Thèse soutenue

Une approche adaptative avec réduction de modèle pour la propagation tridimensionnelle des fissures de fatigue en condition de plasticité confinée

FR  |  
EN
Auteur / Autrice : Florent Galland
Direction : Anthony GravouilAlain Combescure
Type : Thèse de doctorat
Discipline(s) : Mécanique
Date : Soutenance le 04/02/2011
Etablissement(s) : Lyon, INSA
Ecole(s) doctorale(s) : École doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : Laboratoire : LaMCoS - Laboratoire de Mécanique des Contacts et des Structures (Lyon, INSA ; 2007-....)
Jury : Président / Présidente : Nicolas Moës
Examinateurs / Examinatrices : Anthony Gravouil, Alain Combescure, Nicolas Moës, Amine Ammar, Frédéric Feyel, Michel Rochette, Francisco Chinesta, Sylvie Pommier
Rapporteur / Rapporteuse : Amine Ammar, Frédéric Feyel

Résumé

FR  |  
EN

Il est connu depuis des décennies que la propagation des fissures de fatigue dans les matériaux élastoplastiques est très sensible à l’histoire du chargement car le comportement non-linéaire du matériau peut avoir une grande influence sur les vitesses de propagation. Cependant, le calcul brut de millions de cycles de fatigue avec des comportements matériaux non-linéaires sur des structures tridimensionnelles réalistes conduirait à des temps de calcul prohibitifs. Ainsi, nous proposons de coupler deux approches de réduction de modèle a priori et a posteriori, afin de diminuer considérablement le coût de calcul de ce type de problèmes. Tout d’abord, considérant l’hypothèse de plasticité confinée, une stratégie de réduction de modèle a posteriori du comportement plastique de la structure fissurée est proposée. Le modèle réduit ainsi obtenu fournit incrémentalement l’état plastique autour du front de fissure, duquel est déduite la vitesse instantanée de la fissure. De plus, une seconde approche de réduction de modèle, a priori cette fois, est aussi mise en place afin d’accélérer encore plus les temps de résolution du problème global. Cette approche a priori consiste à construire incrémentalement —et sans calculs préalables— une base réduite spécifique à chaque cas-test, en extrayant de l’information des champs de déplacement de la structure au cours du temps et pendant la propagation éventuelle de la fissure. Ainsi, les champs de déplacement solutions de la géométrie fissurée réactualisée sont vus comme une combinaison linéaire de cette base réduite de vecteurs. La méthode numérique considérée ici est la méthode des éléments finis. De fait, pendant la propagation de la fissure, la discrétisation spatiale du modèle doit être réactualisée afin d’être conforme avec le front de la fissure. Dans ce but, une technique spécifique de déformation de maillage est utilisée, et permet de discrétiser la géométrie variable du modèle avec des maillages de même topologie. Cette technique de déformation de maillage apparaît comme une étape clé de la stratégie de réduction de modèle. Finalement, une approche adaptative est construite autour de cette stratégie. Elle permet de garantir la qualité des résultats obtenus par rapport à un critère de précision donné. La précision et l’efficacité de cette stratégie globale sont démontrées à travers de nombreux exemples bidimensionnels et tridimensionnels dans le cadre de propagation de fissure en model, de même que pour un exemple industriel d’une pièce fissurée d’hélicoptère.