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Nomenclature 

A   Cross sectional area of shaft      m2 

E
a   Amplitude at the equilibrium position     m 

C   Geometric center of the shaft 

c   Coefficient of damping       N.s.m-1 

1
d   Position of mass unbalance on disk     m 

E   Modulus of elasticity       N m-2 

f
E ,

m
E  Elastic moduli for the fiber and matrix material    N m-2 

1
E ,

2
E  Elastic moduli in the orthotropic axis     N m-2 

EI   Homogenized flexural inertia      N m-2 

f
V ,

m
V  Volume fraction for the fiber and matrix material   N m-2 

f
v ,

m
v  Poisson ratio for the fiber and matrix material    N m-2 

f
K ,

m
K  Plain strain bulk moduli for the fiber and matrix material   N m-2 

12
G ,

13
G , Shear moduli for the matrix material     N m-2 

23
G  

m
G   Shear modulus for the matrix material     N m-2 

E
G   Equivalent shear modulus      N m-2 

GS  Equivalent shear rigidity      N m-2 

r
C   Viscous damping coefficient      N m-2 

r
H   Hysteretic damping coefficient      N m-2 

e   Wall thickness of the tube shaft      m 

G  Shear Modulus         N m-2 

h  Thickness of disk       m 

I  Area moment of inertia of shaft      m4 

Idx  Mass moment of inertia of disk in direction x    kg.m2 

Idy  Mass moment of inertia of disk in direction y    kg.m2 

Idz  Mass moment of inertia of disk in direction z    kg.m2 

k  Shear correction factor 
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L  Length of shaft        m 

l1  Position of disk on shaft       m 

Md  Mass of disk        kg 

u
m   Mass Unbalance       Kg 

0
N   Constant static axial force      N 

A
N   Dynamic axial force       N 

n  Mode number 

R1  Cross sectional radius of shaft/inner radius of disk   m 

R2  Outer radius of disk       m 

m
R   Mean radius of the composite shaft     m 

p
R ,

1−p
R  External and internal radius of layer p     m 

r    Slenderness Ratio 

Td  Kinetic energy of the disk      N.m 

TR  Total kinetic energy of rotor      N.m 

Ts  Kinetic energy of the shaft      N.m 

Tu  Kinetic energy of the mass unbalance     N.m 

U  Discretized displacement along axis x     m 

W  Discretized displacement along axis z     m 

&U , &W  Derivatives with respect to time      m.s-1 

UR  Total strain (deformation) energy of rotor    N.m 

Us  Strain (deformation) energy of shaft     N.m 

x
V   Shear force along x axis       N 

z
V   Shear force along z axis       N 

u(y,t) Displacement along x axis of rotor     m 

w(y,t) Displacement along z axis of rotor     m 

x
β   Shear angle about x axis      rad 

z
β   Shear angle about z axis       rad 

ν   Poisson ratio 

Ω  Angular Speed of rotor                   rad.sec-1 

p
φ   Angle of ply between the shaft and fiber axis    rad 
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ρ  Density of the material       Kg.m-3 

ω1 ,ω2   Angular frequencies of rotor      rad.sec-1 

σ1  Detuning parameter       rad.sec-1 

x
θ   Angular displacement around x axis     rad 

y
θ   Angular displacement around y axis     rad 

z
θ   Angular displacement around z axis     rad 

1
α ,

2
α ,

1
β ,

2
β  Functions of geometric and material properties of rotor 
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Objective of the Thesis 

The objective of the present work is to investigate the nonlinear dynamic behavior of the rotor 
systems analytically and numerically, taking into account the significant effects, for example, higher 
order large deformations in bending, geometric nonlinearity and shear effects. The work is divided 
into two major parts. In the first part, various mathematical models are developed considering 
different effects, for example, by considering nonlinearity due to higher order large deformations in 
bending and shear effects. In addition, if the supports of the rotor do not allow the shaft to move in 
the axial direction, then there will be a dynamic force acting axially on the rotor as it operates. This 
force will also produce large deformations in bending. Rotor large deformation can be result of 
overloading, over-speed, resonance, whirling, accident, component failure, surge, stall, off design 
operation, etc and may lead to stress exceeding the safe limit, failure of machine component, 
machine explosion and equipment coming apart. Each scenario can cause serious damages and 
injuries. For reliability and safety assessment of all possible scenarios of rotating machine 
malfunction, it is necessary to model and analyze the dynamic behavior of rotors under large 
deformations. Large deflection of rotor entails large strain to sensitive multi-component structure 
and may impose excessive stress to each component of rotor which could lead to damage or even 
collapse. Repair processes of rotors are very expensive and time consuming. Also shut down results 
in loss of plant revenue for repair period. Therefore, operation of machine must be carried out with 
reasonable prediction and knowledge of deformations in rotor and forces to machine components. 

 Moreover, there are other secondary effects that should be considered for increasing the accuracy of 
the predicted results. These include rotary inertia effects, gyroscopic effects and rotor mass 
unbalance effects. These models consist of 2nd order nonlinear differential equations of motion when 
shear deformations are not considered. When the shear effects are also taken into account, the 
developed mathematical models consist of 4th order nonlinear differential equations of motion. In the 
second part the challenge of solving various nonlinear models developed in the preceding part is 
addressed. Analytical and numerical methods are applied in order to treat the nonlinear equations of 
motion. 

Hamilton’s principle [GR92] is used to formulate the equations of motion. The linear part of the 
various models developed is analyzed for the first mode to obtain the natural frequencies of 
vibrations. Then, in order to solve the complete model including nonlinear terms, the Method of 
Multiple Scales (MMS) [NM95] is applied. This is a well known perturbation method [N93] and has 
been proven to be very effective for solving nonlinear equations of motion. See, for example, 
[MMPD08], [MAG06], [JZ98]. Resonant curves are plotted for different possible resonances and 
the effect of nonlinearity is discussed in comparison to the linear analysis. The forced response of 
the rotor system due to an unbalanced mass by changing different rotor parameters is also presented 
and the results are plotted graphically and discussed. When shear deformations are taken into 
account, the analysis is conducted for various slenderness ratios to highlight shear effects on the 
dynamics of both rotating shafts and shaft-disk rotor systems. 
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Thesis Organization 

Chapter 1 
This chapter illustrates a state of the art for the dynamic analysis of the rotors. The objective and 
contribution of the thesis is discussed in the light of the bibliographic work. A brief introduction of 
various important aspects of rotordynamics is discussed. The significance of considering the 
nonlinearities on the dynamic behavior of rotors is discussed with references to some research work 
available in the literature to date. 

Chapter 2 
This chapter is dedicated to the mathematical modelling for analyzing the dynamic behavior of 
rotors. Various models containing nonlinear differential equations of motion are developed for 
different rotor configurations. These models consist of 2nd and 4th order nonlinear differential 
equations of motion. Technical and theoretical aspects of taking into account various effects like 
higher order large deformations, geometric nonlinearity, shear effects, gyroscopic and rotary inertia 
effects are visualized and discussed. The models are developed using both the Euler-Bernoulli and 
Timoshenko beam theories. 

Chapter 3 
This chapter analyzes some of the mathematical models developed in the preceding chapter. Effects 
which give rise to nonlinearity like higher order large bending deformations and geometric 
nonlinearities are combined in a single model. The model thus developed is solved using method of 
multiple scales (MMS). There are two methods for the application of this method .i.e., direct method 
and discretized method. The analysis procedure for both of these approaches is discussed. The 
discretization approach is applied in order to find the nonlinear dynamic response of the equations of 
motion which were developed for the work of this thesis. The results are obtained both analytically 
and numerically. Three methods are used for analyzing the results: The method of multiple scales, a 
step by step method in Matlab and Simulink and a continuation procedure called Matcont. The 
results obtained by different methods are compared, graphically presented and discussed. Effects of 
varying different rotor parameters on the nonlinear dynamic response of the rotor system under 
investigation are also presented and discussed. 

Chapter 4 
This chapter focuses on the combined effect of nonlinearities and shear effects on the linear and 
nonlinear dynamic behavior of the rotors. The mathematical model which is treated in this chapter 
consists of 4th order nonlinear differential equations of motion. The method of multiple scales is 
applied to the 4th order derivatives with respect to time. The nonlinear response of the system is 
discussed and graphically presented as resonance curves.The influence of various parameters on the 
nonlinear behavior is analyzed. The effects of shear are discussed in detail both on the linear as well 
as nonlinear response of the rotor system under study. 
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Chapter 5 
This chapter discusses the overall conclusions of the thesis. Also, based on the work performed for 
this thesis, there are future perspectives, which are also mentioned in detail. A description of the 
work already carried out is given which can be extended in future. The main perspectives include 
the study of nonlinear dynamic behavior of the rotors under some base movements. i.e. the supports 
of the rotor are not fixed but can be subjected to different movements like simple translation, a 
constant acceleration, sinusoidal translatory motion, simple rotation and sinusoidal rotation. 
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Chapter 1: Identification of the Problem - State of the Art 

This chapter illustrates a state of the art for the dynamic analysis of the rotors. The objective and 
contribution of the thesis is discussed in the light of the bibliographic work. A brief introduction of 
various important aspects of rotordynamics is discussed. The significance of considering the 
nonlinearities on the dynamic behavior of rotors is discussed with references to some research work 
available in the literature to date. 

1.1. Introduction 
Rotordynamics is a subset of vibration analysis that deals with the dynamic characteristics of 
rotating machines. Over the years rotordynamics has become an important field in many engineering 
applications such as jet engines, helicopter rotors, turbines, compressors and the spindles of machine 
tools, etc. Rotor dynamics has a remarkable history of developments, largely due to the interplay 
between its theory and its practice. The research in this field has been carried out for many years. 
Dr. Ales Tondl [T65] discussed some basic problems of rotordynamics.  

Rotor dynamics has been driven more by its practice than by its theory. This statement is 
particularly relevant to the early history of rotor dynamics.  Research on rotor dynamics spans at 
least 14 decades of history. Reliability assessment and risk analysis of rotating machine rotors in 
various overload and malfunction situations present challenge to engineers and operators. Among 
the components of machines designed to transmit power, the most important are the shaft or shaft-
disk assemblies. The analysis in all the above mentioned works is based on linear equations of 
motion. The prediction and analysis of the dynamic behavior of rotor systems are crucial because 
their rotating components possess unlimited amounts of energy that can be transformed into 
vibrations. However, these vibrations can disturb the performance of the rotor system and even 
cause its total destruction.  

The mechanical system that contains rotating elements is usually referred to as rotor system. A rotor 

is a body suspended through a set of cylindrical hinges or bearings that allow it to rotate freely about 
an axis fixed in space. Engineering components concerned with the subject of rotor dynamics are 
rotors in machines, especially of turbines, generators, motors, compressors, blowers and the like. 
Rotors of machines have, while in operation, a great deal of rotational energy, and a small amount of 
vibrational energy. The purpose of rotor dynamics as a subject is to keep the vibrational energy as 
small as possible. In operation rotors undergo bending, axial and torsional vibrations. 

 Kinetic energy of these rotating elements forms an internal source of energy. This internal source of 
energy can be considered infinite because due to the connection of the rotor system with the driving 
system the kinetic energy accumulated in the rotating elements always exists. It means that, in 
certain circumstances, unlimited amount of energy can be transferred into vibration of the rotor-
system. These vibrations disturb the technological processes the machine is design for, resulting in 
shorter life-times and very often leading to its destruction. These vibrations can be developed even if 
there are no external forces acting on the rotor-system. Therefore prediction and attenuation of 
vibrations of the rotor - system are very important from an engineering point of view on both: the 
design stage and during maintenance. Prediction of the dynamic behavior of the rotor-system 
requires analysis of the mathematical model that quantitatively reflects its dynamic properties. 
Computations of critical speeds and steady-state response at synchronous and subcritical resonances 
become essential for system design, identification, diagnosis, and control. In the practical design of 
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rotating machinery, it is necessary to know accurately the natural frequencies, modes and forced 
responses to unbalances in complex-shaped rotor systems. The most common representative 
techniques used for this purpose are TMM (Transfer Matrix Method), FEM (Finite Element 
Method) and Method of Multiple Scales (MMS). TMM is particularly useful for multi-rotor-bearing 
systems. See [YI01]. 

1.1.1. Significance of Nonlinearities in Rotordynamics 

These days there is a tendency to produce machines which operate at high speed and are lightweight, 
for example, the gas turbine for propulsion of an aircraft, power-plant turbine, etc. In the present 
rotating machinery, non-linear vibration phenomena sometimes occur in the shrinkage fit rotor, in 
the assembly rotor and in the power-plant rotor with coil. Non-linear vibration phenomena also 
occur in a high polymer rotor, which is used for lightweight construction of an aircraft engine. 
Vibration analysis of such rotor systems is usually performed by the finite element method (FEM) 
with linear model. When a large amplitude vibration occurs, however, linearized spring and 
damping coefficients cannot model the complicated non-linear rotor system. It is important to 
consider the non-linear characteristics in vibration analysis and design of rotor systems. On the other 
hand, it is necessary that a high-speed rotor system used for the gas turbine for propulsion of an 
aircraft, power-plant turbine, etc. promptly pass a critical speed. Accordingly, the casing is often 
modelled elastically to decrease the critical speed. When such a rotor-bearing-casing system 
vibrates, the casing is excited and can come in contact with the rotor. Also there is a danger that the 
bearing will be damaged. Therefore, the investigation of the response of a rotating machine is very 
important from the viewpoint of stable operation. To construct a real mathematical model in 
vibration analysis, dynamic characteristics of rotor, bearing and casing should be considered. These 
conditions may cause non-linear vibrations. In the analysis of a large complex degrees of freedom 
(d.o.f.) mechanical system, the substructure synthesis method (SSM) has been studied for efficient 
vibration analysis, Iwatsubo et al. [IKM98] proposed an approximate analytical method to analyze 
the dynamic problems of a non-linear rotor-bearing-casing system using the SSM and a perturbation 
method. They applied the SSM technique to reduce the overall size of the problem and obtained 
approximate solutions by applying the perturbation method. Moon et al. [MKY99] presented an 
analytical method to analyze the vibration of a non-linear rotor-bearing-casing system by applying 
the perturbation method. They considered the non-linearity in the shaft and bearing part and 
considered the effect of non-linear sensitivity in the subsystem. They derived the formulation of 
perturbation first order under the condition that the exciting force is near the first critical frequency 
of the system. 

 Also the increasing need of optimized performance of machines adds to the importance of 
considering nonlinear effects on their dynamics. Nonlinearities in rotating machines can arise due to 
many reasons. For example, clearances in a ball bearing, see, [KWC02], oil film in a journal 
bearing, clearance in a squeeze-film damper bearing, magnetic force between the rotor and stator in 
a motor, contact between rotor and stator [Y01]. 

Chang and Cheng [CC93] analyzed the instability and nonlinear dynamics of a slender rotating shaft 
with a rigid disk at the midspan.The analysis was conducted using centre manifold theory. 
Nonlinearities also occur when the deflections become large, for example, a high polymer rotor used 
for lightweight construction of an aircraft, turbine shaft, a composite helicopter-rotor. Almasi 
presented a model for large deformations of a rotor based on virtual work theory [A09] When a 
large amplitude vibration occurs, linearized spring and damping coefficients cannot model the 
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complicated non-linear rotor system. Therefore, it is important to consider the non-linear 
characteristics in vibration analysis and design of rotor systems. For small amplitude oscillations the 
response of a deformable body can be adequately described by linear equations and boundary 
conditions. However as the amplitude of oscillation increases, nonlinear effects come into play. The 
source of the nonlinearities may be geometric, inertial, or material in nature. The geometric 
nonlinearity may be caused by nonlinear stretching or large curvatures. Nonlinear stretching of the 
midplane of a deformable body accompanies its transverse vibrations if it is supported in such a way 
as to restrict movement of its ends and/or edges. This stretching leads to a nonlinear relationship 
between the strain and the displacement. If the large amplitude vibrations are accompanied by large 
changes in the curvature, it is necessary to employ a nonlinear relationship between the curvature 
and the displacement. Nonlinear inertial effects are caused by the presence of concentrated or 
distributed masses. Material nonlinearity occurs whenever the stresses are nonlinear functions of the 
strains. 

The modal analysis technique is one of the most valuable tools for analyzing linear structures and 
from its results the response of a structure may be found by solving ordinary differential equations 
with constant coefficients. The modal analysis allowed the development of reduction techniques that 
are very well developed nowadays. For example, the pseudo-modal method (Lalanne and Ferraris, 
1990), the phenomena causing non-linearties lead to non-linear differential equations of motion to 
express the system dynamics. Various methods are available for analyzing nonlinear structures, such 
as perturbation methods, harmonic balance methods, normal forms and center manifold methods. 
The method of the invariant manifold approach is also well-known which brings the concept of 
modal analysis to nonlinear problems. This technique has been numerically investigated for a 
nonlinear rotor-bearing system by Villa et al. see [VST05]. 

The approach in predicting dynamic behavior of rotors can be linear or nonlinear. In linear systems 
the restoring force terms, damping terms, and inertia terms are represented by the first order 
functions of deflection, velocity and acceleration. However, such equations of motion are 
approximate expressions since deflections are considered small. But when the deflections become 
large, phenomenon due to nonlinearity may occur. The importance of considering the nonlinear 
and/or material constitution effects in the dynamic analysis of rotating equipment has increased in 
line with current demand for accurate and optimized performance. Thus this field has become more 
challenging because the analysis of the nonlinear phenomena is far more difficult in comparison to 
linear analysis. In additions, since a rotor executes a whirling motion due to gyroscopic moment, 
analytical methods used in the analysis of rectilinear systems cannot be applied directly to rotor 
systems. In a recent special issue of the Journal of Nonlinear Dynamics on ‘Recent Advances in 
Nonlinear Rotordynamics’, various topics concerning nonlinear rotordynamics have been addressed 
[WI09]. 

Practically many resources may contribute to nonlinearity. For example, higher order large 
deformations, rotor-base excitations, geometric nonlinearities, oil film in journal bearings, magnetic 
bearings, clearance in a ball bearing, clearance in a squeeze-film damper bearing, and magnetic 
force between the rotor and a stator in a motor. One important source of nonlinearity comes from 
material considerations. For example if the shaft of a rotor system is made up of a composite 
material, it can produce vibrations of much larger amplitudes than those of metallic shafts, leading 
the system to become nonlinear. In general, analysis of rotor under large deformations requires:  
nonlinear complex behavior simulation, changes in stiffness due to the changes in rotor geometry, 
nonlinear restraint of support and consideration of contact with the other machine components. Due 
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to their many benefits composite materials are being used in various present day rotors especially in 
aerospace applications where weight reduction and optimized design is of great interest. 

Shabaneh and Zu [SZ03] investigated the dynamic analysis of a single-rotor shaft system with 
nonlinear elastic bearings at the ends mounted on viscoelastic suspension. Timoshenko shaft model 
was utilized to incorporate the flexibility of the shaft; the disk was considered to be rigid but located 
at the mid-span of the shaft. 

1.1.2. Contribution of the Present Work 

In the present thesis the nonlinear dynamic behavior of the rotors is investigated considering the 
effects like higher order large deformations in bending, geometric nonlinearity and the effects of 
shear deformations. Both analytical and numerical approaches are used. Various mathematical 
models incorporating different effects are developed and the detailed derivation of equations of 
motion is presented and discussed. New energy expressions for the strain energy of the shaft 
undergoing large bending deformations and geometric nonlinearity are developed. Rayleigh-Ritz 
method, Hamilton’s principle and Lagrange equations are used to formulate the equations of motion. 
The equations of motion are nonlinear differential equations. Due to the contribution of higher order 
large deformations in bending the equations of motion are 2nd order nonlinear differential equations. 
However when shear deformations are also taken into account, the developed mathematical model 
consists of 4th order nonlinear differential equations of motion. Also if the supports of the rotor do 
not allow the shaft to move in the axial direction, then a dynamic force will act on the rotor axially 
[INIL96]. This force will also produce large deformations in bending. The equations of motion 
developed considering this dynamic force are also 2nd order nonlinear equations of motion.              
A case study for the dynamic analysis of the composite rotors is also performed. Vibration analysis 
of the composite rotors with one disk considering the gyroscopic effect is presented. Campbell 
diagrams are plotted for determining the critical rotor speeds. The results are compared with those 
already available in the literature. 

Then some of the various mathematical models developed are analyzed both analytically and 
numerically. The linear part of these models developed is analyzed for the first mode to obtain the 
natural frequencies of vibrations. Then, in order to solve the complete model including nonlinear 
terms, MMS is applied. After the resolution of nonlinear equations of motion, resonant curves are 
plotted for different possible resonances and the effect of nonlinearity is discussed in comparison to 
the linear analysis. The forced response of the rotor system due to an unbalanced mass by changing 
different rotor parameters is also presented and the results are plotted graphically and discussed. 
When shear deformations are taken into account, the analysis is conducted for various slenderness 
ratios to highlight shear effects on the dynamics of both rotating shafts and shaft-disk rotor systems. 
The effects of shear were discussed in detail for both the linear as well as nonlinear response of the 
rotor system. The results of the linear analysis, for a rotating shaft and a shaft-disk rotor system, 
showed that with the inclusion of shear deformations the critical speeds of the rotor tend to decrease. 
This difference becomes more visible for higher values of the slenderness ratio r. As compared to a 
shaft-disk rotor system the shear effects have more notable influence in the case of a solid and tube 
sections of the shaft. 

It is presented and discussed that nonlinearities along with other phenomena like gyroscopic, rotary 
inertia and mass unbalance effects significantly influence the dynamics of the rotor system. The 
linear analysis showed that resonance existed only at the second critical speed, but in the nonlinear 
analysis another resonance appeared at the first critical speed. Furthermore, nonlinearities caused the 
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resonance curves to be of hard spring type. The combined effect of nonlinearities and shear effects 
on the linear and nonlinear dynamic behavior of the rotors have also been studied.  

1.2. Predictions of the Dynamic Behavior of Rotors 
A rotor system consists of the basic elements like the disk, the shaft, the bearing and the seals. When 
we design rotating machinery, we have to predict the dynamic behavior of the rotor in torsion and in 
bending. It is necessary to find the natural frequencies. The critical speeds are determined with the 
natural frequencies. See. [LF98]. The general rotor equations are derived by the means of the 
following steps: 

The kinetic energy of the disk and the shaft, the strain energy of the shaft and the virtual work of the 
external forces are calculated for the elements of the system. 

The Rayleigh-Ritz method is applied for a small number of DOF and Finite Element Method is used 
for engineering applications. 

1.3. Classification of Rotor Systems 
A rotor system can consist of disks of various shapes, shafts of various diameters and bearings 
situated at various positions. In vibration analysis the complex rotor system is simplified and a 
suitable mathematical model is used. In modeling process we must know which parameters are 
important for the system. Rotating machines are classified according to their characteristics as 
follows: 

1.3.1. Rigid Rotor: 

If the deformation of the rotating shaft is negligible in the operating speed range, it is called a rigid 
rotor. 

1.3.2. Flexible Rotor: 

If the shaft deforms appreciably at some rotational speeds in the operating speed range, it is called a 
flexible rotor. 

The deformation of a rotor becomes highest in the vicinity of the critical speeds. Therefore the range 
of the operating speed relative to the critical speeds determines whether the rotor is rigid or flexible. 

