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Nomenclature

12’ 713’

Cross sectional area of shaft

Amplitude at the equilibrium position

Geometric center of the shaft
Coefficient of damping

Position of mass unbalance on disk

Modulus of elasticity

Elastic moduli for the fiber and matrix material

Elastic moduli in the orthotropic axis

Homogenized flexural inertia

Volume fraction for the fiber and matrix material

Poisson ratio for the fiber and matrix material

Plain strain bulk moduli for the fiber and matrix material

Shear moduli for the matrix material

Shear modulus for the matrix material
Equivalent shear modulus

Equivalent shear rigidity

Viscous damping coefficient
Hysteretic damping coefficient

Wall thickness of the tube shaft

Shear Modulus

Thickness of disk

Area moment of inertia of shaft

Mass moment of inertia of disk in directign
Mass moment of inertia of disk in directign
Mass moment of inertia of disk in direction z

Shear correction factor

N.sn



Nomenclature

Length of shaft
Position of disk on shaft
Mass of disk

Mass Unbalance
Constant static axial force
Dynamic axial force

Mode number
Cross sectional radius of shaft/inner radius of disk

Outer radius of disk

Mean radius of the composite shaft
External and internal radius of layer p

Slenderness Ratio

Kinetic energy of the disk

Total kinetic energy of rotor

Kinetic energy of the shaft

Kinetic energy of the mass unbalance
Discretized displacement along axis
Discretized displacement along axis
Derivatives with respect to time

Total strain (deformation) energy of rotor
Strain (deformation) energy of shaft

Shear force along x axis
Shear force along z axis

Displacement along axis of rotor
Displacement alongaxis of rotor

Shear angle about x axis
Shear angle about z axis

Poisson ratio
Angular Speed of rotor

Angle of ply between the shaft and fiber axis

kg
Kg

N.m

N.m

N.m
N.m

m.s
N.m
N.m

rad

rad

radsec

rad



Nomenclature

p Density of the material

W1 W7 Angular frequencies of rotor

0 Detuning parameter

6, Angular displacement around x axis
Hy Angular displacement around y axis
6, Angular displacement around z axis

a,,a,,B,0, Functions of geometric and material properties of rotor

Kgin
rad.2ec
rad.gec

rad
rad

rad
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Obijective of the Thesis

Objective of the Thesis

The objective of the present work is to investigate the nonlinear dynamic behavior of the rotor
systems analytically and numerically, taking into account the significant effects, for example, higher
order large deformations in bending, geometric nonlinearity and shear effects. The work is divided
into two major parts. In the first part, various mathematical models are developed considering
different effects, for example, by considering nonlinearity due to higher order large deformations in
bending and shear effects. In addition, if the supports of the rotor do not allow the shaft to move in
the axial direction, then there will be a dynamic force acting axially on the rotor as it operates. This
force will also produce large deformations in bending. Rotor large deformation can be result of
overloading, over-speed, resonance, whirling, accident, component failure, surge, stall, off design
operation, etc and may lead to stress exceeding the safe limit, failure of machine component,
machine explosion and equipment coming apart. Each scenario can cause serious damages and
injuries. For reliability and safety assessment of all possible scenarios of rotating machine
malfunction, it is necessary to model and analyze the dynamic behavior of rotors under large
deformations. Large deflection of rotor entails large strain to sensitive multi-component structure
and may impose excessive stress to each component of rotor which could lead to damage or even
collapse. Repair processes of rotors are very expensive and time consuming. Also shut down results
in loss of plant revenue for repair period. Therefore, operation of machine must be carried out with
reasonable prediction and knowledge of deformations in rotor and forces to machine components.

Moreover, there are other secondary effects that should be considered for increasing the accuracy of
the predicted results. These include rotary inertia effects, gyroscopic effects and rotor mass
unbalance effects. These models consistbé@ler nonlinear differential equations of motion when
shear deformations are not considered. When the shear effects are also taken into account, the
developed mathematical models consist"bérler nonlinear differential equations of motion. In the
second part the challenge of solving various nonlinear models developed in the preceding part is
addressed. Analytical and numerical methods are applied in order to treat the nonlinear equations of
motion.

Hamilton’s principle [GR92] is used to formulate the equations of motion. The linear part of the
various models developed is analyzed for the first mode to obtain the natural frequencies of
vibrations. Then, in order to solve the complete model including nonlinear terms, the Method of
Multiple Scales (MMS) [NM95] is applied. This is a well known perturbation method [N93] and has
been proven to be very effective for solving nonlinear equations of motion. See, for example,
[MMPDO08], [MAGO06], [JZ98]. Resonant curves are plotted for different possible resonances and
the effect of nonlinearity is discussed in comparison to the linear analysis. The forced response of
the rotor system due to an unbalanced mass by changing different rotor parameters is also presented
and the results are plotted graphically and discussed. When shear deformations are taken into
account, the analysis is conducted for various slenderness ratios to highlight shear effects on the
dynamics of both rotating shafts and shaft-disk rotor systems.
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Thesis Organization

Thesis Organization

Chapter 1

This chapter illustrates a state of the art for the dynamic analysis of the rotors. The objective and
contribution of the thesis is discussed in the light of the bibliographic work. A brief introduction of
various important aspects of rotordynamics is discussed. The significance of considering the
nonlinearities on the dynamic behavior of rotors is discussed with references to some research work
available in the literature to date.

Chapter 2

This chapter is dedicated to the mathematical modelling for analyzing the dynamic behavior of
rotors. Various models containing nonlinear differential equations of motion are developed for
different rotor configurations. These models consist Yfahd 4 order nonlinear differential
equations of motion. Technical and theoretical aspects of taking into account various effects like
higher order large deformations, geometric nonlinearity, shear effects, gyroscopic and rotary inertia
effects are visualized and discussed. The models are developed using both the Euler-Bernoulli and
Timoshenko beam theories.

Chapter 3

This chapter analyzes some of the mathematical models developed in the preceding chapter. Effects
which give rise to nonlinearity like higher order large bending deformations and geometric
nonlinearities are combined in a single model. The model thus developed is solved using method of
multiple scales (MMS). There are two methods for the application of this method .i.e., direct method
and discretized method. The analysis procedure for both of these approaches is discussed. The
discretization approach is applied in order to find the nonlinear dynamic response of the equations of
motion which were developed for the work of this thesis. The results are obtained both analytically
and numerically. Three methods are used for analyzing the results: The method of multiple scales, a
step by step method in Matlab and Simulink and a continuation procedure called Matcont. The
results obtained by different methods are compared, graphically presented and discussed. Effects of
varying different rotor parameters on the nonlinear dynamic response of the rotor system under
investigation are also presented and discussed.

Chapter 4

This chapter focuses on the combined effect of nonlinearities and shear effects on the linear and
nonlinear dynamic behavior of the rotors. The mathematical model which is treated in this chapter
consists of % order nonlinear differential equations of motion. The method of multiple scales is
applied to the 4 order derivatives with respect to time. The nonlinear response of the system is
discussed and graphically presented as resonance curves.The influence of various parameters on the
nonlinear behavior is analyzed. The effects of shear are discussed in detail both on the linear as well
as nonlinear response of the rotor system under study.

11
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Chapter 5

12

This chapter discusses the overall conclusions of the thesis. Also, based on the work performed for
this thesis, there are future perspectives, which are also mentioned in detail. A description of the
work already carried out is given which can be extended in future. The main perspectives include
the study of nonlinear dynamic behavior of the rotors under some base movements. i.e. the supports
of the rotor are not fixed but can be subjected to different movements like simple translation, a
constant acceleration, sinusoidal translatory motion, simple rotation and sinusoidal rotation.
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Chapter 1: Identification of the Problem - State of the Art

This chapter illustrates a state of the art for the dynamic analysis of the rotors. The objective and
contribution of the thesis is discussed in the light of the bibliographic work. A brief introduction of
various important aspects of rotordynamics is discussed. The significance of considering the
nonlinearities on the dynamic behavior of rotors is discussed with references to some research work
available in the literature to date.

1.1. Introduction

Rotordynamics is a subset of vibration analysis that deals with the dynamic characteristics of
rotating machines. Over the years rotordynamics has become an important field in many engineering
applications such as jet engines, helicopter rotors, turbines, compressors and the spindles of machine
tools, etc. Rotor dynamics has a remarkable history of developments, largely due to the interplay
between its theory and its practice. The research in this field has been carried out for many years.
Dr. Ales Tondl [T65] discussed some basic problems of rotordynamics.

Rotor dynamics has been driven more by its practice than by its theory. This statement is
particularly relevant to the early history of rotor dynamics. Research on rotor dynamics spans at
least 14 decades of histofgeliability assessment and risk analysis of rotating machine rotors in
various overload and malfunction situations present challenge to engineers and operators. Among
the components of machines designed to transmit power, the most important are the shaft or shaft-
disk assemblies. The analysis in all the above mentioned works is based on linear equations of
motion. The prediction and analysis of the dynamic behavior of rotor systems are crucial because
their rotating components possess unlimited amounts of energy that can be transformed into
vibrations. However, these vibrations can disturb the performance of the rotor system and even
cause its total destruction.

The mechanical system that contains rotating elements is usually referred to as rotor system. A rotor
is a body suspended through a set of cylindricaldsror bearings that allow it to rotate freely about

an axis fixed in space. Engineering components concerned with the subject of rotor dynamics are
rotors in machines, especially of turbines, generators, motors, compressors, bluivéne like.

Rotors of machines have, while in operation, a great deal of rotational energy, and a small amount of
vibrational energy. The purpose of rotor dynamics as a subject is to keep the vibrational energy as
small as possible. In operation rotors undergo bending, axial and torsional vibrations.

Kinetic energy of these rotating elements forms an internal source of energy. This internal source of
energy can be considered infinite because due to the connection of the rotor system with the driving
system the kinetic energy accumulated in the rotating elements always exists. It means that, in
certain circumstances, unlimited amount of energy can be transferred into vibration of the rotor-
system. These vibrations disturb the technological processes the machine is design for, resulting in
shorter life-times and very often leading to its destruction. These vibrations can be developed even if
there are no external forces acting on the rotor-system. Therefore prediction and attenuation of
vibrations of the rotor - system are very important from an engineering point of view on both: the
design stage and during maintenance. Prediction of the dynamic behavior of the rotor-system
requires analysis of the mathematical model that quantitatively reflects its dynamic properties.
Computations of critical speeds and steady-state response at synchronous and subcritical resonances
become essential for system design, identification, diagnosis, and control. In the practical design of

13
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rotating machinery, it is necessary to know accurately the natural frequencies, modes and forced
responses to unbalances in complex-shaped rotor systems. The most common representative
techniques used for this purpose are TMM (Transfer Matrix Method), FEM (Finite Element
Method) and Method of Multiple Scales (MMS). TMM is particularly useful for multi-rotor-bearing
systems. See [YI01].

1.1.1. Significance of Nonlinearities in Rotordynamics

These days there is a tendency to produce machines which operate at high speed and are lightweight,
for example, the gas turbine for propulsion of an aircraft, power-plant turbine, etc. In the present
rotating machinery, non-linear vibration phenomena sometimes occur in the shrinkage fit rotor, in
the assembly rotor and in the power-plant rotor with coil. Non-linear vibration phenomena also
occur in a high polymer rotor, which is used for lightweight construction of an aircraft engine.
Vibration analysis of such rotor systems is usually performed by the finite element method (FEM)
with linear model. When a large amplitude vibration occurs, however, linearized spring and
damping coefficients cannot model the complicated non-linear rotor system. It is important to
consider the non-linear characteristics in vibration analysis and design of rotor systems. On the other
hand, it is necessary that a high-speed rotor system used for the gas turbine for propulsion of an
aircraft, power-plant turbine, etc. promptly pass a critical speed. Accordingly, the casing is often
modelled elastically to decrease the critical speed. When such a rotor-bearing-casing system
vibrates, the casing is excited and can come in contact with the rotor. Also there is a danger that the
bearing will be damaged. Therefore, the investigation of the response of a rotating machine is very
important from the viewpoint of stable operation. To construct a real mathematical model in
vibration analysis, dynamic characteristics of rotor, bearing and casing should be considered. These
conditions may cause non-linear vibrations. In the analysis of a large complex degrees of freedom
(d.o.f.) mechanical system, the substructure synthesis method (SSM) has been studied for efficient
vibration analysis, Iwatsubet al. [IKM98] proposed an approximate analytical method to analyze

the dynamic problems of a non-linear rotor-bearing-casing system using the SSM and a perturbation
method. They applied the SSM technique to reduce the overall size of the problem and obtained
approximate solutions by applying the perturbation method. Macad. [MKY99] presented an
analytical method to analyze the vibration of a non-linear rotor-bearing-casing system by applying
the perturbation method. They considered the non-linearity in the shaft and bearing part and
considered the effect of non-linear sensitivity in the subsystem. They derived the formulation of
perturbation first order under the condition that the exciting force is near the first critical frequency
of the system.

Also the increasing need of optimized performance of machines adds to the importance of
considering nonlinear effects on their dynamics. Nonlinearities in rotating machines can arise due to
many reasons. For example, clearances in a ball bearing, see, [KWCO02], oil film in a journal
bearing, clearance in a squeeze-film damper bearing, magnetic force between the rotor and stator in
a motor, contact between rotor and stator [YO1].

Chang and Cheng [CC93] analyzed the instability and nonlinear dynamics of a slender rotating shaft
with a rigid disk at the midspan.The analysis was conducted using centre manifold theory.
Nonlinearities also occur when the deflections become large, for example, a high polymer rotor used
for lightweight construction of an aircraft, turbine shaft, a composite helicopter-rotor. Almasi

presented a model for large deformations of a rotor based on virtual work theory [A09] When a
large amplitude vibration occurs, linearized spring and damping coefficients cannot model the
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complicated non-linear rotor system. Therefore, it is important to consider the non-linear
characteristics in vibration analysis and design of rotor systems. For small amplitude oscillations the
response of a deformable body can be adequately described by linear equations and boundary
conditions. However as the amplitude of oscillation increases, nonlinear effects come into play. The
source of the nonlinearities may be geometric, inertial, or material in nature. The geometric
nonlinearity may be caused by nonlinear stretching or large curvatures. Nonlinear stretching of the
midplane of a deformable body accompanies its transverse vibrations if it is supported in such a way
as to restrict movement of its ends and/or edges. This stretching leads to a nonlinear relationship
between the strain and the displacement. If the large amplitude vibrations are accompanied by large
changes in the curvature, it is necessary to employ a nonlinear relationship between the curvature
and the displacement. Nonlinear inertial effects are caused by the presence of concentrated or
distributed masses. Material nonlinearity occurs whenever the stresses are nonlinear functions of the
strains.

The modal analysis technique is one of the most valuable tools for analyzing linear structures and
from its results the response of a structure may be found by solving ordinary differential equations
with constant coefficients. The modal analysis allowed the development of reduction techniques that
are very well developed nowadays. For example, the pseudo-modal method (Lalanne and Ferraris,
1990), the phenomena causing non-linearties lead to non-linear differential equations of motion to
express the system dynamics. Various methods are available for analyzing nonlinear structures, such
as perturbation methods, harmonic balance methods, normal forms and center manifold methods.
The method of the invariant manifold approach is also well-known which brings the concept of
modal analysis to nonlinear problems. This technique has been numerically investigated for a
nonlinear rotor-bearing system by Vikkhal.see [VSTO5].

The approach in predicting dynamic behavior of rotors can be linear or nonlinear. In linear systems
the restoring force terms, damping terms, and inertia terms are represented by the first order
functions of deflection, velocity and acceleration. However, such equations of motion are
approximate expressions since deflections are considered small. But when the deflections become
large, phenomenon due to nonlinearity may occur. The importance of considering the nonlinear
and/or material constitution effects in the dynamic analysis of rotating equipment has increased in
line with current demand for accurate and optimized performance. Thus this field has become more
challenging because the analysis of the nonlinear phenomena is far more difficult in comparison to
linear analysis. In additions, since a rotor executes a whirling motion due to gyroscopic moment,
analytical methods used in the analysis of rectilinear systems cannot be applied directly to rotor
systems. In a recent special issue of the Journal of Nonlinear Dynamics on ‘Recent Advances in
Nonlinear Rotordynamics’, various topics concerning nonlinear rotordynamics have been addressed

[WI09].

Practically many resources may contribute to nonlinearity. For example, higher order large
deformations, rotor-base excitations, geometric nonlinearities, oil film in journal bearings, magnetic
bearings, clearance in a ball bearing, clearance in a squeeze-flm damper bearing, and magnetic
force between the rotor and a stator in a motor. One important source of nonlinearity comes from
material considerations. For example if the shaft of a rotor system is made up of a composite
material, it can produce vibrations of much larger amplitudes than those of metallic shafts, leading
the system to become nonlinear. In general, analysis of rotor under large deformations requires:
nonlinear complex behavior simulation, changes in stiffness due to the changes in rotor geometry,
nonlinear restraint of support and consideration of contact with the other machine components. Due
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to their many benefits composite materials are being used in various present day rotors especially in
aerospace applications where weight reduction and optimized design is of great interest.

Shabaneh and Zu [SZ03] investigated the dynamic analysis of a single-rotor shaft system with
nonlinear elastic bearings at the ends mounted on viscoelastic suspension. Timoshenko shaft model
was utilized to incorporate the flexibility of the shaft; the disk was considered to be rigid but located
at the mid-span of the shatft.

1.1.2. Contribution of the Present Work

In the present thesis the nonlinear dynamic behavior of the rotors is investigated considering the
effects like higher order large deformations in bending, geometric nonlinearity and the effects of
shear deformations. Both analytical and numerical approaches are used. Various mathematical
models incorporating different effects are developed and the detailed derivation of equations of
motion is presented and discussed. New energy expressions for the strain energy of the shaft
undergoing large bending deformations and geometric nonlinearity are developed. Rayleigh-Ritz
method, Hamilton’s principle and Lagrange equations are used to formulate the equations of motion.
The equations of motion are nonlinear differential equations. Due to the contribution of higher order
large deformations in bending the equations of motion drer@er nonlinear differential equations.
However when shear deformations are also taken into account, the developed mathematical model
consists of & order nonlinear differential equations of motion. Also if the supports of the rotor do
not allow the shaft to move in the axial direction, then a dynamic force will act on the rotor axially
[INIL96]. This force will also produce large deformations in bending. The equations of motion
developed considering this dynamic force are al%b o2der nonlinear equations of motion.

A case study for the dynamic analysis of the composite rotors is also performed. Vibration analysis
of the composite rotors with one disk considering the gyroscopic effect is presented. Campbell
diagrams are plotted for determining the critical rotor speeds. The results are compared with those
already available in the literature.

Then some of the various mathematical models developed are analyzed both analytically and
numerically. The linear part of these models developed is analyzed for the first mode to obtain the
natural frequencies of vibrations. Then, in order to solve the complete model including nonlinear
terms, MMS is applied. After the resolution of nonlinear equations of motion, resonant curves are
plotted for different possible resonances and the effect of nonlinearity is discussed in comparison to
the linear analysis. The forced response of the rotor system due to an unbalanced mass by changing
different rotor parameters is also presented and the results are plotted graphically and discussed.
When shear deformations are taken into account, the analysis is conducted for various slenderness
ratios to highlight shear effects on the dynamics of both rotating shafts and shaft-disk rotor systems.
The effects of shear were discussed in detail for both the linear as well as nonlinear response of the
rotor system. The results of the linear analysis, for a rotating shaft and a shaft-disk rotor system,
showed that with the inclusion of shear deformations the critical speeds of the rotor tend to decrease.
This difference becomes more visible for higher values of the slenderness ratio r. As compared to a
shaft-disk rotor system the shear effects have more notable influence in the case of a solid and tube
sections of the shaft.

It is presented and discussed that nonlinearities along with other phenomena like gyroscopic, rotary
inertia and mass unbalance effects significantly influence the dynamics of the rotor system. The
linear analysis showed that resonance existed only at the second critical speed, but in the nonlinear
analysis another resonance appeared at the first critical speed. Furthermore, nonlinearities caused the
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resonance curves to be of hard spring type. The combined effect of nonlinearities and shear effects
on the linear and nonlinear dynamic behavior of the rotors have also been studied.

1.2. Predictions of the Dynamic Behavior of Rotors

A rotor system consists of the basic elements like the disk, the shaft, the bearing and the seals. When
we design rotating machinery, we have to predict the dynamic behavior of the rotor in torsion and in
bending. It is necessary to find the natural frequencies. The critical speeds are determined with the
natural frequencies. See. [LF98]. The general rotor equations are derived by the means of the
following steps:

The kinetic energy of the disk and the shaft, the strain energy of the shaft and the virtual work of the
external forces are calculated for the elements of the system.

The Rayleigh-Ritz method is applied for a small number of DOF and Finite Element Method is used
for engineering applications.

1.3. Classification of Rotor Systems

A rotor system can consist of disks of various shapes, shafts of various diameters and bearings
situated at various positions. In vibration analysis the complex rotor system is simplified and a
suitable mathematical model is used. In modeling process we must know which parameters are
important for the system. Rotating machines are classified according to their characteristics as
follows:

1.3.1. Rigid Rotor:
If the deformation of the rotating shaft is negligible in the operating speed range, it is called a rigid
rotor.

1.3.2. Flexible Rotor:

If the shaft deforms appreciably at some rotational speeds in the operating speed range, it is called a
flexible rotor.

The deformation of a rotor becomes highest in the vicinity of the critical speeds. Therefore the range
of the operating speed relative to the critical speeds determines whether the rotor is rigid or flexible.
1.3.3. Lumped parameter system:

In some systems the disk is considered to be rigid and the distributed mass of an elastic shaft is
concentrated at the disk positions. Such a system is called a lumped parameter system.

1.3.4. Continuous Rotor System:

If a flexible rotor with distributed mass and stiffness is considered, this model is called a distributed
parameter system or a continuous rotor system.

1.4. Modes and Critical Speeds of Rotating Machinery

Real structures can be viewed as a series of finer and finer lumped mass approximations that
approach a continuous mass distribution. The continuous structure has an infinite number of natural
frequencies, each with its own characteristic vibration shape (mode).

17
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As an example, consider a simple beam structure supported by pin joints at each end. This structure
is simple enough that a closed-form solution to the natural frequencies and mode shapes is possible.
The first three mode shapes are shown in Fig 1.

Fig. 1. First three mode shapes of pinned-pinned beam [SPWO05]

The rotating machinery equivalent to the single spring-mass damper system is a lumped mass on a
mass less, elastic shaft. This model, historically referred to daffactt’ or ‘Laval’ model, is a

single degree of freedom system that is generally used to introduce rotor dynamic characteristics.
Swanson and Powel [SPWO05] have used a slightly more complex multi-degree of freedom model
corresponding to a physical rotor as shown in Fig 2.

Fig. 2. Basic Machine Model cross section [SPWO05]

If it is supposed that the machine is not spinning and that there are three versions of this machine
with soft, intermediate and stiff bearings. Then by performing a model test we can find a set of
natural frequencies and modes. Fig. 3 shows the first three mode shapes and frequencies for the
three bearing stiffnesses.

18
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Fig. 3. Mode shapes versus bearing stiffness [SPWO05]

Ratio of the bearing stiffness to the shatft stiffness has a significant impact on the mode shapes. For
the soft and intermediate bearings the shaft does not bend much in the lower two modes. These are
generally calledRigid Rotor’ modes

If we consider the rotating motion of the rotor now, mode shapes will look very much like as in non-
rotating case. But now they involve circular motions instead of planner motions. See Figures (4) and

(5).

Fig. 4. 1st mode shapes and frequencies in rpm of rotating shaft [SPWO05]

Fig. 5. 2" mode shapes and frequencies in rpm of rotating shaft [SPWO05]

As depicted in Fig. 5, the rotation of the shaft traces outline of a bulging cylinder. This mode,
therefore, is calledCylindrical mode’.
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As depicted in Fig. 6, the rotation of the shaft traces outline of bulging cones. This mode, therefore,
is called Conical mode’.

1.4.1. Forward and Backward whirls:

The whirling motion of the rotor can be in the same direction as the shaft rotation, ‘Forward Whirl’,
or in the opposite direction of the shaft rotation ‘Backward Whirl'. Fig. 6 shows rotor cross sections
over the course of time for both synchronous forward and synchronous backward whirl. Note that
for forward whirl, a point on the surface of the rotor moves in the same direction as the whirl. So
that a point at the outside of the rotor remains to the outside of the whirl orbit. Simultaneous forward
and backward whirling at different points of a Jeffcott rotor supported on identical journal bearings,
has been examined by Rao, Bhat and Xistris. See [RBX95].

