Thèse soutenue

Réalisation et étude des propriétés thermoélectriques de couches minces et nanofils de types Bi2-XSbxTe3 et Bi2Te3-xSex

FR  |  
EN
Auteur / Autrice : Cedric Giroud-Garampon
Direction : Daniel BourgaultAnne Dauscher
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 28/01/2011
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale physique (Grenoble, Isère, France ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut Néel (Grenoble, Isère, France ; 2007-....)
Jury : Président / Présidente : Etienne Gheeraert
Examinateurs / Examinatrices : Daniel Bourgault, Anne Dauscher, Nathalie Caillault, Bertrand Lenoir, Frederic Streiff
Rapporteur / Rapporteuse : Clotilde Boulanger, Jacques Noudem, Joseph Dichy

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

De récentes études montrent que les films minces présentent des performances thermoélectriques nettement plus importantes (jusqu'à un facteur 3) que celles obtenues dans les matériaux massifs. Nous avons choisi de développer des couches minces thermoélectriques Bi0,5Sb1,5Te3 de type p et Bi2Te2,7Se0,3 de type n présentant les performances thermoélectriques les plus intéressantes à des températures proches de l'ambiante. La technique de dépôt utilisé est la PVD magnétron. L'optimisation des conditions de dépôt (pression Ar, puissance plasma, distance cible-substrat et temps de dépôt) ainsi que du traitement thermique de recuit a permis obtenir des figures de mérite ZT les plus élevées possibles. De plus, les phénomènes physiques mis en jeu dans les films minces étant différents de ceux des massifs, il a été nécessaire des les étudier pour améliorer les performances thermoélectriques des couches minces. De petits dispositifs thermoélectriques en couche minces ont pu être réalisé et caractérisé. En parallèle nous avons exploré la possibilité de faire croître des filaments thermoélectriques de compositions semblables aux couches et de dimensions manométriques au sein d'une matrice d'alumine nanoporeuse. En effet la réduction des dimensions géométriques permet d'augmenter les performances thermoélectriques des matériaux. Nous avons pu réaliser les premiers fils n et p ainsi que les premières caractérisations thermoélectriques.