1.3.3. Lumped parameter system: 

In some systems the disk is considered to be rigid and the distributed mass of an elastic shaft is 
concentrated at the disk positions. Such a system is called a lumped parameter system. 

 

1.3.4. Continuous Rotor System: 

If a flexible rotor with distributed mass and stiffness is considered, this model is called a distributed 
parameter system or a continuous rotor system. 

1.4. Modes and Critical Speeds of Rotating Machinery 
Real structures can be viewed as a series of finer and finer lumped mass approximations that 
approach a continuous mass distribution. The continuous structure has an infinite number of natural 
frequencies, each with its own characteristic vibration shape (mode). 
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As an example, consider a simple beam structure supported by pin joints at each end. This structure 
is simple enough that a closed-form solution to the natural frequencies and mode shapes is possible. 
The first three mode shapes are shown in Fig 1. 

 

 

Fig. 1.     First three mode shapes of pinned-pinned beam [SPW05] 

The rotating machinery equivalent to the single spring-mass damper system is a lumped mass on a 
mass less, elastic shaft. This model, historically referred to as a ‘Jeffcott’ or ‘Laval’ model, is a 
single degree of freedom system that is generally used to introduce rotor dynamic characteristics. 
Swanson and Powel [SPW05] have used a slightly more complex multi-degree of freedom model 
corresponding to a physical rotor as shown in Fig 2. 

 

 

 

Fig. 2. Basic Machine Model cross section [SPW05] 

If it is supposed that the machine is not spinning and that there are three versions of this machine 
with soft, intermediate and stiff bearings. Then by performing a model test we can find a set of 
natural frequencies and modes. Fig. 3 shows the first three mode shapes and frequencies for the 
three bearing stiffnesses. 
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Fig. 3. Mode shapes versus bearing stiffness [SPW05] 

Ratio of the bearing stiffness to the shaft stiffness has a significant impact on the mode shapes. For 
the soft and intermediate bearings the shaft does not bend much in the lower two modes. These are 
generally called ‘Rigid Rotor’ modes. 

If we consider the rotating motion of the rotor now, mode shapes will look very much like as in non-
rotating case. But now they involve circular motions instead of planner motions. See Figures (4) and 
(5). 

 

Fig. 4. 1st mode shapes and frequencies in rpm of rotating shaft [SPW05] 

 

 

Fig. 5. 2nd mode shapes and frequencies in rpm of rotating shaft [SPW05] 

As depicted in Fig. 5, the rotation of the shaft traces outline of a bulging cylinder. This mode, 
therefore, is called ‘Cylindrical mode’. 
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As depicted in Fig. 6, the rotation of the shaft traces outline of bulging cones. This mode, therefore, 
is called ‘Conical mode’. 

1.4.1. Forward and Backward whirls: 

The whirling motion of the rotor can be in the same direction as the shaft rotation, ‘Forward Whirl’, 
or in the opposite direction of the shaft rotation ‘Backward Whirl’. Fig. 6 shows rotor cross sections 
over the course of time for both synchronous forward and synchronous backward whirl. Note that 
for forward whirl, a point on the surface of the rotor moves in the same direction as the whirl. So 
that a point at the outside of the rotor remains to the outside of the whirl orbit. Simultaneous forward 
and backward whirling at different points of a Jeffcott rotor supported on identical journal bearings, 
has been examined by Rao, Bhat and Xistris. See [RBX95]. 

 

Fig. 6. Forward and Backward Whirl [SPW05] 

The modal test can be performed to see the effects of changing shaft speeds, from non-spinning to a 
high spin speed and follow the two frequencies associated with the conical mode. Fig. 7 plots the 
forward and backward natural frequencies over a wide speed range. From this figure, we can see 
that the frequencies of the conical modes do change over the speed range. The backward mode drops 
in frequency, while the forward mode increases. The explanation for this surprising behavior is a 
‘gyroscopic effect’ that occurs whenever the mode shape has an angular (conical/rocking) 
component. First consider forward whirl. As shaft speed increases, the gyroscopic effects essentially 
act like an increasingly stiff spring on the central disk for the rocking motion. Increasing stiffness 
acts to increase the natural frequency. For backward whirl, the effect is reversed. Increasing rotor 
spin speed acts to reduce the effective stiffness, thus reducing the natural frequency. The gyroscopic 
terms are generally written as a skew-symmetric matrix added to the damping matrix. 
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Fig. 7. Effect of operating speed on 2nd natural frequencies [SPW05] 

1.4.2. Critical Speeds: 

The American Petroleum Institute (API), in API publication 684 (First Edition, 1996), defines 
critical speeds and resonances as follows: 

A shaft rotational speed that corresponds to the peak of a noncritically damped (amplification factor 
> 2.5) rotor system resonance frequency. The frequency location of the critical speed is defined as 
the frequency of the peak vibration response as defined by a Bodé plot (for unbalanced excitation). 
Whenever the rotor speed passes through a speed where a rotor with the appropriate unbalanced 
distribution excites a corresponding damped natural frequency, and the output of a properly placed 
sensor displays a distinct peak in response versus speed, the machine has passed through a critical 
speed. Critical speeds could also be referred to as “peak response” speeds. As with the structural 
case, one can also consider a speed (i.e., unbalance excitation frequency) that coincides with a 
damped natural frequency (i.e., a resonance), generally termed “damped critical speeds.” 
Numerically, these are distinct from critical speeds as defined by the API specification. For very 
light damping, they are fairly close. For increasing levels of damping, they become noticeably 
different. 
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Fig. 8. Natural frequency versus Critical speeds [SPW05] 

If a medium stiffness centre disk model is used and an unbalance distribution that excited the first 
three modes is added, the resulting vertical displacement response as a function of speed is shown in 
Fig. 8. The damped natural frequency versus speed plot is called ‘Campbell Diagram’ is also shown 
above in Fig. 8. 

1.5. The Method of Multiple Scales 
Another technique is the method of multiple scales in which solution is obtained by introducing 

multiple time scales and a dimensionless parameter, say ε. In the analysis of nonlinear systems, there 
are a lot of analyzed research works using the method of multiple scales for the single d.o.f. and 
multi d.o.f of non-linear vibration system. See [N73], [M78], [HM87], [N93] and [NM95]. 
However, the study, which applied the method of multiple scales to the non-linear vibration analysis 
of rotor system, was not reported until Moon and Kang analyzed the harmonically excited non-linear 
system using this method. See [MK03]. Their method was based on the substructure synthesis 
formulation and a multiple scales procedure, which was applied to the analysis of non-linear 
responses. A rotor bearing system was used. The Fig 10 shows the rotor-bearing casing system. The 
rotor is supported by bearings that are fixed on the casing. The casing and the foundation are 
elastically connected. The rotor has the material non-linearity. The whole system is divided into 
three components. The rotor has non-linear restoring force so that it is regarded as a non-linear 
component, while the casing is considered to be a linear component and the bearing is modeled as a 
linear assembling component. 
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Fig. 9. Rotor-bearing-casing system [MK03] 

An analytical technique was presented based on the method of multiple scales theory and the mode 
superposition principle for the dynamic analysis of non-linear mechanical systems. It was shown 
that by applying the method of multiple scales, the governing equations of the complex nonlinear 
system attained a compact form and could be solved. 

Ji and Zu. [JZ98] applied method of multiple scales for vibration analysis of rotor–shaft systems 
with non-linear bearing pedestal model. This method was adopted for free vibration analysis and 
forced vibration analysis of shaft rotor systems with a non-linear bearing pedestal model. The shaft 
was modeled based on the Timoshenko beam theory. A typical roller bearing model was assumed 
which had cubic non-linear spring and linear damping characteristics. Non-linear natural frequency 
response and steady state response were obtained using the third order perturbation expansion. A 
typical non-linear rotor bearing system was simulated to show the effectiveness of the analysis 
method and to illustrate the non-linear effect on the free and forced vibrations of the system. 

Das et al. [DRP05] investigated large amplitude free vibration of a rotating beam with non-linear 
spring and mass system as shown in Fig. 10. 

 

Fig. 10. Rotating Beam with Spring-Mass System [DRP05] 

The equation of motion of a rotating beam with a non-linear constraint starting from transverse/axial 
coupling through axial strain was formulated. The non-linear constraint appears in the boundary 
condition and its mass was considered during the analysis. A non-linear solution was determined by 
applying methods of multiple time-scales directly to the partial differential equations and the 
boundary conditions. The influence of the location of the non-linear constraint on non-linear 
frequencies was also studied. 
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1.6. On the Study of Dynamic Analysis of Composite Rotors 
In present days composite materials are being incorporated in rotors especially in aerospace 
(helicopter) industry [B94] and automotive applications. Studies on composite shafts started in 
1970’s, with two viable materials, boron/epoxy and carbon/epoxy. The two U.S. patents by Worgan 
and Smith [1978] and Yates and Rezin [1979] indicate that the preliminary hurdles to a composite 
driveshaft design were overcome. Hetherington et al. [HKD90] demonstrated the feasibility of a 
supercritical composite helicopter power transmission shaft. Singh and Gupta [SG95] estimated the 
critical speeds and unbalance response by a layerwise theory. They have shown that a layerwise 
theory gives more realistic stress field in tubular composite shaft. Detailed theoretical dynamic 
analysis and rotordynamic experiments on composite shafts have been carried out by Singh [S92]. In 
the early developments, composite shafts were designed to operate in the sub-critical range. 
Therefore, initial studies were directed towards design requirements and in overcoming the 
problems in practical application. Subsequently, in order to derive greater advantage in terms of 
reduction of weight, the possibility of super-critical operations of composite shafts was explored.  

There are few analytical and experimental studies on rotordynamic aspects of composite shaft 
behavior. Table1. Summarizes the various configurations used for composite shaft rotordynamic 
studies. It may be noticed, from the table that the shaft geometric parameters Length/radius and 
thickness/radius ratios) vary over a wide range, which might explain some of the differing 
experiences of various authors. 

Table. 1. Configurations used for tubular composite shaft rotordynamic analysis [SG96a] 
 

 
 

A boron/ epoxy composite tail rotor driveshaft for a helicopter was described by Zinberg and 
Symmonds [ZS70]. The critical speeds were determined using equivalent modulus beam theory, 
assuming the shaft to be a thin walled circular tube simply supported at the ends. The shaft critical 
speed was determined by extrapolation of the unbalance response curve which was obtained in the 
sub-critical region. 

Rotordynamic experiments on an aluminium shaft as well as on a composite shaft were conducted 
by Zorzi and Giordano [ZG85].They reported excellent matching between theoretical and 
experimental results. The composite shafts consisted of three different layers of graphite/epoxy and 
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glass/epoxy and were filament wound. Experimental testing was carried out on all three shafts, with 
and without lumped mass disks. Some important observations were made during the experimental 
studies. The super-synchronous component corresponding to first critical speed became significant 
when the shaft speed reached 1/2 or 1/3 of the first critical speed. It was shown that, although the 
shafts were not of optimized design, a substantial payoff in terms of critical speed was achievable. 
The shafts were shown to have increased sensitivity to unbalance near the critical speed. This was 
determined from the large values of influence coefficients near the critical speeds and a very small 
value of the final correction masses. 

The critical speeds of a composite shaft including the effects of bending-twisting coupling were 
obtained by Kim and Bert [KB93] .The shaft was modeled as a Bresse-Timoshenko beam. The shaft 
gyroscopic effects were also included. The results compare well with Zinberg’s rotor [ZS70]. 

A series of studies on composite shafts were carried out by Lim and Darlow [LD86] and 
Hetherington et al. [HKD90].They have shown the possibility of reduction of 60% in the total 
system weight of the tail drive rotor. The optimized shafts were tested for rotordynamic 
performance. The shafts were tested under no load condition. In order to balance the shaft up to the 
second critical speed a unified balancing approach was used. An aluminium shaft was tested for 
comparison purposes. A beat motion with constituent frequencies as synchronous speed and shaft 
natural frequency was observed just above the first critical speed. 

EL-Mahdy and Gadelrab [EG00] analyzed the free vibration of a unidirectional fiber reinforcement 
composite rotor and compared it with traditional material rotors. It was observed that the composite 
rotor system may give higher natural frequencies than those made of conventional materials due to 
higher stiffness to mass ratio. Four composite materials were considered, graphite-epoxy, carbon-
epoxy, boron-epoxy and E-glass-epoxy, for the fabrication of the rotor system. Typical design data 
of different composite materials for the 1st three natural frequencies were presented. Experimental 
work has been carried out on a composite rotor made of E-glass/epoxy with fiber volume fraction 

( 0.43=
f

V ) having one steel disk at the mid-span. The structure equation of motion was obtained as, 
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Also, 

f
E , 

f
V , 

f
v , 

f
K are the elastic modulus, volume fraction, the Poisson ratio and plane strain bulk 

modulus for the fiber material, respectively. 

m
E , 

m
V , 

m
v , 

m
K  are the elastic modulus, volume fraction, the Poisson ratio and plane strain bulk 

modulus for the matrix material, respectively. 

m
G is the shear modulus for the matrix. 

Fig. 11 below, shows the experimental frequency response function for rotor. 

 

Fig. 11. Frequency Response Function (Steel) [EG99] 

The natural frequencies of the rotor (shaft and disk having different materials) are given in Table 2 
as a reference. It was concluded that the E-glass/Epoxy gives the lowest values of the natural 
frequencies because E11 for the material was lower than that of the other composite materials. 

 

Table. 2. The natural frequencies of rotor (Hz) with different materials 
 

 

Singh and Gupta [SG96] studied the effect of shear-normal coupling on rotor natural frequencies 
and modal damping. They analysed the results of the Equivalent Modulus Beam Theory (EMBT)  



Chapter 1: Identification of the Problem – State of the Art 

 27

and the Layerwise Beam Theory (LBT)  derived from a shell theory in order to understand their 
limitations and relative advantages. Formulation was outlined based on Ritz method for unbalance 
response and stability analysis of a multimass composite rotor (with tubular shaft) mounted on 
general eight coefficient bearings. Case studies of rotors mounted on rolling element and fluid film 
bearings were presented in order to bring out the salient features of the analysis. The moduli was 
expressed in terms of the tube parameters and the invariants of the material as, 
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1 2 3 4 5
, , , ,U U U U U  are laminate invariants. Invariants are combinations of stress or strain components 

that remain constant under coordinate transformation. They are important for assessing the relative 
performance of composite laminates. If invariants, such as the maximum normal strain of a 
laminate, are not used, the composite design may depend on the choice of the coordinate system. 

Equivalent shear modulus is 
5 3

= −
E c

G U U γ  

Equivalent moduli were determined, and the conventional Timoshenko beam theory was extended 
in two dimensions and the additional rotor effects were included. The non-symmetric cross-coupled 
effects arise from bearing stiffness, bearing damping, gyroscopic effects and hysteretic material 
damping. Material damping was assumed in the form of discrete damping coefficients (viscous Cr 
and hysteretic Hr) at the mass locations. The dissipation function was calculated on the basis of 

effective displacements ( )
e

r
W X  and ( )

e

r
V X which represent the total rotor deflection minus the 

deflection due to the rigid body motion. A composite rotor as per EMBT is shown in Fig. 12. 

 

Fig. 12. A composite rotor as used by Singh and Gupta [SG96] 
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Layerwise Beam Theory can produce more accurate results. This theory can be obtained by 
reduction from a Layerwise shell theory by imposing the condition of zero cross sectional distortion. 
See [SG95]. 

A relationship between circumferential displacement v and radial displacement w was used. The 
resulting displacement in shell theory as used by Singh and Gupta [SG96], is 
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= −
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w w x
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θ

θ
 (1.7)   

Fig. 13 shows the displacement field in Layerwise beam theory. These conditions can be used in 
shell theory expressions and the strain and kinetic energies can be expressed in terms of ui (x) and 
w(x) which becomes the displacement field for LBT. 

 

Fig. 13. Displacement Field in LBT [SG96] 

The displacement field was extended in two perpendicular directions and additional rotor effects 
were incorporated. Rotordynamics were studied for both rolling element bearing as well as fluid 
film bearing. 

Stacking sequence was varied to view the difference in results. See Table.3 

Table. 3.  Flexural Frequencies for different stacking sequences using LBT [SG96a]  

 

Stacking Scheme 

(From inner 

radius) 

1st Flexural 

(Hz) 

2nd Flexural 

(Hz) 

3rd Flexural 

(Hz) 

0,45,45,45 305 1134 2313 

45,0,45,45 310 1152 2349 

45,45,0,45 315 1170 2386 

45,45,45,0 321 1180 2422 

EMBT value 314 1166 2376 
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Fig. 14. Flexural frequency for two layered shaft [SG96a] 

The first four modal frequencies and damping ratios at different speeds of rotation, for the test rotor 
supported on fluid film bearings were given for ply angles 30°,45°and 60°.Cambell plot for 30° ply 
angle is given in Fig.16 as a reference. 

They also carried out the experimental rotordynamics studies on two filament wound carbon/epoxy 
shafts with constant winding angles (±45 and ± 60). See [SG96a] .It was observed that the presence 
of super synchronous components was more pronounced in the shaft having 60 fiber angle 
(compared to 45 fiber angle) and was suppressed when the balance condition of the rotor improved. 
The most likely cause appears to be material non-linearity derived from the matrix.  

 

 

Fig. 15. Campbell diagram for 30° composite rotor on FF bearing [CLR02] 

Chatelet et al. [CLR02] argued that analytical or numerical approaches based on beam theories can 
be limited by the assumptions involved. They showed that a direct finite element discretization can 
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overcome these limitations. They presented a numerical technique based on a three dimensional 
finite element discretization of the assembly for the calculation of natural frequencies and mode 
shapes of composite rotors. A model reduction based on the mode shapes at rest was used to 
calculate the behavior of the rotating structure and the disk-shaft assembly was assumed to be 
cylindrically symmetric. Their results showed the effects of possible couplings between shaft and 
disk deformations. 

1.7. Conclusions 
This chapter presented a state of the art for the dynamic analysis of the rotors. The objective and 
contribution of the thesis was discussed in the light of the bibliographic work. A brief introduction 
of various important aspects of rotordynamics was given. The significance of considering the 
nonlinearities on the dynamic behavior of rotors was discussed with references to some research 
work available in the literature to date. It is concluded that the study of the dynamic behavior of 
rotors has been a subject of practical importance for many years. A lot of work has been carried out 
in predicting the dynamics of metallic as well as composite rotors. But this is still an ongoing 
research especially when nonlinear effects are included to be investigated. In the present PhD thesis 
the main emphasis will be to incorporate and further expand the effect of nonlinearities on the 
dynamic behavior of rotors. 
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Chapter 2: Mechanical Modeling 

This chapter is dedicated to the mathematical modelling for analyzing the dynamic behavior of 
rotors. Various models containing nonlinear differential equations of motion are developed for 
different rotor configurations. These models consist of 2nd and 4th order nonlinear differential 
equations of motion. Technical and theoretical aspects of taking into account various effects like 
higher order large deformations, geometric nonlinearity, shear effects, gyroscopic and rotary inertia 
effects are visualized and discussed. The models are developed using both the Euler-Bernoulli and 
Timoshenko beam theories. 

2.1. Characterization of Rotor Elements - Classical Linear Approach 
This section concerns with the theoretical approach for the characterization of different rotor 
elements which include the disk, the shaft, the bearings and the mass unbalance. The geometry of 
the rotor system considered for this work is shown in Fig. 16. The shaft, considered to be a beam of 
circular cross section of length L and radius R1, is modeled by its kinetic and strain energies. The 
disk of external radius R2 and internal radius R1 positioned at a distance y=L/3, is considered to be 
rigid and hence only requires kinetic energy for its characterization. The mass unbalance denoted by 

mu is located at a distance 
1

d from the geometric center of the shaft. 
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Fig. 16.   Rotor System with shaft and disk 

 

 

The basic characteristics of these elements are presented as below. 
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2.1.1. Kinetic Energy of the Disk 

The disk is characterized by its kinetic energy as it is assumed to be rigid. In Fig. 2.1 the frames of 

reference for a disk mounted on a rotating shaft are shown. 
0
( )R XYZ is an inertial frame and 

( , , )R x y z is fixed to the disk. The reference frame fixed to the disk is related to the inertial frame of 

reference through a set of three angles
x

θ , 
y

θ and
z

θ . In order to find the orientation of the disk, it is 

rotated around the Z axis by an amount
z

θ , then by an amount 
x

θ  around the new axis which is
1

x . 

Finally it is rotated by an amount 
y

θ around the new y  axis. 

 

 

Fig. 17.  Rotating frames of a disk on a rotating flexible shaft 

 

The instantaneous angular velocity vector of the frame xyz is given by, 

 0/ 1
= + +
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 (2.1.1) 

Where, 
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1

x and yare the unit vectors along the respective axis. 
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The kinetic energy of the disk is derived in the reference from R. Therefore the angular velocity 
vector becomes, 
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Let uand wdenote the coordinates of O in
0

R , the coordinate along Y being constant. In addition, 

the mass of the disk is 
D

M  and its tensor of inertia in O as xyz are principal directions of inertia is, 
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The kinetic energy of the disk can be written as, 

 ( ) ( )2 2 2 2 21 1

2 2d d dx x dy y dz z
T m u w I I Iω ω ω= + + + +& &

 (2.1.4) 

If the disk is symmetric i.e.
dx dz

I I= , the angles 
x

θ and 
z

θ are small, and the angular velocity is 

constant i.e. = Ω&
y

θ , the Eq. (2.1.4) can be written as follows, 
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Where, the last term represents the gyroscopic (Coriolis) effect. 

2.1.2. Kinetic Energy of the Shaft 

If the kinetic energy of the disk given by Eq. (2.1.5) is extended for an element of length L, the 
following expression for the kinetic energy of the disk is obtained. 

 ( ) ( )
L L L

2 2 2 2

0 0 0

  +  + 2  
2 2s x z z x

A I
T u w dy dy I dy

ρ ρ θ θ ρ θ θ= + + Ω∫ ∫ ∫& & && &
 (2.1.6) 

Where, the first integral is the general expression for the kinetic energy of the beam in bending, the 
second integral represents the secondary effect of rotatory inertia and the last integral is due to the 
gyroscopic effect. 

2.1.3. Strain Energy of the Shaft 

The shaft is modeled as a beam of circular cross section in bending (Fig.18). The displacements in 
the x, y and z directions of the beam are given below, 
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Fig. 18.  Transverse vibrations (beam in bending) 

The longitudinal strain (deformation) in the y direction can be shown to be, 
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The strain energy can be given as, 
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By using the relation =
yy yy

Eσ ε , the strain energy can be written as: 
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By using Eq. 2.1.8, 
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By expanding the above equation and neglecting the higher order terms, the strain energy of the 
shaft can be written as, 
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The 3rd term in the above equation can be neglected due to the symmetry of the cross-section. Also, 
2 2

, ,= = = =∫ ∫x z x z

A A

I z dA I x dA I I I (due to symmetry) and =∫
S

ds A is the area of the cross 

section. 

Therefore, Eq. (2.1.12) becomes, 
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2.1.4. Kinetic Energy of the Mass Unbalance 

The main cause of vibrations in a rotor is the excitation due to inevitable mass unbalance. Residual 
unbalances occur due to many reasons for example, manufacturing error, thermal deformation and 
material inhomogeneity. 