Fig. 6. Forward and Backward Whirl [SPWO05]

The modal test can be performed to see the effects of changing shaft speeds, from non-spinning to a
high spin speed and follow the two frequencies associated with the conical mode. Fig. 7 plots the
forward and backward natural frequencies over a wide speed range. From this figure, we can see
that the frequencies of the conical modes do change over the speed range. The backward mode drops
in frequency, while the forward mode increases. The explanation for this surprising behavior is a
‘gyroscopic effect’ that occurs whenever the mode shape has an angular (conical/rocking)
component. First consider forward whirl. As shaft speed increases, the gyroscopic effects essentially
act like an increasingly stiff spring on the central disk for the rocking motion. Increasing stiffness
acts to increase the natural frequency. For backward whirl, the effect is reversed. Increasing rotor
spin speed acts to reduce the effective stiffness, thus reducing the natural frequency. The gyroscopic
terms are generally written as a skew-symmetric matrix added to the damping matrix.
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Fig. 7. Effect of operating speed ofi*datural frequencies [SPWO05]
1.4.2. Critical Speeds:

The American Petroleum Institute (API), in API publication 684 (First Edition, 1996), defines
critical speeds and resonances as follows:

A shaft rotational speed that corresponds to the peak of a noncritically damped (amplification factor

> 2.5) rotor system resonance frequency. The frequency location of the critical speed is defined as
the frequency of the peak vibration response as defined by a Bodé plot (for unbalanced excitation).
Whenever the rotor speed passes through a speed where a rotor with the appropriate unbalanced
distribution excites a corresponding damped natural frequency, and the output of a properly placed
sensor displays a distinct peak in response versus speed, the machine has passed through a critical
speed. Critical speeds could also be referred to as “peak response” speeds. As with the structural
case, one can also consider a speed (i.e., unbalance excitation frequency) that coincides with a
damped natural frequency (i.e., a resonance), generally termed “damped critical speeds.”
Numerically, these are distinct from critical speeds as defined by the API specification. For very
light damping, they are fairly close. For increasing levels of damping, they become noticeably
different.
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Fig. 8. Natural frequency versus Critical speeds [SPWO05]

If a medium stiffness centre disk model is used and an unbalance distribution that excited the first
three modes is added, the resulting vertical displacement response as a function of speed is shown in
Fig. 8. The damped natural frequency versus speed plot is called ‘Campbell Diagram’ is also shown

above in Fig. 8.

1.5. The Method of Multiple Scales

Another technique is the method of multiple scales in which solution is obtained by introducing
multiple time scales and a dimensionless parameter, $ayte analysis of nonlinear systems, there

are a lot of analyzed research works using the method of multiple scales for the single d.o.f. and
multi d.o.f of non-linear vibration system. See [N73], [M78], [HM87], [N93] and [NM95].
However, the study, which applied the method of multiple scales to the non-linear vibration analysis
of rotor system, was not reported until Moon and Kang analyzed the harmonically excited non-linear
system using this method. See [MKO03]. Their method was based on the substructure synthesis
formulation and a multiple scales procedure, which was applied to the analysis of non-linear
responses. A rotor bearing system was used. The Fig 10 shows the rotor-bearing casing system. The
rotor is supported by bearings that are fixed on the casing. The casing and the foundation are
elastically connected. The rotor has the material non-linearity. The whole system is divided into
three components. The rotor has non-linear restoring force so that it is regarded as a non-linear
component, while the casing is considered to be a linear component and the bearing is modeled as a

linear assembling component.
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Fig. 9. Rotor-bearing-casing system [MKO03]

An analytical technique was presented based on the method of multiple scales theory and the mode
superposition principle for the dynamic analysis of non-linear mechanical systems. It was shown
that by applying the method of multiple scales, the governing equations of the complex nonlinear
system attained a compact form and could be solved.

Ji and Zu. [JZ98] applied method of multiple scales for vibration analysis of rotor—shaft systems
with non-linear bearing pedestal model. This method was adopted for free vibration analysis and
forced vibration analysis of shaft rotor systems with a non-linear bearing pedestal model. The shaft
was modeled based on the Timoshenko beam theory. A typical roller bearing model was assumed
which had cubic non-linear spring and linear damping characteristics. Non-linear natural frequency
response and steady state response were obtained using the third order perturbation expansion. A
typical non-linear rotor bearing system was simulated to show the effectiveness of the analysis
method and to illustrate the non-linear effect on the free and forced vibrations of the system.

Daset al. [DRPO5] investigated large amplitude free vibration of a rotating beam with non-linear
spring and mass system as shown in Fig. 10.

w(z)

khé Q

AA W, B 1y, W, c

N
-
y

Fig. 10. Rotating Beam with Spring-Mass System [DRP05]

The equation of motion of a rotating beam with a non-linear constraint starting from transverse/axial
coupling through axial strain was formulated. The non-linear constraint appears in the boundary
condition and its mass was considered during the analysis. A non-linear solution was determined by
applying methods of multiple time-scales directly to the partial differential equations and the
boundary conditions. The influence of the location of the non-linear constraint on non-linear
frequencies was also studied.
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1.6. On the Study of Dynamic Analysis of Composite Rotors

In present days composite materials are being incorporated in rotors especially in aerospace
(helicopter) industry [B94] and automotive applications. Studies on composite shafts started in
1970’s, with two viable materials, boron/epoxy and carbon/epoxy. The two U.S. patents by Worgan
and Smith [1978] and Yates and Rezin [1979] indicate that the preliminary hurdles to a composite
driveshaft design were overcome. Hetheringtoral. [HKD90] demonstrated the feasibility of a
supercritical composite helicopter power transmission shaft. Singh and Gupta [SG95] estimated the
critical speeds and unbalance response by a layerwise theory. They have shown that a layerwise
theory gives more realistic stress field in tubular composite shaft. Detailed theoretical dynamic
analysis and rotordynamic experiments on composite shafts have been carried out by Singh [S92]. In
the early developments, composite shafts were designed to operate in the sub-critical range.
Therefore, initial studies were directed towards design requirements and in overcoming the
problems in practical application. Subsequently, in order to derive greater advantage in terms of
reduction of weight, the possibility of super-critical operations of composite shafts was explored.

There are few analytical and experimental studies on rotordynamic aspects of composite shaft
behavior. Tablel. Summarizes the various configurations used for composite shaft rotordynamic
studies. It may be noticed, from the table that the shaft geometric parameters Length/radius and
thickness/radius ratios) vary over a wide range, which might explain some of the differing
experiences of various authors.

Table. 1. Configurations used for tubular composite shaft rotordynamic analysis [SG96a]

24

A boron/ epoxy composite tail rotor driveshaft for a helicopter was described by Zinberg and
Symmonds [ZS70]. The critical speeds were determined using equivalent modulus beam theory,
assuming the shaft to be a thin walled circular tube simply supported at the ends. The shatft critical
speed was determined by extrapolation of the unbalance response curve which was obtained in the
sub-critical region.

Rotordynamic experiments on an aluminium shaft as well as on a composite shaft were conducted
by Zorzi and Giordano [ZG85].They reported excellent matching between theoretical and
experimental results. The composite shafts consisted of three different layers of graphite/epoxy and
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glass/epoxy and were filament wound. Experimental testing was carried out on all three shafts, with
and without lumped mass disks. Some important observations were made during the experimental
studies. The super-synchronous component corresponding to first critical speed became significant
when the shaft speed reached 1/2 or 1/3 of the first critical speed. It was shown that, although the
shafts were not of optimized design, a substantial payoff in terms of critical speed was achievable.
The shafts were shown to have increased sensitivity to unbalance near the critical speed. This was
determined from the large values of influence coefficients near the critical speeds and a very small
value of the final correction masses.

The critical speeds of a composite shaft including the effects of bending-twisting coupling were
obtained by Kim and Bert [KB93] .The shaft was modeled as a Bresse-Timoshenko beam. The shaft
gyroscopic effects were also included. The results compare well with Zinberg’s rotor [ZS70].

A series of studies on composite shafts were carried out by Lim and Darlow [LD86] and
Hetheringtonet al. [HKD90].They have shown the possibility of reduction of 60% in the total
system weight of the tail drive rotor. The optimized shafts were tested for rotordynamic
performance. The shafts were tested under no load condition. In order to balance the shaft up to the
second critical speed a unified balancing approach was used. An aluminium shaft was tested for
comparison purposes. A beat motion with constituent frequencies as synchronous speed and shaft
natural frequency was observed just above the first critical speed.

EL-Mahdy and Gadelrab [EG00] analyzed the free vibration of a unidirectional fiber reinforcement

composite rotor and compared it with traditional material rotors. It was observed that the composite
rotor system may give higher natural frequencies than those made of conventional materials due to
higher stiffness to mass ratio. Four composite materials were considered, graphite-epoxy, carbon-
epoxy, boron-epoxy and E-glass-epoxy, for the fabrication of the rotor system. Typical design data
of different composite materials for the 1st three natural frequencies were presented. Experimental
work has been carried out on a composite rotor made of E-glass/epoxy with fiber volume fraction

(V, =0.43) having one steel disk at the mid-span. The structure equation of motion was obtained as,

[M] #® +[K][X]=[0] (1.1)

The results for the Young's modulus and the densities of the composite mat€fiahd

p,, respectively) were written as,

'011:'0fo +,0me

(1.2)
~ 4VfVm(vf - vm)2
SN G ALAN (V,/ K, +V, /K +1/G ) (1.3)
Where,
K o= o

Bk (5E
E (1.4)

")
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Also,
E,, V,, v,, K, are the elastic modulus, volume fraction, the Poisson ratio and plane strain bulk
modulus for the fiber material, respectively.

E, V., v, K_arethe elastic modulus, volume fraction, the Poisson ratio and plane strain bulk

modulus for the matrix material, respectively.

Gm is the shear modulus for the matrix.

Fig. 11 below, shows the experimental frequency response function for rotor.

Fig. 11. Frequency Response Function (Steel) [EG99]

The natural frequencies of the rotor (shaft and disk having different materials) are given in Table 2
as a reference. It was concluded that the E-glass/Epoxy gives the lowest values of the natural
frequencies because;Hor the material was lower than that of the other composite materials.

Table. 2. The natural frequencies of rotor (Hz) with different materials

Disk Shaft Symbol h I NE
E-glass/epoxy Boron/epoxy Eg/Bor 617 401-7 840
Graphite/epoxy Boron/epoxy Gr/Bor 63-3 408-3 845
Boron/epoxy Carbon/epoxy Bor/Cr 65-5 440 9367
E-glass/epoxy Carbon/epoxy Eg/Cr 66-3 443-3 9383
Graphite/epoxy Carbon/epoxy Gr/Cr 69 450 9433
E-glass/epoxy Graphite/epoxy  Eg/Cr 70 468 995
Boron/epoxy E-glass/epoxy Bor/Eg 18-3 121-5 2567
Boron/epoxy Graphite/epoxy  Bor/Gr 68-7 465 933-3
Carbon/epoxy Boron/epoxy Cr/Bor 63-3 406-7 845
Carbon/epoxy E-glass/epoxy Cr/Eg 19-2 1237 2583
Carbon/epoxy Graphite/epoxy  Cr/Gr 71-1 473.3 998.3
Graphite/epoxy E-glass/epoxy Gr/Eg 19-3 124-3 260

Singh and Gupta [SG96] studied the effect of shear-normal coupling on rotor natural frequencies
and modal damping. They analysed the results of the Equivalent Modulus Beam (EidBfl)
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and the Layerwise Beam TheofyBT) derived from a shell theory in order to understand their
limitations and relative advantages. Formulation was outlined based on Ritz method for unbalance
response and stability analysis of a multimass composite rotor (with tubular shaft) mounted on
general eight coefficient bearings. Case studies of rotors mounted on rolling element and fluid film
bearings were presented in order to bring out the salient features of the analysis. The moduli was
expressed in terms of the tube parameters and the invariants of the material as,

_ {4(U1_U5)(U5+U3yc) _'Bczuzz}
- U, -BU,+Uy. (1.5)

Where

n
t
y, = ZT'coszui

Nt (1.6)
B, = Z?cosmi

u,u,U, U, U, are laminate invariants. Invariants are combinations of stress or strain components

that remain constant under coordinate transformation. They are important for assessing the relative
performance of composite laminates. If invariants, such as the maximum normal strain of a
laminate, are not used, the composite design may depend on the choice of the coordinate system.

Equivalent shear modulus G_ =U, -U ).

Equivalent moduli were determined, and the conventional Timoshenko beam theory was extended
in two dimensions and the additional rotor effects were included. The non-symmetric cross-coupled
effects arise from bearing stiffness, bearing damping, gyroscopic effects and hysteretic material
damping. Material damping was assumed in the form of discrete damping coefficients (viscous Cr
and hysteretic Hr) at the mass locations. The dissipation function was calculated on the basis of

effective displacementsv®( X ) and Ve(Xr) which represent the total rotor deflection minus the

deflection due to the rigid body motion. A composite rotor as per EMBT is shown in Fig. 12.

Fig. 12. A composite rotor as used by Singh and Gupta [SG96]
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Layerwise Beam Theory can produce more accurate results. This theory can be obtained by
reduction from a Layerwise shell theory by imposing the condition of zero cross sectional distortion.
See [SG95].

A relationship between circumferential displacement v and radial displacement w was used. The
resulting displacement in shell theory as used by Singh and Gupta [SG96], is

U, =u(Xcosd
pA| |
vV, =-W(¥siné

a.7)
W =W X)cosd

Fig. 13 shows the displacement field in Layerwise beam theory. These conditions can be used in
shell theory expressions and the strain and kinetic energies can be expressed in tepmsaot u
w(X) which becomes the displacement field for LBT.

Fig. 13. Displacement Field in LBT [SG96]

The displacement field was extended in two perpendicular directions and additional rotor effects
were incorporated. Rotordynamics were studied for both rolling element bearing as well as fluid
film bearing.

Stacking sequence was varied to view the difference in results. See Table.3

Table. 3. Flexural Frequencies for different stacking sequences using LBT [SG96a]

Stacking Scheme

. 1% Flexural 2" Flexural 3" Flexural

(From inner

. (Hz) (H2) (H2)

radius)

0,45,45,45 305 1134 2313
45,0,45,45 310 1152 2349
45,45,0,45 315 1170 2386
45,45,45,0 321 1180 2422

EMBT value 314 1166 2376
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Fig. 14. Flexural frequency for two layered shaft [SG96a]

The first four modal frequencies and damping ratios at different speeds of rotation, for the test rotor
supported on fluid film bearings were given for ply angles 30°,45°and 60°.Cambell plot for 30° ply
angle is given in Fig.16 as a reference.

They also carried out the experimental rotordynamics studies on two filament wound carbon/epoxy
shafts with constant winding angles (£45 and £ 60). See [SG964] .It was observed that the presence
of super synchronous components was more pronounced in the shaft having 60 fiber angle
(compared to 45 fiber angle) and was suppressed when the balance condition of the rotor improved.
The most likely cause appears to be material non-linearity derived from the matrix.

Fig. 15. Campbell diagram for 30° composite rotor on FF bearing [CLR02]

Chateletet al. [CLR0Z2] argued that analytical or numerical approaches based on beam theories can
be limited by the assumptions involved. They showed that a direct finite element discretization can
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overcome these limitations. They presented a numerical technique based on a three dimensional
finite element discretization of the assembly for the calculation of natural frequencies and mode
shapes of composite rotors. A model reduction based on the mode shapes at rest was used to
calculate the behavior of the rotating structure and the disk-shaft assembly was assumed to be
cylindrically symmetric. Their results showed the effects of possible couplings between shaft and
disk deformations.

1.7. Conclusions

30

This chapter presented a state of the art for the dynamic analysis of the rotors. The objective and
contribution of the thesis was discussed in the light of the bibliographic work. A brief introduction

of various important aspects of rotordynamics was given. The significance of considering the
nonlinearities on the dynamic behavior of rotors was discussed with references to some research
work available in the literature to date. It is concluded that the study of the dynamic behavior of
rotors has been a subject of practical importance for many years. A lot of work has been carried out
in predicting the dynamics of metallic as well as composite rotors. But this is still an ongoing
research especially when nonlinear effects are included to be investigated. In the present PhD thesis
the main emphasis will be to incorporate and further expand the effect of nonlinearities on the
dynamic behavior of rotors.
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Chapter 2: Mechanical Modeling

This chapter is dedicated to the mathematical modelling for analyzing the dynamic behavior of
rotors. Various models containing nonlinear differential equations of motion are developed for
different rotor configurations. These models consist Yfahd 4' order nonlinear differential
equations of motion. Technical and theoretical aspects of taking into account various effects like
higher order large deformations, geometric nonlinearity, shear effects, gyroscopic and rotary inertia
effects are visualized and discussed. The models are developed using both the Euler-Bernoulli and
Timoshenko beam theories.

2.1. Characterization of Rotor Elements - Classical Linear Approach

This section concerns with the theoretical approach for the characterization of different rotor
elements which include the disk, the shaft, the bearings and the mass unbalance. The geometry of
the rotor system considered for this work is shown in Fig. 16. The shaft, considered to be a beam of
circular cross section of lengthand radiusR; is modeled by its kinetic and strain energies. The

disk of external radiuR, and internal radiug, positioned at a distangesL/3, is considered to be

rigid and hence only requires kinetic energy for its characterization. The mass unbalance denoted by
m, is located at a distanak from the geometric center of the shaft.

Disque
Z /ﬁbre

Y

Fig. 16. Rotor System with shaft and disk

The basic characteristics of these elements are presented as below.
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2.1.1. Kinetic Energy of the Disk

The disk is characterized by its kinetic energy as it is assumed to be rigid. In Fig. 2.1 the frames of
reference for a disk mounted on a rotating shaft are sh&fXY2is an inertial frame and

R(x vV, 2is fixed to the disk. The reference frame fixed to the disk is related to the inertial frame of
reference through a set of three anglxesey andg, . In order to find the orientation of the disk, it is
rotated around the Z axis by an ama@intthen by an amour# around the new axis whichxs.

Finally it is rotated by an amouu&ty around the newy axis.

BO % ; r ','J'J ”
/ / 'ﬁ- ,»/ v
X, :' 1
X

X

Fig. 17. Rotating frames of a disk on a rotating flexible shaft

The instantaneous angular velocity vector of the fragyris given by,
Uy u ur r
@R, =8,2+0,x+0,y (2.1.1)
Where,

Z, x and yare the unit vectors along the respective axis.

9x,9y,éz are derivates with respect to time of angular displacements along x, y and z axis

respetively.

The kinetic energy of the disk is derived in the reference from R. Therefore the angular velocity
vector becomes,

w —éz cosg, sirg + éx cog

Ug ) é é .

wrig = @, = 0 +0;sing, (2.1.2)

w, -8 cosd. cod +8_ s
z X y X Y R
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Let uand wdenote the coordinates of ORy, the coordinate alony being constant. In addition,

the mass of the disk is1 j and its tensor of inertia in O as xyz are principal directions of inertia is,

I, O

X

110="0 1, 0 213
0 0 |

The kinetic energy of the disk can be written as,

21 2 .2\, 1 2 2 2
Ta _Emd(&' ¥ &V)+§( AR Idsz) (2.1.4)

If the disk is symmetric i.¢, =1, the anglesf and &, are small, and the angular velocity is
X dz X z

constant i.eéy =Q, the Eqg. (2.1.4) can be written as follows,

T, :%(&2+w2)+l—gx(éxz+ézz)+|dyQéZB, (2.1.5)

Where, the last term represents the gyroscopic (Coriolis) effect.

2.1.2. Kinetic Energy of the Shaft

If the kinetic energy of the disk given by Eq. (2.1.5) is extended for an element of length L, the
following expression for the kinetic energy of the disk is obtained.

S

T :-E'O?A(&Z"'WZ) dy+j-,0_2|(éxz+é22) dy+J:'2p|Qé29x dy (2.1.6)

0
Where, the first integral is the general expression for the kinetic energy of the beam in bending, the
second integral represents the secondary effect of rotatory inertia and the last integral is due to the
gyroscopic effect.
2.1.3. Strain Energy of the Shaft
The shaft is modeled as a beam of circular cross section in bending (Fig.18). The displacements in
thex, yandz directions of the beam are given below,

Uu=u,u=-#2+X , u=w
X y X z z

(2.1.7)
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A=} Plane Y- Flane

Fig. 18. Transverse vibrations (beam in bending)
The longitudinal strain (deformation) in theliyection can be shown to be,

08 08
E =-z—X+x—*% + E«92+362
4 oy oy 2 * 2°*
!
, _ (2.1.8)
g ¢, (higherorder deformation:

The strain energy can be given as,

U ‘_H(O F )dAdy (2.1.9)

By using the reIatiocryy = Egyy, the strain energy can be written as:

=_H£ ‘dAdy (2.1.10)

By using Eq. 2.1.8,

2

” ay 2HX 922 dAdy 2.1.11)

By expanding the above equation and neglecting the higher order terms, the strain energy of the
shaft can be written as,

98, ’ 206", 98 06 .
H dy dy oy y (2.1.12)
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The 3rd term in the above equation can be neglected due to the symmetry of the cross-section. Also,

IX:J’zsz, IZ:J'x2 dA 1=1 =1 (due to symmetry) andJ’ds: A is the area of the cross
A A S
section.

Therefore, Eq. (2.1.12) becomes,

ElS 08 > 96 °
= X + z dy
sl 2 ! ay ay (2113)

2.1.4. Kinetic Energy of the Mass Unbalance

The main cause of vibrations in a rotor is the excitation due to inevitable mass unbalance. Residual
unbalances occur due to many reasons for example, manufacturing error, thermal deformation and
material inhomogeneity.

G \L
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Fig. 19. Types of Mass Unbalances (a) Static (b) Dynamic

As shown in the Fig. 18vo types of unbalance exist in a rotor system sbingj of a rigid rotor and

a flexible shaft. One is static unbalance, which is state represented by a geometric eccentricity of the
center of gravity of a rotor from the centerline of the shaft. This unbalance produces a centrifugal
force proportional to the square of the rotational speed. The static unbalance can be detected without
operating the rotor because the unbalance is always directed downwards if the shaft is supported
horizontally by bearings with little friction. The other is dynamic unbalance , which is the state
represented by the angular misalignment of principal axis of moment of inertia of the rotor with
respect to the centerline of the shaft. The magnitude of the dynamic unbalance is determined by the
angle r as shown in the Fig. 19 (Ithis type of unbalance cannot be detected withdating the

shaft. As shown in the Fig. 19 (H)ese unbalances are represented by models witlarahéwo
concentrated masses, respectively.
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Fig. 20. Unbalances in a continuous rotor
For the present work the unbalance is defined by a massich is located at a distanafrom

the geometric center of the shaft. The kinetic energy of this Masscalculated as follows.

Fig. 21. Position of the Mass Unbalance on the Rotor
The mass remains in a plane perpendicular toytkexis and its coordinate along this axis is a

constant (Fig. 21). The coordinates of the mass in the frame of reféRerace,

u+d sinQt
OD=| constant (2.1.14)
w+d cosQ
Therefore,
. 40D _ 6+ dlfécosﬂ
Cd W+d QsinQ e
The kinetic energy of the mass unbalance can therefore be written as,
m
Tuz?u(&2+w2+92q2+29 dicosQ t- 2 fvg S"Q) (2.1.16)

The third term in the above equation is a constant and has no influence on the equations. The mass
unbalance is much smaller as compared to the mass of the rotor. This leads to the following equation
for the kinetic energy of the mass unbalance.

T, =mQd (&cosQ t-dvsinQ § (2.1.17)
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By adding Egs. (2.1.5), (2.1.6) and (2.1.17) the total kinetic energy of the rotor system
becomd, = T + T+ T and can be written as,

L

T :M7(&| +\&v)+ gx(éx2+éz)+l Qé@ +0 (& +\&/)dy

R

L ol ) L _ (2.1.18)
+J0-7( +éz ) dy+Jo'2,o|QéZt9X dy+ mQ q(&JcoQ t -dwsi® )

Since the strain energy of the rotor is contributed by only the shaft which is flexible, the total strain
energy of the rotor system can now be writtet/gs=U %which gives,

2 2

EI 08 06
U X+ z dy
R 2 oy ay (2.1.19)

2.2. Characterization of Shaft Elements — Nonlinear Approach

In section 2.1.3, the nonlinear terms in Eq. (2.1.8) were neglected while passing from Eq. (2.1.11) to
Eq. (2.1.12). But if nonlinear terms are also retained then the following equation for the strain
energy is obtained.

2

> 08 , 06 08 08 1 1 1
£ z _6x + X 6Z —-2XZ ax _6Z+ZH ZB +290
y y y y g ‘ g
Uslz—-”' dAdy 221
2 08 96 1 , (2.2.1)

0h p P4y 8% 12,14
oy dGy 2 * 2 +*

The 3* and 7' terms in the above equation disappear due to the symmetry of the cross-section.
Therefore, this equation is now reduced to give the following equation.

2

2 96, ? 6. © 1 1 1
2 +1p%42p+10% 7 dad
H dy a4z y (2.2.2)

Also, | :J’zsz, L :J’x2 dA 1=1 = (due to symmetry) an(]'ds: A is the area of the cross
A A S
section.

