. Cela permet de construire les espaces de modules de connexions holomorphes agébroïdes de Lie par le formalisme des Lambda-modules de Simpson.Par ailleurs, on étudie la théorie des déformations de telles connexions, et on calcule le germe de leur espace de modules dans le cas de rang deux, lorsque la variété de base est une courbe.