 

Fig. 19.  Types of Mass Unbalances (a) Static (b) Dynamic 

As shown in the Fig. 19 two types of unbalance exist in a rotor system consisting of a rigid rotor and 
a flexible shaft. One is static unbalance, which is state represented by a geometric eccentricity of the 
center of gravity of a rotor from the centerline of the shaft. This unbalance produces a centrifugal 
force proportional to the square of the rotational speed. The static unbalance can be detected without 
operating the rotor because the unbalance is always directed downwards if the shaft is supported 
horizontally by bearings with little friction. The other is dynamic unbalance , which is the state 
represented by the angular misalignment of principal axis of moment of inertia of the rotor with 
respect to the centerline of the shaft. The magnitude of the dynamic unbalance is determined by the 

angle τ as shown in the Fig. 19 (b) this type of unbalance cannot be detected without rotating the 

shaft. As shown in the Fig. 19 (b) these unbalances are represented by models with one and two 
concentrated masses, respectively. 
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Fig. 20.  Unbalances in a continuous rotor 

For the present work the unbalance is defined by a mass 
u

m which is located at a distance 
1

d from 

the geometric center of the shaft. The kinetic energy of this mass 
u

T  is calculated as follows.  

 

Fig. 21.  Position of the Mass Unbalance on the Rotor 

The mass remains in a plane perpendicular to the y -axis and its coordinate along this axis is a 

constant (Fig. 21). The coordinates of the mass in the frame of reference 
0

R  are, 

 

1

1

sin

constant

cos

+ Ω
=

+ Ω

u d t

OD

w d t
 (2.1.14) 

Therefore, 

 

1

1

cos

0

sin

+ Ω Ω
= =

+ Ω Ω

&

&

u d t
dOD

V
dt

w d t
 (2.1.15) 

The kinetic energy of the mass unbalance can therefore be written as, 

 ( )2 2 2 2

1 1 1
2 cos - 2 sin

2
= + + Ω + Ω Ω Ω Ω& & & &u

u

m
T u w d d u t wd t

 (2.1.16) 

The third term in the above equation is a constant and has no influence on the equations. The mass 
unbalance is much smaller as compared to the mass of the rotor. This leads to the following equation 
for the kinetic energy of the mass unbalance. 

 
( )1

cos - sin= Ω Ω Ω& &
u u

T m d u t w t
 (2.1.17) 
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By adding Eqs. (2.1.5), (2.1.6) and (2.1.17) the total kinetic energy of the rotor system 

become   = + +
R d s u

T T T T  and can be written as, 

 

( ) ( ) ( )

( ) ( )

L
2 2 2 2 2 2

0

L L
2 2

1

0 0

 
2 2 2

+  + 2  cos - sin
2

d dx
R x z dy z x

x z z x u

M I A
T u w I u w dy

I
dy I dy m d u t w t

ρθ θ θ θ

ρ θ θ ρ θ θ

= + + + + Ω + +

+ Ω + Ω Ω Ω

∫

∫ ∫

& & && & & &

& & & & &

 (2.1.18) 

Since the strain energy of the rotor is contributed by only the shaft which is flexible, the total strain 

energy of the rotor system can now be written as 
1

=
R s

U U which gives, 

 

2 2

R

0

U
2

L

x zEI
dy

y y

θ θ ∂ ∂   
 = +   ∂ ∂    

∫  (2.1.19) 

2.2. Characterization of Shaft Elements – Nonlinear Approach 
In section 2.1.3, the nonlinear terms in Eq. (2.1.8) were neglected while passing from Eq. (2.1.11) to 
Eq. (2.1.12). But if nonlinear terms are also retained then the following equation for the strain 
energy is obtained. 

2 2
2 2 4 4 2 2

1
2 20

1 1 1
2

4 4 2

2 1 1
2

2 2

x xz z
L x z x z

s

A x z
x z

z x xz
y y y yE

U dAdy

z x
y y

θ θθ θ
θ θ θ θ

θ θ
θ θ

 ∂ ∂∂ ∂      
 + − + + +      ∂ ∂ ∂ ∂       =  ∂ ∂   − + +   ∂ ∂    

∫ ∫  (2.2.1) 

The 3rd and 7th terms in the above equation disappear due to the symmetry of the cross-section. 
Therefore, this equation is now reduced to give the following equation. 

2 2
2 2 4 4 2 2

1

0

1 1 1

2 4 4 2

 ∂ ∂   
 = + + + +   ∂ ∂    

∫ ∫
L

x z
s x z x z

A
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U z x dAdy

y y

θ θ
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 (2.2.2) 

Also, 
2 2

, ,= = = =∫ ∫x z x z

A A

I z dA I x dA I I I (due to symmetry) and =∫
S

ds A is the area of the cross 

section. 

Therefore, Eq. (2.2.2) becomes, 

 

22
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s1
0 0

1 1 1
U

2 2 4 4 2

L L

zx
x z x z

EI EA
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y y

θθθθθθθθ
θ θ θ θθ θ θ θθ θ θ θθ θ θ θ

    ∂∂∂∂∂∂∂∂                  = + + + += + + + += + + + += + + + +                 ∂ ∂∂ ∂∂ ∂∂ ∂                      
∫ ∫∫ ∫∫ ∫∫ ∫  (2.2.3) 

2.3. Application of the Rayleigh-Ritz Method 
Rayleigh’s method approximates a continuous system by an equivalent single degree of freedom 
system (SDOF) via assuming a single deformation shape. A continuous system is reduced to a 
discrete multi degree of freedom system (MDOF). The number of DOF is equal to the number of 
Ritz modes chosen. This method is applied in the present work as follows. The displacements in the 
x and z directions can be expressed as, 
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( , ) ( ) ( )

( , ) ( ) ( )

=
=

u y t f y U t

w y t f y W t  (2.3.1)    

The angular displacements can be approximated as, 
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x

z

y f y W t h y W t

y f y U t h y U t

θ
θ  (2.3.3) 

Where the prime denotes the derivative with respect to y. Using the above expressions, the kinetic 

energy of the rotor system 
R

T  in Eq. (2.1.18) can now be written in a compact form as below, 

 ( ) ( )2 2

1 2 1 1

1
   ( ) ( ) cos sin

2R u
T b U W b UW t m d f l U t W t= + − Ω + Ω Ω − Ω& & & & &

 (2.3.4) 

Where, 
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 (2.3.5) 
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 (2.3.6)               

The strain energy of the rotor in Eq. (2.1.19) can be written in a compact form as, 

 ( )2 21 ( ) ( )
2

= +
R

k
U U t W t

 (2.3.7) 

Where, 

 

L
2

1

0

= ( )k EI h y dy∫  (2.3.8) 

2.4. Derivation of Equations of Motion for Different Rotor Configurations 
Various rotor configurations have been studied and investigated. Different effects have been 
considered. In the following sections, some mathematical models for different rotor configurations 
and effects are presented. 

From now on, in order to avoid the complications of the mathematical expressions, the discretized 
displacements ( )U t and ( )W t will be written as U and W  respectively. 

2.4.1. Linear Model 

Using the Hamilton principle as ( )
2

1

t

t

 0− =∫ R R
T U dtδ , we can write 

 ( )
2 2 2

1 1 1

t t t

t t t

0− = − =∫ ∫ ∫R R R R
T U dt T dt U dtδ δ δ

 (2.4.1) 
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The two terms in the above equation are treated one by one. The first term gives 
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Different terms in the above equation can be treated as follows, 
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Similarly, the second term in the Eq. (2.4.1) gives, 
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The two terms in the above equation can be written as, 
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 (2.4.7) 

Finally, the equations of motion for the linear undamped system can be written by collecting the 

terms of the type   Udt and Wdtδ δ in Eqs. (2.4.3) , (2.4.4) , (2.4.5) , (2.4.6) and (2.4.7). 

Collection all the terms of the typeUdtδ , the following equations is obtained, 
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By simplifying and re-arranging, the differential equation describing the discretized displacement in 
the x-direction is obtained as, 
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1 2 1 1 1
- ( )sinΩ + = Ω Ω&& &

u
bU b W k U m d f l t

 (2.4.9) 

 In the same manner collecting all the terms of the typeUdtδ , the following equation is obtained, 
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By simplifying and re-arranging, the following equation for the discretized displacement in the z-
direction is obtained as, 

 
2

1 2 1 1 1
( )cos+ Ω + = Ω Ω&& &

u
b W b U k W m d f l t

 (2.4.11) 

2.4.2. Nonlinear Model considering the Effect of Higher Order large 
Deformations and a Static Axial Force (N0) 

The following expression for the strain energy of the shaft taking into account higher order large 
deformations is derived in Appendix A. 
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∫ ∫  (2.4.12) 

If there exists a constant force N0, there is another contribution to the strain energy above [LF98], 
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 (2.4.13) 

Total strain energy of the rotor 
R

U now becomes, 
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 (2.4.14) 
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 (2.4.15) 

After application of Rayleigh Ritz method the strain energy of the rotor given by Eq. (2.4.15) can be 
written in a compact form as follows, 
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 (2.4.16) 

Where, 
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Hamilton principle is then applied on the kinetic and strain energies of the rotor given by              

Eqs. (2.3.4) and (2.4.17) in the form ( )
2

1

t

t

 0− =∫ R R
T U dtδ  

Therefore, 
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The two terms in the above equation are treated separately, the first term gives, 
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Different terms in the above equations can be given as, 
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The 2nd term in Eq. (2.4.18) can be expanded as follows, 
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The two terms in the above equation give, 
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And 
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By collecting the terms of type Udtδ  in Eqs. (2.4.20), (2.4.21), (2.4.22), (2.4.24) and (2.4.25), 

following equation is obtained. 
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By simplifying and re-arranging the above equation, 
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Similarly, by collecting the terms of the type Wdtδ  in Eqs. (2.4.20), (2.4.21), (2.4.22), (2.4.24) and 

(2.4.25), the following equation is obtained, 
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By simplifying and re-arranging the above equation, 
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Equations (2.4.55) and (2.4.57) can be further written as, 
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 (2.4.31) 

The above two equations are 2nd order nonlinear differential equations of motion, where, 

 1 2 1 2 1 1 1 2 1 1 1
/ , / , / , /

u
b b k b k b m m bα α β= = = =

 (2.4.32) 

And c is a damping term. In the above equation, different constants are the functions of the 

properties of the material and the geometry of the rotor. 

2.4.3. Nonlinear Model considering the Effect of a Dynamic Axial Force 

Two types of continuous rotor models are shown in Fig. 22. If the supports are such that they allow 
the shaft to shift in the axial direction as in Fig. 22 (a), the restoring force of the shaft has linear 
spring characteristics. On the other hand if the supports are fixed as shown in 2.5Fig. 22 (b), the 
shaft elongates as it deflects and acquires nonlinear spring characteristics of a hard spring type. This 
type of nonlinearity is called geometric nonlinearity. This nonlinearity becomes more effective when 
the shaft deflection becomes large. 

 

Fig. 22.  Continuous rotor models (a) No axial force (b) Dynamic Axial force 

An axial force NA will act dynamically on the shaft. This force leads to another contribution to the 
strain energy of the shaft given by, 
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L
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= +∫ A
s x z

N
U dyθ θ

 (2.4.33) 

Where 
A

N  can be derived as follows. In the Fig. 23 , a sliced element of the shaft is shown. The 

length of the element is dy and it is assumed that it deflects during the whirling motion of the rotor. 
The geometric center M shifts from the position (0, 0, y) to (x, y, z). 

 

Fig. 23.  Dynamic Axial Force (a) Sliced Element (b) Deflection Curve 

The deflections along the coordinate axes are represented by ,u vandwrespectively. The point P 

shifts from position (a, b, y) to (xp, yp, zp). This deflection is represented by ,
p p

u v and 

p
w respectively. 

From Fig. 23 we have, 
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y y  (2.4.34) 

Also point Q
0

( , , )a y dy b+ , separated from point P by dy, shifts by ,
Q Q

u v and 
Q

w  which are given 

approximately by, 
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Therefore after deformation, the length dr of the sliced element at point P can be written as, 
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Where the condition
∂
∂

P
v

y
 << 
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=

∂ ∂
P P

u w

y y
 and the approximation 1 1 / 2+ ∆ ≅ + ∆  (for ∆ <<1 ) are 

used. 

Using Eqs. (2.4.34) and (2.4.36) the strain ( , )∈ a b in the y-direction is expressed as, 
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Using Hooke’s law the stress at point P is =∈ Eσ . Integrating it over the entire cross section with 

area A, the expression for the axial dynamic force can be written as, 
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Integrating the above expression over the direction y considering that the axial force 
A

N is constant 

in this direction, the following expression is obtained. 
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Applying the condition that the deflection is zero at0=y , namely (0) 0=v , the constant 0=C . The 

condition that ( ) 0=v L , the expression for the axial force is, 
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Which can be further written as, 
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Substituting the above equation in Eq. (2.4.33), 

( ) ( )
L L

2 2 2 2

2

0 0

  
4

= + +∫ ∫s x z x z

EA
U dy dy

L
θ θ θ θ                          (2.4.42) 

Therefore, the strain energy of the rotor given by Eq. (2.4.33) now becomes 
1 2

= +
R s s

U U U  and is 

given by,  
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After the application of Rayleigh-Ritz method as in section 2.3 the strain energy of the rotor given 
by Eq. (2.4.43) can be written in the compact form as follows, 
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Where, 
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The kinetic energy of the rotor in the compact form is the same as given by Eq. (2.3.4). 

Hamilton’s principle is then applied on the kinetic and strain energies of the rotor given by             

Eqs. (2.3.4) and (2.4.44), in the form ( )
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The two terms in the above equation are treated separately, the first term gives, 
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Different terms in the above equations can be given as, 
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The 2nd term in Eq. (2.4.46) can be expanded as follows, 
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The two terms in the above equation give, 
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By collecting the terms of type Udtδ in Eqs. (2.4.48) , (2.4.49) , (2.4.50) , (2.4.52) and (2.4.53) , 
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By simplifying and re-arranging the above equation, 
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 (2.4.55) 

Similarly, by collecting the terms of the type Wdtδ in Eqs. (2.4.48) , (2.4.49) , (2.4.50) , (2.4.52) and 

(2.4.53) , the following equation is obtained, 
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By simplifying and re-arranging the above equation, 
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Equations (2.4.55) and (2.4.57) can be further written as, 
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 (2.4.59) 

The above two equations are 2nd order nonlinear differential equations of motion for the analysis of 
the rotor system considering the effect of a dynamic axial force.  

where, 

 1 2 1 2 1 1 2 3 1 1 1
/ , / , / , /= = = =

u
b b k b k b m m bα α β

 (2.4.60) 

And c is a damping term 
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2.5. Derivation of Equations of Motion Taking into Account the Shear 
Effects. 

Classical beam theories neglect shear contribution to deformations. Timoshenko Beam theory takes 
into account this contribution. Since Timoshenko’s work on bending of beams and Reissner and 
Mindlin’s works in shear deformation of plates, shear deformability has been a well succeeded 
research area. Timoshenko proposed a shear correction factor, k. This factor is a compatibility 
criterion between real shear stress and distortion of beams. 

Timoshenko introduces this factor in beam theory, in order to account for warping and distortion of 
transverse (or as referred in classical literature: cross) section. Cowper [C66] studied the influence 
of shear coefficient, obtained by means of three dimensional elasticity equations. Levinson and 
Cook, [LC83I], [LC83II], proposed new formulations to shear coefficient, considering that plane 
sections, normal to beam longitudinal axis, in the non deformed configuration, becomes curved and 
deformed, after bending. 

If the shear modulus of the beam material approaches infinity - and thus the beam becomes rigid in 
shear - and if rotational inertia effects are neglected, Timoshenko beam theory converges towards 
ordinary beam theory. 

The Timoshenko beam theory includes the effects of shear deformation and rotary inertia on the 
vibrations of slender beams. The theory contains a shear coefficient which has been the subject of 

much previous research. 

In the present work, the problem of including the shear effects is addressed by two ways. The first 
one is to develop the energy equations of different rotor components and then the Hamilton’s 
Principle is applied directly without first discretizing the displacements and rotations. The equations 
of motion thus obtained can be used to apply the direct method of multiple scales explained in 
Chapter 3. 

In the 2nd method the energy equations are first discretized using Rayleigh Ritz method and then 
Lagrange equations are applied. The equations of motion thus obtained are treated using the 
discretization method of multiple scales presented in Chapter 3. 
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Fig. 24.  Description of shear angle and shear force 

 
2.5.1. Nonlinear Model with Shear Effects and Higher Order Deformations 
(Direct Method) 

In order to take into account the effect of shear deformations, the shaft of the rotor is modeled as a 

Timoshenko beam of circular cross section. The deformation energy of the rotor 
Rs

U  is derived as 

follows. 

Referring to Fig. 25 , C is the geometric centre of the beam , B(x , z) is an arbitrary point on the 
cross section of the beam , E is the Young’s modulus of the material, ε  and σ  are strains and 

stresses , and u and w are displacements of C w.r.t  x and z axis. The axis along the rotor centre line 
is y. 
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Fig. 25.  Coordinates of the geometric centre C and an arbitrary point B on the circular beam. 

 

Displacements: 
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 (2.5.1) 

Deformations: 
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 (2.5.2) 

The shear deformations along y-z and y-x planes are given as, 
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∂
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 (2.5.3) 

The strain energy can be given as: 

 ( )1

0

1

2
= + +∫ ∫

L

yy yy yz yz yx yx

A

U dAdyσ ε τ γ τ γ
 (2.5.4) 

     Using the relations  , ,= = =∫ ∫yy yy yz yz yx yx
E ds kAG ds kAGσ ε τ γ τ γ  

     Where, G is the shear modulus and k is the shear correction factor. 

Thus strain energy can be written as: 
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The 3rd and 7th term in the above equation can be erased due to symmetry of the cross-section. 

Also 
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Thus the above equation becomes, 

 

2 2
4 4 2 2

1

0 0

2 2

0

1 1 1

2 2 4 4 2

2

L L

x z
x z x z

L

x z

EI EA
U dy dy

y y

kAG w u
dy

y y

θ θ
θ θ θ θ

θ θ

 ∂ ∂      = + + + +     ∂ ∂      

    ∂ ∂+ − + + +    ∂ ∂     

∫ ∫

∫
 (2.5.9) 

If there exists a constant force N0, there is another contribution to the strain energy above [LF98]. 
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The total strain energy of the rotor considering shear effects and higher order deformations, thus 
becomes,  
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The kinetic energy of the rotor is given as, 
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d
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s
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T are given by Eqs. (2.1.5), (2.1.6) and (2.1.17) respectively. 
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The 4 different terms in the above equation are treated one by one. The 1st term gives, 
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Various terms in Eq. (2.5.14) can be expanded as follows, 
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The 2nd term in Eq. (2.5.13) gives, 
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Various terms in the above equation can be expanded as follows, 
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Similarly the 3rd term in Eq. (2.5.13) gives, 
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The 2 terms in the above equation can be treated as below, 
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Similarly the 4th term in Eq. (2.5.13) gives, 
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The various terms in the above equation can be written as below, 
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The equations of motion can be written by collecting the terms of the type  ,   ,  ,  
x z

u wδ δ δθ δθ in the 

above system of equations. 

The terms of the type uδ  give, 

 
2 2 2 2

1 1 1 1

2

0 0

sin  0
 ∂ ∂ − − + Ω Ω − + =  ∂ ∂  

∫ ∫ ∫ ∫ ∫ ∫&& &&

t t t tL L

d u z

t t t t

u
M u udt Au udydt m d t udt kAG udydt

y y
δ ρ δ δ θ δ

2

1

2

0 0

- - sin  0

t L L

d u z

t

u
M u Audy m d t kAG dy udt

y y
ρ θ δ

  ∂ ∂ 
 + Ω Ω − +  =  ∂ ∂    

∫ ∫ ∫&& &&
 



Chapter 2: Mechanical Modeling 

 54

2
2

2

0 0

  sin
L L

d z u

u
M u A udy kAG dy m d t

y y
ρ θρ θρ θρ θ

    ∂ ∂∂ ∂∂ ∂∂ ∂+ + + = Ω Ω+ + + = Ω Ω+ + + = Ω Ω+ + + = Ω Ω    
    ∂∂∂∂ ∂∂∂∂    

∫ ∫∫ ∫∫ ∫∫ ∫&& &&&& &&&& &&&& &&
 (2.5.22) 

The terms of the type wδ  give, 
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The terms of the type 
x

δθ  give, 
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The terms of the type 
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 (2.5.25) 

Eqs. (2.5.22),(2.5.23), (2.5.24) and (2.5.25) are the equations of motion for the rotor system, 
considering shear effects and higher order deformations. 
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2.5.2. Nonlinear Model with Shear Effects and Higher Order Deformations 
(Discretized Method) 

The strain energy given by Eq. (2.4.12) is referred.When shear deformation is not taken into account 

the angular displacement 
x

θ  and 
z

θ are equal to 
∂
∂
w

y
  and 

∂
∂
u

y
 respectively. See Fig. 24 (b), but 

when shear deformation is also considered (Timoshenko beam) the angular displacements change 

due to the contribution of the shear angle
x

β  Fig. 24(c). Shear angle and shear forces are explained 

in Y-Z plane in Fig. 24. 

The angular displacements can be expressed in the form of linear displacement using the following 
relations, 

 
,

∂ ∂= − = − +
∂ ∂x x z z

w u

y y
θ β θ β

 (2.5.26) 

Application of the Newton’s 2nd law to Fig. 24 gives, 
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 (2.5.27) 

This is solved for 
x

V and 
z

V  to give, 
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∂

∫

∫
 (2.5.28) 

The relation between shear force and shear angle is 

 
,= =

x x z z
V kAG V kAGβ β

 (2.5.29) 

Where, k  is shear correction factor. 

Therefore the angular displacements, using Eqs. (2.5.26) and  (2.5.29) can be given as, 

 

2

2

2

2

x

z

w
dy

w t
y kG

u
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ρ
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∂
∂ ∂= −
∂

∂
∂ ∂= − +
∂

∫

∫
 (2.5.30) 

The displacements ( , )u y t  and ( , )w y t are discretized as follows, 
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( , ) ( )sin

( , ) ( )sin

n y
u y t U t

L
n y

w y t W t
L

π

π

=

=
 (2.5.31) 

Where U and W are generalized independent coordinates and n represents the number of the mode 
studied. In the present work n = 1. 

Equation (2.5.30) is substituted in Eqs. (2.1.18) and (2.4.12) and Eq. (2.5.31) is used in the resulting 
equations.   

Lagrange equations are applied in the following form, 
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& &
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∂∂ ∂ 
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& &
sR R

UT Td

dt t t t  (2.5.33) 

Finally, the equations of motion obtained are given as below, 
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 (2.5.34) 
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 (2.5.35) 

Eqs. (2.5.34) and (2.5.35) are the 4th order nonlinear differential equations of motion obtained by 
considering the shear effects and higher order deformations. 