Therefore, Eq. (2.2.2) becomes,

L 2 2

El 06 96 EA a 1. 2.2
=— X 4 —Z  dy+— 9 9 +-0°6°d

s1 2_[ dy dy e % TG W (2.2.3)

2.3. Application of the Rayleigh-Ritz Method

Rayleigh’s method approximates a continuous system by an equivalent single degree of freedom
system (SDOF) via assuming a single deformation shape. A continuous system is reduced to a
discrete multi degree of freedom system (MDOF). The number of DOF is equal to the number of
Ritz modes chosen. This method is applied in the present work as follows. The displacements in the
x and z directions can be expressed as,
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u(y, )= f(y) U(9
w(y, )= f(y)W(D (2.3.1)

The angular displacements can be approximated as,

g =ow/dy= f'(YyW)=d y W X

6, =-9u/dy=-f(YU()=-o Y U} (2.3.2)
06 1oy = f"(y)W()=Hy W}
96,13y =—-f"(y)U() = -h( y) U(D (2.3.3)

Where the prime denotes the derivative with respegt tsing the above expressions, the kinetic
energy of the rotor systef, in Eq. (2.1.18) can now be written in a compact form as below,

T = %bl(@h \A/Z)—Qg@vx()+ ma ¢ ¢)( Los + bsiro )

o (2.3.4)
Where,
L L
b, =My, 1701) + 15,87 ) +pA[ 17 G )Xly +01[ g (y)dy (2.3.5)
0 0
L
2 2
b, =159 (1) + 2,0"[9 v dy (2.3.6)
0
The strain energy of the rotor in Eq. (2.1.19) can be written in a compact form as,
LTI
Up=5 (U () +wW (t)) (2.3.7)
Where,
L
k=EI[h’(y)d
: ! (y)dy (2.3.8)

2.4. Derivation of Equations of Motion for Different Rotor Configurations

Various rotor configurations have been studied and investigated. Different effects have been
considered. In the following sections, some mathematical models for different rotor configurations
and effects are presented.

From now on, in order to avoid the complications of the mathematical expressions, the discretized
displacementd) (t) and W(t) will be written asU andW respectively.

2.4.1. Linear Model

L

Using the Hamilton principle j’sJ(TR -U,) dt=0, we can write
tl

t, t t

J'J(TR -U_)dt= jaTR dt- JiduR dt=0 2.4.0)
tl tl

1
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The two terms in the above equation are treated one by one. The first term gives

b b

[orat= [ SrowsTEobe koW d 042

Different terms in the above equation can be treated as follows,

t t
2 aT 2
J'—RéWdt =- J'Q b & W
J ow J

(2.4.3)
2ot ot _ b
—Rafdt = —RowW AWdt
{ oW oW . I ot aw
oT L, b (2.4.4)
= —Row W mQ )sinQ {4 Wd
e~ [ailawe e g Qsne)
Similarly, the second term in the Eq. (2.4.1) gives,
F it Ré\N dt
(2.4.5)
The two terms in the above equation can be written as,
t t
2 aU 2
RAUdt = U Jdudt
{au J 4 (2.4.6)
tZ tZ
R =
owdt I kKW owd (2.4.7)

ow
i

Finally, the equations of motion for the linear undamped system can be written by collecting the
terms of the typedUdt and oWdiin Egs. (2.4.3) , (2.4.4) , (2.4.5) , (2.4.6) and (2.4.7).
Collection all the terms of the typbdt, the following equations is obtained,
t2
- 2 (b6 -abw+ ma Q{§- kUJUdEO
[ (B8 -QoW+ ma ¢ (peose §- k

4

(2.4.8)

By simplifying and re-arranging, the differential equation describing the discretized displacement in
the x-direction is obtained as,

b@- QbW+ kU= mQ® ¢ { )sinQ (2.4.9)

In the same manner collecting all the terms of thedyai, the following equation is obtained,
t
. 0 .
gl E(bl\/&/— mQ q f( )sinQ ) -Q h k- k W3 Wdt 0

4

(2.4.10)
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By simplifying and re-arranging, the following equation for the discretized displacement in the z-
direction is obtained as,

b W+Q b b+ kw= mQ® ¢ { )cos0 (2.4.11)

2.4.2. Nonlinear Model considering the Effect of Higher Order large
Deformations and a Static Axial Force (N)

The following expression for the strain energy of the shaft taking into account higher order large
deformations is derived in Appendix A.

" El 26, * “EA 1 1
= v g2 —9 9 +20%6° d
J;2 dy I 2 x %z Y (2.4.12)

If there exists a constant force, khere is another contribution to the strain energy above [LF98],

N L
Yy, :7,([(‘9 *, ) (2.4.13)

Total strain energy of the rottf . now becomes,

UR:USPLUN) (2.4.14)
“EI 06 ° 06 " EA Lga,lga, 1
:J'_ X 4 —z J'— ~0'+=0*+=0%" dy
I2 oy dy 2 ax a4z 2’z
N, (2.4.15)
—o((6?+6])d
w3 [ler+e )

After application of Rayleigh Ritz method the strain energy of the rotor given by Eq. (2.4.15) can be
written in a compact form as follows,

k 2 2 k 4 4 2 N
=_1 _2 _ 0
U 2(U +W)+8(U +W +2U VV2)+ ) Iﬁo(Lf+ V\?) (2.4.16)

Where,

P e A Ckef 2
kl-E|!h<y)dy, lg—Ef! g( y dy; k—j g yc (2.4.17)

Hamilton principle is then applied on the kinetic and strain energies of the rotor given by

L

Egs. (2.3.4) and (2.4.17) in the foran5(TR -U,) dt=0

4

Therefore,

t t L

5(T-U )dt= 3T, dt- (U, dt=0
-l- ( R F?) t 11. R t Tl- R t

1

(2.4.18)
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The two terms in the above equation are treated separately, the first term gives,

b b

[orat= [ SrowsTEobe koW d 0410)

Different terms in the above equations can be given as,

% a7 2
Ia—v\javvdt =- J'Q b & W

(2.4.20)
29T aT o
—R 34dt = dudt
I o4 I ot aL&
ar, t, b (2.4.21)
= —R&U (b8 -Qbw+ mQ ¢ f})cos )5 Ud
U I
AT, R
T it = AWt
.[ oW a\ﬁv f ot aw
ot . (2.4.22)
= —RoW W mQ sinQ 16 Wd
W .[ il ¢ (psing |
The 2%term in Eq. (2.4.18) can be expanded as follows,
R
oW dt (2.4.23)
The two terms in the above equation give,
ZaURdudt klU+ Ig(U3+UVV2)+ Nk U oud
{ ouU I No (2.4.24)
And
2% et =( |5w+— g(W+ Gw+ Ng wo w
{ oW I (2.4.25)

By collecting the terms of typ@Udt in Egs. (2.4.20), (2.4.21), (2.4.22), (2.4.24) and (2.4.25),
following equation is obtained.

t %(b@—Qb2W+ mQ g { J)cosQ § - kU

AUdt=0
I 1, (u +uw) Nk, U t (2.4.26)

By simplifying and re-arranging the above equation,
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0@ - Qb+ lﬁU+— o[ U+ uwi)+ iy U= ne’ g @ )sing (2.4.27)

Similarly, by collecting the terms of the typ®Vdt in Egs. (2.4.20), (2.4.21), (2.4.22), (2.4.24) and
(2.4.25), the following equation is obtained,

: —(b\/&/ mQ d f())sinQ §-Q hb- Kk w
Jwdt=0
,tl: 1, (vv +uw) Nk W (2.4.28)

By simplifying and re-arranging the above equation,

bW+ 0 b B kwe k(W Gy Nk W @7 d(ptosD

(2.4.29)
Equations (2.4.55) and (2.4.57) can be further written as,
1 3 2 2 i
$-QaW+a U +§'81(U +UW )+ Nk, U+ ch=mQ"d f(1)sinQt (2.4.30)
W+oald+aw +%,31(W3+WU2)+ N, K, W+ o= Q" ¢ { oo | (2.4.31)

The above two equations ar¥ arder nonlinear differential eqguations of motion, where,

a,=b,/b,a,=k/b, B =k/b, m=m/t (2.4.32)
And cis a damping term. In the above equation, different constants are the functions of the
properties of the material and the geometry of the rotor.

2.4.3. Nonlinear Model considering the Effect of a Dynamic Axial Force

Two types of continuous rotor models are shown in Fig. 22. If the supports are such that they allow
the shaft to shift in the axial direction as in Fig. 22 (a), the restoring force of the shaft has linear
spring characteristics. On the other hand if the supports are fixed as shown in 2.5Fig. 22 (b), the
shaft elongates as it deflects and acquires nonlinear spring characteristics of a hard spring type. This
type of nonlinearity is called geometric nonlinearity. This nonlinearity becomes more effective when
the shaft deflection becomes large.

(a) (b)

Fig. 22. Continuous rotor models (a) No axial force (b) Dynamic Axial force

An axial forceN, will act dynamically on the shaft. This force leads to another contribution to the
strain energy of the shaft given by,
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N 2 2
=(_A
Yo=]7 (Hx *9, )dy (2.4.33)

O%l_

Where N, can be derived as follows. In the Fig. 23 , a sliced element of the shaft is shown. The

length of the element @y and it is assumed that it deflects during the whirling motion of the rotor.
The geometric center M shifts from the position (0, 0, y) to (X, y, z).

dy

] M p
| t
2
o a—MJral;dy
&y
NA
du
&
X
() (b)

Fig. 23. Dynamic Axial Force (a) Sliced Element (b) Deflection Curve
The deflections along the coordinate axes are representegviaydwrespectively. The point P
shifts from position(a, b, y)to (X, Yp, Z). This deflection is represented mé,vpand

W respectively.

From Fig. 23 we have,

_ _ _ ou ow
Up—U,Wp—W,\{)—V_aa—y ba—y (2434)

Also point (a, y, + dy, b, separated from point P by dy, shifts b(y, Vo and W, which are given
approximately by,

B aupd B avp q _ awp d
uQ—uP+— y,\é_\é+W y\g_ W+6_y ‘

oy (2.4.35)

Therefore after deformation, the length of the sliced element at poiRtcan be written as,
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v, ° ou _° 0 ?
drz\/ dy+a—de + —Fdy + M dy
y

oy ay
P P 2 P 2 (2.4.36)
2 oy 2 oy
.oV Jdu ow, . .
Where the COFIdItIOHa—P << a—F’ :6_P and the approximation/1+A 01+A /2 (forA<<1) are
y y y
used.
Using Egs. (2.4.34) and (2.4.36) the stridifa, b) in the y-direction is expressed as,
2 2 2 2
D:dr_dy:ﬂ/—aﬂ—buv.kl @ + ﬂv
dy oy 0y oy 2 0y oy (2.4.37)

Using Hooke’s law the stress at point PaissO E . Integrating it over the entire cross section with

area A, the expression for the axial dynamic force can be written as,

ov 1 ou ? ow ?
N, = [0dA= EA-+=EA — + —
A ./[ ay 2 ay oy (2.4.38)

Integrating the above expression over the direction y considering that the axiaNfgsceonstant
in this direction, the following expression is obtained.
1 1 °oaw’

y
ou
tn i Mo, e
VIV =AM 2,! ay oy Y (2.4.39)

Applying the condition that the deflection is zeryatO, namely(0) = 0, the constar@ =0. The
condition that/(L) =0, the expression for the axial force is,

y 2 2
N[ U, Wty
A ) 2L oy oy (2.4.40)
Which can be further written as,
" EA
_(EA[,2 2
NA‘JZL (Hx +9, ) dy (2.4.41)
Substituting the above equation in Eq. (2.4.33),
LL EA
U = —(492+¢92 d (92+92 d 2.4.42
52'!:04LX Z)yx Z)y ( )

Therefore, the strain energy of the rotor given by Eq. (2.4.33) now bed¢gret)  +U , and is
given by,
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LEI6920¢92 EA

Vel 2oy T oy II_

0

(070 avlo+0/)ay @449

After the application of Rayleigh-Ritz method as in section 2.3 the strain energy of the rotor given
by Eq. (2.4.43) can be written in the compact form as follows,

Uy =%(U2 +W2)+%(U4 W 20w (2.4.49)

Where,

L

kleljo’hz(y)dy ; ——J’J’ h( Y dyd (2.4.45)

The kinetic energy of the rotor in the compact form is the same as given by Eq. (2.3.4).

Hamilton’s principle is then applied on the kinetic and strain energies of the rotor given by

b

Egs. (2.3.4) and (2.4.44), in the forJ%ﬁ(TR -U,)dt=0

t

Therefore,

b t L

5(T.-U )dt= 3T, dt- (U, dt=0
J.(R R)t-t[.RttIRt

) (2.4.46)
The two terms in the above equation are treated separately, the first term gives,
t t
’ 2 0T oT
T dt= 2 ow+ 2 sb+ e gl o
I R I ow oy oW (2.4.47)
Different terms in the above equations can be given as,
t2 aT tZ
__ R - - ]
{aw Swdt JQQ@HWd (2.4.48)
29T oT, = 29 OT,
Raddt = —R3U dudt
I oy It I o v
6T t, (2.4.49)
= —RJ (b8 -QbW+ mQ ¢ f(})cos )5 Ud
Fu I
k oT,
e sgdt = e sw AWt
I oW av?v .[ ot av&/
oT t, 3 (2.4.50)
= —RW -[=(pW- mQ d { J)sinQ {5 wd
aw . _J.at(q u g Kl) )
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The 2%term in Eq. (2.4.46) can be expanded as follows,
t2 t2
oU _dt=
R
]

The two terms in the above equation give,

Ye su+ Ve sw
U oW (2.4.51)

t

t2
Ye auat = [ kU+k (U +uw?) sud
tl

) au (2.4.52)
t26URaWdt —tz W+ (V\7+ ljw o Wc
{ oW - { KW+ K (2.4.53)

By collecting the terms of typéUdtin Egs. (2.4.48) , (2.4.49) , (2.4.50) , (2.4.52) and (2.4.53) ,

_j %(bngj—QbZW+ mO g { peos §- kU- k[ U+ uvi) & udeo (2.4.54)

By simplifying and re-arranging the above equation,

b8-Qb W+ KU+ k[ U'+ UW)= no’ d € )sin0 (2.4.55)

Similarly, by collecting the terms of the ty@&Vvdtin Egs. (2.4.48) , (2.4.49) , (2.4.50) , (2.4.52) and
(2.4.53) , the following equation is obtained,

b %(bl\/&/— mQq f( sinQ ) -Q - kw

|

oWdt=0

- (W3 . UZW) (2.4.56)
By simplifying and re-arranging the above equation,
bl\ﬂ@l+ Qh &+ K W+ I§( w+ U V)/z un02 d (flcosQ (2.4.57)
Equations (2.4.55) and (2.4.57) can be further written as,
$-0a\W +a U +,B2(U3 +UW2) +ch=mQ’d f(1)sinQt (2.4.59)
W+Qad+aw +,B2(W3 + WUZ) + o= m0° ¢ { )cosQ 1 (2.4.59)

The above two equations ar& @rder nonlinear differential equations of motion for the analysis of
the rotor system considering the effect of a dynamic axial force.

where,

a,=b,/b, a,=k/b, B,=k/b, m=m/ (2.4.60)

And cis a damping term
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2.5. Derivation of Equations of Motion Taking into Account the Shear
Effects.

Classical beam theories neglect shear contribution to deformations. Timoshenko Beam theory takes
into account this contribution. Since Timosheska/ork on bending of beams and Reissner and
Mindlin’s works in shear deformation of plates, shear deformability has been a well succeeded
research area. Timoshenko proposed a shear correction factor, k. This factor is a compatibility
criterion between real shear stress and distortion of beams.

Timoshenko introduces this factor in beam theory, in order to account for warping and distortion of
transverse (or as referred in classical literature: cross) section. Cowper [C66] studied the influence
of shear coefficient, obtained by means of three dimensional elasticity equations. Levinson and
Cook, [LC83I], [LC83II], proposed new formulations to shear coefficient, considering that plane
sections, normal to beam longitudinal axis, in the non deformed configuration, becomes curved and
deformed, after bending.

If the shear modulus of the beam material approaches infinity - and thus the beam becomes rigid in
shear - and if rotational inertia effects are neglected, Timoshenko beam theory converges towards
ordinary beam theory.

The Timoshenko beam theory includes the effects of shear deformatiomtang inertia on the
vibrations of slender beams. The theooytains a shear coefficient which has been the subject of
much previous research.

In the present work, the problem of including the shear effects is addressed by two ways. The first
one is to develop the energy equations of different rotor components and then the Hamilton’s
Principle is applied directly without first discretizing the displacements and rotations. The equations
of motion thus obtained can be used to apply the direct method of multiple scales explained in
Chapter 3.

In the 2 method the energy equations are first discretized using Rayleigh Ritz method and then
Lagrange equations are applied. The equations of motion thus obtained are treated using the
discretization method of multiple scales presented in Chapter 3.

a7
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(@) ZIT i

} Y

Transverse vibrations (beam in bending

i A

(b)

Contribution of shear deformations

'

a_w
ay
(C) /_
B, 6, - a_w iy

Fig. 24. Description of shear angle and shear force

2.5.1. Nonlinear Model with Shear Effects and Higher Order Deformations
(Direct Method)

In order to take into account the effect of shear deformations, the shaft of the rotor is modeled as a
Timoshenko beam of circular cross section. The deformation energy of thé&Jrotes derived as

follows.

Referring to Fig. 25, C is the geometric centre of the beam , B(x , z) is an arbitrary point on the
cross section of the beam , E is the Young's modulus of the materiahd o are strains and
stresses , and u and w are displacements of C w.r.t x and z axis. The axis along the rotor centre line

isy.
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\ i

x u*

Fig. 25. Coordinates of the geometric centre C and an arbitrary point B on the circular beam.

Displacements:

u =u
=- +
U =-2,+% (2.5.1)
u =w
Deformations:
e =-22%.,0% | Lpz 1y
b oy oy 2 * 27
l
: . (2.5.2)
g & (higherorder deformation
The shear deformations along y-z and y-x planes are given as,
_ ow
yyz - _9X+E
y =8 +6_u (2.5.3)
yX z ay
The strain energy can be given as:
L
U -1 (a E 4T +7 )dAd
1 2J-J- wWow T v Ty y (2.5.9)
0A

Using the relatlonsvyy =Ee Ifyzd3= kAG/,, J’ryxdsz KAG/,,

Where, G is the shear modulus and k is the shear correction factor.
Thus strain energy can be written as:
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L L
1
U= J’ I Ee, £, dAdy+ J’ ( kKAG, v+ KAG ¥ yx) d (2.5.5)
0 O
U __J’J’g “dAdy+ kAq(y ty, ) (2.5.6)
U _E Z+ H + = 9 dAd
J-J- 2% 27 Y
, o (2.5.7)
+_J’ -6, +_ + 6 +— dy
Z 9y
2 00 ° 00 06 1 1 1
) ZZ ax 2 az _ aX a_z Z x4+2024+_29><2022
0,= EJ'J' y y y oy dAdy
20A_226X+ Z 16’)(2 Ezz
5 oy 2 5 (2.5.8)
+kAGI g 40, gL 0u g
X9y z oy

The 3*and 7' term in the above equation can be erased due to symmetry of the cross-section.

A A

Also | =I22dA oo =Ix2 dA , I=1 =1 (due to symmetry) anquz A=area of the
S

cross section.
Thus the above equation becomes,

2

_El . 96 ° 06 EA:

1 4 1 4 1, 2.2
X+ 2 dy+—[ =6 +=-6 +-6 6 d
1 2 ay ay y 2_! 4% 4% 2x 2 y
KAG " ow au’ (25.9)
+ -0 +— + @+ dy
X ay z ay

0

If there exists a constant force,khere is another contribution to the strain energy above [LF98].
L

U, = [N(& +2, ) ay

J (2.5.10)

The total strain energy of the rotor considering shear effects and higher order deformations, thus
becomes,

UR :U1+U2
L 2 2 L
EI 08 00z EA 1 4 1 4 1 2. 2
U =[— X4+ — dy + [— =6 +=-6 +=-676  d
RSJ;2 dy ay Y Jo’z ax 7% TN W (2.5.11)
L 2 2 L
+J’kA—G 6+ L 540 dy J’—O(H +6, )dy
) 2 oy Z ooy ) 2
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The kinetic energy of the rotor is given as,

T =T +T+T
R™ Ta” s (2.5.12)

WhereT,, T_ andT are given by Egs. (2.1.5), (2.1.6) and (2.1.17) respectively.

b

The Hamilton’s principle is applied a ,J(TR -URS) dt = 0. Therefore it can be written as,
4

b b t b b

o(T,-U_)dt=[oT d oTd oTdt-[oU_dt= C
J-(R Rs)tJ-dt+Ist+JutJl‘lést

(2.5.13)
The 4 different terms in the above equation are treated one by on€' tEhe bives,
t t
2 20T oT oT
OT,dt=[ —2ob+—S5w+—2 o8 + 5é+ 59 dt
JoTaat=[ 5 o 5w 08 " x é 6, (2.5.14)

Various terms in Eq. (2.5.14) can be expanded as follows,

oT oT
—d 56 dt = d Ju J’ —d Sudt
! od dt ok
t2
= —J’Md&idudt
2 aT k aT,
d S\ dt = —dd owdt
I oW v I it oW
t2
= —J'Md\?&dwdt
26T oT b 24 9T
408 dt = 230, d 36 dt
I 8 aé I dt 94,
=- Ildﬁxde dt
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t

{%5&Zdt— d59 Id dzaedt
t,
B +1,06 )50t
{(d“ )
26 t

J’—do*e dt —J’l Q6806 dt

The Z%term in Eq. (2.5.13) gives,

"2 2 5T oT oT
6Tdt=J' S 581+ —3 oW Saé + Séé +—=30  dt
tf ) o ow aéx 0

b

Various terms in the above equation can be expanded as follows,

tz t

oT
sgidt = —sou -[ —°

0d o6 Jdt ou
. u

2

Lot

- Ao udyd
J’Op udydt

= S ou
od
0 tl

b

oT
J. SJ\&/dt_ Sow —[—
oW . Jdt aw
b
Lot

S O - Akowdyd
Ia WH Iop wayat

t

t
29T 2 oT
—d8 dt = 8549 —= o9 dt
Ia éx Id a8,

t2
JL’ le%ﬁdydt
2T
J'a—éscfézdt— 859 J’d Saadt

L tz tL

J’a} 39, H (018 +201 Q4 ) sodydt

t LL

oT
s 30 di=([201Q8 56 dyd
IFr xtﬂp 06 dydt
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(2.5.15)

(2.5.16)

(2.5.17)
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Similarly the ¥ term in Eq. (2.5.13) gives,

J'éTdtJ' ”5&|+ ua&v dt

(2.5.18)
The 2 terms in the above equation can be treated as below,
2T T _ % =24 aT -
LG dt= —4Ju —J’— —u 5udt:J'szdsinQﬁudt
! 0d o dt ol .
b a1 aT tZ t oT, t, (2.5.19)
U dt= —U J’ owdt = J'm Q% dcosQ v w
! oW aw dt oW
Similarly the 4 term in Eq. (2.5.13) gives,
ouU dt= 5+ 5+6U50+6U56? dt
S u S W S S
I I o * o068 * (2.5.20)
The various terms in the above equation can be written as below,
g 2t 9 9
I s Sudt =J’ 2 kac o +X sudydt
ou ay ooy
29U e 0
I s Swdt =I 2 KAG -6+ Swdydt
ow ay
2
I 3 dt = I I o * o0 dydt
ow
-kAG -6 +— +N_6,
oy
o = 39, dit = EI o +E—Ae3+—ee +kAG 6.+ +N_g o0 dydt
I I I 2 dy (2.5.21)

The equations of motion can be written by collecting the terms of thedtypedw , o6 , d6,in the

above system of equations.

The terms of the typéu give,

t, t, L t, LL

J'M tioudt— J'J',oA&&Eudydﬁ-J' n’ €inQ & ud{J'J'— kAG +g—; dudydt=0
-ti' M - j'pA&&dy+ mQ &inQ t—}— kAGE +g—; dyod udtO
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2

L L
0 du _ 2, .
de +pA'[“dy + kAG.! Eal.ka_yz dy= muQ dsinQ't (2.5.22)

The terms of the typéw give,
t, L t LL

_{MdWJWdt—-[‘!pWWdyd&i' qQZ dosQ & Wd{_!.,!aiy kAG—HX+g—V;// J  wdydto

L

tz L
J' —Md\W—J',oA&&/dy+ mQ’ tosQ t—J’i kKAG-8 Lo dy owdt=0
t 0 ’ an toy

L L 2
0 aw _ 2
M o +pA{\?&dy + kAG{ a—yé’x +6_y2 dy=m Q" dcosQt (2.5.23)

The terms of the typé6, give,

t t LL LL

- tI |, B o6 dt+ J?I Q20 g0 dt - J: { p! 8 56 dydt+ J: .J)'Zp 106 .06 dydt-

LL 2
| B0 +E20% ER 0% kag -0+ +Ng a9 dydt=0
a2 T Foy T %

L L
81,08 by + [20 ady
0

(2.5.24)

L 2
| e1-2,6,+500 +506,67 -kAG —ax+3—‘;v +N g dy=0

oy 2 -

The terms of the typé6, give,

t, LL
—((1 8 +1 Q8 |oodt-[[(o & +20 Q8 )oodydt -
.tll-( dx z+ dy x) z .tll-.[(p z+ P x) zy

Ll 2
26,+2202+ 007+ kac ez+‘;—“ +N.8 0B dydt=0
y

Jl"([ Ela—yzt9z+7

X Z

L L
-1 8- dynéx—[p By -‘[2;1 Qédy
L 2 (2.5.25)
- £ 0 9+E20°+ERgp24 kaG 6+ +N 6 dy=0
] ay z 2 z 2 ZX z ay 07z
Egs. (2.5.22),(2.5.23), (2.5.24) and (2.5.25) are the equations of motion for the rotor system,
considering shear effects and higher order deformations.
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2.5.2. Nonlinear Model with Shear Effects and Higher Order Deformations
(Discretized Method)

The strain energy given by Eq. (2.4.12) is referred.When shear deformation is not taken into account

the angular displacemer®t and 6, are equal to(;—W and (;_u respectively SeeFig. 24 (b),but
y y
when shear deformation is also considered (Timoshenko beam) the angular displacements change

due to the contribution of the shear angleFig. 24(c).Shear angle and shear forces are explained
in Y-Z plane in Fig. 24.

