Thèse soutenue

Immobilisation du phosphore par précipitation induite dans un procédé aérobie à biomasse granulaire

FR  |  
EN
Auteur / Autrice : Angela Manas Llamas
Direction : Mathieu SperandioBéatrice Biscans
Type : Thèse de doctorat
Discipline(s) : Génie des procédés et de l'environnement
Date : Soutenance le 16/12/2011
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Mécanique, énergétique, génie civil et procédés (Toulouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'ingénierie des systèmes biologiques et des procédés (Toulouse)

Résumé

FR  |  
EN

Depuis une dizaine d'années, les procédés de granulation aérobie sont apparus comme une technologie prometteuse pour le traitement des effluents fortement chargés en azote, phosphore et carbone, tels que ceux issus de l'agro-industrie. La complexité microbienne de ces granules et les mécanismes qui leur donnent des propriétés exceptionnelles de décantation et de cohésion, constituent encore des axes de recherche importants. Dans cette thèse, le travail s'est axé sur un mécanisme encore non étudié : les processus de précipitation des phosphates au cœur des granules microbiennes. Différentes techniques d'analyses spectrales, parfois adaptés pour la première fois à ce type de systèmes, comme la spectroscopie Raman, ont permis de caractériser la nature de ces minéraux formés au cœur des granules. L'analyse menée sur des réacteurs de laboratoires a démontré la présence des phosphates de calcium sous forme d'hydroxyapatite [Ca5(PO4)3(OH)]. Cette précipitation est potentiellement induite par les variations locales de pH et de sursaturation provoqués par les réactions microbiennes à l'intérieur des granules. L'étude des phénomènes de biominéralisation à été étendu aux granules anaérobies issus des réacteurs de type UASB de l'industrie laitière. Un modèle physico-chimique sur les processus de précipitation sous forme matriciel sur AQUASIM®, couplé avec des bases de calcul de sursaturation (PHREEQC®), ont permis d'avancer des hypothèses sur les mécanismes influençant ces processus de biominéralisation, tels que la formation d'un précurseur amorphe de l'hydroxyapatite (ACP), ainsi que d'identifier les constantes de précipitation thermodynamiques (pKsp|20ºC=28.07±0.58) et cinétiques dans différentes conditions opératoires. Grâce au suivi d'un système biologique GSBR (Granular Sludge Sequenced Batch Reactor) pendant plus de 900 jours, la contribution de ce phénomène aux processus de déphosphatation a été estimé (46% dans les conditions testées). L'utilisation de ce processus pour immobiliser efficacement le phosphore et apporter des propriétés physiques stables aux granules a été également discutée. Une évaluation des performances et de la stabilité du réacteur à été mis en œuvre en alternant des cycles anoxies/aérobies ou anaérobies/aérobies vis-à-vis d'une future application industrielle. L'induction locale de la précipitation par les variations de pH et par le relargage des phosphates par les réactions microbiennes, nécessite une modélisation appropriée, qui a été également initiée dans cette thèse