Where, 
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Where 
1 5
..α α and 

1 4
..β β  are functions of geometric and material properties of the rotor, given as 
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 (2.5.37) 

The linear free dynamic behavior of the rotor system can be investigated by taking into account only 
the linear portion of these equations given below,  
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 21 31 41 51
0− Ω + − Ω + =&&&& &&& && &U W U W Uα α α α

 (2.5.38) 

 21 31 41 51
0+ Ω + + Ω + =&&&& &&& && &W U W U Wα α α α

 (2.5.39) 

The above two equations can be compared with the equations of motion of a continuous rotor 
derived by Eshleman and Eubanks [EE69] also reproduced in the book of Yamamoto and Ishida 
[YI01]. 

2.5.3. Nonlinear Model with Shear Effects and a Dynamic Axial Force 

In the following a nonlinear mathematical model is developed taking into account the combined 
effects of shear deformations and a dynamic axial force. 

The deformation energy of the rotor is given by, 
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 (2.5.40) 

Where 
A

N  is an axial force given by   ( )2 2

0
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Therefore, Eq. (2.5.40) now becomes, 
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The above equation can be further written as, 
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 (2.5.41) 

The kinetic energy of the rotor is given as, 

 
= + +

R d s u
T T T T

 (2.5.42) 

Where,
d

T , 
s

T  and 
u

T are given by Eqs. (2.1.5), (2.1.6) and (2.1.17) respectively. 

The Hamilton’s principle is applied as, ( )
2

1

-    0=∫
t

R Rs

t

T U dtδ . Therefore it can be written as, 
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The 4 different terms in the above equation are treated one by one. The 1st term gives, 
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Various terms in Eq. (2.5.44) can be calculated as follows, 
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   The 2nd term in Eq. (2.5.43) gives, 
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Various terms in the above equation can be calculated as follows, 
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Similarly the 3rd term in Eq. (2.5.43) gives, 
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The 2 terms in the above equation can be treated as below, 
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Similarly the 4th term in Eq. (2.5.43) gives, 
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The various terms in the above equation can be written as below, 
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Collecting the terms of the type uδ in Eqs. (2.5.45), (2.5.47), (2.5.49) and (2.5.51), 
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Collecting the terms of the type wδ in Eqs. (2.5.45), (2.5.47), (2.5.49) and (2.5.51), 
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Collecting the terms of the type 
x

δθ in Eqs. (2.5.45), (2.5.47), (2.5.49) and (2.5.51), 
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Collecting the terms of the type 
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δθ in Eqs. (2.5.45), (2.5.47), (2.5.49) and (2.5.51), 
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 (2.5.55) 

Eqs. (2.5.52), (2.5.53), (2.5.54) and (2.5.55) are the equations of motion of the rotor system 
considering the combined effects of shear deformations and a dynamic axial force. 

 

2.6. A Case Study for the Dynamic Analysis of Composite Rotors 
Composite materials have become very attractive for rotating systems due to their high strength to 
weight ratio. Behavior of the rotating system can be predetermined in terms of critical speeds by 
changing arrangements of different composite layers. Some studies on the dynamic behaviour of 
composite rotors have been performed by different authors, most of them being recent. In the 
following paragraphs we briefly discuss some aspects of dynamic analysis of a composite rotor that 
we have studied. 

The shaft shown consists of different plies of composite material. Each ply has a orthotropic 
mechanical behavior. 
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Fig. 26.  Shaft of a composite rotor 

 

Fig. 27.  Plan of Pli 

 
2.6.1. Finite Element Analysis of the composite shaft 

The generalized Hook’s Law gives the following relation between stress strain fields. 
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2 21 1 2
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1/ 0

0 1/

   −
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       =     
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ε ν
ε ν
γ

γ τ
γ τ

 (2.6.1) 

 

Where  
1

E  and 
2

E  are Young’s moduli in the orthotropic axis. 
23

G  , 
13

G  and 
12

G  are transversal 

shear moduli and
12

ν , 
21

ν  are Poisson’s ratios.Each ply has a plane stress state
33

0=σ . 

First we develop the elastic and damping properties of the orthotropic ply. Each ply ‘p’ is at an angle 

p
φ  between the shaft and fibre axis. By using a transfer matrix [T] the equations of the ply can be 

written in global frame (x, y, and z). 
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 (2.6.2) 

Where, cos( ) , sin( )= =
p p

c sφ φ  

The compliance matrix including the coupling terms can be expressed as follows. 
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 (2.6.3) 

 

2.6.2. Energy Equations for the composite shaft 

If the stacking sequence of the shaft is symmetric, it can be modelled using classical beam theory 
with a constant circular cross section. We use SHBT (Simplified Homogenized Beam Theory) as 
used by Sino et al. [SCB08]. 

The continuous displacement field across the rotor cross section can be written as, 

 
{ }

( , , ) ( )

( , , ) ( , , ) ( ) ( )

( , , ) ( )

 =
= = − +


=

x

y x z

z

u x y z u y

u x y z u x y z z y x y

u x y z w y

θ θ
 (2.6.4) 

The elastic energy of the rotor and the wirtual work can be written as, 

 ( )
0

1

2
= + +∫ ∫

L
p p p

yy yy yz yz yx yx

S

U dSdyσ ε τ γ τ γ
 (2.6.5) 

 ( )* * *

0

1

2
= + +∫ ∫

L
p p p

yy yy yz yz yx yx

S

W dSdyδ σ δε τ γ τ γ
 (2.6.6) 

Where, 

S is the cross section of the shaft. 

p

yy
σ , 

p

yz
τ are normal cross-section stresses and transverse shear stresses while 

* p

yy
σ and 

* p

yz
τ are 

associated normal and shear stresses linked to damping. 

The elastic energy can be written as a function of the displacement field components. 
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The virtual work can be written as a function of the stress field components, 
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By evaluating the integrals over the cross section the above two eqns can be written as, 
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Where, 

x
EI = 

z
EI  = EI   are homogenized flexural inertias. They are obtained as, 
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 Where, 
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=p p p
R R

I
 (2.6.13)                                                                                           

Where, 

p
I  is the cross section inertia 

p
R   and 

1−p
R   are external and internal radius of layer p. 

= =
yx yz

GS GS GS are shear rigidities such that 

 12
1=

= ∑
N

p p

p

GS k G S
 (2.6.14) 

   The advantage of this theory is that it can be applied to classic beam elements. 

In order to validate our results we have studied the shaft initially studied by Zinberg and Symmonds 
[ZS70] then by Gubran and Gupta [GG05] and recently by Sino et al. [SCB08].All calculations are 
performed in Matlab. 

2.6.3. Properties of Composite Rotor Shaft 
 

Length of the shaft L = 2.47 m 

Mean Radius Rm = 0.0635 m 

Wall Thickness T = 1.321x10-3 m 

Material Density ρ = 1967 Kg/m3 

E11 = 210 GPa  ,  E22 = 24.1 GPa ,  G12 = 6.9 GPa ,  ν = 0.36 

Stacking Sequence = [90, 45, -45, (0)6, 90]   10 layers of equal thickness 

Homogenized Inertia and Shear Rigidity : 

Using Eqs. (2.6.11) and (2.6.14), 

EI = 4.5846 x 104  

GS = 1.1569 x 106 

2.6.4. Finite Elements Formulation 

We have divided the length of the shaft into 4 no. of elements of equal length.Each element is 
considered to be a beam element with 2 nodes.There are 4 degrees of freedom at each node,two 
displacements and two rotations. 
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Fig. 28. Finite Element of the Beam 

The finite element configuration thus becomes: 

Total no. of elements = 4 

Total no. of nodes = 5 

DOFs per node = 4 

DOF per element = 08 

Total DOF of the system = 20 

Order of element matrices = 8 x 8 

Order of Global system matrices = 20 x 20   

2.6.5. Boundary conditions: 

Displacement along direction X and Z is blocked such that: 

At node 1      u1 = 0, w1 = 0 

At node 5      u2 = 0, w2 = 0 

Order of Global system matrices after applying boundary conditions= 16 x 16 

 

2.6.6. Calculation of Element Matrices 

Shear Correction Factor for the composite shaft of circular cross-section =
s

k = 0.4983      

Quantity for Shear Effect= 2

12

s

EI
a

k GSL
=   

( )

( )

4 4

0 0

4 4

0 0

4

+ −
=

= + −

R T R
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S R T R
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2.6.6.1. Element Mass Matrix [S07] 
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2.6.6.2. Element Stiffness Matrix [S07] 
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2.6.6.3. Element Gyroscopic Matrix [S07] 
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 (2.6.17) 

Where, 

2 2

2 2

G2 = -72

G4 = -L(6-30a)

G9 = -L (8+10a+20a )

G31 = L (2+10a-10a )

 

The equation of motion for free vibration of un-damped gyroscopic system is given as, 

 
[M]{X } + [G ( )] { X} + [K] {X} = 0Ω&& &

    (2.6.18) 

Where, 

 [M] is a symmetric mass matrix. 

 [G (Ω)] is antisymmetric gyroscopic matrix.It depends on the speed of rotation Ω. 

 [K] is the elastic stiffness matrix, normally symmetric. 

 

 

 

2.6.7. Modal Analysis (Finding natural frequencies and mode shapes) 

The modes are characterized by eigenvalues and eigenvectors of the system. The eigenvalues are 
related to natural frequencies and eigenvectors to the mode shapes of the system. 

First we have studied the system with no disk and without gyroscopic effect. The governing 
differential equation of motion is described by the 2nd order matrix equation: 

 
[M]{X } + [K] {X} = 0&&

 (2.6.19) 

The form of the solution assumed is, 

 
i t

i
{X(t)} = { }e

ωφ
 (2.6.20) 
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Where,  

{ φ i} is the mode shape and 
i

ω  rad/sec is the corresponding natural frequency of vibration. 

Subtituting Eq. (2.6.20) int Eq. (2.6.19), 

 
2 i t

(-  [M] + [K]) { }e  = 0
i

ωω φ
 (2.6.21) 

The above equation has a nontrivial solution if (-ω2 [M] + [K]) is singular i.e. its determinant is 

zero. In other words there exist n number of ω which satisfy, 

 
2

i
(-  [M] + [K])  = (  [M] + [K])  = 0

i
ω λ

 (2.6.22) 

Where 
2=

i i
λ ω are the eigen values of the system.  

Frequencies in Hz are given by 
2

i
i

F
ω
π

=     

The calculations were performed using both Matlab and RotorINSA1. The results obtained were 
compared with the published work of different authors. The results obtained in the present work are 
in close agreement with the results obtained by Sino and Baranger [SCB08]. 

2.6.8. Matlab Results 
 
Without considering shear effect i.e. a = 0 
 

F1 = 96 Hz ,        F3 = 322.2 Hz ,     1st Critical Speed = 5760 rpm 

 
Considering shear effect  
 

F1 = 90.5 Hz ,     F2 = 383 Hz ,        1st Critical Speed = 5430 rpm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
 
1 ROTORINSA® 3.4.2- Laboratoire de Mécanique des Contacts et des Structures (LaMCoS) INSA Lyon 
Batiment Jean d'Alembert 18-20, Rue des sciences 69621 VILLEURBANNE CEDEX France. 
http://rotorinsa.insa-lyon.fr 
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2.6.9. RotorINSA Results 

 

 
Fig. 29.  1st Mode (F1=90.5 Hz) 

 
 

Fig. 30.  3rd  Mode (F1= 322.3 Hz) 

 
 

Fig. 31.  Campbell Diagram 
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Table. 4. A comparison of critical speeds obtained by different authors 

 
 

Investigator Critical Speed (rpm) Method 

Zimberg and Symmonds 
(Theoretical) 

[ZS70] 
5780 

Equivalent modulus beam 
theory 

Zimberg and Symmonds 
(Experimental) 

[ZS70] 
5500 

 
Forced vibration response for 
the shaft supported on rolling 
element bearing conditions 

Singh and Gupta 
[SG96a] 5620 

Layerwise beam theory 
including shear effect 

Chen and Pung 
[CP98] 5714 

Timoshenko beam theory and 
FEM 

Gubran and Gupta 
[GG05] 

5555 
5552 

 
Layerwise beam theory 
without including poisson 
effect Modified equivalent 
modulus beam theory without 
including poisons effect 

Sino and Baranger 
[SCB08] 

5767 
5435 

Simplified homogenized 
beam theory without 
including shear effect 
Simplified homogenized 
beam theory including shear 
effect 

The results obtained in the 
present work.  

5760 
5430 

Simplified homogenized 
beam theory without 
including shear effect 
Simplified homogenized 
beam theory including shear 
effect 
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2.6.10. Free Vibration Analysis of a Composite Rotor with one Disk considering 
gyroscopic effect 

Now we consider a rotor with a composite shaft as above and a steel disk. We have also taken into 
account the gyroscopic effect. 

2.6.10.1. Properties of the steel disk 

Internal Radius R1 = Rm+T/2 m 

Outer Radius R2 = 0.15 m 

Thickness h = 0.05 m 

Density 
d

ρ  = 7800 Kg/m3 

Young’s Modulus E = 200 GPa 

Poisson’s coefficient ν = 0.30 

Location of the disk on the shaft l1 = L/4 

Where, 

Rm is the mean radius of the composite shaft. 

2.6.10.2. Element Matrices for the Disk 
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dx
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MD=
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 (2.6.23) 

 

 dy
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0 0 0 0
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 −
 
  

I

I

 (2.6.24) 

Where, 

MD is the element mass matrix for the disk 

GD is the element gyroscopic matrix for the disk 

d
M = Mass of the disk = ( )2 2

2 1
= R R hπ ρ−  

dx
I  = Mass moment of Inertia in principal x direction = 

( )2 2 2

1 2
3 3

12

+ +
d

M R R h
 

dy
I = Mass moment of Inertia in principal y direction = 

( )2 2

1 2

2

+
d

M R R
 



Chapter 2: Mechanical Modeling 

 73

2.6.10.3. Modal Analysis 

The mass and gyroscopic elements of the disk are added in node 2 of the global mass and 
gyroscopic matrices of the composite shaft. The matrix equation of motion for free vibration of un-
damped gyroscopic system is given as Eq. (2.6.18) which is a 2nd order differential equation.Since 
we are also considering gyroscopic effect , therefore we have to treat the system of equations with 
three matrices.Matlab does not provide a solver for an eigenvalues problem with more than 2 
matrices. We will therefore re-write Eq. (2.6.18) in first order form. 

Let Y be defined as, 

                                     
X

Y=
X

 
 
 

&

                                                                             (2.6.25) 

Therefore, 

                                     

X
Y

X

  =  
  

&&
&

&                                                                             (2.6.26) 

Equation (2.6.18) can be written as, 

                                 
[M]{X } = - [G ( )] { X} - [K] {X}Ω&& &

                                     (2.6.27) 

                                
 [K] {X}= [K] {X}& &

                                                                 (2.6.28) 

The above two equations can be re-written as a single set of equations as: 
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                                         (2.6.29) 

Using Y  and Y& , the above equations it can be written as, 

 

                                                 [ ]A &Y  = [ ]B Y                                                                  (2.6.30) 

Where,  

                                                [ ]A  = 
[ ]
[ ]0





M
   

[ ]
[ ]
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K
                                                            (2.6.31) 

 

                                                [ ]B  = 
[ ]

[ ]
−



G

K
   

[ ]
[ ]0

−



K
                                                        (2.6.32) 

 

Now we write the solution of the Eq. (2.6.18) as, 

                                
Re= t

X
λ

                                                                                 (2.6.33) 

Therefore, 
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Where, 

R

 R

 
=  

 
Y

λ
                                           (2.6.35) 

Equation (2.6.30) becomes, 

[ ] [ ]=A Y B Yλ
                                                                (2.6.36) 

The above equation is a standard 2-matrix eigenvalue problem that matlab can solve. 

2.6.10.4. Matlab Procedure 
 

The global matrices [ ]M  , [ ]K  and [ ]G  are formed for the composite shaft. The dimensions of the 

matrices being 20 x 20. 

Mass and Gyroscopic matrices for the disk are added at node 2 of matrices [ ]M and [ ]G .  

Boundary conditions are applied and the order of the new matrices is 16 x 16. 

These matrices are now used to form the matrices  [ ]A  and [ ]B  given above. 

Eigenvalue problem given by Eq. (2.6.36)  is solved as 
1
,  V D  = ( , )eig B A . 

Where, 

[V 1] = [
(1) (2) (2 )

, ,.....
N

Y Y Y ] 

The diagonal values of [D] are eigenvalues for the original problem. 

The eigenvalues are of the form ± jωi . 

Where, 
i

ω  is the frequency of free vibration. The last N positions of the jth column of [V1] are the jth 

eigenvector 
( )j

Y . 

2.6.10.5. Results 
 
Without considering shear effect i.e. a = 0 

F1 = 16.8 Hz   ,   F2 = 184 Hz   ,     1st Critical Speed = 1008 rpm 

Considering shear effect  

F1 = 15.3 Hz    ,  F2 = 153.7 Hz    ,    1st Critical Speed = 918 rpm 
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2.6.10.6. RotorINSA Results: 

 

 
Fig. 32.  1st Mode (F1=15.3 Hz) 

 

 
 

Fig. 33.  3rd  Mode (F1=153.7 Hz) 
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(a) 

 

(b) 

Fig. 34.  Campbell Diagram for the Analysis of Gyroscopic System                                      
(a) General View (b) Zoomed in View 
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2.7. Conclusions 
This chapter presented the detailed mathematical modelling for analyzing the dynamic behavior of 
rotors. Various models containing nonlinear differential equations of motion were developed for 
different rotor configurations. These models consisted of 2nd and 4th order nonlinear differential 
equations of motion. Different models and hence different equations of motions were developed 
taking into account the various significant effects like higher order large deformations, geometric 
nonlinearity, shear effects, gyroscopic and rotary inertia effects are visualized and discussed. The 
models are developed using both the Euler Bernoulli and Timoshenko beam theories. Rayleigh-Ritz 
method and Hamilton’s principle were used in order to obtain the equations of motion. When shear 
deformations are taken into account the developed equations of motion consist of 4th order 
derivatives with respect to time as in Eqs. (2.5.34) and (2.5.35). A case study for the dynamic 
analysis of the composite rotors was conducted and the results obtained were compared to the works 
already available in the literature. The results obtained in this study were in close agreement with 
those previously reported in the literature. 
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Chapter 3: Nonlinear Analysis for Higher Order Large 

Deformations in Bending and a Dynamic Axial Force 

In this chapter, a detailed analysis of the equations of motion developed in section 2.4.2 and 2.4.3 of 
chapter 2 is performed. The mathematical models developed in these two sections are combined to 
form the equations of motion to be analyzed in this chapter. 

3.1. Equations of Motion 
The new deformation energy of the rotor to study the effect of higher order large deformations and a 
dynamic axial force is formed by combining Eqs. (2.4.16) and (2.4.44). This gives the following 
equation for the deformation energy of the rotor. 

 

( ) ( ) ( )
0

2 2 4 4 2 2 4 4 2 231 2

2 20

2 2
2 8 4

( )
2

R

N

kk k
U U W U W U W U W U W
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k U W
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 (3.1.1) 

 No static force will be applied therefore, substituting 
0

0=N  in the above equation, 

 ( ) ( ) ( )2 2 4 4 2 2 4 4 2 231 2 2 2
2 8 4R

kk k
U U W U W U W U W U W= + + + + + + +

 (3.1.2) 

The kinetic energy of the rotor is given as in Eq. (2.3.4). 

Hamilton’s principle is applied as ( )
2 2 2
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Where the first term is obtained from Eqs. (2.4.20), (2.4.21) and (2.4.22) i.e. 
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 The 2nd term is expanded as 
2 2

1 1
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Using Eq. (3.1.2), the two terms in the above equation can be written as, 
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The equations of motion can be written by collecting the terms of type   Udt and Wdtδ δ in Eqs. 

(3.1.3), (3.1.4) and (3.1.5). 

The terms of the type Udtδ  give, 
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Similarly, the terms of the type Wdtδ give, 
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k k W U W

δ
 (3.1.7) 

Eqs. (3.1.6) and (3.1.7) can be written in a simplified form as, 

 ( )3 2 2

1 2 1 2 3 1 1

1
- ( )sin

2
 Ω + + + + = Ω Ω 
 

&& &
u

bU b W k U k k U UW m d f l t
 (3.1.8) 

 ( )3 2 2

1 2 1 2 3 1 1

1
( )cos

2
 + Ω + + + + = Ω Ω 
 

&& &
u

b W b U k W k k W U W m d f l t
 (3.1.9) 

Finally, the two equations of motion are, 

 (((( ))))3 2 2

1 2 1 2 1 1 1

1
( )sin

2
U W U U UW cU m d f l tα α β βα α β βα α β βα α β β    − Ω + + + + + = Ω Ω− Ω + + + + + = Ω Ω− Ω + + + + + = Ω Ω− Ω + + + + + = Ω Ω    

    
&& & &&& & &&& & &&& & &

 (3.1.10) 

 (((( ))))3 2 2

1 2 1 2 1 1 1

1
( )cos

2
W U W W WU cW m d f l tα α β βα α β βα α β βα α β β    + Ω + + + + + = Ω Ω+ Ω + + + + + = Ω Ω+ Ω + + + + + = Ω Ω+ Ω + + + + + = Ω Ω    

    
&& & &&& & &&& & &&& & &

 (3.1.11) 

Where, 

 1 2 1 2 1 1 1 2 1 2 3 1 1 1
/ , / , / , / , /= = = = =

u
b b k b k b k b m m bα α β β

 (3.1.12) 

3.2. Linear Analysis ( Classical Approach) 
The rotor was studied as a free undamped linear system to determine the natural frequencies of 
vibration and the Campbell diagram given in Fig. 35 (a) was plotted to determine the critical speeds. 
The two critical speeds ω1 and ω2 were found to be 2520 rpm (42 Hz) and 3089 rpm (51.5 Hz). The 
response due to mass unbalance is given in Fig. 35 (b) which shows that there is a peak in the 
amplitude corresponding to the 2nd critical speed. 
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Fig. 35.   (a) Campbell Diagram, (b) Mass Unbalance Response 

3.3. Nonlinear Analysis (General Introduction) 
The theoretical analysis of the nonlinear forced system is performed using MMS which has been 
proven very effective in the analysis of such systems [SMB10, HK09, MMPD08 and YKII07]. The 
method can be applied by two different approaches. The first one is called direct method in which 
the partial differential equations of motion as developed in section 2.4.1 are attacked directly along 
with the boundary conditions. See for example the reference [SZ03] where the authors have used 
this approach for the nonlinear dynamic analysis of a rotor shaft system with viscoelastically 
supported bearings. The other approach is called discretized method. In this method the equations of 
motion are first discretized using, for example, Rayleigh Ritz Method as in section 2.4.2 of chapter 
2. The general method of application of these two approaches is given as below. 

3.3.1. Direct Method 

In this method the partial differential equations and boundary conditions are attacked directly. The 
method is briefly recalled in the following example. Consider the following partial differential 
equation. 