The angular displacements can be expressed in the form of linear displacement using the following
relations,

ow ou
6 =— - , 8 =——+
)Y A Z oy A, (2.5.26)
Application of the Newton’s 2nd law to Fig. 24 gives,
o’u ov
PAdY-Z =V b Vg Y

ot oy
aZW 3 oV (2527)

PAdy—-=-V + V +—X dy
a X X ay

t2

This is solved for\/X andVZ to give,
o°u
V_ = pA[—-dy
z I ot”
8°w (2.5.28)
V. =pAl—-dy
X IatZ
The relation between shear force and shear angle is

V. =BKAG, V = B KAG
(TPKAGL N =P, (2.5.29)

Where,k is shear correction factor.

Therefore the angular displacements, using Egs. (2.5.26) and (2.5.29) can be given as,

2w,
8 = a_W —M
X oy kG
(2.5.30)

z

2] :_6_u+—I atz
oy kG

The displacements(y, t) andw(y, t) are discretized as follows,
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u(y,t) = U(t)sin?

w(y,t) = W(t)sin? (2.5.31)

WhereU andW are generalized independent coordinates and n represents the number of the mode
studied. In the present work n = 1.

Equation (2.5.30) is substituted in Egs. (2.1.18) and (2.4.12) and Eq. (2.5.31) is used in the resulting
equations.

Lagrange equations are applied in the following form,

d oT, 9T, au

- - R 4+ sl =0
dt ad(t) od(t) au(t) (2.5.32)
d oT, 9T, v,
dt aW()  oW() aw() (2.5.33)

Finally, the equations of motion obtained are given as below,

B-0q W+a, §-0a W+a U+cW=(-3/2)8, W&+ 0WH
2 2 2 3 2
+3U°%) - (3/2)8,, UW" + w8+ 08 - (3748, U +UW") (2.5.34)

~(3/16)8, & + & )+ mQ” sinat

WeQa, Bra W+Qa, §+a W+ cb=(-3/2)8 U W+2wU8
+aw W) - (3/2)8, W& + 8K + avl’ - (3748, W’ +wU’)

(2.5.35)
~(3/16)3, (4’ + W8 )+ mQ’ cont

Egs. (2.5.34) and (2.5.35) are th @rder nonlinear differential equations of motion obtained by
considering the shear effects and higher order deformations.

Where,
0’2120’2/0’1, 0’3120’3/0’1, a41:a4/a 1’a 5120’ éa r
ﬂllzﬁl/al'ﬂ21:ﬁ2/al’ﬂ31:ﬁga1'ﬁ4l:ﬁlal'

(2.5.36)
m =+/3m,q/2a,

Wherea,..a,and S,..3, are functions of geometric and material properties of the rotor, given as
a,=p2pIL+1 )/KG ,a,=p(4oIL +Idy)/4<G ,
a ;= pEITT 12kGL+ (1 77° + 20 AL + 3M_ L + 20177 L) /AL ,
a, =1 (4pIL +1 dy)/4|_2 ,a,=El7 12° B, = pAET |8LKG, (2.5.37)
B,=p’EALISK'G", B,= EAT /AL ,B,=p EAL/ R Gr’

The linear free dynamic behavior of the rotor system can be investigated by taking into account only
the linear portion of these equations given below,
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@&—QUZI\W+a31@—Qa4l\ﬁV+USlU=O (2.5.38)

W+Qa21@+a31\%’+§2a41@l+a51w=0 (2.5.39)

The above two equations can be compared with the equations of motion of a continuous rotor
derived by Eshleman and Eubanks [EEG9] also reproduced in the book of Yamamoto and Ishida
[YI01].

2.5.3. Nonlinear Model with Shear Effects and a Dynamic Axial Force

In the following a nonlinear mathematical model is developed taking into account the combined
effects of shear deformations and a dynamic axial force.

The deformation energy of the rotor is given by,

L 2 2 L 2 2
06
URS:J.% ax . 96z dy+ KAG "%“LM . HZ+QJ dy
) y oy ) 2 oy ay
L 2.5.40
ﬁ[ﬂﬁ(02+62)dy #540
) 2 X z

L
Where N, is an axial force given byJ'E_'LA‘(gX2 + ,922) dy
0

Therefore, EqQ. (2.5.40) now becomes,

L 2 2 L
U :J'ﬂ 96, +@ dy+J’ﬁ3 -9+M+ 9+a—u dy +
Rs } 2 oy ay ) 2 Xy Z 9y
EAL L
=A 92+9ﬂd 92+9ﬁd d
S| [(67+67)av(e +e.)ay ay
0 0
The above equation can be further written as,
L 2 2 L 2 2
08
UR :J‘ﬂ X 4 @ dy+J'ﬂ; -6 +ﬂv + @ +6_u dy
s ) 2 oy ay ) 2 X oy z oy
L L L (2.5.41)
EA 2 2 2 2 2 2
+=2r 97((a +9)d +a’((e +9)d d
o O [le 7o )dve (67 +6])ay dy
0 0 0
The kinetic energy of the rotor is given as,
Te=Ta* T* T, (2.5.42)

WhereT,, T, andT are given by Egs. (2.1.5), (2.1.6) and (2.1.17) respectively.

b

The Hamilton’s principle is applied a ,cS(TR -URS) dt = 0. Therefore it can be written as,
4
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b b t b b

J.a-(TR-URS) dt= [oT,dt+ [STdt+ [STdt- [S4, di= (2.5.43)

The 4 different terms in the above equation are treated one by oné! fEhe jives,

oT,
38 + 5é+ d5.9 dt

J'éT dt= J' Ty o+ d 5\W+ aéx é ) (2.5.44)

Various terms in Eq. (2.5.44) can be calculated as follows,

20T oT
—d. 56 dt = d Ju J’ —4 Sudt
! o0d dt od

b

= —J’Md&idudt

2 aT k aT,
4o dt = 214w
[ ou I at oW

t

= —J’M Eowdt

owdt

t

26T oT 2 24 aT
38 dt = —200, Ty 36 dt
Iaé aé Id 08,

=- I 1, 8 36 dt

t

oT
J’—ddé dt = d5.9 I d 30 dt
08, dt 08

t

5B, +1,Q8 )aodt
{( )

t,

N

(2.5.45)

J’Z 456, dt _J’l Q48 59 dt

The 2%term in Eq. (2.5.43) gives,

t, t,

oT oT
ST dt= 55&|+—5&v+ 5é +—5é + 59 dt
I I oW 08 28, 8, (2.5.46)

Various terms in the above equation can be calculated as follows,
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t t

2 9T 2 2
S50 dt = SCRRAF
b dt ob
[ [}
t2 tzL
= Sou - AO udydt
TR e
0 t, [
t t t,
2 9T oT 2
SoWdt = s d
tlaw aw d aw
L Lot
= sow - [ [ oAROWdydt
5 Jy v
Jé dt = T, 30 dt
Iaé Id 8
Lot tz E
= s - | 8 56 dydt
Ik Hp 5.8y
0 1,0
2 aT aT
— 508 dt = 555 36 dt
{aéz ? Id aé

b

L tz t, L

oT,
= (=238, —[[(018 +201Q8 )o6dydt
foge ([l

t2|_

oT
s 30 dt=[[201Q8 56 dyd
[ xtj'lp 96 dyclt

Similarly the & term in Eq. (2.5.43) gives,

J'éTdtJ' ”5&|+ ua&v dt

The 2 terms in the above equation can be treated as below,

t

29T T _ " oT

UG dt= —Y g —J’i ~u Judt:J'szdsinQ ¥ udt
) o6 ot dt ou u
t t t t
29T aT 2

U Sk dt= — J’d owdt= J'mQ dcosQ ¥ wdi
t16\&/ aw d a&v

t, b L

Similarly the 4 term in Eq. (2.5.43) gives,

(2.5.47)

(2.5.48)

(2.5.49)
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au au
&_dt= Rsa 40 Rsa +Crs gy + Srs gy it
.[ .[ u " ag e, O (2.5.50)

X
The various terms in the above equation can be written as below,

2 aU 2
I Rs Sudt = I J’i kAG 8 +%Y  sudyd
du an Z oy

L L

Ia:\;sawdt - Hi KAG -8 +‘;_‘)’/V Swdydt

. L g9 9 6 -kAG -0 +g—‘;v

2 Ves 3 dit = F v 56 dydt

, (2.5.51)

Iaex H E* ej’(e +6 )dy+(9 +6, )JL'de

. ZLEI626+kAG¢9+g—u

Iaau;s o0, dt = J’ I 2 ’ ] 38, dydt

L 0% +=2 g I( 8] )dy+(67+6)) [osy

0

Collecting the terms of the typ&u in Eqgs. (2.5.45), (2.5.47), (2.5.49) and (2.5.51),

t LL t L

. 9 0 _
—JMd&wudt—J’Jo’pAwﬁudydaJ’ 0’ €inQ & ud{J'JO'a—y kAG92+£ Judydt=0

t, L L
J’ M - J’pN&dy+ mQ &inQ t—J’— kAGE, L dyd udto
[ %

L
6 u

Collecting the terms of the typ@win Egs. (2.5.45), (2.5.47), (2.5.49) and (2.5.51),

t LL t LL

J'M ®owdt— J'IpA&deyd&J' 10? dosQ d Wd’fJ'J'i KAG-6 +gl; 5 wdydo

tg L L

[ M- IpA&&/dy+ mQ’ ctosq + I— KAG-0 +‘;_W dy Swdt=0
y

4

L L
0 o°w
M W +pA[tdy + kAG‘!' —a—ye +V dy=mQ”dcosQ t (2.5.53)

Collecting the terms of the typ@0, in Egs. (2.5.45), (2.5.47), (2.5.49) and (2.5.51),
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t t Z|_ 2|_

J'I @59dt+J’| 0d 59 dt - J’J'plg‘dé?ddeJ’J'ZpIQéJHdydt—

LL 2

0 ow
EI—H KAG H+— —67 o +6? dy+{€& +6? éd 567d dt=0
I Y| flo7+0)ov+(e )I v B
_|dX3lx+ | dyQéZ—J'pi g;gy + !'Z,d Qégy
0
L 2 (2.5.54)
e % g kac -g +2 +— eJ‘(a +6, )dy+ (67+6, ) gdy dy=0
oy’ oy
Collecting the terms of the typd0, in Egs. (2.5.45), (2.5.47), (2.5.49) and (2.5.51),
t L
—I( o841 ,00 )aodt —H(p|§z+2p| Q8 ) aBgdydt
t t 0
el 5 du . EA p
EI—H+kAG¢9+—+—¢9 0°+6°%|dy+|o +9 ad Jﬁddto
yl| O L |
L L
-1 8- dyQéx—J',d &y —{Zp Qédy
0
L 2 (2.5.55)
e g+kac g+% +E ) (e +6,)dy+(8 +6,) ady dy=0
oy’ dy

Egs. (2.5.52), (2.5.53), (2.5.54) and (2.5.55) are the equations of motion of the rotor system
considering the combined effects of shear deformations and a dynamic axial force.

2.6. A Case Study for the Dynamic Analysis of Composite Rotors
Composite materials have become very attractive for rotating systems due to their high strength to
weight ratio. Behavior of the rotating system can be predetermined in terms of critical speeds by
changing arrangements of different composite layers. Some studies on the dynamic behaviour of
composite rotors have been performed by different authors, most of them being recent. In the
following paragraphs we briefly discuss some aspects of dynamic analysis of a composite rotor that
we have studied.

The shaft shown consists of different plies of composite material. Each ply has a orthotropic
mechanical behavior.
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Fig. 26. Shaft of a composite rotor

Fig. 27. Plan of Pli

2.6.1. Finite Element Analysis of the composite shaft

The generalized Hook's Law gives the following relation between stress strain fields.

£ 1/E, -v,IE, O

g, = -v,lE, 1IE, 0

v, 0 0 16, 261)
y23 - 1/623 0 T23

yl3 ) 0 1/613 T13

Where E, and E, are Young's moduli in the orthotropic axi,, , G, andG,, are transversal

shear moduli and,,, v,, are Poisson’s ratios.Each ply has a plane stres@rgiat®.

First we develop the elastic and damping properties of the orthotropic ply. Each ply ‘p’ is at an angle
?, between the shaft and fibre axis. By using a transfer matrix [T] the equations of the ply can be

written in global frame (x, y, and z).
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¢ < -2cs
2 2
T[=s ¢ 2cs
[ ] (2.6.2)
2 2
sc —-sc (C- 9)
Where,c:cos(qop ),S= sin@p )
The compliance matrix including the coupling terms can be expressed as follows.
£ 1/E, —UyX/Ey ’7xy/ny
e = -u I|E 1/E U 1G
y Xy X y Xy Xy
Y nlE, ,uy/Ey 1/GXy (2.6.3)
yXZ 1/GXZ O TXZ
Yye 0 1/GyZ T,

2.6.2. Energy Equations for the composite shaft

If the stacking sequence of the shaft is symmetric, it can be modelled using classical beam theory
with a constant circular cross section. We use SHBT (Simplified Homogenized Beam Theory) as
used by Sinet al.[SCBO08].

The continuous displacement field across the rotor cross section can be written as,

u(xy.2=uy
{ux vdb= y(xy3=-a( ¥ &() (2.6
u,(xy.2=wy
The elastic energy of the rotor and the wirtual work can be written as,
1 L
— p p p
U _E‘([_]S’(Jyygyy-l- Ty)/ yz+r y}{ y)dey (2.6.5)
1 L
- p *p *p
oW = 2_!'_!(0yy5£yy+ TV Ty y)dey (2.6.6)

Where,
S is the cross section of the shaft.

a;)y, r;are normal cross-section stresses and transverse shear stressesryg\mm ryfare

associated normal and shear stresses linked to damping.

The elastic energy can be written as a function of the displacement field components.

63



Chapter 2: Mechanical Modeling

L 2 2
06 06
:% J'E)’/J 7 Fvli ¢ —z  dSdy
0S y
L 2 (2.6.7)
+1J’J’ c* -9+ +c" 0+  gsdy
1) yz X ay yX ay
The virtual work can be written as a function of the stress field components,
L., 08 b 008 308
éWzIJ’E -z—*+ x—% —-z—*+ x—% dSd
11 y oy ay oy oy
L
* ok 00w
+(f G> -6 +— -6 +—— dsd
.!:S i X0y oy y (2.6.8)
L
+ I G -4+ 500U dsdy
1) yX z ay z ay

By evaluating the integrals over the cross section the above two egns can be written as,

2

L 2
06 06
Uzlj' El X +El Z dy
20 x oy ooy
L 2 2 (2.6.9)
lres -0+ ses 0+ dsdy
20 yz X ay yX z ay
.08 000 .08 006
éWzJ' El = “+El z d
) dy 9y oy dy
L
* oW 00w
+({GS -6 +— -0 +—— d
.! e Ty TN T ey W (2.6.10)
L
+J’ GS - +@ b 1% +@ dy
l yX z ay z ay
Where,
El = EI, = El are homogenized flexural inertias. They are obtained as,
- PP
El= ;Ev ! (2.6.11)
Where,
N
El =ZE;’|"
p:
P 1 (2.6.12)

SRR e s )
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4 (2.6.13)

Where,

| * is the cross section inertlap and Rp—l are external and internal radius of layer p.

GS = GS = Gtare shear rigidities such that
yX yz

N
GS= kpZ G S (2.6.14)

The advantage of this theory is that it can be applied to classic beam elements.

In order to validate our results we have studied the shaft initially studied by Zinberg and Symmonds
[ZS70] then by Gubran and Gupta [GGO05] and recently by &irmb. [SCBO08].All calculations are
performed in Matlab.

2.6.3. Properties of Composite Rotor Shaft

Length of the shaft L =2.47 m

Mean Radius Rm = 0.0635 m

Wall Thickness T = 1.321x10n

Material Densityp = 1967 Kg/m

E11=210GPa , E22=24.1 GPa, G12=6.9 GPa0.36

Stacking Sequence =[90, 45, -45, (0)6, 90] 10 layers of equal thickness

Homogenized Inertia and Shear Rigidity:
Using Egs. (2.6.11) and (2.6.14),

El = 4.5846 x 16
GS =1.1569 x 10

2.6.4. Finite Elements Formulation

We have divided the length of the shaft into 4 no. of elements of equal length.Each element is
considered to be a beam element with 2 nodes.There are 4 degrees of freedom at each node,two
displacements and two rotations.
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Fig. 28. Finite Element of the Beam
The finite element configuration thus becomes:

Total no. of elements = 4

Total no. of nodes =5

DOFs per node = 4

DOF per element = 08

Total DOF of the system = 20
Order of element matrices = 8 x 8

Order of Global system matrices = 20 x 20

2.6.5. Boundary conditions:
Displacement along direction X and Z is blocked such that:

Atnodel uy=0,w=0
Atnode5 wp=0,w=0

Order of Global system matrices after applying boundary conditions= 16 x 16

2.6.6. Calculation of Element Matrices

Shear Correction Factor for the composite shaft of circular cross-seétier0-4983

Quantity for Shear Effects= 12E] 5
k.GSL
G
4
s=(R+7)'- ¢
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2.6.6.1.Element Mass Matrix [S07]

M, 0 0 M, M,
M, -M, 0
M, 0
M = pL Mg My
840( 1+a)* M,
Sym
Where,
M = S(312+588a+280 + £ 5"
L
M =-SL(aa+77a+358) - 1242208
M =SL (8+14a+74) + 112+140a+280p
M,=S(108+252a+1404 - F5°
L
M,=-SL (6+14a+74) - | 28+140a-140}
M ,,=SL(26+63a+358) - 124208
2.6.6.2.Element Stiffness Matrix [SO7]
2 0 0 -8 -12
2 6 0 0
(4+a)® 0O 0
2
K= 3EI (4+a)L” 6L
(1+a) 12
Sym

0 0 M,
n My
M29 M24
0 M24
0 -M, (2.6.15)
Ml M7
M6
M6
0 0 -8
-12 & 0
-a (2-a)® o
0 0 (2-a)l
0 0 & (2.6.16)
12 -6 0
(4+a)® 0O
(4+a)L®
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2.6.6.3.Element Gyroscopic Matrix [SO7]

0 G, G, 0 0 -G, G 0
0 G, G, 0 G,
GQ G4 O 31
= ol 0 0 G, -G, O
30L(1+a) 0 G, -G, (2.6.17)
Anti— Sym 0 -G,
GQ
0
Where,
G2=-72
G4 = -L(6-30a)

68

G9 = -1 (8+10a+20a
G31 = 1> (2+10a-10a

The equation of motion for free vibration of un-damped gyroscopic system is given as,

[MIO& + [G (QI{ X+ [KI{X} =0 (2.6.18)

Where,
[M] is a symmetric mass matrix.

[G (Q)] is antisymmetric gyroscopic matrix.It depends on the speed of rofation

[K] is the elastic stiffness matrix, normally symmetric.

2.6.7. Modal Analysis (Finding natural frequencies and mode shapes)

The modes are characterized by eigenvalues and eigenvectors of the system. The eigenvalues are
related to natural frequencies and eigenvectors to the mode shapes of the system.

First we have studied the system with no disk and without gyroscopic effect. The governing
differential equation of motion is described by th&dder matrix equation:

[MIO& + [K] {X} = 0 (2.6.19)

The form of the solution assumed is,

XOp={ ge ™ (2.6.20)



Chapter 2: Mechanical Modeling

Where,

{ @i} is the mode shape and rad/sec is the corresponding natural frequency of vibration.
Subtituting Eq. (2.6.20) int Eq. (2.6.19),

2 it _
(w MI+[KD{ ¢¢ =0 (2.6.21)

The above equation has a nontrivial solutior(-(fo2 [M] + [K]) is singular i.e. its determinant is
zero. In other words there exist n numbewafhich satisfy,

' M1+ [KD) |= {4, IMI + [KD) [ 0 (2.6.22)

Where A = af are the eigen values of the system.

o _ @
Frequencies in Hz are given kFy:Z—'
m

The calculations were performed using both Matlab and RotoriNB##e results obtained were
compared with the published work of different auth@ise results obtained in the present work are
in close agreement with the results obtained by Sino and Baranger [SCBO08].

2.6.8. Matlab Results

Without considering shear effecti.e.a=0

F1=96 Hz, F3 =322.2 Hz, S'ritical Speed = 5760 rpm

Considering shear effect

F1=905Hz, F2=383Hz, Sritical Speed = 5430 rpm

! ROTORINSA’ 3.4.2-Laboratoire de Mécanique des Contacts et des Structures (LaMCoS) INSA Lyon
Batiment Jean d'Alembert 18-20, Rue des sciences 69621 VILLEURBANNE CEDEX France.
http://rotorinsa.insa-lyon.fr
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2.6.9. RotorINSA Results

ROTORINSA

composite shaft

des of medal basis

342 DEMOD

21312000

Mode 1

Fraquency 0063 Hz

taboratoire de Vcanius des Contacts et des Stuctures - INSA Ly - LIVR 5258 CARS - (7

Fig. 29. 1°'Mode (F1=90.5 Hz)

ROTORINSA

composite shaft

des of modal basis

Mode 3

\.2.42 DEMD

2132000

Fraquency 37230 M2

taboratoire de Mécanigue des Contacts et des Stractures - INSA Lyon - UM 5258 GRS - (7

Fig. 30. 3“ Mode (F1= 322.3 Hz)

ROTORINSA

composite shaft

Campbell diagram

“.3.4.2 DEWMO

2132009

CAMP1 Forward whirl

Backuward whin

E
Unstable

E
Unstable

FRED (HZ)
100.00

a0.00

e0.00

70.00

60.00

50.00

a0.00

20.00

20.00

10.00

| Speed

1000, 2000, 3000 2000 s000.

Laborateive de Mécanigue des Contacts s des Strustures - JNSA Lyon - LIV S258 GRS - (8

Pm)
8000,

Fig. 31. Campbell Diagram
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Table. 4. A comparison of critical speeds obtained by different authors

Investigator Critical Speed (rpm) Method
Zimberg and Symmonds .
(Theoretical) 5780 tEhtjetg;/alent modulus beam
[zS7q y
Zlmb(eEr;_szzﬂﬁqZ)]/glr;’nonds 5500 Forced vibration response_far
(ZS70 the shaft supported on rolling
element bearing conditions
Singh and Gupta 5620 Layerwise  beam theory
[SG964 including shear effect
Chen and Pung 5714 Timoshenko beam theory and
[CP9§ FEM
Layerwise  beam  theory
Gubran and Gupta 5555 without including poisson
[GGOT 5552 effect Modified equivalent
modulus beam theory without
including poisons effect
Simplified homogenized
beam theory without
Sino and Baranger 5767 including shear effect
[SCBO0§ 5435 Simplified homogenized
beam theory including shear
effect
Simplified homogenized
beam theory without
The results obtained in the 5760 including shear effect
present work. 5430 Simplified homogenized
beam theory including shear
effect
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2.6.10. Free Vibration Analysis of a Composite Rotor with one Disk considering
gyroscopic effect

Now we consider a rotor with a composite shaft as above and a steel disk. We have also taken into

account the gyroscopic effect.

2.6.10.1. Properties of the steel disk
Internal Radius R1 = Rm+T/2 m

Outer Radius R2 =0.15m
Thickness h =0.05m
Density p, = 7800 Kg/ni

Young’'s Modulus E = 200 GPa

Poisson’s coefficient = 0.30

Location of the disk on the shaftd L/4

Where,

Rm is the mean radius of the composite shaft.

2.6.10.2. Element Matrices for the Disk

M, 0
0 M,

MD="% o I 0 (2.6.23)
o 0 o0 I,
00 0 O
00 0 0

D=0 0 o Ly (2.6.24)
001 0

Where,
MD is the element mass matrix for the disk

GD is the element gyroscopic matrix for the disk
= f the disk =77(R’
M, = Mass of the dis —H(RZ—I{) hp

M, (3R +3§+h)

|, = Mass moment of Inertia in principal x direction=

v, (R + §)

I = Mass moment of Inertia in principal y dlrectlon—-—
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2.6.10.3. Modal Analysis

The mass and gyroscopic elements of the disk are added in node 2 of the global mass and
gyroscopic matrices of the composite shaft. The matrix equation of motion for free vibration of un-
damped gyroscopic system is given as Eq. (2.6.18) which Sader differential equation.Since

we are also considering gyroscopic effect , therefore we have to treat the system of equations with
three matrices.Matlab does not provide a solver for an eigenvalues problem with more than 2
matrices. We will therefore re-write Eq. (2.6.18) in first order form.

