Thèse soutenue

Modélisation intermédiaire entre équations cinétiques et limites hydrodynamiques : dérivation, analyse et simulations
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Martin Parisot
Direction : Thierry GoudonJean-François Clouët
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 23/09/2011
Etablissement(s) : Lille 1
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)

Résumé

FR  |  
EN

Ce travail est consacré à l’étude d’un problème issu de la physique des plasmas : le transfert thermique des électrons dans un plasma proche de l’équilibre Maxwellien. Dans un premier temps, le régime asymptotique de Spitzer-Härm est étudié. Un modèle proposé par Schurtz et Nicolaï est situé dans le contexte des limites hydrodynamiques hors du cadre strictement asymptotique et analysé. Le lien avec les modèles non-locaux de Luciani et Mora est établi, ainsi que des propriétés mathématiques comme le principe du maximum et la dissipation d’entropie. Ensuite, une dérivation formelle à partir des équations de Vlasov est proposée. Une hiérarchie de modèles intermédiaires entre les équations cinétiques et la limite hydrodynamique est décrite. Notamment, un nouveau système hydrodynamique, de nature intégro-différentielle, est proposé. Le système de Schurtz et Nicolaï apparaît comme une simplification du système issu de la dérivation. L’existence et l’unicité de la solution du système non stationnaire sont établies dans un cadre simplifié. La dernière partie est consacrée à la mise en oeuvre d’un schéma numérique spécifique pour résoudre ces modèles. On propose une approche par volumes finis pouvant être efficace sur des maillages non-structurés. La précision de ce schéma permet de capturer des effets spécifiques de nature cinétique, qui ne peuvent être reproduits par le modèle asymptotique de Spitzer–Härm. La consistance de ce schéma avec celui de l’équation de Spitzer–Härm est mise en évidence, ouvrant la voie a des stratégies de couplage entre les deux modélisations.