 

2 2

2 2 2
w w w

tx t
µ∂ ∂ ∂= +

∂∂ ∂  (3.3.1) 

And the associated boundary conditions are, 

 
2

2 3

2 1 0 2 3

0 0

cos 1

w at x

w w
w w w F t at x

tt
α α α α

= =

∂ ∂+ + + + = − Ω =
∂∂

 (3.3.2) 

Where, 

 
2

0 3 2 3
3 , 3= + =k b bα α α α

 (3.3.3) 

We treat this for the case of primary resonance by using the method of multiple scales. 
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In the case of primary resonance the excitation frequency Ω  is near one of the linear natural 
frequencies of the system. To determine an approximation to the solution of Eqs. (3.3.1) through 

(3.3.3), a small dimensionless measure ε of the amplitude of w  is introduced as a bookkeeping 

device. Using the method of multiple scales an approximation solution is sought in the following 
form, 

 
2 3

1 0 1 2 2 0 1 2 3 0 1 2
( , ; ) ( , , , ) ( , , , ) ( , , , )= + +w x t w x T T T w x T T T w x T T Tε ε ε ε

 (3.3.4) 

Where 
0

=T t  is a fast time scale characterizing changes occurring at the frequencies Ω andω . Also 

1
=T tε and 

2

2
=T tε  are slow time scales characterizing the modulation of the amplitude and phase 

due to damping, nonlinearity and possible resonances and the 
n

ω are O(1) as 0→ε . The damping 

µ and excitation amplitude F are ordered such a way that they balance the nonlinearity. Thus 

following scaling is used. 

 
3

,= =F Fµ εµ ε
 (3.3.5) 

The first and second time derivatives can be expressed as, 

 
2

0 1 2
...

∂ = + + +
∂

D D D
t

ε ε
 (3.3.6) 

 

2
2 2 2

2 0 0 1 1 0 2
2 ( 2 ) ...

∂ = + + + +
∂

D D D D D D
t

ε ε
 (3.3.7) 

Where, 
∂=

∂n
n

D
T

. Substituting Eqs. (3.3.4) through (3.3.7) into Eqs. (3.3.1) through (3.3.3) and 

equating coefficients of like powers of ε , following two systems are obtained, 

Orderε : 

 

2
21

2 0 1

∂
=

∂

w
D w

x  (3.3.8) 

 1
0 0= =w at x

 (3.3.9) 

 
2 1
0 1 1 1 1

0 1
∂

+ + = =
∂
w

D w w at x
x

α α
 (3.3.10) 

Order
2ε : 

 

2
22

2 0 2 0 1 1
2

∂
= +

∂

w
D w D D w

x  (3.3.11) 

 2
0 0= =w at x

 (3.3.12) 

 
2 22
0 2 1 0 2 0 1 1 2 1

2 1
∂

+ + = − − =
∂
w

D w w D D w w at x
x

α α α
 (3.3.13) 

Order
3ε : 
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2
2 23

2 0 3 0 1 2 0 2 1 1 0 1
2 (2 ) 2

∂
= + + + +

∂

w
D w D D w D D D w D w

x
µ

 (3.3.14) 

 3
0 0= =w at x

 (3.3.15) 

 

2 23
0 3 1 0 3 0 1 2 0 2 1 1 2 1 2

3

3 1 0

2 (2 ) 2

cos 1

∂
+ + = − − + −

∂
− − Ω =

w
D w w D D w D D D w w w

x

w F T at x

α α α

α
 (3.3.16) 

The general solution of Eqs. (3.3.8) through (3.3.10) can be expressed as, 

 
0

1 0 1 2 1 2
1

sin
( , , , ) ( , )

sin

∞

=

 = +
  ∑ m

i T m
m

m m

x
w x T T T A T T e cc

ω ω
ω  (3.3.17) 

Where the natural frequencies 
m

ω are solutions of  

 
2

1 0
( ) tan 0+ − =

m m m
α ω α ω ω

 (3.3.18) 

The complex valued functions
m

A  are arbitrary at this moment and cc denotes the complex 

conjugate of the preceding terms. The solution given by Eq. (3.3.17) is a linear combination of all 

the modes, considering the case in which Ω is near natural frequency 
n

ω of the nth mode when this 

mode is not involved in an internal resonance with any other mode. Hence, the solution of (3.3.8) to 

(3.3.10) consist of only the mode corresponding to 
n

ω , given as 

 
0

1 1 2

sin
( , )

sin
= +

i Tx
w A T T e cc

ωω
ω  (3.3.19) 

Substituting Eq. (3.3.19) into Eqs. (3.3.11) through (3.3.13) gives, 

 
0

2
22

2 0 2 1

sin
2

sin

∂
= + +

∂

i Tw x
D w i D A e cc

x

ωωω
ω  (3.3.20) 

 2
0 0= =at xω

 (3.3.21) 

 
0 022 22

0 2 1 0 2 1 2
2 1

∂  + + = − − + + =
  ∂

i T i Tw
D w w i D Ae A e AA cc at x

x

ω ω
α α ω α

 (3.3.22) 

The solvability conditions [N93] demand that 

 1
0=D A

 (3.3.23) 

Substituting Eq. (3.3.23) into (3.3.20) through (3.3.22) and solving for 
2

w  gives 

 
022

2 1 2

sin2

sin2
= + +

i Tx
w c AAx c A e cc

ωω
ω  (3.3.24) 

Where, 
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2
1

1 0

2
22

0 1
4 2 cot 2

=
+

= −
+ +

c

c

α
α α

α
α ω ωα ω

 (3.3.25) 

Because A is a function of 
2

T , the nearness of Ω  to ω  by introducing the detuning parameter 

defined by
2Ω = +ω ε σ . Then substituting Eqs. (3.3.19), (3.3.23) and (3.3.24) into Eqs. (3.3.14) to 

(3.3.16) yields, 

 
0

3
23

2 0 3

sin
2 ( )

sin

∂
′= + + +

∂

i Tw x
D w i A A e cc

x

ωωω µ
ω  (3.3.26) 

 3
0 0= =w at x

 (3.3.27) 

 

0 0

0 2

2 23
0 3 1 0 3 2 1 2 3

( )

2 (2 ) 3 2

1
1

2

+

∂
  ′+ + = − + + − ∂

− + + =

i T i T

i T T

w
D w w c c A Ae i A e

x

Fe NST cc at x

ω ω

ω σ

α α α α ω

 (3.3.28) 

Where NSTstands for Non Significant Terms that do not produce secular terms and the prime 

indicates the derivative with respect to 
2

T . Because the homogeneous parts of Eqs. (3.3.26) to 

(3.3.28) are the same as (3.3.8) to (3.3.10) and because the latter has a non-trivial solution, the non 
homogeneous equations (3.3.26) to (3.3.28) have a solution only if certain solvability conditions are 
satisfied. To determine the solvability conditions the solution is first written in the form, 

 
0

3 2 3 0 2
( , ) ( , , )= + +

i T
w x T e cc W x T T

ω
ϕ

 (3.3.29) 

Where 
3

W is governed by Eqs. (3.3.26) to (3.3.28) with the terms proportional to 
0

exp( )i Tω being 

deleted. Therefore, 
3

W exists, is unique and free of secular terms. Substituting Eq. (3.3.29) into Eqs. 

(3.3.26), (3.3.27) and (3.3.28) , and equating coefficients of 
0

exp( )i Tω of both sides of each equation 

gives, 

 

2
2

2

sin
2 ( )

sin
′+ = +d x

i A A
dx

ϕ ωω ϕ ω µ
ω  (3.3.30) 

 
0 0= =at xϕ

 (3.3.31) 

 

 
2 2

2
1

1 1
2 2 1

2
 ′+ = − − − =  

i Td
Fe i A BA A at x

dx

σϕ αϕ ω α
α  (3.3.32) 

Where, 

 

2

0

1

3
1 2

2

3
2

2

−
=

= + +B c c

α ω
α

α
α
α

 (3.3.33) 
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Therefore, determining the solvability condition of Eqs. (3.3.8) to (3.3.10) has been transformed into 
determining the solvability condition of Eqs. (3.3.30) to(3.3.32). To determine this solvability 

condition the Eq. (3.3.30) is multiplied by 
sin

sin

xω
ω

, the solution of the adjoint homogeneous 

problem, the result is integrated by parts from 0=x to 1=x , and the boundary conditions given by 

Eqs. (3.3.31) and (3.3.32) are applied to give, 

 
22

2
1

1
2 ( ) 2 2

2

Γ  ′ ′+ = − + +  

i T
i A A i A BA A Fe

σ
ω µ ω α

α  (3.3.34) 

Where, 

 

11 2 2

2

0

sin 4 sin

2 sin2sin

x
dx

ω ω ω
ω ωω

−
 

Γ =   =
−  

∫  (3.3.35) 

Substituting the polar form, 2
( )1

2

−
=

i T
A ae

σ γ
into (3.3.34) and separating the real and imaginary parts, 

the following equations are obtained, 

 
sin

2
′ = − − f

a aµ γ
ω  (3.3.36) 

 
3

cos
2

′ = − −
e

f
a a aγ σ α γ

ω  (3.3.37) 

Where,a  and γ are real functions of 
2

T . 

Also, 

 
1

1
( )

=
+ Γ

α µ
µ

α  (3.3.38) 

 
2 2

2
1 1 0 0 1

3 2 1

4 ( ) 8 4 ( ) ( 4 2 cot2 )

 Γ
 = = − +

+ Γ + − + 
e

Bα α δαα
ω α ω ω α α α ω ωα ω  (3.3.39) 

 

2

22 3 2 3
1 1

4 sin
( , , ) ( , , ) ( , , )

( ) (2 sin2 ) 4 sin

Γ= =
+ Γ − +

f F F
ω ωδ α α α α α

α α ω ω ω ω  (3.3.40) 

Substituting Eqs. (3.3.19) and (3.3.24) into Eq. (3.3.4) , recalling that 
2Ω = +ω ε σ  and using       

Eq. (3.3.25) and polar form, the following approximation of the solution is obtained. 

 2 2

22
1 0 0 1

sin
cos( )

sin

1 sin2 cos(2 2 )

2 ( ) ( 4 )sin2 2 cos2

= Ω −

 Ω −
 − +

+ − + 

x
w a t

x x t
a

ωε γ
ω

ω γε α
α α α ω ω ωα ω

 (3.3.41) 
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3.3.2. Discretized Method 

A method of obtaining the approximate solutions of continuous systems is to discretize the problem. 
In the case of the example given in the preceding section, an approximate solution is assumed in the 
form, 

 
1

( , ) ( ) ( )
=

= ∑
N

n n
n

w x t W t xφ
 (3.3.42) 

Then in order to obtain the coupled differential equations governing ( )
n

W t , Galerkin or Rayleigh 

Ritz method is used. The equations thus obtained are called the discretized equations of motion. 
Then a perturbation or numerical method can be used to obtain the solutions of these discretized 

equations. Normally, the functions( )
n

xφ are chosen to be the mode shapes of the undamped linear 

problem. If N=1, the result is called a single mode approximation. 

In the present work we have chosen to apply discretized method because the application of the direct 
method involves complicated mathematical expressions which can lead to some errors in the final 
results. The application of the discretized method is simple relative to the direct method. We have 
used this method also due to the reason that we have tools and experience to efficiently apply this 
method for the analysis. The detailed application of this method is given in the next section. 

3.4. Application of Discretized Method for Nonlinear Rotordynamics 
In this section the equations of motion developed in section 3.1 are treated. In order to apply MMS, 
displacements U and W are expanded as below, 

 0 1 0 0 1 1 0 1 0 1
( , ) ( , ) ( , )= + = +U T T u T T u T T u uε ε

 (3.4.1) 

 0 1 0 0 1 1 0 1 0 1
( , ) ( , ) ( , )= + = +W T T w T T w T T w wε ε

 (3.4.2) 

Where = n

n
T tε  are slow time scales, T1 being slower than T0, and ε is a small dimensionless 

parameter so that ε << 1. T0 is a fast time scale characterizing motions occurring at the spin rates 

Ω and the natural frequencies 
n

ω of the rotor system. Furthermore, T1 is a slow-time scale 

characterizing the modulation of the amplitude and phase due to nonlinearity, damping and 
resonance. The nonlinear, damping and forcing terms in Eqs. (3.1.10) and (3.1.11) are scaled so that 
they appear in the same order of ε. Therefore the following scaling is used 

 1 1 2 2 1 1 2 2 1 1
, , , , ,= = = = = =m m c cα α α α β εβ β εβ ε ε

 (3.4.3) 

The assumptions in Eq. (3.4.3)  takes into account the interaction of damping terms with the 
nonlinear forces at the same level of approximation, which is a necessary condition for a nontrivial 
solution of the governing equations of motion. Thus, the effect of the nonlinearity of the system can 
be balanced with the effect of the system damping at the same level of approximation. 

Eqs. (3.1.10) and (3.1.11) can now be written as 
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( )3 2 2

1 2 1 2 1 1 1

1
- ( )sin

2
 Ω + + + + + = Ω Ω 
 

&& & &U W U U UW cU m d f l tα α ε β β ε ε
 (3.4.4) 

 
( )3 2 2

1 2 1 2 1 1 1

1
( )cos

2
 + Ω + + + + + = Ω Ω 
 

&& & &W U W W WU cW m d f l tα α ε β β ε ε
 (3.4.5) 

Using the chain rule for the partial derivatives with respect to both time scales T0 and T1, the 

different time derivatives in the above equation can now be written as: 

 0 1 0 1
0 1

( ) ( , ) ( , )
∂ ∂= +

∂ ∂
&U t U T T U T T

T T
ε

 (3.4.6) 

 0 1 0 1
0 1

( ) ( , ) ( , )
∂ ∂= +

∂ ∂
&W t W T T W T T

T T
ε

 (3.4.7) 

 

2 2

2 0 1 0 1
0 10

( ) ( , ) 2 ( , )
∂ ∂= +

∂ ∂∂
&&U t U T T U T T

T TT
ε

 (3.4.8) 

 

2 2

2 0 1 0 1
0 10

( ) ( , ) 2 ( , )
∂ ∂= +

∂ ∂∂
&&W t W T T W T T

T TT
ε

 (3.4.9) 

By substituting Eqs. (3.4.6) to (3.4.9) in Eqs. (3.4.4) and (3.4.5), using Eqs. (3.4.1) and (3.4.2) and 
then equating the coefficients of the like powers of ε on both sides of the resulting equations, we 
obtain following two systems of equations 

System of order 0 equations (0ε ) : 
 

 

2

2 0 2 0 1 0
00

0
∂ ∂+ − Ω =

∂∂
u u w

TT
α α

 (3.4.10) 

 

2

2 0 2 0 1 0
00

0
∂ ∂+ − Ω =

∂∂
w w u

TT
α α

 (3.4.11) 

System of order 1 equations (1ε ) : 

 

2 2

2 1 2 1 1 1 1 0 0
0 0 0 10

3 2
3 2 21 0 1 0 0

2 0 2 0 0 0 1 1 1
0

2

( )sin
2 2

u u w w u
T T T TT

u u w
u u w c u m d f l t

T

α α α

β β
β β

∂ ∂ ∂ ∂+ − Ω = Ω −
∂ ∂ ∂ ∂∂

∂− − − − − + Ω Ω
∂

 (3.4.12) 

 

2 2

2 1 2 1 1 1 1 0 0
0 0 0 10

3 2
3 2 21 0 1 0 0

2 0 2 0 0 0 1 1 1
0

2

( )cos
2 2

w w u u w
T T T TT

w w u
w w u c w m d f l t

T

α α α

β β
β β

∂ ∂ ∂ ∂+ + Ω = −Ω −
∂ ∂ ∂ ∂∂

∂− − − − − + Ω Ω
∂

 (3.4.13) 

The solution of Eqs. (3.4.10) and (3.4.11) is given as 
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 0 1 1 1 0 2 1 2 0
( )exp( ) ( )exp( ) [ ]= + +u A T i T A T i T ccω ω

                 (3.4.14) 

 0 1 1 1 0 2 1 2 0
( )exp( ) ( )exp( ) [ ]= − +w iA T i T iA T i T ccω ω

 (3.4.15) 

Where, 
1

ω , 
2

ω  are the natural frequencies of the system and [cc] denotes the complex conjugate. 

3.4.1. Possible resonances and solvability conditions 

Substitution of Eqs. (3.4.14) and (3.4.15) into Eqs. (3.4.12) and (3.4.13) gives us the following two 
equations 

 

2

1 1 1
2 2 1 1 1 1 1 1 1

0 1 10

2 2

1 1 1 2 1 1 1 1 2 2 2 1 2 2 1 0

2 22 2
2 1 2 2 1 2 2 2 2 2

1 1

2

1 1 1 2 2 1 1 2 2 0 1 1 1

( 2

2 4 4 8 )exp( )

(2 2 4

1
4 8 )exp( ) ( )exp

2

∂ ∂ ∂∂+ − Ω = − + Ω −
∂ ∂ ∂∂

− − − −

∂ ∂
− + Ω + + +

∂ ∂

+ + − Ω

u A A
u w i i ic A

T T TT

A A A A A A A A A A i T

A A
i i icA A A A A

T T

A A A A A A i T i m d f l

α α ω α ω

β β β β ω

ω α ω β β

β β ω
0

2 2

1 1 2 2 1 2 1 2 0

2 2

1 1 2 2 1 2 1 2 0

( )

(2 4 )exp( ( 2 ) )

(2 4 )exp( (2 ) ) [ ]

Ω

− + +

− + + +

i T

A A A A i T

A A A A i T cc

β β ω ω

β β ω ω

 (3.4.16) 

 

 

2

1 1 1
2 2 1 1 1 1 1 1 1

0 1 10

2 2

1 1 1 2 1 1 1 1 2 2 2 1 2 2 1 0

2 22 2
2 1 2 2 1 2 2 2 2 2

1 1

2

2 1 1 2 1 1 1 2 2 0 1 1 1

( 2

2 4 4 8 )exp( )

(2 2 4

1
8 4 )exp( ) ( )ex

2

∂ ∂ ∂∂+ + Ω = − − Ω +
∂ ∂ ∂∂

− − − −

∂ ∂
− + Ω + − −

∂ ∂

− − + Ω

w A A
w u c A

T T TT

i A A i A A i A A A i A A A i T

A A
c A i A A i A A

T T

i A A A i A A A i T m d f l

α α ω α ω

β β β β ω

ω α ω β β

β β ω
0

2 2

1 1 2 2 1 2 1 2 0

2 2

1 1 2 2 1 2 1 2 0

p( )

(2 4 )exp( ( 2 ) )

(2 4 )exp( (2 ) ) [ ]

Ω

+ + +

− + + +

i T

i A A i A A i T

i A A i A A i T cc

β β ω ω

β β ω ω

 (3.4.17) 

We assume a particular solution in the form: 

 1 1 1 1 0 1 1 2 0
( )exp( ) ( )exp( )= +u P T i T Q T i Tω ω

 (3.4.18) 

 1 2 1 1 0 2 1 2 0
( )exp( ) ( )exp( )= +w P T i T Q T i Tω ω

 (3.4.19) 

After substituting the particular solution given above in Eqs. (3.4.16) and (3.4.17), it can be 
observed from the resulting equations that there are two possible primary resonance conditions, 

1
ωΩ ≈  and 

2
ωΩ ≈ . 
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3.4.2. Case of Ω ≈ ω2  

For this case we have used 
2 1

Ω = +ω εσ , where, 
1

σ  is a detuning parameter for controlling the 

nearness of Ω to ω2. 

Also, the solution of Eqs. (3.4.16) and (3.4.17) exist only if certain solvability conditions are 

satisfied. The first step in determining these solvability conditions is to substitute 
2 1

Ω = +ω εσ and 

the particular solution, given in Eqs. (3.4.16) and (3.4.17), in these equations. We then equate the 

coefficients of 
1 0

exp( )i Tω  and 
2 0

exp( )i Tω on both sides of the resulting equations. The coefficients 

of 
1 0

exp( )i Tω  for the Left Hand Side (L.H.S) of the resulting equations give, 

 

2 2

11 1 1 2 1 1 1 2

2 2

12 2 1 2 2 1 1 1

= − + −

= − + +

R P P P I

R P P P I

ω α ω α

ω α ω α  (3.4.20) 

The coefficients of 
2 0

exp( )i Tω  for the L.H.S. of the resulting equations give, 

 

2

11 1 2 2 1 1 2 1 2

2

12 2 2 2 2 1 2 1 1

= − + −

= − + +

S Q Q Q I

S Q Q Q I

ω α ω ω α

ω α ω ω α  (3.4.21) 

The coefficients of 
1 0

exp( )i Tω  for the Right Hand Side (R.H.S) of the resulting equations give, 

 

( )
1 1

2 2 1
21 1 1 2 2 2 1 1 1 1 1 1 1 1

1

2

2 1 2 2 1 1 1 1 1 1

4 4 2 2

1
8 m ( )

2

T I

A
R A A A A A A A I I

T

A A A cI A I d f l e
σ

β β β ω α ω

β ω ω

∂
= − − − + − +

∂

− − −
 (3.4.22) 

 

( )
1 1

2 2 1
22 1 1 2 2 2 1 1 1 1 1 1 1 1

1

2

2 1 2 2 1 1 1 1 1 1

4 4 2 2

1
8 m ( )

2

T I

A
R I A A A I A A A A

T

A A A c A d f l e
σ

β β β ω α ω

β ω ω

∂
= − − − + −

∂

− + +
 (3.4.23) 

The coefficients of 
2 0

exp( )i Tω  for the R.H.S. of the resulting equations give, 

 

( )2 2 2
21 1 1 2 1 2 2 2 1 2 2 2 1 1

1

2 1 2 1 2 2

4 4 2 2

8

A
S A A A A A A A I I

T

A A A cI A

β β β ω α ω

β ω

∂
= − − − + − −

∂

− −
 (3.4.24) 

 

( )2 2 2
22 1 1 2 1 2 2 2 1 2 2 2 1 1

1

2 1 2 1 2 2

4 4 2 2

8

A
S I A A A A A I A A

T

I A A A c A

β β β ω α ω

β ω

∂
= − + + − −

∂

+ −
 (3.4.25) 

From Eqs. (3.4.20) through (3.4.25), the solvability conditions [NM95] are determined using the 
following relation, 

 ( ) ( ) ( ) ( )11 1 22 12 1 21
0× − × =coefficientof R for P R coefficientof R for P R

 (3.4.26) 

 ( ) ( ) ( ) ( )11 1 22 12 1 21
0× − × =coefficientof S forQ S coefficientof S forQ S

 (3.4.27) 
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Finally, two solvability conditions in a simplified form are given below, 

 
21

2 1 1 3 1 2 2 5 1
1

∂
= − − −

∂
A

c A A c A A A c A
T  (3.4.28) 

 
22

2 2 2 3 1 1 2 4 1 1 5 2
1

exp( )
∂

= − − − −
∂
A

d A A d A A A d i T d A
T

σ
 (3.4.29) 

Where 
2 3 5 3 4 5
, , , , ,c c c d d d  are constants, given in Appendix C. 

Substituting the solutions of A1 and A2 
in the polar form i.e., (1/ 2)( exp( )where 1..2= =

n n n
A a i nθ , in 

Eqs. (3.4.28) and (3.4.29), and separating the real and imaginary parts we obtain the following 
system of equations. 