Let Y be defined as,

X
Y= X (2.6.25)
Therefore,
%
¥= % (2.6.26)

Equation (2.6.18) can be written as,

M) = - [G ( Q1 { X} - [K] {X}

(2.6.27)
[K] {8= [K] {x} (2.6.28)
The above two equations can be re-written as a single set of equations as:
[M] [o] % _ -[c] -[K] %
= (2.6.29)
[0 [xk] % [K] [o] X
Using Y and ¥ , the above equations it can be written as,
[A] ¥ =[B]Y (2.6.30)
Where,
[M] [0]
Al = (2.6.31)
A% 0 k]
-[6] -[K]
Bl = (2.6.32)
B
Now we write the solution of the Eq. (2.6.18) as,
)
X =Re (2.6.33)

Therefore,
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AR =
v="0 " =Y¢"
B (2.6.34)
¥=AY¢"
Where,
7= AR
R (2.6.35)
Equation (2.6.30) becomes,
A[AY=[8Y (2.6.36)

The above equation is a standard 2-matrix eigenvalue problem that matlab can solve.

2.6.10.4. Matlab Procedure

The global matrice§M] , [K] and[G] are formed for the composite shaft. The dimensions of the

matrices being 20 x 20.
Mass and Gyroscopic matrices for the disk are added at node 2 of miiikasd [G] .
Boundary conditions are applied and the order of the new matrices is 16 x 16.

These matrices are now used to form the matr[e§sand[B] given above.
Eigenvalue problem given by Eq. (2.6.36) is solved\asD = eig(B, A.

Where,

~(2N)

v =1y Y2 Y
The diagonal values of [D] are eigenvalues for the original problem.
The eigenvalues are of the forma; j
Where, @ is the frequency of free vibration. The last N positions of the jth columnbafe the '
eigenvectory” .
2.6.10.5. Results

Without considering shear effecti.e.a=0
F1=16.8Hz , F2=184Hz , *ritical Speed = 1008 rpm

Considering shear effect
F1=153Hz , F2=153.7Hz ,*Qritical Speed = 918 rpm
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2.6.10.6. RotorINSA Results:

ROTORIMNSA compasite shaft bades of moc basis

Moz 1

. 34.2 DEMO 2162008 Frequency 15,31 He

Laboralaire de Mécanique des Confacls ef s Struclures - INSY Lyon - UM 5258 CNRS - (F)

Fig. 32. 1°'Mode (F1=15.3 Hz)

ROTORINSA composite shaft Modes of modal basis

Mode 3

¥.34.2DEMO 2462009

Freguency 15376 Hz

Labovatoire de Wécanique des Contacts et des Stractures - INSA Lyon - UMR 5259 CNRS- (F)

Fig. 33. 3“ Mode (F1=153.7 Hz)
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Fig. 34. Campbell Diagram for the Analysis of Gyroscopic System
(a) General View (b) Zoomed in View
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2.7. Conclusions

This chapter presented the detailed mathematical modelling for analyzing the dynamic behavior of
rotors. Various models containing nonlinear differential equations of motion were developed for
different rotor configurations. These models consisted"bfagd 4" order nonlinear differential
equations of motion. Different models and hence different equations of motions were developed
taking into account the various significant effects like higher order large deformations, geometric
nonlinearity, shear effects, gyroscopic and rotary inertia effects are visualized and discussed. The
models are developed using both the Euler Bernoulli and Timoshenko beam theories. Rayleigh-Ritz
method and Hamilton’s principle were used in order to obtain the equations of motion. When shear
deformations are taken into account the developed equations of motion consfStoofed
derivatives with respect to time as in Egs. (2.5.34) and (2.5.35). A case study for the dynamic
analysis of the composite rotors was conducted and the results obtained were compared to the works
already available in the literature. The results obtained in this study were in close agreement with
those previously reported in the literature.

77



[This page intentionally left blank]

78



Chapter 3: Nonlinear Analysis for Higher Order Large Deformations in Bending and a Dynamic Axial Force

Chapter 3: Nonlinear Analysis for Higher Order Large
Deformations in Bending and a Dynamic Axial Force

In this chapter, a detailed analysis of the equations of motion developed in section 2.4.2 and 2.4.3 of
chapter 2 is performed. The mathematical models developed in these two sections are combined to
form the equations of motion to be analyzed in this chapter.

3.1. Equations of Motion
The new deformation energy of the rotor to study the effect of higher order large deformations and a
dynamic axial force is formed by combining Egs. (2.4.16) and (2.4.44). This gives the following
equation for the deformation energy of the rotor.

U =%(U2+W2)+%(U4+\N4+2U2W2)+%( U+ w+2 lf\/\?)

R

N 3.1.1
+Moy (U7 +WD) (3.1.1)

No static force will be applied therefore, substitutMg= 0 in the above equation,

UR=%(U2+W2)+%(U4+\N4+2U2W2)+%( U+ w+2 lf\/\f)

(3.1.2)

The kinetic energy of the rotor is given as in Eq. (2.3.4).

L t b

Hamilton’s principle is applied a J(TR —UR) dtz‘l'c)"l'R dt—J'JUR dt=0
t1 tl

4

Where the first term is obtained from Egs. (2.4.20), (2.4.21) and (2.4.22) i.e.

zéTRdtz—j'sz@dwdt—j'%( b-Q pWr 0 d @ )cox o Udk

. # u

b | (3.1.3)
IE(blw_ mQ q f |)sinQ § 5 Wt

t t
i > oU ou
The 2%term is expanded afdU _dt = ROU +—R
P ‘f R J U W

oW dt

Using Eg. (3.1.2), the two terms in the above equation can be written as,

t t
ZaU 2 1
Jl’aURéudt = [ KU+ Sk+k (Usuw) oud

4

(3.1.4)

b

J'(Zl\JA;*éWdt :j' k W+ %|§+ K (V\7+ lﬁv)/ J Wi
4 4

(3.1.5)
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The equations of motion can be written by collecting the terms of & and oWdiin Egs.
(3.1.3), (3.1.4) and (3.1.5).

The terms of the typdUdt give,

9
. E(bllﬁ—szW+ mQ ¢ f Jcos - kU
—J’ AUdt=0

1 3 2 (3.1.6)
L - Skt (Uteuw?)
Similarly, the terms of the typéwdtgive,
0 .
: a(bl\/&/— mQd f())sinQ §-Q hb- k w
o ! oWdt=0 (3.1.7)
2 1.
L Sktk (\N3+U M
Egs. (3.1.6) and (3.1.7) can be written in a simplified form as,
1 _ 2 .
b@-QpW+ KU+ S+ k (U+ UW)= qo” d ¢ )sin 618
bW+ 0 b+ kwe 2+ k(W G W= po’ d(fcoso
1 2 U R (3.1.9)
Finally, the two equations of motion are,
1 .
$-QaW+au+ ~p+5, (u3+uw’-’)+c@ = m@*d f(1)sinQt (3.1.10)
1
W+Qad+aw+ SB+B, (W3 +WU2)+c\ﬂv= mQ”d f( |)cosQt (3.1.11)
Where,
a =b,/b,a,=k/b,B=K/b,B,=k{b, m=m/ I (3.1.12)

3.2. Linear Analysis ( Classical Approach)

The rotor was studied as a free undamped linear system to determine the natural frequencies of
vibration and the Campbell diagram given in Fig. 35 (a) was plotted to determine the critical speeds.
The two critical speeds; andw, were found to be 2520 rpm (42 Hz) and 3089 rpm (51.5 Hz). The
response due to mass unbalance is given in Fig. 35 (b) which shows that there is a peak in the
amplitude corresponding to th& 2ritical speed.
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Frequency (rpm)
Amplitude (m)

2520 rpm

3089 rpm

)- Angular Speed (rpimn)

- Angular Speed (rpm)
(a) (b}

Fig. 35. (a) Campbell Diagram, (b) Mass Unbalance Response

3.3. Nonlinear Analysis (General Introduction)

The theoretical analysis of the nonlinear forced system is performed using MMS which has been
proven very effective in the analysis of such systems [SMB10, HK09, MMPDO08 and YKIIO7]. The
method can be applied by two different approaches. The first one is called direct method in which
the partial differential equations of motion as developed in section 2.4.1 are attacked directly along
with the boundary conditions. See for example the reference [SZ03] where the authors have used
this approach for the nonlinear dynamic analysis of a rotor shaft system with viscoelastically
supported bearings. The other approach is called discretized method. In this method the equations of
motion are first discretized using, for example, Rayleigh Ritz Method as in section 2.4.2 of chapter
2. The general method of application of these two approaches is given as below.

3.3.1. Direct Method
In this method the partial differential equations and boundary conditions are attacked directly. The
method is briefly recalled in the following example. Consider the following partial differential
equation.
dw_o'w ., ow
ot ot (3.3.1)

And the associated boundary conditions are,

w=0at x=0

2
a_zv+ala_w+a w+a W +a W =-FcosQt at x= 1 (3.3.2)
ot oo % 2 ®

Where,
— 2 —
ao—k+3a3b ,02—30'3b (3.3.3)

We treat this for the case of primary resonance by using the method of multiple scales.
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In the case of primary resonance the excitation frequédcis near one of the linear natural
frequencies of the system. To determine an approximation to the solution of Egs. (3.3.1) through
(3.3.3), a small dimensionless measuref the amplitude ofw is introduced as a bookkeeping
device. Using the method of multiple scales an approximation solution is sought in the following
form,

W te)=ew(x T, T D)+ w(xT, T Dve W xF T3 (3.3.4)

WhereT =t is a fast time scale characterizing changes occurring at the frequeranesv. Also

T, =¢tandT, = £°t are slow time scales characterizing the modulation of the amplitude and phase
due to damping, nonlinearity and possible resonances and e O(1) ass — 0. The damping

pand excitation amplitudeé- are ordered such a way that they balance the nonlinearity. Thus
following scaling is used.

3
= , F=¢cF
K=& ¢ (3.3.5)
The first and second time derivatives can be expressed as,

0 2

—=D +&D, +&D_+...

ot 0 1 2 (3.3.6)
o =D’+2eD D . +£°(D°+2D D )+
F_ 0 ebb) £ ( 1 0 2) (3.3.7)

Where, D_ :6%' Substituting Eqgs. (3.3.4) through (3.3.7) into Egs. (3.3.1) through (3.3.3) and

equating coefficients of like powers ef, following two systems are obtained,

Ordere :
0’ )
—1=D'w
PN 01 (3.3.8)
w =0at x=0 (3.3.9)
2 ow, B _
DoW1+a1§+a1W1_o at x=1 (3.3.10)
Orders’:
62W2 2
5 DoWa 2D, b, (3.3.11)
w,=0atx=0 (3.3.12)
D2w. +a 2 4 =-2DDw -a.w at x=1
oW, alg a,w, = L, DW,—a,w, at x= (3.3.13)
Orders:
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2

W, 2 2
—>=D;w,+2D Dw,+ (2D D + D )w+ 2uD w.

w,=0at x=0 (3.3.15)
2w +a 2% + g w. = 2D Dw, - (2D,D.+ D*)w - 20
o3 UIE W, = 0”1V, ( 0-2 1)W1 VW,
3 (3.3.16)
—a,w, —FcosQT at x=1
The general solution of Egs. (3.3.8) through (3.3.10) can be expressed as,
W, T, T)= S A(T,T) €+ oSN
nh e T g sinw._ (3.3.17)
Where the natural frequencies are solutions of
2 —
aw +(a,-w )tanw =0 (3.3.18)

The complex valued functiods are arbitrary at this moment arat denotes the complex

conjugate of the preceding terms. The solution given by Eq. (3.3.17) is a linear combination of all
the modes, considering the case in whizfs near natural frequenay of the nth mode when this

mode is not involved in an internal resonance with any other mode. Hence, the solution of (3.3.8) to
(3.3.10) consist of only the mode correspondingto given as
Sinawx iar,

e °+ c¢
sinw (3.3.19)

w, = AT, T)

Substituting Eq. (3.3.19) into Egs. (3.3.11) through (3.3.13) gives,

2

W, 2 . sinwx iar
—2=D"w, +2iwD A e °+cc
ol o TG (3.3.20)
@=0atx=0 (3.3.21)
2 ow, . i, diaT,  —
D, W, +crlg+afow2 =-2iwD Ae " -a, e "+ AA+ ccatx1 (3.3.22)
The solvability conditions [N93] demand that

D,A=0 (3.3.23)

Substituting Eg. (3.3.23) into (3.3.20) through (3.3.22) and solving/fagives

— SiN2wxX  2iar,
=c AAX+ ¢ A e "+ ¢

W, =G G A in o ' (3.3.24)

Where,
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a
c =—>

a +a,
. a, (3.3.25)
2 a0+4a)2+2au1 cot 2w

Because A is a function of,, the nearness o2 to w by introducing the detuning parameter

defined byQ = w+ £’o. Then substituting Egs. (3.3.19), (3.3.23) and (3.3.24) into Egs. (3.3.14) to
(3.3.16) yields,

3

ow, sinwx 4
3—D +2i(A + uA °+
W+ 20 A+ UA)C o (3.3.26)
=0at x=0

W=l atx (3.3.27)

aW3 il . il

Dw+aa—+aw—— 2a,(2c +c)+ X, KAe 2w Ae

X

(o +0 3.3.28
—%F (o T)+NST+ ccat x1 ( )

Where NSTstands for Non Significant Terms that do not produce secular terms and the prime
indicates the derivative with respect 19. Because the homogeneous parts of Egs. (3.3.26) to

(3.3.28) are the same as (3.3.8) to (3.3.10) and because the latter has a non-trivial solution, the non
homogeneous equations (3.3.26) to (3.3.28) have a solution only if certain solvability conditions are
satisfied. To determine the solvability conditions the solution is first written in the form,

W, =(xT,) e + cor W x T, ) (3.3.29)

Where W, is governed by Egs. (3.3.26) to (3.3.28) with the terms proportionekpécr , )being
deleted. Thereforé)\, exists, is unique and free of secular terms. Substituting Eq. (3.3.29) into Egs.

(3.3.26), (3.3.27) and (3.3.28) , and equating coefficienexpfar  )of both sides of each equation

gives,
d ¢ sinawx
+w 2iw(A' + LA
dx’ 9 =2 N sinw (3.3.30)
=0at x=0
¢=0atx (3.3.31)
d¢ 1 ioT, . 2—
+ap=— —-—Fe ?-2iwA-2a.BA A at x=1
ax " al 2 2 (3.3.32)
Where,
_ 2
a:ao w
0’1
(3.3.33)
B=2¢ +¢ +—3
2a
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Therefore, determining the solvability condition of Egs. (3.3.8) to (3.3.10) has been transformed into

determining the solvability condition of Egs. (3.3.30) t0(3.3.32). To determine this solvability

condition the Eq. (3.3.30) is multiplied bm the solution of the adjoint homogeneous
sinw

problem, the result is integrated by parts fram Otox =1, and the boundary conditions given by

Egs. (3.3.31) and (3.3.32) are applied to give,

. I' . 2— 1 ioT,
200(A' + UA)=—— 2iwA + 20 BA A+=Fe ?
e HA) a, I 2 2 (3.3.34)
Where,
p sin® awx B Awsin® w
M= S =
sin” w 2w-sin 2w (3.3.35)

0

d@mn,

Substituting the polar form,A:%a into (3.3.34) and separating the real and imaginary parts,

the following equations are obtained,

a= —,ua—Lsiny
2w

(3.3.36)
ay =ca-a ag—icos
T Y (3.3.37)
Wherea and y are real functions oT2 .
Also,
= al'u
(a,+T) (3.3.38)
qQ =——2 _=""- +
° dofa,+T) 8w 4w (@,+a,) (a, -4 + 2w, cotw) (3.3.39)
(5,a,f)= @..a.F)= 4wsin’ w (@.a.F)
T (a+D) 2T g Qw-sinaw)+ avsifew 2 Y (3.3.40)

Substituting Egs. (3.3.19) and (3.3.24) into Eq. (3.3.4) , recalling @hatw+ &0 and using
Eq. (3.3.25) and polar form, the following approximation of the solution is obtained.

w=£acos(Qt—y)S|_n—wx
sinw
—152 2 LS sin2wx cos(Rt- 2 ) (3.3.41)

aza 2 .
2 (@ +a,) (a,-4w)sin2w+ 2, cos@
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3.3.2. Discretized Method

A method of obtaining the approximate solutions of continuous systems is to discretize the problem.
In the case of the example given in the preceding section, an approximate solution is assumed in the
form,

N
w(x, t) = ;Wn(t)qan( X (3.3.42)

Then in order to obtain the coupled differential equations goveMir(@) , Galerkin or Rayleigh

Ritz method is used. The equations thus obtained are called the discretized equations of motion.
Then a perturbation or numerical method can be used to obtain the solutions of these discretized

equations. Normally, the functiopg(x) are chosen to be the mode shapes of the undamped linear

problem. If N=1, the result is called a single mode approximation.

In the present work we have chosen to apply discretized method because the application of the direct
method involves complicated mathematical expressions which can lead to some errors in the final
results. The application of the discretized method is simple relative to the direct method. We have
used this method also due to the reason that we have tools and experience to efficiently apply this
method for the analysis. The detailed application of this method is given in the next section.

3.4. Application of Discretized Method for Nonlinear Rotordynamics

86

In this section the equations of motion developed in section 3.1 are treated. In order to apply MMS,
displacementt) andW are expanded as below,

UM, T)= (T, D+ ey(T, D= yre

W 1) = w(h D+ewW( T D= wre v

(3.4.1)

(3.4.2)

Where T =£"t are slow time scaled; being slower tham,, and¢ is a small dimensionless

parameter so that<< 1.T, is a fast time scale characterizing motions occurring at the spin rates
Qand the natural frequencies) of the rotor system. Furthermord&; is a slow-time scale

characterizing the modulation of the amplitude and phase due to nonlinearity, damping and
resonance. The nonlinear, damping and forcing terms in Egs. (3.1.10) and (3.1.11) are scaled so that
they appear in the same ordekoT herefore the following scaling is used

a,=a,0,=a,,B,=&3,B8,=¢3,m=em,c=¢£cC (3.4.3)
The assumptions in Eq. (3.4.3)akes into account the interaction of damping terms with the
nonlinear forces at the same level of approximation, which is a necessary condition for a nontrivial
solution of the governing equations of motion. Thus, the effect of the nonlinearity of the system can
be balanced with the effect of the system damping at the same level of approximation.

Egs. (3.1.10) and (3.1.11) can now be written as
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&-QaW+a,u+e %ﬂﬁﬂz (U*+uw?)+ el =sma’q f( PsinQ (3.4.4)

1
W+Qal+aW+e Eﬂﬁﬂz (W + WU?) +£ o= £ m0” d {)cos0 (3.4.5)

Using the chain rule for the partial derivatives with respect to both time sEadew T;, the
different time derivatives in the above equation can now be written as:

B (t) :aiTOU (T, T) +86%U(To’ ) (3.4.6)
V(1) =61TOW(1;, -D+£6i'l'l WD (3.4.7)
G(t) = Tz U(T, T)+ 2«90;:; u(,.T) (3.4.8)
\ﬂ&(t)— > T‘:;le(To’Tl) (3.4.9)

By substituting Egs. (3.4.6) to (3.4.9) in Egs. (3.4.4) and (3.4.5), using Egs. (3.4.1) and (3.4.2) and
then equating the coefficients of the like powerg oin both sides of the resulting equations, we
obtain following two systems of equations

System of order 0 equations £°) :

2 )
—y,tau —Qa—w0 0

o’ LT, (3.4.10)
2 )
> W, +a,W,— Qa — U, =0
ot 19T, (3.4.11)
System of order 1 equations £) :
2 2
0 0 0
+ta,u -Qa,—w=0a,—w-—-2
aTOZ 1 16T 1 16T 0 a-lz)a-ll Lb
3.4.12)
Bu,  Bu 9 . (
~He S - P - e 4+ m" d { sinQ
0
2 2
0 0 0
wW+aw+Qa—u=-Qa —u-2——
6T2 1 21 1aT 1 1aT 0 aTaT V%
0 0 0 07 1
) ﬁlwo3 ) ﬁlwou; (3.4.13)

> > —,6’2W03—,82W0u0 - c vg+ q (pcosﬁ) 1

The solution of Egs. (3.4.10) and (3.4.11) is given as
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u, = A(T)exp(iwT )+ A(T)exp(w, T )} [cc]

w, =iA (T)exp(iwT,)- 1A, (T )explw, T, ¥ [cc]

(3.4.14)
(3.4.15)

Where, ), w, are the natural frequencies of the system and [cc] denotes the complex conjugate.

3.4.1. Possible resonances and solvability conditions

Substitution of Egs. (3.4.14) and (3.4.15) into Egs. (3.4.12) and (3.4.13) gives us the following two
equations

2
u 0 0

s +tau - chli W, = (—2ia)l—Al + icrlQ—Al —icag A
oT, oT, 0T, 0T,

~2BA°A-48,A A-48 AAA-88 AA Aexpd@ T)

gics 22 +ia %% vicA w + 28 A %A + 45 AZA,
=( 1, oT tia, oT HICA, W, + 'Bl 2 AT 'Bz 2 MY
1 1 (3.4.16)

+45,A A +86,A AR exp(i, T )= imR’ g { exHicT,)
~(2BAA, +4B8,AN )expi@+ 0, )T, )
~(2B,A°A+48,A° A)exp(i (29 +w, T, I+ [cc]

2

9 LY
Liagw+Qa —u =(2w—2-a0Q—+cw
aTOZ 2 1 laTO 1 ( 16Tl 9 aTl lﬁ
, 20— . 22— . — — _
—2AB8A A-4BA A-ABAAA-BB AAA)EXPWT )

oA, oA .
—(20)2—+0’1Q—+CC<)2A2—2I,81A2 A2_4|'82A2 A,
oT, oT, (3.4.17)

BAAAA - HBAAA)XPE,T, ) MR’ d { )epiaT,)
HRABAA, +ABAA, eI+ 29, T, )
~(2BA’A,+ABA]A)expl (2 +w, T, ¥ fec]

We assume a patrticular solution in the form:

u = B(T)exp(iwT, )+ Q(T)exp(, T ) (3.4.18)

W, = B(T)exp(w]T,)+ Q,(T)exp@, T, (3.4.19)

After substituting the particular solution given above in Egs. (3.4.16) and (3.4.17), it can be
observed from the resulting equations that there are two possible primary resonance conditions,
Q= andQ=w,.
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3.4.2. Case ofQ = w;,
For this case we have us€d=w, +&0,, where, 0, is a detuning parameter for controlling the
nearness o to w,

Also, the solution of Egs. (3.4.16) and (3.4.17) exist only if certain solvability conditions are
satisfied. The first step in determining these solvability conditions is to sub<dtate), + £o, and

the particular solution, given in Egs. (3.4.16) and (3.4.17), in these equations. We then equate the
coefficients ofexp («wT,) andexp(w,T, )on both sides of the resulting equations. The coefficients

of exp{wT,) for the Left Hand Side (L.H.S) of the resulting equations give,

2

R,=- F;wi +ta,R-wa Pl
R,=- Pzwi ta,ht wzla P! (3.4.20)
The coefficients oexp (T, ) for the L.H.S. of the resulting equations give,
_ 2
S,=7Qw,+a,Q-wwa Q)
(3.4.21)

2
S, =" Qw,+a,Q+wwg Q|

The coefficients oexp (T, ) for the Right Hand Side (R.H.S) of the resulting equations give,

R, = _4'81'61'6‘27&_ 4'8251_'61_ 2'81'&1_'61+ (_ 2y +a, I:‘)l)z_:1

1

_ 1 5 o (3.4.22)
-88,AA A~ Clwﬂbi_g Im.w.d f(l)e
_ p— — 0
R, =-41BAAR-415,K A-26,& At(2-a p) >
1
8 - 1 24 f ) S™ (3.4.23)
a 'BzAiAzAz-'-m}l'Al-'-Emlwl f(l)e
The coefficients oexp (e, T,) for the R.H.S. of the resulting equations give,
T oA,
S, =48 AA A- 4'82'&2 A~ Zﬁl% At (_2 - a, wl)aT
_ ! (3.4.24)
—8B,AA A~ Clw,A
_ _ — 0
S,=416,AA '51_4'825& A+2 l81'&2 Az+(_2w 2_6”1‘)15%
! (3.4.25)

+8|'32A1A2K1_ @, A,

From Egs. (3.4.20) through (3.4.25), the solvability conditions [NM95] are determined using the
following relation,

(coefficientof R forBx( B)-( coefficientof R fopR( k=0 (3.4.26)

(coefficientof§1 forgx( 25‘2)—( coefficientoIzS folr)@( 21)Sto (3.4.27)
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Finally, two solvability conditions in a simplified form are given below,

0 2— N
a_%:_czpi A-cAAA- GA (3.4.28)
ai_—ole2 A-dAAA- dexp(&r T)- d A (3.4.29)

Wherec,,c,, ¢, d,, d,, d. are constants, given in Appendix C.