 

3 21
2 1 3 1 2 5 1

1

1
1

1

3 22
2 2 3 1 2 4 2 1 1 5 2

1

2 1 2 4 2 1 1
1

1 1 1 1
0

2 8 8 2

1
0

2

1 1 1 1
cos( ) 0

2 8 8 2

1 1
sin( ) 0

2 2

∂
+ + + =

∂

∂
=

∂

∂
+ + + − + + =

∂

∂Γ− + − − + =
∂

a
c a c a a c a

T

a
T

a
d a d a a d T d a

T

a a d T
T

θ

θ σ

σ θ σ

 (3.4.30) 

The above system of 4 equations can be transformed to an autonomous system of 5 equations using 

2 1 1
Γ = − + Tθ σ . These equations are called modulation equations and are given below.  

 

 
3 21

2 1 3 1 2 5 1
1

1 1 1 1
0

2 8 8 2

∂
+ + + =

∂
a

c a c a a c a
T  (3.4.31) 

 
1

1
1

1
0

2

∂
=

∂
a

T

θ
 (3.4.32) 

 
3 22

2 2 3 1 2 4 5 2
1

1 1 1 1
cos( ) 0

2 8 8 2

∂
+ + + Γ + =

∂
a

d a d a a d d a
T  (3.4.33) 

 2 1 2 4
1

1 1
sin( ) 0

2 2

∂Γ− + − Γ =
∂

a a d
T

σ
 (3.4.34) 

 2 1 1
Γ = − + Tθ σ

 (3.4.35) 

Eqs.(3.4.31) and (3.4.32) show that 
1

0=a  is a solution. Equilibrium is also achieved in 

1 1 1
/ 0 , / 0∂ ∂ = ∂Γ ∂ =a T T . Eliminating the transformed phase shift Γ  from the modulation 

equations, the autonomous system above now reduces to two equations that can be resolved to give 
the following 6th degree polynomial equation for plotting the resonant curves. 
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2 6 4 2 2 2 2

2 2 5 5 1 4
8 16( ) 64 0+ + + − =

E E E
d a d d a d a dσ

 (3.4.36) 

Where, 
2 5
...d d are coefficients of the detuning parameter and are defined in the Appendix C. 

3.4.3. Case of Ω ≈ ω1 

For this resonant case 
1 1

Ω = +ω εσ is substituted in Eqs. (3.4.16) and (3.4.17). The solvability 

conditions are determined following the same procedure as in the preceding section. But this time 

the coefficients of 
1 0

exp( )i Tω  for the L.H.S. of the resulting equations give, 

 

2

11 1 1 2 1 1 2 1 2

2

12 2 1 2 2 1 2 1 1

R P P P I

R P P P I

ω α ω ω α

ω α ω ω α

= − + −

= − + +  (3.4.37) 

The coefficients of 
2 0

exp( )i Tω  for the L.H.S. of the resulting equations give, 

 

2 2

11 1 2 2 1 2 1 2

2 2

12 2 2 2 2 2 1 1

S Q Q Q I

S Q Q Q I

ω α ω α

ω α ω α

= − + −

= − + +  (3.4.38) 

The coefficients of 
1 0

exp( )i Tω  for the R.H.S. of the resulting equations give, 

 

( )2 2 1
21 1 1 2 2 2 1 1 1 1 1 1 1 2 2 1 2 2

1

1 1

4 4 2 2 8
∂

= − − − + − + − −
∂
A

R A A A A A A A I I A A A
T

cI A

β β β ω α ω β

ω
 (3.4.39) 

 

 

( )2 2 1
22 1 1 2 2 2 1 1 1 1 1 1 1 1 2 1 2 2

1

1 1

4 4 2 2 8
∂

= − − − + − − +
∂
A

R I A A A I A A A A A A A
T

c A

β β β ω α ω β

ω
 (3.4.40) 

The coefficients of 
2 0

exp( )i Tω  for the R.H.S. of the resulting equations give, 
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2 2 2
21 1 1 2 1 2 2 2 1 2 2 2 1 2 2 1 2 1

1
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1
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ω ω
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( )
1 1

2 2 2
22 1 1 2 1 2 2 2 1 2 2 2 1 2 2 1 2 1

1

2

2 2 1 2 1 1

4 4 2 2 8

1
m ( )

2

∂
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∂

−
T I

A
S I A A A I A A I A A I A A A

T

c A I d f l e
σ

β β β ω α ω β

ω ω
 (3.4.42) 

Applying Eqs. (3.4.26) and (3.4.27) , give the following two solvability conditions for this case, 

 
21

2 1 1 3 1 2 2 4 1 1 5 1
1

exp( )
∂

= − − − −
∂
A

c A A c A A A c i T c A
T

σ
 (3.4.43) 
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22

2 2 2 3 1 1 2 5 2
1

∂
= − − −

∂
A

d A A d A A A d A
T  (3.4.44) 

Where 
2 3 4 5 2 3 5
, , , , , ,c c c c d d d  are constants, given in Appendix D. 

Substituting the solutions of A1 and A2 
in the polar form i.e., (1/ 2)( exp( )where 1..2= =

n n n
A a i nθ , in 

Eqs. (3.4.43) and (3.4.44), and separating the real and imaginary parts we obtain the following 
system of equations. 
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a c T
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θ σ

θ
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θ

 (3.4.45) 

The modulation equations are now obtained using 
1 1 1

Γ = − + Tθ σ  

 
3 21

2 1 3 1 2 4 5 1
1

1 1 1 1
cos 0

2 8 8 2

∂
+ + + Γ + =

∂
a

c a c a a c c a
T  (3.4.46) 

 
1

1 4
1

1
sin 0

2

∂
+ Γ =

∂
a c

T

θ
 (3.4.47) 

 
3 22

2 2 3 1 2 5 2
1

1 1 1 1
0

2 8 8 2

∂
+ + + =

∂
a

d a d a a d a
T  (3.4.48)  

 1 1 1
Γ = − + Tθ σ

 (3.4.49) 

Eq. (3.4.48) shows that 
2

0=a  is a solution. Equilibrium is also achieved 

in
2 1 1
/ 0 , / 0∂ ∂ = ∂Γ ∂ =a T T . Eliminating the transformed phase shift Γ  from the modulation 

equations, the autonomous system above now reduces to two equations that can be resolved to give 
the following 6th degree polynomial equation for plotting the resonant curves. 

 
2 6 4 2 2 2 2

2 2 5 5 1 4
8 16( ) 64 0+ + + − =

E E E
c a c c a c a cσ

 (3.4.50) 

Where, 
2 5
...c c are coefficients of the detuning parameter and are defined in the Appendix D. The 

polynomials given by Eqs. (3.4.36) and (3.4.50) are functions of amplitude at equilibrium aE and 

detuning parameter
1

σ . Solution of these polynomials gives six solutions that are symbolically 

complicated expressions and are not reproduced here. Therefore these polynomials are treated 
numerically in the next section. 
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3.5. Numerical Application (Resonant Curves) 
The investigations were conducted using three different methods, i.e. the method of multiple scales, 
a continuation procedure and a step by step integration method in Matlab Simulink. All the 
numerical data are given in Appendix B. 

3.5.1. Method of Multiple Scales 

The numerical solutions for the two resonant conditions 
1

ωΩ ≈  and 
2

ωΩ ≈  are presented showing 

the plots of resonant curves of hard spring type Fig. 36. 

 

Fig. 36. Resonance curves (a) 
1

ωΩ ≈  (b) 
2

ωΩ ≈  

 The effect of nonlinearity has caused these curves to bend rightwards from the position of the linear 
response given in Fig. 35. It is interesting to note the plotting ranges of these curves to generate the 

same shapes. For the case 
2

Ω = ω these curves are significantly expanded and the range of amplitude 

is higher. 

3.5.2. Continuation Procedure (Matcont2) 

The bifurcation diagrams and state planes are presented in Fig. 37 and Fig. 38. For a given value of 
the detuning parameter there are three solutions in the positive plane. Out of these solutions, two are 
stable and one is unstable. The continuation procedure is capable of tracing two stable solutions 
which can be seen corresponding to points A and B on the curves  in Fig. 37 (a) and Fig. 38 (a). The 
curve of the unstable solution lies somewhere between these two curves. The results of this 
procedure match with those obtained by MMS but the latter is more preferable as it can plot the 
unstable solutions as well. 

                                                 
 
2 A. Dhooge, W. Govaerts, Yu.A. Kuznetsov, W. Mestrom, A. M. Riet, B. Sautois, MATCONT: A continuation 
toolbox in Matlab, http://www.matcont.ugent.be/    
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Fig. 37. Results obtained by continuation procedure using Matcont at σ1 = 20 for 
1

ωΩ ≈                                                                          

(a) Resonance Curves (b) State Plane at point A (c) State Plane at point B 
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Fig. 38.  Results obtained by continuation procedure using Matcont at σ1 = 504 for 
2

ωΩ ≈                                                                       

(a) Resonance Curves (b) State Plane at point A (c) State Plane at point B 
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The state planes are plotted for two different points A and B on the resonant curves given in Fig. 37 
(a) and Fig. 38 (a). It can be observed that the amplitude at point A is much lower as compared to 
that of point B. Also the orbits corresponding to point B tend to be more oval as compared to those 
corresponding to point A. Therefore it can be concluded that the effect of nonlinearity due to higher 
order deformations is more visible at the curve at point B. 

3.5.3. Direct Integration by Step by Step Method (Matlab) 

A step by step analysis was conducted using the Simulink toolbox of Matlab. The equations of 
motion given by Eqs. (3.1.10) and (3.1.11) are treated directly.  The results are compared with those 
obtained by MMS and are presented as dots in Fig. 36. The phase diagrams, poincaré sections and 
time histories of the amplitude are given in Fig. 39 and Fig. 40. The discrepancy between MMS 
results and step by step results in Fig. 36 are mainly due to the difficulty to obtain the maximum and 
minimum in the amplitude response curves. The amplitude modulation is also visible in these 
figures. The simulation was carried out and the phase diagrams were plotted for the last 0.2 seconds. 
This corresponds to 4 periods where the amplitude modulation is low. Hence as a result the 4 points 
on the poincaré sections lie close together. 

 

 

Fig. 39. Phase diagrams, poincaré sections and time amplitude responses for
1

ωΩ ≈  
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Fig. 40.  Phase diagrams, poincaré sections and time amplitude responses for
2

ωΩ ≈  

3.6. Effect of various parameters 
 In regard to the limitations presented by the continuation procedure (the inefficiency in predicting 
unstable branch) and step by step method (difficulty in choosing the initial conditions and hence not 
attaining the stability in time amplitude response), in the following the method of multiple scales is 

used. The coefficients
2

d , 
4

d  and 
5

d  are functions of various quantities 
1 2 1 2
, , ,α α β β  and 

1
m  

(Appendices C and D). These quantities further depend on geometric, material and mass unbalance 
parameters. This indicates that a change in the values of these parameters will give different 
numerical solutions of Eqs. (3.4.36) and (3.4.50), thus generating different resonant curves. 
Therefore these different parameters can be adjusted to change the behavior of the rotor 
significantly. 

3.6.1. Effect of β2 = 0 

According to Eq. (3.1.12) quantity β2 depends on k3 which represents the effect of an axial dynamic 
force, see Eqs. (2.4.44) and (2.4.45). This implies that if we want to study the dynamics of the 
system without considering the effect of an axial force we can substitute β2= 0 in various constants 
given in Appendices C and D. This affects the overall response of the system. The generated 
resonant curves are presented in Fig. 41. A comparison of these curves with those of Fig. 36 shows 
that the amplitude has increased. Also a decrease in the horizontal plotting range of these curves 
indicates that the spring hardening effect becomes visible even at very low values of detuning 

parameter
1

σ . 
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Fig. 41.  Effect of β2 = 0 on nonlinear dynamic response (a) 
1

ωΩ ≈  (b) 
2

ωΩ ≈  

3.6.2. Effect of varying the mass unbalance mu 

The quantity d4 in the polynomial given by Eq. (3.4.36) depends on the mass unbalance mu through 
the quantities given in appendices C and D. Therefore the response of the system can be varied by 
changing the value of the mass unbalance. Fig. 42 represents the effect of varying the mass 
unbalance from    1 x 10-5 kg to 100 x 10-5 kg. Different resonant curves plotted on the same scale 
show that as the mass unbalance is increased, the horizontal component of these curves expands 

more to cover a greater range of detuning parameter
1

σ . 

 

Fig. 42.  Effect of variation in mass unbalance mu on nonlinear dynamic response                              
(a) 

1
ωΩ ≈  (b) 

2
ωΩ ≈  
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3.6.3. Effect of varying shaft cross-sectional radius R1 

The quantities α1, β1, α2, β2 and m1 in Appendices C and D are related to parameters b1, b2, k1, k2, k3 
using Eq. (3.1.12). All these parameters depend on the cross-sectional radius of the shaft. Therefore 
a change in the shaft radius will change the numerical values of all the parameters and quantities 
mentioned above. Fig. 43 shows the system response for three different values of shaft cross-
sectional radius. It can be observed that the resonant curves bend more strongly towards right as the 
shaft narrows. 

 

Fig. 43.  Effect of variation in shaft diameter on nonlinear dynamic response                                     
(a) 

1
ωΩ ≈  (b) 

2
ωΩ ≈  

3.7. Conclusions 
This chapter analyzed some of the mathematical models developed in chapter 2. The nonlinear 
behavior of rotor dynamics due to large deformations and a dynamic axial force was analysed for 
the first mode. A mathematical model with the combined effects of higher order large bending 
deformations and a dynamic axial force was formulated from the work presented in chapter 2. This 
model was solved using the multiple scales method. The numerical investigations were conducted 
using three methods, i.e. the method of multiple scales, a continuation procedure (Matcont) and a 
step by step analysis in Matlab Simulink. It is concluded that the method of multiple scales is more 
efficient than the other two methods as all the stable and unstable solutions can be seen in the 
resonant curves. 

The results showed that nonlinearities along with other phenomena like gyroscopic, rotary inertia 
and mass unbalance effects significantly influence the dynamics of the rotor system. The linear 
analysis showed that resonance existed only at the second critical speed, but in the nonlinear 
analysis another resonance appeared at the first critical speed. Furthermore, nonlinearities caused the 
resonance curves to be of hard spring type. In the absence of dynamic axial force and at lower 
values of mass unbalance, the spring hardening effect was visible even at lower values of detuning 

parameter
1

σ . Using the method of analysis presented here facilitated studying the changes caused 

by modifying different rotor system parameters, by changing the numerical values of the latter. 
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Chapter 4: Nonlinear Analysis Taking into Account Shear Effects 

In this chapter the mathematical model developed in section 2.5.2 is analyzed. This model considers 
nonlinearity due to large deformations in bending and shear effects. It is composed of 4th order 
coupled nonlinear differential equations of motion. The equations of motion given by Eqs. (2.5.34) 
and (2.5.35) are referred. Both linear and nonlinear analyses are presented in the following sections. 

4.1. Linear Analysis 
The natural frequencies of vibration and hence the critical speeds of the rotor are determined by 
studying the rotor system in free undamped motion. The linear equations of motion are given as, 

 
21 31 41 51

21 31 41 51

0

0

− Ω + − Ω + =

+ Ω + + Ω + =

&&&& &&& && &

&&&& &&& && &

U W U W U

W U W U W

α α α α

α α α α  (4.1.1) 

The solutions of Eq. (4.1.1) are sought in the form, 

 1 1
exp( ) , exp( )= =U U t W W tω ω

 (4.1.2) 

Substituting Eq. (4.1.2) in Eq. (4.1.1)  gives the following set of homogeneous equations. 

 

4 2 3

31 51 21 41 1

3 4 2
121 41 31 51

0
 + + −Ω − Ω  
  = 
   Ω + Ω + +   

U

W

ω α ω α α ω α ω

α ω α ω ω α ω α  (4.1.3) 

The expansion of the determinant of the matrix in Eq. (4.1.3) gives the following characteristic 
equation. 

 

8 2 2 6 2 2 4

31 21 51 31 21 41

2 2 2 2

31 51 41 51

(2 ) (2 2 )

(2 ) 0

ω α α ω α α α α ω

α α α ω α

+ + Ω + + + Ω

+ + Ω + =  (4.1.4) 

The roots of Eq. (4.1.4) can be represented as ±
n

iω , where 
n

ω for n = 1..4, are the angular 

frequencies. The symbolic expressions of these frequencies are complicated and are therefore treated 
numerically. The numerical data are given in Appendix B. 

The effect of shear deformations is studied for various slenderness ratios (r) where r = R1/2L. The 
results are obtained for a rotating shaft as well as for a shaft-disk rotor system. Also both solid and 
tube sections of the shaft are investigated. The results are presented in tabular form in Tables (1) and 
(2). The graphical representation of the results is given in Fig. 44 to Fig. 47. It can be observed that 
with the inclusion of shear effects, the critical speeds of the rotor decrease. The difference between 
critical rotor speeds with and without shear effects is increased as the slenderness ratio is increased. 

This implies that the shear effects become greater for higher values of the slenderness ratio (r). Also, 
it is interesting to note that the difference in the 2nd critical speeds is greater than that noted with the 
1st critical speeds. Comparison of Fig. 44 and Fig. 45 indicates that the shear effects are more visible 
in the case of a rotating shaft than that of a shaft-disk rotor system. Moreover it can be observed 
from Fig. 46 and Fig. 47 that the shear effects are greater with a tubular shaft than with a solid shaft. 
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Table. 5. Shear effects on 1st two critical speeds of a rotating shaft for various slenderness ratios (r) 
 

Cross -
Section 

Geometry 
(meters) 

L = 2 
R1= 0.32 

L =1.5 
R1= 0.18 

L =1 
R1= 0.08 

L =1 
R1= 0.06 

L = 0.5 
R1= 0.02 

slenderness ratio (r) 0.08 0.06 0.04 0.03 0.02 

Solid 

Critical speeds 
without shear (rpm) 

17503 
19722 

18147 
19438 

18652 
19242 

14130 
14381 

18977 
19127 

Critical speeds with 
shear (rpm) 

16452 
17961 

17425 
18450 

18276 
18804 

13961 
14197 

18872 
19018 

percentage decrease 
6 % 

8.93 % 
4 % 
5 % 

2 % 
2.3 % 

1.2 % 
1.3 % 

0.5 % 
0.5 % 

Tube 
(e = 10-3 m) 

Critical speeds 
without shear (rpm) 

22963.6  
28831.2 

24454.2  
27926.7 

25654.7  
27256.5 

19572.5  
20256.6 

26030.5  
26421.3 

Critical speeds with 
shear (rpm) 

19709.9  
21709.5 

21911.3  
23662 

24142.9  
25284 

18854.8  
19415.2 

25584 
25941.5 

Percentage decrease 
14.17 % 
24.70 % 

10.40 % 
15.27 % 

5.89 % 
7.24 % 

3.67 % 
4.15 % 

1.72 % 
1.82 % 
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Table. 6. Shear effects on the 1st two critical speeds of a shaft-disk rotor system for various 
slenderness ratios (r) 

 

Cross-
section 

Geometry 
(meters) 

L = 2 
R1= 0.32 
R2 = 0.75 
h = 0.15 

L =1.5 
R1=0.18 
R2 = 0.50 
h = 0.10 

L =1 
R1=0.08 
R2 = 0.3 
h = 0.06 

L =1 
R1=0.06 
R2 = 0.3 
h = 0.06 

L =0.5 
R1=0.02 
R2 = .15 
h = 0.03 

Slenderness ratio (r) 0.08 0.06 0.04 0.03 0.02 

 
Solid 

Critical speeds without shear 
(rpm) 

13838 
16286 

13542 
15247 

12064 
13275 

7456 
8284 

7158 
8068 

Critical speeds with shear 
(rpm) 

13332 
15227 

13255 
14743 

11970 
13124 

7433.5 
8247 

7153 
8059 

percentage decrease 
3.65 % 
6.50 % 

2.34 % 
3.31 % 

0.78 % 
1.14 % 

0.30 % 
0.45 % 

0.07 % 
0.11 % 

Tube 
(e = 10-3 m) 

Critical speeds without shear 
(rpm) 

2505.6  
3200.5 

2997.4 
3618.3 

3471.7 
4017.9 

2223.4 
2563.6 

3300.6 
3791.3 

Critical speeds with shear 
(rpm) 

2500.8 
3184.6 

2992.5  
3605.8 

3468.1 
4010.4 

2222.4 
2561.3 

3299.8 
3789.7 

Percentage decrease 
0.19 % 
0.50 % 

0.16 % 
0.35 % 

0.10 % 
0.19 % 

0.04 % 
0.09 % 

0.02 % 
0.04 % 
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Fig. 44.  Effect of shear and slenderness ratio (r) on the critical speeds of  a solid shaft 

 

Fig. 45.  Effect of shear and slenderness ratio (r) on the critical speeds of  a shaft-disk rotor system 
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Fig. 46.  Comparison of 1st critical speeds of a solid and a tube shaft for various slenderness ratios 

 

 

Fig. 47.  Comparison of 2nd critical speeds of a solid and a tube shaft for various slenderness ratios 
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4.2. Nonlinear Analysis 
The complete set of equations of motion including nonlinear terms given by Eqs. (2.5.34) and 
(2.5.35) are analyzed using MMS. In this section MMS is applied for 4th order derivatives with 

respect to time. Displacements U and W are expanded as the power series of ε to the first order, 

 
0 1 0 0 1 1 0 1 0 1

0 1 0 0 1 1 0 1 0 1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

= + = +

= + = +

U T T u T T u T T u u

W T T w T T w T T w w

ε ε
ε ε  (4.2.1) 

Where = n

n
T tε  are slow time scales, T1 being slower than T0, and ε is a small dimensionless 

parameter; ε << 1. The nonlinear, damping and forcing terms in Eqs. (2.5.34) and (2.5.35) are scaled 
so that the damping and forcing terms appear in the same perturbation equations as the nonlinear 
terms. This is done so that the effect of damping is balanced with the effect of nonlinearity. 
Therefore the following scaling is used. 

 1 1 2 2 11 11 21 21 31 31 41 41 1 1
, , , , , , ,= = = = = = = =m m c cα α α α β εβ β εβ β εβ β εβ ε ε

 (4.2.2) 

The resulting equations are given as, 
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 (4.2.4) 

Using Eq. (4.2.1) all the time derivatives appearing in Eqs. (4.2.3) and (4.2.4) are found. After 

substituting these derivatives in these equations and equating like powers of ε  on both sides of the 

resulting equations, we obtain the two following systems of equations. 

4.2.1. System of order 0 equations (0ε ) 

 

4 3 2

4 3 20 21 0 31 0 41 0 51 0
00 0 0

4 3 2

4 3 20 21 0 31 0 41 0 51 0
00 0 0

0

0

∂ ∂ ∂ ∂− Ω + − Ω + =
∂∂ ∂ ∂

∂ ∂ ∂ ∂+ Ω + + Ω + =
∂∂ ∂ ∂

u w u w u
TT T T

w u w u w
TT T T

α α α α

α α α α
 (4.2.5) 
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4.2.2. System of order 1 equations (1ε ) 

 

4 3 2

4 3 21 21 1 31 1 41 1 51 1
00 0 0

2
2 2 2

2 2 221 0 0 21 0 0 0 0
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3
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The general solution of Eq. (4.2.5) can be written as, 

 

0 1 1 1 0 2 1 2 0 3 1 3 0

4 1 4 0

0 1 1 1 0 2 1 2 0 3 1 3 0

4 1 4 0

( )exp( ) ( )exp( ) ( )exp( )

( )exp( ) [ ]

( )exp( ) ( )exp( ) ( )exp( )
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= + +

+ +
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− +

u A T i T A T i T A T i T

A T i T cc

w iA T i T iA T i T iA T i T

iA T i T cc

ω ω ω
ω

ω ω ω
ω

 (4.2.8) 

Where [cc] denotes the complex conjugate of the preceding terms. 

Also a particular solution is assumed for u1 and w1 in the following form, 

 

1 1 1 1 0 2 1 2 0 3 1 3 0

4 1 4 0

1 1 1 1 0 2 1 2 0 3 1 3 0

4 1 4 0

( )exp( ) ( )exp( ) ( )exp( )

( )exp( )

( )exp( ) ( )exp( ) ( )exp( )
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= + +

+
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+

u P T i T P T i T P T i T

P T i T

w Q T i T Q T i T Q T i T

Q T i T

ω ω ω
ω
ω ω ω
ω

 (4.2.9) 

After substituting Eqs. (4.2.8) and (4.2.9) into Eqs. (4.2.6) and (4.2.7), it can be observed from the 
resulting equations that there are various possible resonance cases. The two cases of primary 

resonance of interest are 
1

Ω = ω and 
2

Ω = ω . These two cases can be treated separately but in a 

similar manner. 

4.2.3. Case of 
1

ωΩ ≈  

In the resulting equations mentioned above, Ω  is substituted as 
1 1

Ω = +ω εσ  where 
1

σ is a detuning 

parameter for controlling the nearness of Ω  to 
1

ω  and ε  is a small dimensionless book-keeping 

parameter. We then equate the coefficients of 
0

exp( )
n

i Tω where 1..4=n , on both sides of the 

resulting equations. 

4.2.4. Solvability Conditions 

In order to obtain the solutions of these equations there are certain solvability conditions that must 
be satisfied. These conditions are determined according to the procedure given in Chapter 3 and are 
given below. 
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= + + + +
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σ

 (4.2.10) 

  Where 
1 6
..c c , 

1 5
..d d , 

1 5
..f f and

1 5
..g g are functions of geometric and material properties of the 

rotor and 
1 4
..ω ω . Their mathematical expressions are given in Appendix E. 
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The solutions of 
n

A  are substituted in Eq. (4.2.10) in the polar form given 

by (1/ 2)( exp( )=
n n n

A a iθ , where, 1..4=n . The resulting equations are separated into real and 

imaginary parts to obtain the following autonomous system of first-order partial differential 
equations. 
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1
1 1

Γ = −
dd

dT dT

θ
σ

 (4.2.19) 

In Eqs. (4.2.11), (4.2.12) and (4.2.19), 
1 1 1

Γ = −Tσ θ  

At equilibrium, amplitude and phase do not change with respect to time, i.e.:  

 
3 31 2 4 2 4

1 1 1 1 1 1 1 1

0
Γ= = = = = = = =

da dda da da d dd

dT dT dT dT dT dT dT dT

θθ θ
 (4.2.20) 

The autonomous system given by Eqs. (4.2.11) to (4.2.19) is now reduced to:  
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It can be observed from the system of Eqs. (4.2.21) to (4.2.25) that 
2 3 4

0= = =a a a  is a trivial 

solution. Therefore this system can be resolved to give the following 6th degree polynomial equation  

 
2 6 4 2 2 2 4

1 1 5 5 1 6
8 16( ) 64 0− + + − =

E E E
c a c c a c a cσ

 (4.2.26) 

The above polynomial is a function of amplitude at equilibrium aE and the detuning parameter
1

σ . 

Solving Eq. (4.2.26) gives six solutions that, using symbols, are complicated expressions and are not 
reproduced here. Therefore this polynomial is treated numerically in the next section. 

4.2.5. Case of 
2

ωΩ ≈  

This case can be treated in the same way as the previous one. The results can be obtained directly by 
changing ω2 with ω1 in equations resulting from Eqs. (4.2.6) and (4.2.7) and considering a new 

detuning parameter defined as 
2 1

Ω = +ω εσ .  

The solvability conditions for this case are given as below, 
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Where 
1 5
..c c , 

1 6
..d d , 

1 5
..f f and

1 5
..g g are functions of geometric and material properties of the 

rotor and 
1 4
..ω ω . Their mathematical expressions are given in Appendix F. 

The solutions of 
n

A  are substituted in Eq. (4.2.27) in the polar form given 

by (1/ 2)( exp( )=
n n n

A a iθ , where, 1..4=n . The resulting equations are separated into real and 

imaginary parts to obtain the following autonomous system of first-order partial differential 
equations. 
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In Eqs. (4.2.29), (4.2.30) , (4.2.31) and (4.2.36) 
1 1 2

Γ = −Tσ θ . 

At equilibrium, the amplitude and phase do not change with respect to time, i.e.: 
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0
Γ= = = = = = = =

da dda da da d dd
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Autonomous system given by Eqs. (4.2.28) to (4.2.36) is now reduced to: 
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It can be observed from the system of Eqs. (4.2.38) to (4.2.42) that 
1 3 4

0= = =a a a  is a trivial 

solution. Therefore this system can be resolved to give the following 6th degree polynomial equation  

 
2 6 4 2 2 2 4

1 1 5 5 1 6
8 16( ) 64 0− + + − =

E E E
d a d d a d a dσ

 (4.2.43) 

Like the polynomial of Eq. (4.2.26), the above polynomial is also a function of amplitude at 

equilibrium aE and the detuning parameter
1

σ . Solving Eq. (4.2.43) gives six solutions that, using 

symbols, are complicated expressions and are not reproduced here. Therefore this polynomial is also 
treated numerically in the next section. 

4.3. Numerical Application and Discussion of Results 
The nonlinear response of the rotor system under study was examined using three different 
approaches, i.e. the method of multiple scales, a continuation procedure and a step-by-step 
integration method in which equations of motion are treated directly. All the numerical data are 
given in Appendix B.  
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4.3.1. Resonant curves 
 

Method of Multiple Scales 

For studying the nonlinear dynamic response, a shaft-disk rotor system has been considered whose 
numerical data are given in Appendix B. In Fig. 48 the numerical solutions for the two resonant 

conditions 
1

ωΩ ≈  and 
2

ωΩ ≈  are presented showing resonant curves. The effect of nonlinearity 

has caused these curves to bend rightwards from the position of the linear response. Therefore, these 
curves are of the hard spring type. 

 

 

Fig. 48.  Resonance curves for nonlinear dynamic response of a shaft-disk rotor system                   
(a) 

1
ωΩ ≈  (b) 

2
ωΩ ≈  

Continuation Procedure (Matcont) 

A continuation procedure in Matlab called Matcont was applied. This method is capable of treating 
the first order differential equations given by Eqs. (4.2.11) to (4.2.19). The bifurcation diagrams and 
state planes are presented in Fig. 49 and Fig. 50. For a given value of the detuning parameter there 
are three solutions in the positive plane. Out of these solutions, two are stable and one is unstable. 
The continuation procedure is capable of tracing two stable solutions which can be seen 
corresponding to points A and B in the curves  in Fig. 49 (a) and Fig. 50 (a), where LP is the limit 
point of the bifurcation. The curve of the unstable solution lies somewhere between these two 
curves. The results of this procedure match with those obtained by MMS but the latter is preferable 
as it can plot the unstable solutions as well. 

The state planes are plotted for two different points, A and B, on the resonant curves given in Fig. 49 
(a) and Fig. 50 (a). It can be observed that the amplitude at point A is much lower than that of point 
B. As compared to point A, the orbit corresponding to point B is more oval, i.e. the effect of 
nonlinearity is more visible at this point. 
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Fig. 49.  Results obtained by continuation procedure using Matcont at σ1 = 4  for 
1

ωΩ ≈                    

(a)  Resonance Curves (b) State Plane at point A (c) State Plane at point B 
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Fig. 50.  Results obtained by continuation procedure using Matcont at σ1 = 100 for 
2

ωΩ ≈                                            

(a) Resonance Curves (b) State Plane at point A (c) State Plane at point B 
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Direct Integration using the Step-by-Step Method (Matlab) 

In order to further validate the nonlinear findings achieved by previous two methods, a step-by-step 
analysis was conducted using the Simulink toolbox of Matlab. In this method, the equations of 
motion given by Eqs. (2.4.34) and (2.3.45) were solved directly.  The results were compared with 
those obtained by MMS and are presented as dots in Fig. 48. 

4.3.2. Effect of Slenderness Ratio 

The slenderness ratio is varied from 0.02 to 0.08 and the effect of this variation is presented in Fig. 
51. It can be observed that as the slenderness ratio is decreased, the response curves bend strongly 
towards the right and expand more horizontally. This indicates that for higher values of slenderness 
ratio the nonlinear spring hardening effect appears even at smaller values of detuning parameter σ1 

which is directly proportional to the speed of rotation of the rotor system. This trend is similar for 
both resonance cases except the fact that the response amplitude and horizontal range of the 
detuning parameter is much higher when Ω = ω2. 

 

Fig. 51.  Effect of slenderness ratio (r) on the nonlinear dynamic response of a shaft-disk rotor system  
(a) 

1
ωΩ ≈  (b) 

2
ωΩ ≈  

4.3.3. Effect of Varying the Unbalance Mass 

Fig. 52 represents the effect of varying the mass unbalance from 1x 10-5 kg to 100 x 10-5 kg. 
Different resonant curves plotted on the same scale show that as the mass unbalance is increased, the 
horizontal component of these curves expands more to cover a greater range of the detuning 
parameter σ1. Also the amplitude of the response is higher for higher values of unbalance mass. 
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Fig. 52.   Effect of mass unbalance (um ) on nonlinear dynamic response of a shaft-disk rotor system: 

(a) 
1

ωΩ ≈   (b) 
2

ωΩ ≈  

4.3.4. Effect of Shear Deformations 

Fig. 53 and Fig. 54, present the response curves for three different slenderness ratios at 
1

ωΩ ≈  and 

2
ωΩ ≈  respectively. The results were obtained for the nonlinear response of the rotor system with 

and without considering the shear effects. It is concluded that the shear effects on the nonlinear 
response are not very significant for lower values of the slenderness ratio. But, for their higher 
values the response curves without shear effects tend to bend more strongly towards the right. This 
can be clearly observed by comparing curves P3 and Q3 in Fig. 53 and curves R3 and S3 in Fig. 54. 
There is not a notable difference in the response amplitude with and without shear effects with the 
1st resonance. But a difference of amplitude can be observed for the 2nd resonance.  
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Fig. 53.   Effect of shear deformations on the nonlinear dynamic response of a shaft-disk rotor system 
at 

1
ωΩ ≈ : (a) with shear (b) without shear 

 

Fig. 54.   Effect of shear deformations on the nonlinear dynamic response of a shaft-disk rotor system 
at 

2
ωΩ ≈ : (a) with shear (b) without shear 
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4.4. Conclusions 
This chapter focused on the combined effect of nonlinearities and shear effects on the linear and 
nonlinear dynamic behavior of the rotors. The mathematical model which was treated in this chapter 
consisted of 4th order nonlinear differential equations of motion. The method of multiple scales was 
applied to the 4th order of derivatives with respect to time. The effects of shear were discussed in 
detail both on the linear as well as nonlinear response of the rotor system under study. 

The results of the linear analysis for a rotating shaft and a shaft-disk rotor system, both for solid and 
tube section, showed that with the inclusion of shear deformations the critical speeds of the rotor 
tend to decrease. This difference becomes more visible for higher values of the slenderness ratio r. 
As compared to a shaft-disk rotor system the shear effects have more notable influence in the case of 
a solid and tube sections of the shaft. 

In the nonlinear analysis, the resonant response curves are plotted. These curves are of hard spring 
type. The response amplitude and horizontal plotting range of the detuning parameter is higher in 
case of the resonance condition corresponding to 2nd critical speed of the rotor. The overall dynamic 
behavior of the rotors can be greatly varied with the variations in the slenderness ratio and the 
unbalance mass. The effects of shear deformations are more significant for higher values of the 
slenderness ratio. As an overall concluding remark, the higher order and shear deformations have a 
significant effect on the dynamic behavior of the rotor systems. Therefore, for an accurate analysis 
ensuring improved safety and efficiency of the rotor systems, these deformations cannot be ignored.
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Chapter 5:  Overall Conclusions and Future Perspectives 

This chapter discusses the overall conclusions of the thesis. Also, based on the work performed for 
this thesis, there are future perspectives, which are also mentioned in detail. A description of the 
work already carried out is given which can be extended in future. The main perspectives include 
the study of nonlinear dynamic behavior of the rotors under some base movements. i.e. the supports 
of the rotor are not fixed but can be subjected to different movements like simple translation, a 
constant acceleration, sinusoidal translatory motion, simple rotation and sinusoidal rotation. 

  5.1. Conclusions 

This thesis presents a detailed development of various mathematical models and their analysis for 
studying the nonlinear dynamic behavior of rotors. First a state of the art for the dynamic analysis of 
the rotors has been discussed and a brief introduction of various important aspects of rotordynamics 
is given. From the state of the art it is concluded that the study of the dynamic behavior of rotors has 
been a subject of practical importance for many years. A lot of work has been carried out in 
predicting the dynamics of metallic as well as composite rotors. But this is still an ongoing research 
especially when nonlinear effects are included to be investigated which being the main objective of 
the present thesis works. 

Then a detailed mathematical modelling is presented for analyzing the dynamic behavior of rotors. 
Various models containing nonlinear differential equations of motion have been developed for 
different rotor configurations. These models consist of 2nd and 4th order nonlinear differential 
equations of motion. Different models and hence different equations of motions have been 
developed taking into account the various significant effects like higher order large deformations, 
geometric nonlinearity, shear effects, gyroscopic and rotary inertia effects. The models are 
developed using both the Euler Bernoulli and Timoshenko beam theories. Rayleigh-Ritz method and 
Hamilton’s principle have been used in order to obtain the equations of motion. When shear 
deformations are taken into account the developed equations of motion consist of 4th order 
derivatives with respect to time. A case study for the dynamic analysis of the composite rotors has 
been conducted and the results obtained are compared to the works already available in the 
literature. The results obtained for the dynamic analysis of composite rotors in this study are in close 
agreement with those previously reported in the literature. 

Some of the equations of motion developed in the modeling section have been investigated to study 
the nonlinear dynamic behavior of the rotors. Firstly, the nonlinear behavior of rotor dynamics due 
to large deformations and a dynamic axial force was analysed for the first mode using MMS. The 
numerical investigations have been conducted using three methods, i.e. the method of multiple 
scales, a continuation procedure (Matcont) and a step by step analysis in Matlab Simulink. It is 
concluded that the method of multiple scales is more efficient than the other two methods as all the 
stable and unstable solutions can be seen in the resonant curves. The results show that nonlinearities 
along with other phenomena like gyroscopic, rotary inertia and mass unbalance effects significantly 
influence the dynamics of the rotor system. The linear analysis showed that resonance existed only 
at the second critical speed, but in the nonlinear analysis another resonance appeared at the first 
critical speed. Furthermore, nonlinearities caused the resonance curves to be of hard spring type. In 
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the absence of dynamic axial force and at lower values of mass unbalance, the spring hardening 

effect was visible even at lower values of detuning parameter
1

σ . Using the method of analysis 

presented here facilitated studying the changes caused by modifying different rotor system 
parameters, by changing the numerical values of the latter. 

The combined effect of nonlinearities and shear effects on the linear and nonlinear dynamic 
behavior of the rotors has been also studied. The mathematical model which was treated in for this 
case consisted of 4th order nonlinear differential equations of motion. The method of multiple scales 
was applied to the 4th order of derivatives with respect to time. The effects of shear were discussed 
in detail both on the linear as well as nonlinear response of the rotor system under study. The results 
of the linear analysis for a rotating shaft and a shaft-disk rotor system, both for solid and tube 
section, showed that with the inclusion of shear deformations the critical speeds of the rotor tend to 
decrease. This difference becomes more visible for higher values of the slenderness ratio r. As 
compared to a shaft-disk rotor system the shear effects have more notable influence in the case of a 
solid and tube sections of the shaft. 

In the nonlinear analysis, the resonant response curves were plotted. These curves are of hard spring 
type. The response amplitude and horizontal plotting range of the detuning parameter is higher in 
case of the resonance condition corresponding to 2nd critical speed of the rotor. The overall dynamic 
behavior of the rotors can be greatly varied with the variations in the slenderness ratio and the 
unbalance mass. The effects of shear deformations are more significant for higher values of the 
slenderness ratio. As an overall concluding remark, the higher order and shear deformations have a 
significant effect on the dynamic behavior of the rotor systems. Therefore, for an accurate analysis 
ensuring improved safety and efficiency of the rotor systems, these deformations cannot be ignored. 
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  5.2. Future Perspectives 

This chapter discusses the future scopes of this thesis work. This includes:  

The investigations of nonlinear effects discussed in the present work on the dynamic behavior of 
Onboard Rotors, i.e. the rotors subjected to some base movements. 

Another important future perspective is the experimental validation of the analytical and numerical 
results obtained in the present PhD work. The development of the experimental setup is in progress. 

Rotors Subjected to Base Movements 
The dynamics of a rotor under some movements of the supports both in translation and in rotation 
can introduce new interesting phenomenon to be investigated. The displacement of the supports can 
be divided into two major categories: the seismic excitations and onboard excitations. The example 
of the latter is a case where the rotor is mounted in a vehicle which is in motion. Rotor vibrations 
caused by large time-varying base motion are of considerable importance as there are a good 
number of rotors, e.g., the ship and aircraft turbine rotors, which are often subject to excitations, as 
the rotor base, i.e. the vehicle, undergoes large time varying linear and angular displacements as a 
result of different manoeuvres. Due to such motions of the base, the equations of vibratory motion 
of a flexible rotor–shaft relative to the base (which forms a non-inertial reference frame) contains 
terms due to Coriolis effect as well as inertial excitations (generally asynchronous to rotor spin) 
generated by different system parameters. Such equations of motion are linear but can be time-
varying in nature, invoking the possibility of parametric instability under certain frequency–
amplitude combinations of the base motion. 

 The study of dynamic behavior of rotors has been a topic of ongoing research in recent years. 
Duchemin et al. [DBF06] investigated the dynamic behavior of flexible rotor systems subjected to 
base excitation (support movements) both theoretically and experimentally. Their study was focused 

on the behavior in bending near the critical speeds of rotation. A mathematical model was developed 
to calculate the kinetic energy and the strain energy. The equations of motion were derived using 
Lagrange equations and the Rayleigh-Ritz method was used to study the basic phenomena on simple 
systems. Also, the method of multiple scales was applied to study stability when the system 
mounting was subjected to a sinusoidal rotation. An experimental setup was used to validate the 
presented results. 

Driot et al. [DLB06] studied the dynamic behavior of a flexible rotor system subjected to support 
excitation (imposed displacements of its base). The effect of an excitation on lateral displacements 
was investigated from theoretical and experimental points of view. The study focused on behavior in 
bending. A mathematical model with two gyroscopic and parametrical coupled equations was 
derived using the Rayleigh-Ritz method. The theoretical study was based on both the multiple scales 
method and the normal form approach. An experimental setup was then developed to observe the 
dynamic behavior permitting the measurement of lateral displacements when the system's support 
was subjected to a sinusoidal rotation.  

In another study Driot et al. [DLB07] investigated the dynamical behavior of an asymmetrical rotor 
subjected to a base translational motion. The amplitude of the parametric excitation was modeled as 
a random parameter in order to investigate the robustness of the dynamics. The forced steady state 
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response was considered. The original Taguchi’s method was used to provide statistical moments of 
the forced response. 

Das et al. in a very recent study [DDR10] investigated active vibration control of an unbalanced 
rotor–shaft system on moving bases with electromagnetic control force provided by an actuator 
consisting of four electromagnetic exciters, placed on the stator in a suitable plane around the rotor–
shaft. The equations of motion of the rotor–shaft continuum were first written with respect to the 
non-inertial reference frame (the moving base in this case) including the effect of rotor internal 
damping. A conventional model for the electromagnetic exciter was used. Numerical simulations 
performed on the flexible rotor–shaft modelled using beam finite elements showed that the control 
action was successful in avoiding the parametric instability, postponing the instability due to internal 
material damping and reducing the rotor response relative to the rigid base significantly, with 
sufficiently low demand of control current in comparison with the bias current in the actuator coils. 

In all the works reported above the bending of the shaft was assumed linear and the terms due to 
higher order large bending deformations were not taken into account. If these terms are also 
considered, the resulting equations of motion, when investigated, can give rise to new interesting 
phenomenon in the dynamic analysis of such rotors. This study is included in the future perspectives 
of this thesis. Based on the works of the present thesis and the work performed by               
Duchemin et al. [DBF06], some advancements are already made particularly in developing a 
mathematical model which includes the combined effect of nonlinear large deformations and the 
base movements on the dynamic analysis of rotors. 

The kinetic energies of the disk, the shaft and the mass unbalance are same as developed by 
Duchemin et al. [DBF06]. These energy equations are reproduced for reference. The inclusion of the 
nonlinearities due to higher order large bending deformations affects the deformation energy of the 
shaft. The derivation of this new deformation energy and based on this, the development of a new 
mathematical model is presented in the following paragraphs. 

The geometry of the rotor is shown in Fig. 55 [DBF06]. 

 

Fig. 55. Geometry of the Rotor 

The kinetic energies of the disk, shaft and mass unbalance are given in Appendix G. 

 
 
 
 

R0 
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Strain Energy of the Shaft 

The strain energy of the shaft is not affected by the movements of the supports of the rotor. But it is 
affected by the nonlinearity due to higher order large deformations in bending. The derivation of the 
following strain energy of the shaft is similar to as given in section 2.4.2 of chapter 2. 

 

L L2 2
4 4 2 2

0 0

1 1 1
+   +  

2 y y 2 4 4 2
EI EA

U dy dy
θ ψθ ψθ ψθ ψ θ ψ θ ψθ ψ θ ψθ ψ θ ψθ ψ θ ψ

                ∂ ∂∂ ∂∂ ∂∂ ∂         = + += + += + += + +                     ∂ ∂∂ ∂∂ ∂∂ ∂                         
∫ ∫∫ ∫∫ ∫∫ ∫  (5.1.1) 

The above equations can be compared to Eq.(2.4.12), where 
x

θ and 
z

θ are replaced with θ and 

ψ respectively. 

Application of Rayleigh-Ritz Method 

The method of Rayleigh-Ritz allows to express the displacements ( ) ,u y t  and ( )w ,y t along the 

directions x and z to be expressed as follows, 
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Where, f(y) is the modal deformation and q1, q2 are generalized independent coordinates.The angles 

θ and ψ  are approximated as, 
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Fig. 56. Degrees of Freedom of a Beam 

The 2nd derivatives of u and w are: 
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The function f (y) is chosen as the displacement function for a pinned-pinned beam in bending. 
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Where, n is the no. of the mode studied. 