Substituting the solutions @i andA; in the polar form i.e A =(1/2)(a, exp(d, )whera= 1..,in
Egs. (3.4.28) and (3.4.29), and separating the real and imaginary parts we obtain the following
system of equations.

108 2 1
26T 8 Zal 3a1a2 +_2 %ai_o

1 66

26‘1

10a, 1 3 1, 2 1, _ (3.4.30)
EE _dzaz +_8d381 a,+ d4COS(—t92+01|'1)+Edé’;12— 0
1

1 1 or .
—Ea201+5a267— d,sin-6,+oT)=0
1

The above system of 4 equations can be transformed to an autonomous system of 5 equations using
=-6,+0T,. These equations are called modulation equations and are given below.

1 66\1 2 +_1 -0
20T '8 oA 331 2 5% (3.4.31)
196,
—a—==0
2%t (3.4.32)
108, NE d +dcos(r)+—q 0
20T, 8 4,8, +54a 3, 9= (3.4.33)
1 N
§a201+§a26_'l'1 d4sm(r)— 0 (3.4.34)
F=-6,+a, (3.4.35)

Egs.(3.4.31) and (3.4.32) show thati=0 is a solution. Equilibrium is also achieved in
0a /0T =0,0r /0T =0. Eliminating the transformed phase shift from the modulation

equations, the autonomous system above now reduces to two equations that can be resolved to give
the following 8" degree polynomial equation for plotting the resonant curves.
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d,’a.°+8d,da’ +16(d" +0," )"~ 64¢’= ¢ (3.4.36)

Where,d, ...d are coefficients of the detuning parameter and are defined in the Appendix C.
3.4.3. Case of Q= w;

For this resonant cas@ =« +¢£o,is substituted in Egs. (3.4.16) and (3.4.17). The solvability

conditions are determined following the same procedure as in the preceding section. But this time
the coefficients oexp (T, ) for the L.H.S. of the resulting equations give,

R,=-Pw, +a,P-wpg P,

R,=-Pw +a Prwpga P, (3.4.37)
The coefficients ofexp (T, ) for the L.H.S. of the resulting equations give,
S,=- Ql“’i +a,Q- wzza Q!
S,=- szz +a,Q,* wzza Q! (3.4.38)
The coefficients oexp («wT, ) for the R.H.S. of the resulting equations give,
Ru=4BANA-40,K A28 A A (210, ) 2 -00ANA -
(3.4.39)
clyA
_ e 2— — 0A —
R, =~4IBAAA-415,A A=26 A At(2w-a @) -86AA A+
! (3.4.40)
Cay A
The coefficients oexp (e, T, ) for the R.H.S. of the resulting equations give,
S = A8 AN A48, A A 28 K A (200, o) -8B AR
(3.4.412)
clwA -— I mla)zdlf (1)e i
S, =AIBAAA+4IB A A+2 1B A Ax(-2w ; a(f)l % +8|,3A1A2K1—
(3.4.42)

Caw, A, = —Im a)d f(ll)e11

Applying Egs. (3.4.26) and (3.4.27) , give the following two solvability conditions for this case,

a? =, A" A- G AA A- cexp(,T)- ¢/ (3.4.43)
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aﬁ——dﬁm d,ARA- ¢ A
2 (3.4.44)

Wherec cs, ,, 3, ds are constants, given in Appendix D.

Substituting the solutions ofiAndA; in the polar form i.e A =(1/2)(a exp(d )where= 1..,in

Egs. (3.4.43) and (3.4.44), and separating the real and imaginary parts we obtain the following
system of equations.

0
Jar TaoA Ta * oeostO o e aan O

106 _
Eala—_l_+ c,sin(-g,+o.T)=0
1

10a, 1 2 1 B (3.4.45)
201, " S0,3 + d331 3+ 43=0
_1 %:O

2 20T

The modulation equations are now obtained u$irg-6, +o,T,

103 1
20T, oAt 3a1a2 ¥ Ccosr+_ §2=0 (3.4.46)
106
Eala_Tl+ Gsinf =0 (3.4.47)
108, 1 3
201, 8% g 38 35 4370 (3.4.48)
r=-g+al (3.4.49)

Eq. (3.448) shows thata,=0 is a solution. Equilibrium is also achieved
inoa,/0T =0,0l /0T = 0. Eliminating the transformed phase shift from the modulation

equations, the autonomous system above now reduces to two equations that can be resolved to give
the following 8" degree polynomial equation for plotting the resonant curves.

ca’+8gqa " +16(¢ +0,") g - 64¢"= C (3.4.50)

Where, ¢, ...c.are coefficients of the detuning parameter and are defined in the Appendix D. The

polynomials given by Egs. (3.4.36) and (3.4.50) are functions of amplitude at equildgiand
detuning parameter,. Solution of these polynomials gives six solutions that are symbolically

complicated expressions and are not reproduced here. Therefore these polynomials are treated
numerically in the next section.
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3.5. Numerical Application (Resonant Curves)

The investigations were conducted using three different methods, i.e. the method of multiple scales,

a continuation procedure and a step by step integration method in Matlab Simulink. All the
numerical data are given in Appendix B.

3.5.1. Method of Multiple Scales

The numerical solutions for the two resonant condit@rsw, andQ = w, are presented showing

the plots of resonant curves of hard spring type Fig. 36.

ag (m)
ag (m)

Ty gf
(@) (b)
o Step by Step . —— Method of Multiple Scales

Fig. 36. Resonance curves (8 =w, (b) Q=w,

The effect of nonlinearity has caused these curves to bend rightwards from the position of the linear
response given in Fig. 35. It is interesting to note the plotting ranges of these curves to generate the
same shapes. For the ca3e w, these curves are significantly expanded and the range of amplitude

is higher.

3.5.2. Continuation Procedure (Matcont)

The bifurcation diagrams and state planes are presented in Fig. 37 and Fig. 38. For a given value of
the detuning parameter there are three solutions in the positive plane. Out of these solutions, two are
stable and one is unstable. The continuation procedure is capable of tracing two stable solutions
which can be seen corresponding to points A and B on the curves in Fig. 37 (a) and Fig. 38 (a). The
curve of the unstable solution lies somewhere between these two curves. The results of this

procedure match with those obtained by MMS but the latter is more preferable as it can plot the
unstable solutions as well.

2 A. Dhooge, W. Govaerts, Yu.A. Kuznetsov, W. Mestrom, A. M. Riet, B. Sautois, MATCONT: A continuation
toolbox in Matlab, http://www.matcont.ugent.be/
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Fig. 38. Results obtained by continuation procedure using Matconta664 forQ = w,
(a) Resonance Curves (b) State Plane at point A (c) State Plane at point B
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The state planes are plotted for two different points A and B on the resonant curves given in Fig. 37
(a) and Fig. 38 (a). It can be observed that the amplitude at point A is much lower as compared to
that of point B. Also the orbits corresponding to point B tend to be more oval as compared to those
corresponding to point A. Therefore it can be concluded that the effect of nonlinearity due to higher
order deformations is more visible at the curve at point B.

3.5.3. Direct Integration by Step by Step Method (Matlab)

A step by step analysis was conducted using the Simulink toolbox of Matlab. The equations of
motion given by Egs. (3.1.10) and (3.1.11) are treated directly. The results are compared with those
obtained by MMS and are presented as dots in Fig. 36. The phase diagrams, poincaré sections and
time histories of the amplitude are given in Fig. 39 and Fig. 40. The discrepancy between MMS
results and step by step results in Fig. 36 are mainly due to the difficulty to obtain the maximum and
minimum in the amplitude response curves. The amplitude modulation is also visible in these
figures. The simulation was carried out and the phase diagrams were plotted for the last 0.2 seconds.
This corresponds to 4 periods where the amplitude modulation is low. Hence as a result the 4 points
on the poincaré sections lie close together.

0.06 0.06
0.04 ] 004
o 002 = 002
E E
B T
3 =
002 { B
004 ] .0.04
005 - 0 1 % 0065 7 0 1 2
L[] x 10 ] x 10
4 4
2x 10 2>< 10
Eo Eop ‘
B S
=2 . . 9 . , .
985 99 9.95 10 9.85 99 9.95 10
t[s] t[s]

Fig. 39. Phase diagrams, poincaré sections and time amplitude respor3esdqr
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Fig. 40. Phase diagrams, poincaré sections and time amplitude respor3esdqr

3.6. Effect of various parameters

In regard to the limitations presented by the continuation procedure (the inefficiency in predicting
unstable branch) and step by step method (difficulty in choosing the initial conditions and hence not
attaining the stability in time amplitude response), in the following the method of multiple scales is

used. The coefficient!sz, d4 and d5 are functions of various quantitiesl,az,ﬁ ,,6’2 and m

(Appendices C and D). These quantities further depend on geometric, material and mass unbalance
parameters. This indicates that a change in the values of these parameters will give different
numerical solutions of Egs. (3.4.36) and (3.4.50), thus generating different resonant curves.

Therefore these different parameters can be adjusted to change the behavior of the rotor
significantly.

3.6.1. Effect of ;=0

According to Eq. (3.1.12) quantifis depends oz whichrepresents the effect of an axial dynamic
force, see EgQs. (2.4.44) and (2.4.45). This implies that if we want to study the dynamics of the
system without considering the effect of an axial force we can subgituin various constants

given in Appendices C and D. This affects the overall response of the system. The generated
resonant curves are presented in Fig. 41. A comparison of these curves with those of Fig. 36 shows
that the amplitude has increased. Also a decrease in the horizontal plotting range of these curves
indicates that the spring hardening effect becomes visible even at very low values of detuning

parameteal .
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Fig. 41. Effect of =0 on nonlinear dynamic response @y w, (b) Q= w,

3.6.2. Effect of varying the mass unbalancen,

The quantityd, in the polynomial given by Eq. (3.4.36) depends on the mass unbafatit®ugh

the quantities given in appendices C and D. Therefore the response of the system can be varied by
changing the value of the mass unbalance. Fig. 42 represents the effect of varying the mass
unbalance from 1 x T0kg to 100 x 18 kg. Different resonant curves plotted on the same scale
show that as the mass unbalance is increased, the horizontal component of these curves expands
more to cover a greater range of detuning pararogter
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tmy, = A0xz105 kg prY,
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Fig. 42. Effect of variation in mass unbalancg om nonlinear dynamic response
(@Q=w, (b) Q=w,
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3.6.3. Effect of varying shaft cross-sectional radius R

The quantitiest;, B4, , B, andmy in Appendices C and D are related to paraméigis, ki, k, ks

using Eg. (3.1.12). All these parameters depend on the cross-sectional radius of the shaft. Therefore
a change in the shaft radius will change the numerical values of all the parameters and quantities
mentioned above. Fig. 43 shows the system response for three different values of shaft cross-
sectional radius. It can be observed that the resonant curves bend more strongly towards right as the
shaft narrows.
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Fig. 43. Effect of variation in shaft diameter on nonlinear dynamic response
(@Q=w, (b) Q=w,

3.7. Conclusions

This chapter analyzed some of the mathematical models developed in chapter 2. The nonlinear
behavior of rotor dynamics due to large deformations and a dynamic axial force was analysed for
the first mode. A mathematical model with the combined effects of higher order large bending
deformations and a dynamic axial force was formulated from the work presented in chapter 2. This
model was solved using the multiple scales method. The numerical investigations were conducted
using three methods, i.e. the method of multiple scales, a continuation procedure (Matcont) and a
step by step analysis in Matlab Simulink. It is concluded that the method of multiple scales is more
efficient than the other two methods as all the stable and unstable solutions can be seen in the
resonant curves.

The results showed that nonlinearities along with other phenomena like gyroscopic, rotary inertia
and mass unbalance effects significantly influence the dynamics of the rotor system. The linear
analysis showed that resonance existed only at the second critical speed, but in the nonlinear
analysis another resonance appeared at the first critical speed. Furthermore, nonlinearities caused the
resonance curves to be of hard spring type. In the absence of dynamic axial force and at lower
values of mass unbalance, the spring hardening effect was visible even at lower values of detuning
parameteo, . Using the method of analysis presented here facilitated studying the changes caused

by modifying different rotor system parameters, by changing the numerical values of the latter.
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Chapter 4: Nonlinear Analysis Taking into Account Shear Effects

In this chapter the mathematical model developed in section 2.5.2 is analyzed. This model considers
nonlinearity due to large deformations in bending and shear effects. It is composedroe#
coupled nonlinear differential equations of motion. The equations of motion given by Egs. (2.5.34)
and (2.5.35) are referred. Both linear and nonlinear analyses are presented in the following sections.

4.1. Linear Analysis

The natural frequencies of vibration and hence the critical speeds of the rotor are determined by
studying the rotor system in free undamped motion. The linear equations of motion are given as,

W&—QaﬂW+agl@—Qa4l\ﬁv+a51U=0
W+oa, B+a W+oa, b+a_w=0 (4.1.1)

The solutions of Eq. (4.1.1) are sought in the form,

U =U, exp@t) W =W exp@t (4.1.2)

Substituting Eq. (4.1.2) in Eq. (4.1.1) gives the following set of homogeneous equations.

4 2 3
wta,w ta, -Qa,w-Qa,w U “o
3 4 2 W 4.1.3
Qa,w +Qa,w w +a,w +a, 1 ( )
The expansion of the determinant of the matrix in Eq. (4.1.3) gives the following characteristic
equation.

8 2 2 6 2 2, 4
w +(20’31+a21Q )C{) +(2a51+a31+ 20!210,4§2 yd

+@aa, +a’ 0w’ +al =0 (4.1.4)

The roots of Eq. (4.1.4) can be representedtias , where w for n = 1.4 are the angular

frequencies. The symbolic expressions of these frequencies are complicated and are therefore treated
numerically. The numerical data are given in Appendix B.

The effect of shear deformations is studied for various slenderness ratios (r) where r = R1/2L. The
results are obtained for a rotating shaft as well as for a shaft-disk rotor system. Also both solid and
tube sections of the shaft are investigated. The results are presented in tabular form in Tables (1) and
(2). The graphical representation of the results is given in Fig. 44 to Fig. 47. It can be observed that
with the inclusion of shear effects, the critical speeds of the rotor decrease. The difference between
critical rotor speeds with and without shear effects is increased as the slenderness ratio is increased.

This implies that the shear effects become greater for higher values of the slenderness ratio (r). Also,
it is interesting to note that the difference in tAtcgitical speeds is greater than that noted with the

1% critical speeds. Comparison of Fig. 44 and Fig. 45 indicates that the shear effects are more visible
in the case of a rotating shaft than that of a shaft-disk rotor system. Moreover it can be observed
from Fig. 46 and Fig. 47 that the shear effects are greater with a tubular shaft than with a solid shatft.
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Geometry L=2 L=15 L=1 L=1 L=0.5
(meters) R;=0.32 R;=0.18 R;=0.08 R;= 0.06 R;=0.02
Cross -
Section
slenderness ratio (r) 0.08 0.06 0.04 0.03 0.02
Critical speeds 17503 18147 18652 14130 18977
without shear (rpm) 19722 19438 19242 14381 19127
Solid Critical speeds with 16452 17425 18276 13961 18872
shear (rpm) 17961 18450 18804 14197 19018
ercentage decrease 6 % 4 % 2 % 1.2% 0.5 %
P 9 8.93 % 5% 2.3 % 1.3 % 0.5 %
Critical speeds 22963.6 244542 25654.7 19572.5 26030.5
without shear (rpm) 28831.2 27926.7 27256.5 20256.6 26421.3
Tube Critical speeds with 19709.9 219113 24142.9 18854.8 25584
(e =10°m) shear (rpm) 21709.5 23662 25284 19415.2 25941.5
Percentage decrease 14.17 % 10.40 % 5.89 % 3.67 % 1.72 %
9 24.70 % 15.27 % 7.24 % 4.15 % 1.82 %
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Table. 6. Shear effects on the'two critical speeds of a shaft-disk rotor system for various

slenderness ratios (r)

L=2 L=15 L=1 L=1 L=0.5
Geometry R;= 0.32 R;=0.18 R;=0.08 | R;=0.06 | R;=0.02
(meterS) R,=0.75 R, =0.50 R,=0.3| R,=0.3| R,=.15
h=0.15 h=0.10 | h=0.06] h=0.06| h=0.03
Cross-
section
Slenderness ratio (r) 0.08 0.06 0.04 0.03 0.02
Critical speeds without shear 13838 13542 12064 7456 7158
(rpm) 16286 15247 13275 | 8284 8068
Critical speeds with shear 13332 13255 11970 | 7433.5| 7153
Solid (rpm) 15227 14743 13124 | 8247 8059
ercentage decrease 3.65 % 2.34 % 0.78% | 0.30% | 0.07 %
P 9 6.50 % 331% | 1.14% | 045% | 0.11%
Critical speeds without shear 2505.6 2997.4 3471.7 | 2223.4 | 3300.6
(rpm) 3200.5 3618.3 4017.9 | 2563.6 | 3791.3
Tube Critical speeds with shear 2500.8 2992.5 3468.1 | 2222.4 | 3299.8
(e =10°m) (rpm) 3184.6 3605.8 4010.4 | 2561.3 | 3789.7
Percentade decrease 0.19 % 0.16 % 0.10% | 0.04% | 0.02%
9 0.50 % 0.35% 0.19% | 0.09% | 0.04 %
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Fig. 44. Effect of shear and slenderness ratio (r) on the critical speeds of a solid shaft
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Fig. 45. Effect of shear and slenderness ratio (r) on the critical speeds of a shaft-disk rotor system
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Fig. 46. Comparison of Lcritical speeds of a solid and a tube shaft for various slenderness ratios
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4.2. Nonlinear Analysis

The complete set of equations of motion including nonlinear terms given by Egs. (2.5.34) and
(2.5.35) are analyzed using MMS. In this section MMS is applied for 4th order derivatives with
respect to time. Displacements U and W are expanded as the power setieshsf first order,

U(TO,Tl): uO(TO, T)+£L5(T, 'I;) = ytey
W, D =w(T, Drew(T D= wre v (4.2.1)

Where Tn =¢"t are slow time scaled;; being slower tharT,, ande is a small dimensionless

parameterg << 1. The nonlinear, damping and forcing terms in Egs. (2.5.34) and (2.5.35) are scaled
so that the damping and forcing terms appear in the same perturbation equations as the nonlinear
terms. This is done so that the effect of damping is balanced with the effect of nonlinearity.
Therefore the following scaling is used.

al:al'a2:a2'ﬁ11:£ﬂll'ﬂ21:€ﬂ Zl’ﬁ 31=€ﬂ 31ﬂ 4l=€ﬁ Af[n ffm ’].C:£C

(4.2.2)
The resulting equations are given as,
$-qa W+a, B8-0a,W+a U+ech=(-3/2)s8, W 8+ 20w+
2 2 3 2
V) - (3/2)8, UK + 2wB¥+ 3UY - (3/4§8,, 07 +UW’ 4.2.3)
(3/16)8, & + 8 )+ emQ” sim t
We+a, B+a W+oa, b+a W+e cu=(-3/2)s8, U W+ 2wul+
2 2 3 2
W) - (3/ 28, W8 + 08F + 3V - (3748, W+ WU ) 4.2.4)

(3/16)8,, (K’ + Wl )+ e mQ® co t

Using Eg. (4.2.1) all the time derivatives appearing in Eqgs. (4.2.3) and (4.2.4) are found. After
substituting these derivatives in these equations and equating like powersnoboth sides of the
resulting equations, we obtain the two following systems of equations.

4.2.1. System of order 0 equations £°)

4 3 2

a_4uo_Qa'216_3\/\/04-0'316_2 uo_QauiWo'i-a'55;J 0
aT, aT, oT, oT,

4 3 9> P (4.2.5)
a_|_04 Wy t Qazla?OSuo+ a31F()2W0+ Qa 41aTou oF AW 0
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4.2.2. System of order 1 equations £)

4 3 2
6(2'4 U _QUZI(;-.’I.S W1+a31;|.2 Ul—QO'MaiTWl'l'O’ s i
0 0 0 0

2 2 2 2

0 0 0
—(9/2),6’21u0 6T02 Y _3'821Wo 7 W W~ CO_'I'O Y

0T~ 70T

0 0

3
2

d 2 9
_3ﬁlluOW0F Wo_4a.|. 5T Y- (3/16)'841 F Y

0 0 1 0

2 2
3 2 0 2 0
~(8/4)Bu, — (3128, W, —5 U, = (9/2)Bu; —7 Y,
6T0 6T0
2 9 2
—(3/2),821u0 6T02 W _(3/16)'841 6T02 Uo GTOZ 0
a3
+mQ’sin@T,)- (3/4)8,uw, - 2—5—u,
aTO aTl
" )
+3Qa, ———w +Qa, —w
Zor'oT, © - MoT ° (4.2.6)

4 3 2

aT’ !

0 0 0 0

_(9/2)'821W0 aTZWO _3'821uoa.|_2 W06T2 U 3T W

0 0 0 0

9’ 0" 9
_3'811W0u06.|. 2 u0_46T 5T W (3/16)'341 F W

0 0 1 0

2 2
3 2 0 2 0

—(3/4) Wy ~ (3/2)811u0 — W -(9/2) W, — W,
aTO c‘)T0

2

2 2 2

0 0 0

=(3/2)B,,w, aToz u, —(3/16)5, 0T02 YW, 61;2 Y
a3
+le2 cosQT )- (3148, W, Lbz - 2w
0T, 0T,
a4
-3Qa, ———u_ -Qa, —u
216.'.036.'_1 0 416T1 0 (427)
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The general solution of Eq. (4.2.5) can be written as,
= A(T)exp(iwT))+ A (T)explw, T } A (T)exp, T )
+ A, (T)exp(ia, T, )+ [cc]

=iA(T)exp(iwT,)— 1A, (T)explw, T, 1 iA, (T ) expl, T, (4.2.8)
—1A,(T)exp(w,T,)+ [cc]

Where [cc] denotes the complex conjugate of the preceding terms.
Also a particular solution is assumed fgrandw; in the following form,
u = B(T)exp(iwT )+ P,(T)exp(w, T} B (T)expl, T )
+P (T)exp(iw,T,)
w, = Q(T)exp(iw,T )+ Q,(T)explw, T 1 Q (T )exply, | (4.2.9)
+Q,(T)exp(iw,T,)

After substituting Eqgs. (4.2.8) and (4.2.9) into Egs. (4.2.6) and (4.2.7), it can be observed from the
resulting equations that there are various possible resonance cases. The two cases of primary
resonance of interest a® =) and Q = w,. These two cases can be treated separately but in a

similar manner.

4.2.3. Case ofQ = w,

In the resulting equations mentioned abdeis substituted a8 = &) + €0, where g, is a detuning
parameter for controlling the nearness®fto « and ¢ is a small dimensionless book-keeping
parameter. We then equate the coefficientsewp(w T, )where n=1..4, on both sides of the

resulting equations.

4.2.4. Solvability Conditions

In order to obtain the solutions of these equations there are certain solvability conditions that must
be satisfied. These conditions are determined according to the procedure given in Chapter 3 and are
given below.

A’lﬁﬁcﬁﬁé GAAA- GAAA ¢A gm(ai,]

% a KA+, AAAT AAAA GAAA dA

o|A§ (4.2.10)
—-fA A+ LAAA+ FANAF fAAA fA

a%:% CAtGAAAY GABAr GAAA QA

Wherec,..c,, d,..d,, f..f.andg,..g.are functions of geometric and material properties of the

rotor andq)..w, . Their mathematical expressions are given in Appendix E.
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The solutions of A are substituted in Eq. (4.2.10) in the polar form given
by A =(1/2)(a exp(d, ), where,n=1.4. The resulting equations are separated into real and

imaginary parts to obtain the following autonomous system of first-order partial differential
equations.

da,

2 2 2 —
0T 4(% &~ G~ G3-4 ¢ g2 geod = ( (4.2.11)
dr .
0 =T At2Gsint=0 (4.2.12)
1
d32 1 2 2 2 2 _
g7 2@+ da+ da+ da-4d)3=0 (4.2.13)
1
dé, o
azd—Tl = (4.2.14)
d33 1 2 2 2 _
dT, (f o fa+fa+fa+r4f)as=0 (4.2.15)
dé, o
a3d_T1_ (4.2.16)
da, - ga+ qa+d =0
(gl 4 gzal gsaz 9433 QQ a4_
dT 4 (4.2.17)
dé, o
a4d—Tl = (4.2.18)
ar _,_94
In Egs. (4.2.11), (4.2.12) and (4.2.19)= 0,T -6,
At equilibrium, amplitude and phase do not change with respect to time, i.e.:
da dg _da, _dy _dr & _db_ @, _,
dT, dT dT dT d] dJ dJ d (4.2.20)

The autonomous system given by Egs. (4.2.11) to (4.2.19) is now reduced to:

(cla12+cza§— csai— c4q2l—4 Q g+2 ¢cod = ( (4.2.21)

oa+ 2c6 sinfl=0

(4.2.22)
da’+da+da+da-4 =0
(da,+d,a +da+ da-4d 3= (4.2.23)
2 2 2 2 _
(fa;+fa +fa+fa+4f)a=0 (4.2.24)
2 2 2 2 _
(9,8, +9,8 - 9,8+ g,8+4 9 3=0 (4.2.25)
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It can be observed from the system of Egs. (4.2.21) to (4.2.25pfhaf, = a, =0 is a trivial

solution. Therefore this system can be resolved to give the folloWidgdgree polynomial equation

ca: ~8GGd +16(g+0, )~ 64¢= C (4.2.26

The above polynomial is a function of amplitude at equilibragnand the detuning parametgt

Solving Eq. (4.2.26) gives six solutions that, using symbols, are complicated expressions and are not
reproduced here. Therefore this polynomial is treated numerically in the next section.