Using the Rayleigh-Ritz method, the kinetic energy of the rotor which is the sum of the kinetic 
energies of the disk, shaft and the mass unbalance can be given as, 
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Applying Rayleigh-Ritz method to Eq. (5.1.1), the deformation energy of the rotor for a symmetric 
shaft can be given as, 

 ( ) ( )2 2 4 4 2 21 2
1 2 1 2 1 2

2
2 8

= + + + +
k k

U q q q q q q
 (5.1.7) 

Where, 
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Application of Lagrange Equations 

After application of Lagrange equations to Eqs. (5.1.6) and (5.1.7), the following system of two 
equations of motion is obtained, 

 

(((( )))) (((( ))))

{{{{ }}}} {{{{ }}}}

3
* *1 1 1 1

1 2 3
2 2 2 2

2
*1 2

2 2

2 1

1
2

1
2

q q q q
M C C K K K

q q q q

q q
K F F

q q

                        
                             + + + + + ++ + + + + ++ + + + + ++ + + + + +                                                                                                                       

    
         = += += += +         
    

&& &&& &&& &&& &

&& &&& &&& &&& &

 (5.1.9) 

Where, the matrices [M], [C], et [K1] are the classical matrices obtained in the case of a linear rotor 
with fixed supports. 
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The vector {F} is the contribution of the mass unbalance for a rotor with fixed supports. 
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The vector {F*} represents the supplementary terms due to the movement of the supports of 
the rotor. 
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Where, 
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The matrices [C*] and [K*] are due the movement of the assembly of the rotor. 
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The matrix [K2] is due to the consideration of higher order large deformations in bending. 
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Where, 
2

k is given by Eq. (5.1.8). 

Eq. (5.1.9) is a new equation of motion which includes the combined effect of the movement of the 
base of the rotor and the nonlinearity due to higher order large bending deformations. This equation 
can be treated using the method of multiple scales as in chapter 3 and 4 of the present thesis. 
Different types of movements of the base of the rotor can be investigated, for example, simple 
translation, a constant acceleration, sinusoidal translatory motion, simple rotation and sinusoidal 
rotation.
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Appendix A: Strain Energy of the shaft 

The shaft is modeled as a beam of circular cross section in bending (Fig.A). The displacements in 
the x, y and z directions of the beam are given below. 

, - ,= = + =
x y x z z

u u u z x u wθ θ                               (A.1) 

The longitudinal strain (deformation) in the y direction can be shown to be 

2 21 1

2 2
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∂ ∂
= − + + +
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↓ ↓

x z
yy x z

l nl

z x
y y

θ θ
ε θ θ

ε ε
                                      (A.2) 

The strain energy can be given as:   

( )
L

s1 yy yy

0 A

1
U = σ ε dAdy

2 ∫ ∫                                           (A.3) 

By using the relation =
yy yy

Eσ ε , the strain energy can be written as: 
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 By using Eq. A.2,  
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The 3rd and 7th term in the above equation can be neglected due to the symmetry of the cross-

section. Also, 
2 2

, ,= = = =∫ ∫x z x z

A A

I z dA I x dA I I I (due to symmetry) and =∫
S

ds A is the area of 

the cross section. 

Therefore, Eq. (A.6) becomes, 
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-3 11 -2
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For the geometry and material properties of the rotor system given above, the numerical values of 
different constants are given as,  
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for the case of 
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Appendix G: Kinetic Energies of the Rotor Subjected to Base 

Movements 

Kinetic Energy of the disk [DBF06] 

 

The disk is supposed to be rigid and is characterized by its kinetic energy given below [DBF06],  
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This expression contains the classical terms of the dynamic of rotors: 

2

2
ΩDy

I
 : A constant terms representing the rotational energy of the disk. It does not have an 

influence on the equations of motion. 

( )( )² ( )²
2

+& &D
M

u y w y  : Kinetic energy of an element in translation in a plane. 

( )( )² ( )²
2

+ &&Dm
I

y yψ θ  : Rotational kinetic energy about the axis x and z. 

( ) ( )Ω &
Dy

I y yψ θ  : Gyroscopic (Coriolis) effect. 

The other terms are due to the movement of the rotor assembly. 
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Kinetic Energy of the shaft [DBF06] 
 

The kinetic energy of the shaft can be derived from the kinetic energy expression of the disk above 
by extending it for an element L of thin section, of the thickness dy, the constant cross section S , the 

density ρ and the constant inertias of the section Ix et Iz. 

The kinetic energy of the shaft can be written as, 
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The above expression contains the classical terms of dynamics of rotors. 

 
2Ω

m
I Lρ : A constant terms representing the rotational energy of the shaft. It does not have an 

influence on the equations of motion. 
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 : Expression of the kinetic energy of a beam in bending. 
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ψ θ  : Secondary effects of rotary inertia. 
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I y y dyρ ψ θ  : Gyroscopic effect. 

The other terms are due to the movement of the rotor assembly. 
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Kinetic Energy of the Mass Unbalance [DBF06] 
 
The mass unbalance is supposed to be situated at a distance d from the geometric center C of 
the disk and is represented by 

u
m . See fig. where point A represents the geometric center of 

the undeformed shaft. 

The kinetic energy of the mass unbalance is given as below, 
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Résumé de Thèse 

La dynamique des rotors est un domaine important dans de nombreuses applications d’ingénieries 

telles que les moteurs à réaction, les rotors d'hélicoptères, les turbines, les compresseurs ou encore les 

broches de machines-outils. L'énergie cinétique de rotation de ces éléments constitue une source 

interne d'énergie, qui, dans certaines circonstances, peut conduire à des vibrations de grandes 

amplitudes du rotor et perturber le fonctionnement de la machine, réduire sa durée de vie et conduire à 

sa destruction. Pour l'évaluation de la fiabilité et de la sécurité, les scénarios possibles de 

dysfonctionnement du système, il est nécessaire de modéliser et d'analyser le comportement 

dynamique des rotors prenant en compte ces grandes déformations. Par conséquent, le fonctionnement 

de la machine doit être assuré par la connaissance des déformations du rotor et les efforts de liaisons 

avec les composants de la machine. 

Ainsi, l'objectif de ce travail de thèse est d'étudier analytiquement et numériquement le 

comportement dynamique non-linéaire des rotors, en prenant en compte des effets significatifs comme 

les grandes déformations en flexion, les non-linéarités géométriques et le cisaillement.  

Le travail de cette thèse est divisé en trois parties principales. Dans la première partie, le principe 

de Hamilton est utilisé pour formuler les équations du mouvement qui prennent en compte un 

ensemble d’effets non-linéaires comme des déformations d'ordre supérieur en flexion et le 

cisaillement. De plus, si les supports du rotor ne permettent pas à l'arbre de se déplacer dans la 

direction axiale, il y a alors une force dynamique harmonique agissant axialement sur le rotor en 

fonctionnement. Ces modèles se composent d’équations différentielles non linéaires du deuxième 

ordre lorsque les déformations de cisaillement ne sont pas considérées. Lorsque les effets du 

cisaillement sont également pris en compte, les modèles mathématiques développés se composent 

d'équations différentielles non linéaires du quatrième ordre.  

Les deux parties suivantes sont consacrées à la résolution des différents modèles non-linéaires 

développés dans la première partie. Des méthodes analytiques et numériques sont appliquées afin de 

traiter les équations non linéaires du mouvement. Afin de résoudre le modèle complet, une méthode 

basée sur des développement asymptotiques, la méthode des échelles multiples (MEM) est appliquée. 

Il s'agit d'une méthode des perturbations qui s'est avérée très efficace pour résoudre les équations non 

linéaires de mouvement. Les courbes de réponse sont tracées pour différentes résonances possibles et 

l'effet de la non-linéarité est discuté par rapport à l'analyse linéaire. La réponse forcée du système 

provoquée par un balourd est également présentée pour plusieurs configurations du rotor. Lorsque les 

déformations de cisaillement sont prises en compte, l'analyse est effectuée pour différents élancements 

afin de mettre en évidence cet effet sur la dynamique d’un axe en rotation d’une part et d’un système 

arbre-disque d’autre part.  

Les paragraphes suivants présentent un bref résumé de chaque chapitre de la thèse. 

  

Chapitre 1 

Ce chapitre présente un état de l'art concernant le domaine de l'analyse du comportement 

dynamique des rotors. Les comportements de base sont décrits et les techniques et les outils utilisés 

pour traiter les problèmes spécifiques présentés. L'objectif et la contribution de la thèse sont discutés à 
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la lumière de l’état de l’art et des travaux de recherche disponibles à ce jour dans la littérature. Une 

introduction concernant les divers aspects importants liés aux rotors en composites est aussi exposée.  

Chapitre 2 
Ce chapitre est dédié à la modélisation mathématique pour analyser le comportement dynamique 

des rotors. Les théories des poutres de type Euler-Bernoulli et de type Timoshenko sont rappelées pour 

la modélisation de l’arbre. Le principe de Hamilton est utilisé pour formuler les équations de base du 

mouvement. Différents modèles sont proposés : 

Prise en compte des effets secondaires de flexion et d’une force axiale statique N0.  

L’influence de ces effets se caractérise par une modification de l’énergie de déformation. Ceci 

conduit aux deux équations du mouvement :  
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Prise en compte des effets dynamiques de variation de la force axiale. 

Lorsque le rotor est contraint dans son déplacement axial (conditions d’appui), la variation de 

l’effort axial a une influence sur l’énergie de déformation. Les équations du mouvement sont : 
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Prise en compte des effets provenant du cisaillement. 

Le modèle de base est repris avec la prise en compte de l’influence des termes liés à la participation 

du cisaillement. Ces modifications ont une influence dans l’énergie de déformation. Il apparait alors 

des termes non linéaires dans les deux équations différentielles du mouvement qui comportement des 

dérivées 4ème en temps. Les équations du mouvement sont : 
2
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Une introduction est faite pour l’application des ces modèles dans le cas de rotors en composite. 

Une méthode de discrétisation par éléments-finis est utilisée pour le modèle linéaire et une approche 

de type Rayleigh est utilisée pour les modèles non linéaires. 
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Chapitre 3 
Dans ce chapitre, les aspects techniques et théoriques de la prise en compte de l’influence des 

déformations d’ordre supérieur et des efforts axiaux (statique et dynamique) sont étudiés. Trois 

méthodes sont utilisées pour analyser les résultats : la méthode des échelles multiples (MEM), une 

méthode d’intégration directe pas à pas des équations du mouvement et une méthode de type 

continuation.  

Pour la MEM, les inconnues ont recherchées sous la forme de développement en séries de 

puissance. Les systèmes d’équations linéaires obtenues sont résolus ‘en cascade’. Un intérêt particulier 

est porté à l’étude autour des deux fréquences de résonance du rotor avec l’utilisation d’un paramètre 

de désaccordage σ.  

Une approche par discrétisation par éléments finis est appliquée afin de trouver la réponse 

dynamique linéaire des équations du mouvement. 

 

°°°° Méthode pas à pas                                         ___ Méthode des Echelles Multiples 

Amplitudes en fonction de la fréquence (a) 
1

Ω = ω  (b) 
2

Ω = ω  

 
Résultats obtenus par une méthode continuation (MatCont)  σ1 = 20 autour 

1
Ω = ω  

(a) Amplitudes-Fréquences (b) Plan de Phase au point A (c) Plan de Phase au point B 
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Diagrammes dans le plan de Phase et sections de Poincaré, amplitudes en fonction du temps 

pour 
1

Ω = ω  

 
Influence de la variation du balourd mu sur la réponse. (a) 

1
Ω = ω  (b) 

2
Ω = ω  

 
Effet de la variation du diamètre de l’arbre sur la réponse.  (a) 

1
Ω = ω  (b) 

2
Ω = ω  

 
Les effets des différents paramètres mécaniques (longueur, diamètre, …) sont étudiés et il apparait 

aussi que tous ces paramètres sont liés et ont une influence commune sur le comportement dynamique. 
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Chapitre 4 

Ce chapitre analyse l'effet combiné des non-linéarités et de la prise en compte  du cisaillement sur 

le comportement dynamique linéaire et non linéaire des rotors. Le modèle mathématique qui est traité 

dans ce chapitre se compose des équations différentielles du mouvement non linéaires contenant des 

dérivées d'ordre 4 par rapport au temps. La méthode des échelles multiples est appliquée directement 

pour ces équations.  

L’influence des différents paramètres sur la réponse linéaire et non linéaire du système est 

analysée. Les réponses du système en régime permanent sont calculées par les trois méthodes. Les 

résultats sont présentés graphiquement et les effets du cisaillement sur le comportement sont discutés 

en détail.  

 

Certains résultats de l'analyse linéaire et non linéaires sont présentés ci-dessous. 

 

Table. 1. Effets du cisaillement sur les 2 premières fréquences propres pour les système arbre-disque en 
fonction du « slenderness ratios (r) ».  
 

Cross-
section 

Geometry 
(meters) 

L = 2 
R1= 0.32 
R2 = 0.75 
h = 0.15 

L =1.5 
R1=0.18 
R2 = 0.50 
h = 0.10 

L =1 
R1=0.08 
R2 = 0.3 
h = 0.06 

L =1 
R1=0.06 
R2 = 0.3 
h = 0.06 

L =0.5 
R1=0.02 
R2 = .15 
h = 0.03 

Slenderness ratio (r) 0.08 0.06 0.04 0.03 0.02 

 
Solid 

Critical speeds without shear 
(rpm) 

13838 
16286 

13542 
15247 

12064 
13275 

7456 
8284 

7158 
8068 

Critical speeds with shear (rpm) 
13332 
15227 

13255 
14743 

11970 
13124 

7433.5 
8247 

7153 
8059 

percentage decrease 
3.65 % 
6.50 % 

2.34 % 
3.31 % 

0.78 % 
1.14 % 

0.30 % 
0.45 % 

0.07 % 
0.11 % 

Tube 
(e = 10-3 m) 

Critical speeds without shear 
(rpm) 

2505.6  
3200.5 

2997.4 
3618.3 

3471.7 
4017.9 

2223.4 
2563.6 

3300.6 
3791.3 

Critical speeds with shear (rpm) 
2500.8 
3184.6 

2992.5  
3605.8 

3468.1 
4010.4 

2222.4 
2561.3 

3299.8 
3789.7 

Percentage decrease 
0.19 % 
0.50 % 

0.16 % 
0.35 % 

0.10 % 
0.19 % 

0.04 % 
0.09 % 

0.02 % 
0.04 % 

 

 
Effet du ‘slenderness ratio’ (r) sur la vitesse critique d’un système arbre+disque 
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Amplitude avec prise en compte du cisaillement  sur un système arbre+disque. 

(a) Ω = ω1 (b) Ω = ω2 

 
Effet du ‘slenderness ratio’ (r) sur la réponse non linéaire d’un système arbre+disque (a) Ω = 

ω1 (b) Ω = ω2 
 

 
 

 Effet du ‘slenderness ratio’ (r) sur la réponse non linéaire d’un système arbre+disque pour Ω 
= ω1: (a) avec cisaillement (b) sans cisaillement 
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Chapitre 5 
Les conclusions générales de la thèse sont présentées dans ce chapitre. Une description du travail 

déjà effectué est dressée. En outre, sur la base des travaux effectués pour cette thèse, les perspectives 

d'avenir, sont également mentionnées dans le détail. Les principales perspectives comprennent l'étude 

du comportement dynamique non linéaire des rotors avec une sollicitation par la base de base. Cette 

dernière n’est plus fixe et peut être soumis à différents mouvements comme une rotation simple 

rotation sinusoïdal ou des déplacements quelconques. 

Cette thèse présente une élaboration détaillée de différents modèles mathématiques et leur analyse 

pour étudier le comportement dynamique non linéaire des rotors. D'abord, un état de l'art concernant 

l'analyse dynamique des rotors a été discuté et une brève présentation de divers aspects importants de 

la dynamique des rotors est présentée. De l'état de l’art il est conclu que l'étude du comportement 

dynamique des rotors a été un sujet d'importance pratique depuis de nombreuses années. Beaucoup de 

travaux ont été réalisés pour prévoir la dynamique des rotors en matériaux métalliques ou composites. 

Les travaux se poursuivent avec,  en particulier, la prise en compte des effets non linéaires. Ceci est 

l'objectif principal des travaux de la présente thèse.  

Ensuite, une modélisation mathématique détaillée est présentée pour analyser le comportement 

dynamique des rotors. Différents modèles contenant des équations différentielles non linéaires du 

mouvement ont été développés pour différentes configurations de rotor. Ces modèles se composent 

d’équations du mouvement différentielles non linéaires du second et quatrième ordre. Différents 

modèles ont été élaborés en tenant compte des différents effets importants comme des grandes 

déformations, des non-linéarités géométriques, les effets de cisaillement, des effets gyroscopiques 

d'inertie de rotation. Les modèles sont développés en utilisant le principe de Hamilton afin d'obtenir 

les équations du mouvement. Lorsque les déformations de cisaillement sont prises en compte les 

équations du mouvement développées sont composées des dérivés d'ordre 4 par rapport au temps. Une 

étude de cas pour l'analyse dynamique des rotors en composite a été réalisée et les résultats obtenus 

sont comparés aux travaux existants dans la littérature. Les résultats obtenus pour l'analyse dynamique 

des rotors en composite dans cette étude sont en accord avec ceux rapportés antérieurement dans la 

littérature. 

Les équations de mouvement développées dans la partie modélisation ont été étudiées pour décrire 

le comportement dynamique non linéaire des rotors. Tout d'abord, le comportement non linéaire de la 

dynamique des rotors provoqué par de grandes déformations et une force axiale dynamique a été 

analysé. Les études numériques ont été réalisées en utilisant trois méthodes, à savoir la méthode 

asymptotique des échelles multiples, une procédure de continuation (Matcont) et une analyse pas à pas 

dans Matlab Simulink. Par comparaisons la méthode des échelles multiples est plus efficace que les 

deux autres méthodes, toutes les solutions stables et instables peuvent être observées dans les courbes 

de résonance. Les résultats montrent que les non-linéarités ainsi que d'autres phénomènes comme les 

effets gyroscopiques, les effets d’inertie de rotation et du balourd ont une influence significative sur la 

dynamique du système tournant. L'analyse linéaire montre que la résonance existe uniquement à la 

deuxième vitesse critique, cependant que dans l'analyse non linéaire une autre résonance apparait à la 
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première vitesse critique. De plus, les effets secondaires rendent le système non linéarité de type ‘hard 

spring’.  

En l'absence de la force axiale dynamique et à des valeurs de balourd plus faibles, l'effet de 

durcissement de la raideur était visible même pour de faibles valeurs de terme de perturbation σ. 

L’utilisant de la méthode d'analyse présentée ici facilite la mise en place d’étude paramétrique. Les 

valeurs numériques des paramètres de système du rotor sont intégrées dans la réponse du calcul. 

L'effet combiné des non-linéarités et des effets de cisaillement sur le comportement linéaire et non 

linéaire dynamique des rotors a été également étudié. Le modèle mathématique qui a été traité dans ce 

cas était composé d’équations du mouvement non linéaires d’ordre 4. La méthode des échelles 

multiples a été appliquée directement aux dérivées d'ordre 4 par rapport au temps.  

Les effets du cisaillement ont été discutés en détail à la fois sur la réponse non linéaire du système 

de rotor étudie. Les résultats de l'analyse linéaire pour un arbre en rotation et un système arbre-disque, 

pour une section pleine et creuse, ont montré que la prise en compte des déformations de cisaillement 

réduit les vitesses critiques du rotor. Cette différence devient plus nette pour des valeurs plus élevées 

de ‘slenderness ratio’ r. Par rapport à un système arbre-disque les effets de cisaillement ont plus 

d'influence d’un arbre, de section pleine ou creuse. Dans l'analyse non linéaire, les courbes de réponse 

de résonance ont été tracées. Ces courbes sont de type ‘hard spring’. L'amplitude de la réponse et la 

plage sont plus étendues dans le cas de résonance correspondant à la 2ème vitesse critique du rotor. Les 

comportements dynamiques globaux des rotors peuvent être très divers selon les variations de ‘r’ et de 

la masse du balourd. Les effets des déformations de cisaillement sont plus importants pour des valeurs 

plus élevées de l'élancement.  

En conclusion, les grandes déformations et cisaillement ont un effet significatif sur le 

comportement dynamique des systèmes de rotor. Par conséquent, pour une analyse précise assurant 

une meilleure sécurité et une efficacité des systèmes de rotor, ces déformations ne peuvent être 

ignorées.  

 



 

 



 

 

Summary of the Thesis 
The objective of the present work is to investigate the nonlinear dynamic behavior of the rotor 
systems analytically and numerically, taking into account the significant effects, for example, higher 
order large deformations in bending, geometric nonlinearity and shear effects.This thesis is divided 
into two major parts. In the first part, Hamilton’s principle is used to derive the equations of motion 
which take into account various effects, for example, nonlinearity due to higher order large 
deformations in bending and shear effects. In addition, if the supports of the rotor do not allow the 
shaft to move in the axial direction, then there will be a dynamical force acting axially on the rotor 
as it operates. The mathematical models are composed of coupled nonlinear differential equations of 
the 2nd and the 4th order. 

In the second part, the resolution of various nonlinear models developed in the first part is 
addressed. Analytical and numerical methods are applied for treating the nonlinear equations of 
motion. A method based on asymptotic developments, the method of multiple scales (MMS) is used. 
The response curves are plotted for different possible resonance conditions and the effect of 
nonlinearity is discussed with respect to the linear analysis. The forced response of the system due to 
a mass unbalance is also presented for various configurations of the rotor. When shear deformations 
are taken into account, the analysis is performed for various slenderness ratios to highlight shear 
effects on the dynamics of the shaft-disk rotor systems. 

Keywords : Rotordynamics ; Nonlinear ; Higher Order Deformations ; Dynamic Axial Force ; 
Shear Effects ; Method of Multiple Scales. 

Résumé de Thèse 
L'objectif de ce travail de thèse est d'étudier analytiquement et numériquement le comportement 
dynamique non-linéaire des rotors, en prenant en compte des effets significatifs comme les grandes 
déformations en flexion, les non-linéarités géométriques et le cisaillement. Le manuscrit est divisé 
en trois parties principales. Dans la première partie, le principe de Hamilton est utilisé pour formuler 
les équations du mouvement qui prennent en compte un ensemble d’effets non-linéaires comme des 
déformations d'ordre supérieur en flexion et le cisaillement. De plus, si les supports du rotor ne 
permettent pas à l'arbre de se déplacer dans la direction axiale, il y a alors une force dynamique 
harmonique agissant axialement sur le rotor en fonctionnement. Ces modèles se composent 
d’équations différentielles non-linéaires du deuxième et du quatrième ordre. 

Les deux parties suivantes sont consacrées à la résolution des différents modèles non-linéaires 
développés dans la première partie. Des méthodes analytiques et numériques sont appliquées afin de 
traiter les équations non-linéaires du mouvement. Une méthode basée sur des développements 
asymptotiques, la méthode des échelles multiples (MEM) est utilisée. Les courbes de réponse sont 
tracées pour différentes résonances possibles et l'effet de la non-linéarité est discuté par rapport à 
l'analyse linéaire. La réponse forcée du système provoquée par un balourd est également présentée 
pour plusieurs configurations du rotor. Lorsque les déformations de cisaillement sont prises en 
compte, l'analyse est effectuée pour différents élancements afin de mettre en évidence cet effet sur la 
dynamique d’un système arbre-disque. 

Mots Clés : Dynamique des Rotors ; Non-linéaire ; Grandes Déformations ; Force Dynamique 
Axiale ; Cisaillement ; Methode des Echelles Multiples. 
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