4.25. Case ofQ = w,

This case can be treated in the same way as the previous one. The results can be obtained directly by
changingw, with w; in equations resulting from Eqgs. (4.2.6) and (4.2.7) and considering a new
detuning parameter defined 8s= w, + €0, .

The solvability conditions for this case are given as below,

“-caa+caee GAAA- GAAA ¢A

@ a KA+, ARA AAAA GAAA dA &p(0i,)

o|A§ (4.2.27)
= fAAT LAAAT LAA AL LAAA TA

d@ — — — —
T TOAATGLAAAY GAAA GAAN gA
1
Where c..c,, d,..d;, f..f.andg..g.are functions of geometric and material properties of the

rotor andq..w, . Their mathematical expressions are given in Appendix F.

The solutions of A are substituted in Eq. (4.2.27) in the polar form given
by A =(1/2)(a exp(d, ), where,n=1..4. The resulting equations are separated into real and

imaginary parts to obtain the following autonomous system of first-order partial differential
equations.

da 1, 2 2 2 —
d—Tl‘z(Clal *6,8-6a-63-4¢ 3=0 (4.2.28)
o - dar 0
T, &= (4.2.29)
da2 d d d -4 d=0
aT, ( 182+ 231+ 3a3+ d,g-4d) g+ deod = (4.2.30)
a a4, +2d_sinC =0
T int-= (4.2.31)
da3 1 2 2 2 _
dT, 4(f - fa+fa+fa+4f)a=0 (4.2.32)
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dé
a3_3:0
dT, (4.2.33)
da, 1 2 2 2 2 _
d—{—z(glaﬁ 9,8 ~ 9,8+ g,a+4 g =0 (4.2.34)
dé
a—2=0
“dT, (4.2.35)
ar _, -9
dr, ' dT (4.2.36)

In Egs. (4.2.29), (4.2.30) , (4.2.31) and (4.2.B6) 0,T, - 0,.

At equilibrium, the amplitude and phase do not change with respect to time, i.e.:

d_al_daQ_dag_dq‘_dr_cﬂzzdesz094:0
dT, dT dT df d] dJ dI d] (4.2.37)

1

Autonomous system given by Egs. (4.2.28) to (4.2.36) is now reduced to:

(& * 8- ¢a- Gg-4¢ g=0 (4.2.38)

g =0 (4.2.39)

(da, +d,a + da+ dd-4d) ar4 deod = C (4.2.40)
(fa+fa+fa+ fa+4f)a=0 (4.2.41)
(0,3, + 0,3 - g,3+ g,a+4 g) =0 (4.2.42)

It can be observed from the system of Eqgs. (4.2.38) to (4.2.42ptkas, = a,=0 is a trivial

solution. Therefore this system can be resolved to give the folloWidgdgree polynomial equation
2 6 4 2, 2 _
d’a -8d,d.q +16(f +0, ) a - 64 = C (4.2.43)

Like the polynomial of Eq. (4.2.26), the above polynomial is also a function of amplitude at
equilibrium ag and the detuning parametgr. Solving Eq. (4.2.43) gives six solutions that, using

symbols, are complicated expressions and are not reproduced here. Therefore this polynomial is also
treated numerically in the next section.

4.3. Numerical Application and Discussion of Results

The nonlinear response of the rotor system under study was examined using three different
approaches, i.e. the method of multiple scales, a continuation procedure and a step-by-step
integration method in which equations of motion are treated directly. All the numerical data are
given in Appendix B.
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4.3.1. Resonant curves

Method of Multiple Scales

For studying the nonlinear dynamic response, a shaft-disk rotor system has been considered whose
numerical data are given in Appendix B. In Fig. 48 the numerical solutions for the two resonant
conditionsQ =w, and Q =w, are presented showing resonant curves. The effect of nonlinearity

has caused these curves to bend rightwards from the position of the linear response. Therefore, these
curves are of the hard spring type.
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Fig. 48. Resonance curves for nonlinear dynamic response of a shaft-disk rotor system
(@Q=w, (b) Q=w,

Continuation Procedure (Matcont)

A continuation procedure in Matlab called Matcont was applied. This method is capable of treating
the first order differential equations given by Egs. (4.2.11) to (4.2.19). The bifurcation diagrams and
state planes are presented in Fig. 49 and Fig. 50. For a given value of the detuning parameter there
are three solutions in the positive plane. Out of these solutions, two are stable and one is unstable.
The continuation procedure is capable of tracing two stable solutions which can be seen
corresponding to points A and B in the curves in Fig. 49 (a) and Fig. 50 (a), where LP is the limit
point of the bifurcation. The curve of the unstable solution lies somewhere between these two
curves. The results of this procedure match with those obtained by MMS but the latter is preferable
as it can plot the unstable solutions as well.

The state planes are plotted for two different points, A and B, on the resonant curves given in Fig. 49
(a) and Fig. 50 (a). It can be observed that the amplitude at point A is much lower than that of point
B. As compared to point A, the orbit corresponding to point B is more oval, i.e. the effect of
nonlinearity is more visible at this point.
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Fig. 49. Results obtained by continuation procedure using Matcontatiofor Q = w,
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Direct Integration using the Step-by-Step Method (Matlab)

In order to further validate the nonlinear findings achieved by previous two methods, a step-by-step
analysis was conducted using the Simulink toolbox of Matlab. In this method, the equations of
motion given by Eqgs. (2.4.34) and (2.3.45) were solved directly. The results were compared with
those obtained by MMS and are presented as dots in Fig. 48.

4.3.2. Effect of Slenderness Ratio

The slenderness ratio is varied from 0.02 to 0.08 and the effect of this variation is presented in Fig.
51. It can be observed that as the slenderness ratio is decreased, the response curves bend strongly
towards the right and expand more horizontally. This indicates that for higher values of slenderness
ratio the nonlinear spring hardening effect appears even at smaller values of detuning patameter
which is directly proportional to the speed of rotation of the rotor system. This trend is similar for
both resonance cases except the fact that the response amplitude and horizontal range of the
detuning parameter is much higher witzn w,.
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Fig. 51. Effect of slenderness ratio (r) on the nonlinear dynamic response of a shaft-disk rotor system
(@Q=w, (b) Q=w,

4.3.3. Effect of Varying the Unbalance Mass

Fig. 52 represents the effect of varying the mass unbalance from™lkgltb 100 x 10 kg.

Different resonant curves plotted on the same scale show that as the mass unbalance is increased, the
horizontal component of these curves expands more to cover a greater range of the detuning
parameteo;. Also the amplitude of the response is higher for higher values of unbalance mass.
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Fig. 52. Effect of mass unbalancey() on nonlinear dynamic response of a shaft-disk rotor system:
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4.3.4. Effect of Shear Deformations

Fig. 53 and Fig. 54, present the response curves for three different slenderness @atias, and

Q =w, respectively. The results were obtained for the nonlinear response of the rotor system with

and without considering the shear effects. It is concluded that the shear effects on the nonlinear
response are not very significant for lower values of the slenderness ratio. But, for their higher
values the response curves without shear effects tend to bend more strongly towards the right. This
can be clearly observed by comparing curves P3 and Q3 in Fig. 53 and curves R3 and S3 in Fig. 54.
There is not a notable difference in the response amplitude with and without shear effects with the
1% resonance. But a difference of amplitude can be observed fd' ies@hance.
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4.4, Conclusions

This chapter focused on the combined effect of nonlinearities and shear effects on the linear and
nonlinear dynamic behavior of the rotors. The mathematical model which was treated in this chapter
consisted of & order nonlinear differential equations of motion. The method of multiple scales was
applied to the @ order of derivatives with respect to time. The effects of shear were discussed in
detail both on the linear as well as nonlinear response of the rotor system under study.

The results of the linear analysis for a rotating shaft and a shaft-disk rotor system, both for solid and
tube section, showed that with the inclusion of shear deformations the critical speeds of the rotor
tend to decrease. This difference becomes more visible for higher values of the slenderness ratio r.
As compared to a shaft-disk rotor system the shear effects have more notable influence in the case of
a solid and tube sections of the shaft.

In the nonlinear analysis, the resonant response curves are plotted. These curves are of hard spring
type. The response amplitude and horizontal plotting range of the detuning parameter is higher in
case of the resonance condition corresponding‘torifical speed of the rotor. The overall dynamic
behavior of the rotors can be greatly varied with the variations in the slenderness ratio and the
unbalance mass. The effects of shear deformations are more significant for higher values of the
slenderness ratio. As an overall concluding remark, the higher order and shear deformations have a
significant effect on the dynamic behavior of the rotor systems. Therefore, for an accurate analysis
ensuring improved safety and efficiency of the rotor systems, these deformations cannot be ignored.
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Chapter 5. Overall Conclusions and Future Perspectives

This chapter discusses the overall conclusions of the thesis. Also, based on the work performed for
this thesis, there are future perspectives, which are also mentioned in detail. A description of the
work already carried out is given which can be extended in future. The main perspectives include
the study of nonlinear dynamic behavior of the rotors under some base movements. i.e. the supports
of the rotor are not fixed but can be subjected to different movements like simple translation, a
constant acceleration, sinusoidal translatory motion, simple rotation and sinusoidal rotation.

5.1. Conclusions

This thesis presents a detailed development of various mathematical models and their analysis for
studying the nonlinear dynamic behavior of rotors. First a state of the art for the dynamic analysis of
the rotors has been discussed and a brief introduction of various important aspects of rotordynamics
is given. From the state of the art it is concluded that the study of the dynamic behavior of rotors has
been a subject of practical importance for many years. A lot of work has been carried out in
predicting the dynamics of metallic as well as composite rotors. But this is still an ongoing research
especially when nonlinear effects are included to be investigated which being the main objective of
the present thesis works.

Then a detailed mathematical modelling is presented for analyzing the dynamic behavior of rotors.
Various models containing nonlinear differential equations of motion have been developed for
different rotor configurations. These models consist Yfahd 4 order nonlinear differential
equations of motion. Different models and hence different equations of motions have been
developed taking into account the various significant effects like higher order large deformations,
geometric nonlinearity, shear effects, gyroscopic and rotary inertia effects. The models are
developed using both the Euler Bernoulli and Timoshenko beam theories. Rayleigh-Ritz method and
Hamilton’s principle have been used in order to obtain the equations of motion. When shear
deformations are taken into account the developed equations of motion consfStoofed
derivatives with respect to time. A case study for the dynamic analysis of the composite rotors has
been conducted and the results obtained are compared to the works already available in the
literature. The results obtained for the dynamic analysis of composite rotors in this study are in close
agreement with those previously reported in the literature.

Some of the equations of motion developed in the modeling section have been investigated to study
the nonlinear dynamic behavior of the rotors. Firstly, the nonlinear behavior of rotor dynamics due
to large deformations and a dynamic axial force was analysed for the first mode using MMS. The
numerical investigations have been conducted using three methods, i.e. the method of multiple
scales, a continuation procedure (Matcont) and a step by step analysis in Matlab Simulink. It is
concluded that the method of multiple scales is more efficient than the other two methods as all the
stable and unstable solutions can be seen in the resonant curves. The results show that nonlinearities
along with other phenomena like gyroscopic, rotary inertia and mass unbalance effects significantly
influence the dynamics of the rotor system. The linear analysis showed that resonance existed only
at the second critical speed, but in the nonlinear analysis another resonance appeared at the first
critical speed. Furthermore, nonlinearities caused the resonance curves to be of hard spring type. In
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the absence of dynamic axial force and at lower values of mass unbalance, the spring hardening
effect was visible even at lower values of detuning paramgtddsing the method of analysis

presented here facilitated studying the changes caused by modifying different rotor system
parameters, by changing the numerical values of the latter.

The combined effect of nonlinearities and shear effects on the linear and nonlinear dynamic
behavior of the rotors has been also studied. The mathematical model which was treated in for this
case consisted of"brder nonlinear differential equations of motion. The method of multiple scales
was applied to the™order of derivatives with respect to time. The effects of shear were discussed

in detail both on the linear as well as nonlinear response of the rotor system under study. The results
of the linear analysis for a rotating shaft and a shaft-disk rotor system, both for solid and tube
section, showed that with the inclusion of shear deformations the critical speeds of the rotor tend to
decrease. This difference becomes more visible for higher values of the slenderness ratio r. As
compared to a shaft-disk rotor system the shear effects have more notable influence in the case of a
solid and tube sections of the shatft.

In the nonlinear analysis, the resonant response curves were plotted. These curves are of hard spring
type. The response amplitude and horizontal plotting range of the detuning parameter is higher in
case of the resonance condition corresponding‘torifical speed of the rotor. The overall dynamic
behavior of the rotors can be greatly varied with the variations in the slenderness ratio and the
unbalance mass. The effects of shear deformations are more significant for higher values of the
slenderness ratio. As an overall concluding remark, the higher order and shear deformations have a
significant effect on the dynamic behavior of the rotor systems. Therefore, for an accurate analysis
ensuring improved safety and efficiency of the rotor systems, these deformations cannot be ignored.
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5.2. Future Perspectives

This chapter discusses the future scopes of this thesis work. This includes:

The investigations of nonlinear effects discussed in the present work on the dynamic behavior of
Onboard Rotors, i.e. the rotors subjected to some base movements.

Another important future perspective is the experimental validation of the analytical and numerical
results obtained in the present PhD work. The development of the experimental setup is in progress.

Rotors Subjected to Base Movements

The dynamics of a rotor under some movements of the supports both in translation and in rotation
can introduce new interesting phenomenon to be investigated. The displacement of the supports can
be divided into two major categories: the seismic excitations and onboard excitations. The example
of the latter is a case where the rotor is mounted in a vehicle which is in motion. Rotor vibrations
caused by large time-varying base motion are of considerable importance as there are a good
number of rotors, e.g., the ship and aircraft turbine rotors, which are often subject to excitations, as
the rotor base, i.e. the vehicle, undergoes large time varying linear and angular displacements as a
result of different manoeuvres. Due to such motions of the base, the equations of vibratory motion
of a flexible rotor—shatft relative to the base (which forms a non-inertial reference frame) contains
terms due to Coriolis effect as well as inertial excitations (generally asynchronous to rotor spin)
generated by different system parameters. Such equations of motion are linear but can be time-
varying in nature, invoking the possibility of parametric instability under certain frequency—
amplitude combinations of the base motion.

The study of dynamic behavior of rotors has been a topic of ongoing research in recent years.
Ducheminet al [DBFO06] investigated the dynamic behavior of flexible rotor systems subjected to
base excitatio(support movements) both theoretically and experimentally. Their study was focused
on the behavior in bending near the critical speeds of rotatiorathematical model was developed

to calculate the kinetic energyd the strain energy. The equations of motion were deusied
Lagrange equations and the Rayleigh-Ritz method was usadliothe basic phenomena on simple
systems. Also, the methaof multiple scales was applied to study stability when disstem
mounting was subjected to a sinusoidal rotation. An experimeetigh was used to validate the
presented results.

Driot et al [DLBO06] studied the dynamic behavior of a flexible rotor systeijected to support
excitation (imposed displacements of its base). The effect of an excitation on lateral displacements
wasinvestigated from theoretical and experimental points of view. The f&iadyed on behavior in
bending. A mathematical model with twgyroscopic and parametrical coupled equations was
derived using the Rayleigh-Ritzethod. The theoretical study was based on both the muitigles

method and the normal form approach. An experimental seighen developed to observe the
dynamic behavior permitting thmeasurement of lateral displacements when the system's support
was subjectetb a sinusoidal rotation.

In another study Driott al [DLBO7] investigated the dynamical behavior of an asymmetrical rotor
subjected to a base translational motion. The amplitude of the parametric excitation was modeled as
a random parameter in order to investigate the robustness of the dynamics. The forced steady state

121



Chapter 5: Overall Conclusions and Future Perspectives

response was considered. The original Taguchi's method was used to provide statistical moments of
the forced response.

Daset al in a very recent study [DDR10] investigated active vibration control of an unbalanced
rotor—shaft system on moving bases with electromagnetic control force provided by an actuator
consisting of four electromagnetic exciters, placed on the stator in a suitable plane around the rotor—
shaft. The equations of motion of the rotor—shaft continuum were first written with respect to the
non-inertial reference frame (the moving base in this case) including the effect of rotor internal
damping. A conventional model for the electromagnetic exciter was used. Numerical simulations
performed on the flexible rotor—shaft modelled using beam finite elements showed that the control
action was successful in avoiding the parametric instability, postponing the instability due to internal
material damping and reducing the rotor response relative to the rigid base significantly, with
sufficiently low demand of control current in comparison with the bias current in the actuator coils.

In all the works reported above the bending of the shaft was assumed linear and the terms due to
higher order large bending deformations were not taken into account. If these terms are also
considered, the resulting equations of motion, when investigated, can give rise to new interesting
phenomenon in the dynamic analysis of such rotors. This study is included in the future perspectives
of this thesis. Based on the works of the present thesis and the work performed by
Ducheminet al [DBFO6], some advancements are already made particularly in developing a
mathematical model which includes the combined effect of nonlinear large deformations and the
base movements on the dynamic analysis of rotors.

The kinetic energies of the disk, the shaft and the mass unbalance are same as developed by
Ducheminet al [DBFO06]. These energy equations are reproduced for reference. The inclusion of the
nonlinearities due to higher order large bending deformations affects the deformation energy of the
shaft. The derivation of this new deformation energy and based on this, the development of a new
mathematical model is presented in the following paragraphs.

The geometry of the rotor is shown in Fig. 55 [DBFO6].

Ro

Fig. 55. Geometry of the Rotor

The kinetic energies of the disk, shaft and mass unbalance are given in Appendix G.
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Strain Enerqgy of the Shaft
The strain energy of the shaft is not affected by the movements of the supports of the rotor. But it is
affected by the nonlinearity due to higher order large deformations in bending. The derivation of the
following strain energy of the shaft is similar to as given in section 2.4.2 of chapter 2.

L 2
EIl 06 aw EA 1 4
u=— — + — —_— —0 +=yY += 9 d
‘ _! > oy | ay I w vy (5.1.1)
The above equations can be compared to Eq.(2.4.12), whewed &, are replaced withdand

 respectively.

Application of Rayleigh-Ritz Method
The method of Rayleigh-Ritz allows to express the displacemeftgt) and w (y,t) along the

directions x and z to be expressed as follows,

u(y.9=1(y) q(9= (¥ g
w(y.t)=f(y) ()= f(yg (5.1.2)

Where, f(y) is the modal deformation ang @ are generalized independent coordinates.The angles
fandy are approximated as,

wo_0u__df(y) (5.1.3)

Fig. 56. Degrees of Freedom of a Beam

The 2" derivatives of u and w are:

o°u _d*f(y)

- = =h
7y oy G ma
- = =h
7y ey %0
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The function f (y) is chosen as the displacement function for a pinned-pinned beam in bending.

f(y)=sin 2 (5.1.5)

Where, n is the no. of the mode studied.

Using the Rayleigh-Ritz method, the kinetic energy of the rotor which is the sum of the kinetic
energies of the disk, shaft and the mass unbalance can be given as,

TET, T
:% ()&+,@SZ -&SY)2+(@(+,$(S X -dg $2+(&z+drs Y 7@’8 >)<2
M, (.2 2
My -k ()?(-'-/&sz - ¥ Y)H&s(%"&sY ':‘&s >§ +7(&s +}g‘s)
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M 2 2 2
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Applying Rayleigh-Ritz method to Eq. (5.1.1), the deformation energy of the rotor for a symmetric
shaft can be given as,

(5.1.7)
Where,

B P D= ‘4 ,
krE'lh (Ydy; k= Ei g( yd (5.1.8)

Application of Lagrange Equations

After application of Lagrange equations to Egs. (5.1.6) and (5.1.7), the following system of two
equations of motion is obtained,

3
ql+1K Ny

M%+(C+C*)dl+(Kl+K*) > s
d‘z qz 2 q2

4
2 (5.1.9)
36 o=l
2 7 a4

Where, the matrices [M], [C], et [Kare the classical matrices obtained in the case of a linear rotor
with fixed supports.

M]= M, +1 0
0 M, +1 (5.1.10)
- 0 Qi,
Cl=
_Qlyz 0 (5.1.11)
_k O
K=o k, (5.1.12)

The vector £} is the contribution of the mass unbalance for a rotor with fixed supports.

m, d f(1)Q’sinQt
m, d f(1)QcosQt (5.1.13)

The vector £} represents the supplementary terms due to the movement of the supports of
the rotor.

{F*} - :1 (5.1.14)
Where,
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f=m d f(ll) —(,@SH&SJ&S) coth+(/§’SZ+ D/&Sﬂf{;) sin t

+(M5+Iml) (;&s_c&s"&’s)+I y & S(Q+/§S) (5.1.15)
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The matrices [( and [K] are due the movement of the assembly of the rotor.

. 0 B (2m,+21 -1 )
A (2m,+21,-1,) 0 (5.1.17)
_ K
“ - kzi z (5.1.18)
Where,
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The matrix [K] is due to the consideration of higher order large deformations in bending.

27 0 k (5.1.23)
Where,k, is given by Eq. (5.1.8).

Eq. (5.1.9) is a new equation of motion which includes the combined effect of the movement of the
base of the rotor and the nonlinearity due to higher order large bending deformations. This equation
can be treated using the method of multiple scales as in chapter 3 and 4 of the present thesis.
Different types of movements of the base of the rotor can be investigated, for example, simple
translation, a constant acceleration, sinusoidal translatory motion, simple rotation and sinusoidal
rotation.
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Appendix A: Strain Energy of the Shaft

Appendix A: Strain Energy of the shaft

The shaft is modeled as a beam of circular cross section in bending (Fig.A). The displacements in
the x, yandz directions of the beam are given below.

u=u,u=-+X , u=w (A.1)

X y X z z

The longitudinal strain (deformation) in tielirection can be shown to be

08 08
£ =-7—2* A ek
v oy oy 2 * 27
! ! (A.2)
g ¢, (higher order deformation:

The strain energy can be given as:

U= 2”(0 £ )dAdy (A.3)

By using the relatiomyy = Eeyy, the strain energy can be written as:

== J’ J's 2dAdy (A.4)

By using Eq. A.2,

2

1,2 12

X+x +—H +=6° dAd A.5

Ya ZII 27x 9z y (A.5)
, 08 ° , 00 ° 00 1 4
C Ty TNy TPy "%

u == y y you dAdy (A.6)
2 08 96 1 1 5

08 Llgiilg2g2_n 0% 0% 1p2, 1
472 2 dy oy 2x 272

The 3rd and 7th term in the above equation can p&cted due to the symmetry of the cross-

section. Also, | :J'zsz, | :J'x2 dA 1=1 = I (due to symmetry) an(]’ds: A is the area of
A A
the cross section.

Therefore, Eq. (A.6) becomes,

2 L
EA-1 4 1 4 1 _2 >

dy+—([ =6 +=60 +=6°6" " d A.7

y 2,(':4X 4 2 2 x z y (A7)

Sl:_
2 } oy
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Appendix B: Numerical Data

Appendix B: Numerical Data

p=7800kgm’ ,E= x 10 Nm g¢= 0.001L= 0.4mR= 0.

R,=0.15m ,h=0.03m m = & 10 kgd =R = 0.15m
M, =7(R,” - R”) b =16.47kg

I, =M (3R”+3R’+h)/12= 9.42% 1T kgit

l, =M (R*+R")/2=1.861 10" kgm

A=7R*=3.142x 10" M

| =nR"/4=7.854¢ 10" m

For the geometry and material properties of the rotor system given above, the numerical values of
different constants are given as,

a,=2.0084x10" g, = 83.623xI04 = 2.5087X1@,= 9.5457X.
0 =258, = 323f [ ) 8.660x10 d, = 0.167 0.001
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Appendix C: Coefficients of Solvability Conditions for Chapter 3 for the caSe~ab,

Appendix C: Coefficients of Solvability Conditions for Chapter 3
for the case ofQ=w,

czzczlcl, C,= C3/ Cl, G= CS/ q

d,=D,/D,d,=D,/D,d,=D,/D,d=DJD.

where

C = —2a)13 - alw12w2+ alza)fozz t20w-aq @,
C,=2i(B,+2B,)w, +aww,~a )
C,=4i(B,+2B,)w +aww,-a)=2C,

C, = —c(a)13 + ala)fa)z -a )

D, =(-a,- crl2 + 2)a)23 —a(a,+ 2w,

D, =21 (8, +2B,)l(@,~Yw, +a ]

D, =4i(8,+2B,)l(@,-Yw, +a,]=2D,

D, = md, f(l(a,De; +a ;]

— —_ 3 —
D, =c(l-a)w, -aw,)]
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Appendix D: Coefficients of Solvability Conditions for Chapter 3 for the caSe~ofy,

Appendix D: Coefficients of Solvability Conditions for Chapter 3

for the case ofo=w,

czzczlcl, C,= C3/ Cl, G~ C4/ C1 G= C;Jj C

d,=D,/D,,d,=D,/D, d.=DJD,

C = —2a)13 - crla)l3 + alza)13+ 20 p-aqgw.

C,=2i(B,+2B,)w, +aw.-a)

C,=4i(B,+2B,)w +aw -a)=2C,

C, =%mldl f(DI(a,~Dw, +a ]

C, = —c(a)13 + crla)l3 -a.w)

D,=-2a2 oo2+2w23—0(2 w, al —oozzoolo(l —w12a12w2

D,=2w,0lw,Bfl+4w al oo2[32—4u)22[32+4a2 B2+20a2 1
-2 oo22 Bl

D,=802B2-8w, B2+8w, alw,p2+4 0w, alw,pl+4a2pl
~4w, Bl

3 2
Ds—oo2 cl-a2 clooz—oolo(l w, cl
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Appendix E: Coefficients of Solvability Conditions for Chapter 4 for the caSe~of)

Appendix E: Coefficients of Solvability conditions for Chapter 4

for the case ofo=w,

C C C C C
01:_2’(:2:_3 %:_4,(%:_5,%:_6 %:&

G G G ] G G
d :& d :& d3:& d :& q_’:&
1 L 2 b 1 4 b

Dl Dl 1 Dl Dl

F F F F F
f1=_2’ f2:_3 s f3:_4 , f4:—5 , f5=—6

Fl Fl Fl Fl Fl

G G G G G
91:_2, 92:_3’ 93=_4 , g4:_5 , %:_6

Gl Gl 1 q q

Where,

3 7 2 5 2 3 3
C1__4(}51(")1 +3(")1 Ay +6(’°1 G31—2G31 W, tow o,

3 7 5
—(X31(.01(] —(JO G —G (JO (X —(X (.OG +2(]51(]3100

5
+3wla —4w a41a21+3a W, a _4‘*’1

_ 2 3 3 8
C,=3lw, O(41631_1“3(31(’01 41+Z|(*)1 O(21[341_18“’01 0y By

-31w B, - 1810, "B, +§Ioo B, +181 0 o, B,

8 3 8
-181 o, [321—3|G51[331—3|(,01 a21831_21|°°1 Oy By

+181w, "0, B, + 1810, B, +18la,, w, B, +181 0 B,

4 4 2 3 6
—18lag B, w0, —18lw, a, B, +31a, w, 831+Z|O(51B41°o

4 2 2 4 6
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—24|u)1 a41[311w2 +12|ml 0(41[321(02 +24I(n1 a41[321w

4 4 3 2 2 2
-1210, a, B, w, +§I0(51B4100 W, —24lag B, w w,

+12|o)16[311+24|a co4[3 w2—24| 0(31(012[311(0

_3| 4 4_3I
5103 0 B41(")2 W, a
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2 2 2Py @ Gle Bsy

3 6 4 2 4
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2 2 4
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Appendix E: Coefficients of Solvability Conditions for Chapter 4 for the caSe~of)

6 2 4 2 3 6 4
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Appendix G: Kinetic Energies of the Rotor Subjected to Base

Movements

Kinetic Energy of the disk [DBF06]

The disk is supposed to be rigid and is characterized by its kinetic energy given below [DBF06],
TDz%{Z by (Zw(y)rd Y B X+ (Y))-F (Y £, ¥B [ 2 W)

w @i+ )l (kU (ZF W) K \a (g * @y & 2 WY
+(2+w(y)+a§rS Y B (X y))}

eron{ (@2« 2] +(00) + (o)) oo (£ -#2) v () (B2 -4

, 4 00 RB 1)+ (0(9) 80) -0( ()

+B, (& w(v) - 6())+a k(96 Y
(v, o(y)-d, w(s)) + (B,+0) 2(5) 80)-A, () +() )

{2 (& (@0(9)+5,003)+& B(5) -k g(3)+ £ (w(y)- 05))+(d 5 #7)-8(y)
~w(y)+56(y) - aZw(y) +2B(w(y) (Y +o( Ye( 9)-24d, ¥ ¢ )/e( Y cos 20 t
- 2a g+ 2B ( p(y) - 6(y))+2a, (y)+ 2k, 8(y)+ 4~ £)w(y) 6(y)

- agg (00" + w())+ 28w () (3) - o( & »)+ B(Y4(y snm

This expression contains the classical terms of the dynamic of rotors:

%QZ : A constant terms representing the rotational energy of the disk. It does not have an

influence on the equations of motion.

TD(I&( y)2+ W y)2) : Kinetic energy of an element in translation in a plane.

I
%(4&@)2 + é( y)2) : Rotational kinetic energy about the axis x and z.

IDng&(y) 6(y) : Gyroscopic (Coriolis) effect.

The other terms are due to the movement of the rotor assembly.
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Kinetic Energy of the shaft[DBF06]

The kinetic energy of the shaft can be derived from the kinetic energy expression of the disk above
by extending it for an element L of thin section, of the thickness dy, the constant cross section S , the
density pand the constant inertias of the sectioet Il,.

The kinetic energy of the shaft can be written as,
Ta=%},0${2 by (Zr W yrdg Y B (% 0)-k (xtoy K ¥B( 2 W)
+ L&Zﬂ%z y2+(ﬂ+&|(y)+/§’ (z+ v y) -k \a (&\4;?( X u)y & ( (W)»z
H(Eragy+ay A ()] ay
o [ 1u] (€0 52+ (B0 +w () w07 (B2 -42) v () (82 - )
2 a d(y) () + A, (0(1) (1) ~O(0)b()* A (e ()k 00 3) +a, pwr( Yo( ¥} ¢
+}pIm{(ésmwse(y)—&sw(y))z+ (80) 2(y) 6()-& [w(s +o(3) | o

. ipla (2 (8, (a0(5)+#,000))+ @ 80Nk )+ B Juo) - 6(5)) 825+ B0
() + 2 0(y) - &lw () +2 8, (w () 6( Y +6( Yer( ¥)-24g kg w( ye( Y cos 20 t

- 24 p o+ 2B (kg (y)-d, 0(y))+2d, d(y)+ 2% 8(y 2(& ) a(y)

- a g (0(y) + w(y))+ 28w (y) @(y) - 6()) & 9)+ () é(y sinx }tdy

The above expression contains the classical terms of dynamics of rotors.

pl L Q*: A constant terms representing the rotational energy of the shaft. It does not have an

influence on the equations of motion.

L
%J’ ﬁ(y)2+ W y)2 dy : Expression of the kinetic energy of a beam in bending.
0

L
dy Secondary effects of rotary inertia.

L

2pImQJ'z,&(y)9(y) dy : Gyroscopic effect.
0

The other terms are due to the movement of the rotor assembly.

157



Appendix G: Kinetic Energies of the Rotor Subjected to Base Movements

Kinetic Energy of the Mass UnbalancdDBFO06]

The mass unbalance is supposed to be situated at a distance d from the geometric center C of
the disk and is represented by. See fig. where point A represents the geometric center of

the undeformed shaft.
The kinetic energy of the mass unbalance is given as below,

T :%mu o (Q+/§’S)2+(ﬁfs sinQt - &, cosQ t)z)

wmod (K+dw B (z0 Wi (v Y) (Q+A,) cosat
+(‘i&+;?(s (X+u-d, (z+ vx)) (;f(s sinQt-d, cosQ t)
~(Rewrdg (Y+y)-B (x+ ) (Q+4) sinat
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Résumé de These

La dynamique des rotors est un domaine important dans de nombreuses applications d’ingénieries
telles que les moteurs a réaction, les rotors d'hélicoptéres, les turbines, les compresseurs ou encore les
broches de machines-outils. L'énergie cinétique de rotation de ces éléments constitue une source
interne d'énergie, qui, dans certaines circonstances, peut conduire a des vibrations de grandes
amplitudes du rotor et perturber le fonctionnement de la machine, réduire sa durée de vie et conduire a
sa destruction. Pour ['évaluation de la fiabilité et de la sécurité, les scénarios possibles de
dysfonctionnement du systéme, il est nécessaire de modéliser et d'analyser le comportement
dynamique des rotors prenant en compte ces grandes déformations. Par conséquent, le fonctionnement
de la machine doit étre assuré par la connaissance des déformations du rotor et les efforts de liaisons
avec les composants de la machine.

Ainsi, l'objectif de ce travail de thése est d'étudier analytiquement et numériquement le
comportement dynamique non-linéaire des rotors, en prenant en compte des effets significatifs comme
les grandes déformations en flexion, les non-linéarités géométriques et le cisaillement.

Le travail de cette thése est divisé en trois parties principales. Dans la premiére partie, le principe
de Hamilton est utilisé pour formuler les équations du mouvement qui prennent en compte un
ensemble d'effets non-linéaires comme des déformations d'ordre supérieur en flexion et le
cisaillement. De plus, si les supports du rotor ne permettent pas a l'arbre de se déplacer dans la
direction axiale, il y a alors une force dynamique harmonique agissant axialement sur le rotor en
fonctionnement. Ces modeles se composent d'équations différentielles non linéaires du deuxieme
ordre lorsque les déformations de cisaillement ne sont pas considérées. Lorsque les effets du
cisaillement sont également pris en compte, les modeles mathématiques développés se composent
d'équations différentielles non linéaires du quatrieme ordre.

Les deux parties suivantes sont consacrées a la résolution des différents modeles non-linéaires
développés dans la premiere partie. Des méthodes analytiques et numériques sont appliquées afin de
traiter les équations non linéaires du mouvement. Afin de résoudre le modele complet, une méthode
basée sur des développement asymptotiques, la méthode des échelles multiples (MEM) est appliquée.
Il s'agit d'une méthode des perturbations qui s'est avérée trés efficace pour résoudre les équations non
linéaires de mouvement. Les courbes de réponse sont tracées pour différentes résonances possibles et
I'effet de la non-linéarité est discuté par rapport a l'analyse linéaire. La réponse forcée du systéme
provoquée par un balourd est également présentée pour plusieurs configurations du rotor. Lorsque les
déformations de cisaillement sont prises en compte, I'analyse est effectuée pour différents élancements
afin de mettre en évidence cet effet sur la dynamique d’'un axe en rotation d’'une part et d’'un systeme
arbre-disque d'autre part.

Les paragraphes suivants présentent un bref résumé de chaque chapitre de la these.

Chapitre 1

Ce chapitre présente un état de l'art concernant le domaine de l'analyse du comportement
dynamique des rotors. Les comportements de base sont décrits et les techniques et les outils utilisés
pour traiter les problémes spécifiques présentés. L'objectif et la contribution de la thése sont discutés a



la lumiere de I'état de I'art et des travaux de recherche disponibles a ce jour dans la littérature. Une
introduction concernant les divers aspects importants liés aux rotors en composites est aussi exposee.

Chapitre 2

Ce chapitre est dédié a la modélisation mathématique pour analyser le comportement dynamique
des rotors. Les théories des poutres de type Euler-Bernoulli et de type Timoshenko sont rappelées pour
la modélisation de l'arbre. Le principe de Hamilton est utilisé pour formuler les équations de base du
mouvement. Différents modeles sont proposés :
Prise en compte des effets secondaires de flexion et d'une force axiale statique N

L'influence de ces effets se caractérise par une modification de I'énergie de déformation. Ceci
conduit aux deux équations du mouvement :

$-0a +au+ %,31+,32 (U3+UW2)+N0kN U +cld =mQ°d f (I )sinQt
1 3 2 _ 2
W+aoal +aw + SB*B, (W +WU )+ N gy W +oW =m Q°d f (I )cosQt

Prise en compte des effets dynamiques de variation de la force axiale.
Lorsque le rotor est contraint dans son déplacement axial (conditions d’appui), la variation de
I'effort axial a une influence sur I'énergie de déformation. Les équations du mouvement sont :

1 .
$-QaW+al + E,B’1+,B’2 (U3+UW2)+CL§ =mQ°d f (1) sinQt
1
W+aald+aw+ ~p+B, (W3+WU2)+CW=m1§22d1f(ll)coth

Prise en compte des effets provenant du cisaillement.

Le modéle de base est repris avec la prise en compte de l'influence des termes liés a la participation
du cisaillement. Ces modifications ont une influence dans I'énergie de déformation. Il apparait alors
des termes non linéaires dans les deux équations différentielles du mouvement qui comportement des
dérivées 4™ en temps. Les équations du mouvement sont :

$-0g W+a $-0a W+a U +cW =(-3/2)8, W&+ DWH
+30°8)- (3/2)8,, A" + W& + D - (3/48, U7 +UW?)
- (3/16)8,, & +&&° )+ m Q° sint

Weoa Bra W +Qa, 8 +a W +cd =(-3/2)8, LW +2wUE
+3W R - (3/2)8, W& + DBR + B - (3748, W +wWU ?)

- (3/16)8,, (B + W& )+ m Q* coat

Une introduction est faite pour I'application des ces modéles dans le cas de rotors en composite.
Une méthode de discrétisation par éléments-finis est utilisée pour le modéle linéaire et une approche
de type Rayleigh est utilisée pour les modéles non linéaires.



Chapitre 3

Dans ce chapitre, les aspects techniques et théoriques de la prise en compte de l'influence des
déformations d'ordre supérieur et des efforts axiaux (statique et dynamique) sont étudiés. Trois
méthodes sont utilisées pour analyser les résultats : la méthode des échelles multiples (MEM), une
méthode d’intégration directe pas a pas des équations du mouvement et une méthode de type

continuation.

Pour la MEM, les inconnues ont recherchées sous la forme de développement en séries de
puissance. Les systemes d’équations linéaires obtenues sont résolus ‘en cascade’. Un intérét particulier
est porté a I'étude autour des deux fréquences de résonance du rotor avec l'utilisation d'un parametre

de désaccordage o

Une approche par discrétisation par éléments finis est appliquée afin de trouver la réponse
dynamique linéaire des équations du mouvement.
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Diagrammes dans le plan de Phase et sections de Poincaré, amplitudes en fonction du temps
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Les effets des différents paramétres mécaniques (longueur, diameétre, ...) sont étudiés et il apparait
aussi que tous ces parametres sont liés et ont une influence commune sur le comportement dynamique.



Chapitre 4

Ce chapitre analyse I'effet combiné des non-linéarités et de la prise en compte du cisaillement sur
le comportement dynamique lin€aire et non linéaire des rotors. Le modéle mathématique qui est traité
dans ce chapitre se compose des équations différentielles du mouvement non linéaires contenant des
dérivées d'ordre 4 par rapport au temps. La méthode des échelles multiples est appliquée directement
pour ces équations.

L'influence des différents parametres sur la réponse linéaire et non linéaire du systeme est
analysée. Les réponses du systeme en régime permanent sont calculées par les trois méthodes. Les
résultats sont présentés graphiquement et les effets du cisaillement sur le comportement sont discutés
en détail.

Certains résultats de I'analyse linéaire et non linéaires sont présentés ci-dessous.

Table. 1. Effets du cisaillement sur les 2 premiéres fréquences propres pour les systeme arbre-disque en
fonction du « slenderness ratios (r) ».

L=2 L=15 L=1 L=1 L=0.5
Cross- Geometry R;=0.32 R;=0.18 R;=0.08 | R;=0.06 | R;=0.02
section (meterS) R,=0.75 R, =0.50 R,=0.3| R,=0.3| R, =.15
h=0.15 h=0.10 h=0.06| h=0.06| h=0.03
Slenderness ratio (r) 0.08 0.06 0.04 0.03 0.02
Critical speeds without shear 13838 13542 12064 7456 7158
(rpm) 16286 15247 13275 8284 8068
. Critical speeds with shear (rpm) 13332 13255 11970 | 7433.5 | 7153
Solid 15227 14743 13124 | 8247 8059
percentage decrease 3.65 % 2.34% 0.78% | 0.30% | 0.07 %
6.50 % 3.31% 1.14% | 045% | 0.11%
Critical speeds without shear 2505.6 2997.4 3471.7 | 2223.4 | 3300.6
(rpm) 3200.5 3618.3 4017.9 | 2563.6 | 3791.3
Tube Critical speeds with shear (rpm) 2500.8 2992.5 3468.1 | 2222.4 | 3299.8
(e=10m) P P 3184.6 3605.8 4010.4 | 2561.3 | 3789.7
Percentage decrease 0.19 % 0.16 % 0.10% | 0.04% | 0.02 %
0.50 % 0.35 % 0.19% | 0.09% | 0.04 %
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Chapitre 5

Les conclusions générales de la thése sont présentées dans ce chapitre. Une description du travail
déja effectué est dressée. En outre, sur la base des travaux effectués pour cette these, les perspectives
d'avenir, sont également mentionnées dans le détail. Les principales perspectives comprennent I'étude
du comportement dynamique non linéaire des rotors avec une sollicitation par la base de base. Cette
derniére n’est plus fixe et peut étre soumis a différents mouvements comme une rotation simple
rotation sinusoidal ou des déplacements quelconques.

Cette thése présente une élaboration détaillée de différents modéles mathématiques et leur analyse
pour étudier le comportement dynamique non linéaire des rotors. D'abord, un état de I'art concernant
l'analyse dynamique des rotors a été discuté et une bréve présentation de divers aspects importants de
la dynamique des rotors est présentée. De I'état de I'art il est conclu que I'étude du comportement
dynamique des rotors a été un sujet d'importance pratique depuis de hombreuses années. Beaucoup de
travaux ont été réalisés pour prévoir la dynamique des rotors en matériaux métalliques ou composites.
Les travaux se poursuivent avec, en patrticulier, la prise en compte des effets non linéaires. Ceci est
I'objectif principal des travaux de la présente these.

Ensuite, une modélisation mathématique détaillée est présentée pour analyser le comportement
dynamique des rotors. Différents modéles contenant des équations différentielles non linéaires du
mouvement ont été développés pour différentes configurations de rotor. Ces modeéles se composent
d’équations du mouvement différentielles non linéaires du second et quatrieme ordre. Différents
modeéles ont été élaborés en tenant compte des différents effets importants comme des grandes
déformations, des non-linéarités géomeétriques, les effets de cisaillement, des effets gyroscopiques
d'inertie de rotation. Les modéles sont développés en utilisant le principe de Hamilton afin d'obtenir
les équations du mouvement. Lorsque les déformations de cisaillement sont prises en compte les
équations du mouvement développées sont composées des dérivés d'ordre 4 par rapport au temps. Une
étude de cas pour l'analyse dynamique des rotors en composite a été réalisée et les résultats obtenus
sont comparés aux travaux existants dans la littérature. Les résultats obtenus pour l'analyse dynamique
des rotors en composite dans cette étude sont en accord avec ceux rapportés antérieurement dans la
littérature.

Les équations de mouvement développées dans la partie modélisation ont été étudiées pour décrire
le comportement dynamique non linéaire des rotors. Tout d'abord, le comportement non linéaire de la
dynamique des rotors provoqué par de grandes déformations et une force axiale dynamique a été
analysé. Les études numériques ont été réalisées en utilisant trois méthodes, a savoir la méthode
asymptotique des échelles multiples, une procédure de continuation (Matcont) et une analyse pas a pas
dans Matlab Simulink. Par comparaisons la méthode des échelles multiples est plus efficace que les
deux autres méthodes, toutes les solutions stables et instables peuvent étre observées dans les courbes
de résonance. Les résultats montrent que les non-linéarités ainsi que d'autres phénoménes comme les
effets gyroscopiques, les effets d’'inertie de rotation et du balourd ont une influence significative sur la
dynamique du systeme tournant. L'analyse linéaire montre que la résonance existe uniquement a la
deuxieme vitesse critique, cependant que dans l'analyse non linéaire une autre résonance apparait a la



premiére vitesse critique. De plus, les effets secondaires rendent le systeme non linéarité de type ‘hard
spring’.

En l'absence de la force axiale dynamique et a des valeurs de balourd plus faibles, l'effet de
durcissement de la raideur était visible méme pour de faibles valeurs de terme de pertarbation
L'utilisant de la méthode d'analyse présentée ici facilite la mise en place d’étude paramétrique. Les
valeurs numériques des paramétres de systeme du rotor sont intégrées dans la réponse du calcul.

L'effet combiné des non-linéarités et des effets de cisaillement sur le comportement linéaire et non
linéaire dynamique des rotors a été eégalement étudié. Le modele mathématique qui a été traité dans ce
cas était composé d’équations du mouvement non linéaires d'ordre 4. La méthode des échelles
multiples a été appliquée directement aux dérivées d'ordre 4 par rapport au temps.

Les effets du cisaillement ont été discutés en détail a la fois sur la réponse non linéaire du systeme
de rotor étudie. Les résultats de I'analyse linéaire pour un arbre en rotation et un systéme arbre-disque,
pour une section pleine et creuse, ont montré que la prise en compte des déformations de cisaillement
réduit les vitesses critiques du rotor. Cette différence devient plus nette pour des valeurs plus élevées
de ‘slenderness ratio’ r. Par rapport & un systeme arbre-disque les effets de cisaillement ont plus
d'influence d'un arbre, de section pleine ou creuse. Dans 'analyse non linéaire, les courbes de réponse
de résonance ont été tracées. Ces courbes sont de type ‘hard spring’. L'amplitude de la réponse et la
plage sont plus étendues dans le cas de résonance correspondéfftvités£e critique du rotor. Les
comportements dynamiques globaux des rotors peuvent étre trés divers selon les variations de ‘r’ et de
la masse du balourd. Les effets des déformations de cisaillement sont plus importants pour des valeurs
plus élevées de I'élancement.

En conclusion, les grandes déformations et cisaillement ont un effet significatif sur le
comportement dynamique des systemes de rotor. Par conséquent, pour une analyse précise assurant
une meilleure sécurité et une efficacité des systemes de rotor, ces déformations ne peuvent étre
ignorées.






Summary of the Thesis

The objective of the present work is to investigate the nonlinear dynamic behavior of the rotor
systems analytically and numerically, taking into account the significant effects, for example, higher
order large deformations in bending, geometric nonlinearity and shear effects.This thesis is divided
into two major parts. In the first part, Hamilton’s principle is used to derive the equations of motion
which take into account various effects, for example, nonlinearity due to higher order large
deformations in bending and shear effects. In addition, if the supports of the rotor do not allow the
shaft to move in the axial direction, then there will be a dynamical force acting axially on the rotor
as it operates. The mathematical models are composed of coupled nonlinear differential equations of
the 2% and the % order.

In the second part, the resolution of various nonlinear models developed in the first part is
addressed. Analytical and numerical methods are applied for treating the nonlinear equations of
motion. A method based on asymptotic developments, the method of multiple scales (MMS) is used.
The response curves are plotted for different possible resonance conditions and the effect of
nonlinearity is discussed with respect to the linear analysis. The forced response of the system due to
a mass unbalance is also presented for various configurations of the rotor. When shear deformations
are taken into account, the analysis is performed for various slenderness ratios to highlight shear
effects on the dynamics of the shaft-disk rotor systems.

Keywords : Rotordynamics ; Nonlinear ; Higher Order Deformations ; Dynamic Axial Force ;
Shear Effects ; Method of Multiple Scales.

Résumé de These

L'objectif de ce travail de these est d'étudier analytiguement et numériquement le comportement
dynamique non-linéaire des rotors, en prenant en compte des effets significatifs comme les grandes
déformations en flexion, les non-linéarités géométriques et le cisaillement. Le manuscrit est divisé
en trois parties principales. Dans la premiére partie, le principe de Hamilton est utilisé pour formuler
les équations du mouvement qui prennent en compte un ensemble d’effets non-linéaires comme des
déformations d'ordre supérieur en flexion et le cisaillement. De plus, si les supports du rotor ne
permettent pas a l'arbre de se déplacer dans la direction axiale, il y a alors une force dynamique
harmonique agissant axialement sur le rotor en fonctionnement. Ces modéles se composent
d’équations différentielles non-linéaires du deuxiéme et du quatrieme ordre.

Les deux parties suivantes sont consacrées a la résolution des différents modeles non-linéaires
développés dans la premiére partie. Des méthodes analytiques et numériques sont appliquées afin de
traiter les équations non-linéaires du mouvement. Une méthode basée sur des développements
asymptotiques, la méthode des échelles multiples (MEM) est utilisée. Les courbes de réponse sont
tracées pour différentes résonances possibles et l'effet de la non-linéarité est discuté par rapport a
l'analyse linéaire. La réponse forcée du systeme provoquée par un balourd est également présentée
pour plusieurs configurations du rotor. Lorsque les déformations de cisaillement sont prises en
compte, l'analyse est effectuée pour différents élancements afin de mettre en évidence cet effet sur la
dynamique d’'un systéme arbre-disque.

Mots Clés : Dynamique des Rotors ; Non-linéaire ; Grandes Déformations ; Force Dynamique
Axiale ; Cisaillement ; Methode des Echelles Multiples.
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