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Résumé

En conception de produits ou de systèmes, les approches d’optimisation déterministe

sont de nos jours largement utilisées. Toutefois, ces approches ne tiennent pas compte

des incertitudes inhérentes aux modèles utilisés, ce qui peut parfois aboutir à des solu-

tions non fiables. Il convient alors de s’intéresser aux approches d’optimisation stochas-

tiques. Les approches de conception robuste à base d’optimisation stochastique (Reli-

ablity Based Robust Design Optimization, RBRDO) tiennent compte des incertitudes

lors de l’optimisation au travers d’une boucle supplémentaire d’analyse des incertitudes

(Uncertainty Anlysis, UA). Pour la plupart des applications pratiques, l’UA est réalisée

par une simulation de type Monte Carlo (Monte Carlo Simulation, MCS) combinée avec

l’analyse structurale. L’inconvénient majeur de ce type d’approche réside dans le coût

de calcul qui se révèle être prohibitif. Par conséquent, nous nous sommes intéressés

dans nos travaux aux développements de méthodologies efficaces pour la mise en place

de RBRDO s’appuyant sur une analyse MCS.

Nous présentons une méthode d’UA s’appuyant sur une analyse MCS dans laquelle la

réponse aléatoire est approximée sur une base du chaos polynomial (Polynomial Chaos

Expansion, PCE). Ainsi, l’efficacité de l’UA est grandement améliorée en évitant une

trop grande répétition des analyses structurales. Malheureusement, cette approche n’est

pas pertinente dans le cadre de problèmes en grande dimension, par exemple pour des

applications en dynamique. Nous proposons ainsi d’approximer la réponse dynamique

en ne tenant compte que de la résolution aux valeurs propres aléatoires. De cette façon,

seuls les paramètres structuraux aléatoires apparaissent dans le PCE. Pour traiter le

problème du mélange des modes dans notre approche, nous nous sommes appuyés sur le

facteur MAC qui permet de le quantifier. Nous avons développé une méthode univariable

permettant de vérifier quelle variable générait un mélange de modes de manière à le

réduire ou le supprimer.

Par la suite, nous présentons une approche de RBRDO séquentielle pour améliorer

l’efficacité et éviter les problèmes de non-convergence présents dans les approches de

RBRDO. Dans notre approche, nous avons étendu la stratégie séquentielle classique,

visant principalement à découpler l’analyse de fiabilité de la procédure d’optimisation,



en séparant l’évaluation des moments de la boucle d’opimisation. Nous avons utilisé

une approximation exponentielle locale autour du point de conception courant pour

construire des objectifs déterministes équivalents ainsi que des contraintes stochastiques.

De manière à obtenir les différents coefficients pour notre approximation, nous avons

développé une analyse de sensibilité de la robustesse basée sur une distribution auxiliaire

ainsi qu’une analyse de sensibilité des moments basée sur l’approche PCE.

Nous montrons la pertinence ainsi que l’efficacité des approches proposées au travers de

différents exemples numériques. Nous appliquons ensuite notre approche de RBRDO

pour la conception d’un amortisseur dans le domaine du contrôle passif vibratoire d’une

structure présentant des grandeurs aléatoires. Les résultats obtenus par notre approche

permettent non seulement de réduire la variabilité de la réponse, mais aussi de mieux

contrôler l’amplitude de la réponse au travers d’un seuil choisi par avance.

Mots clés: fiabilité, robustesse, optimisation, chaos polynomial, Monte Carlo, formu-

lation séquentielle, contrôe des vibrations.
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Abstract

Deterministic design optimization is widely used to design products or systems. Howev-

er, due to the inherent uncertainties involved in different model parameters or operation

processes, deterministic design optimization without considering uncertainties may re-

sult in unreliable designs. In this case, it is necessary to develop and implement optimiza-

tion under uncertainties. One way to deal with this problem is reliability-based robust

design optimization (RBRDO), in which additional uncertainty analysis (UA, including

both of reliability analysis and moment evaluations) is required. For most practical

applications however, UA is realized by Monte Carlo Simulation (MCS) combined with

structural analyses that renders RBRDO computationally prohibitive. Therefore, this

work focuses on development of efficient and robust methodologies for RBRDO in the

context of MCS.

We presented a polynomial chaos expansion (PCE) based MCS method for UA, in which

the random response is approximated with the PCE. The efficiency is mainly improved

by avoiding repeated structural analyses. Unfortunately, this method is not well suited

for high dimensional problems, such as dynamic problems. To tackle this issue, we

applied the convolution form to compute the dynamic response, in which the PCE is

used to approximate the modal properties (i.e. to solve random eigenvalue problem) so

that the dimension of uncertainties is reduced since only structural random parameters

are considered in the PCE model. Moreover, to avoid the modal intermixing problem

when using MCS to solve the random eigenvalue problem, we adopted the MAC factor

to quantify the intermixing, and developed a univariable method to check which variable

results in such a problem and thereafter to remove or reduce this issue.

We proposed a sequential RBRDO to improve efficiency and to overcome the non-

convergence problem encountered in the framework of nested MCS based RBRDO. In

this sequential RBRDO, we extended the conventional sequential strategy, which main-

ly aims to decouple the reliability analysis from the optimization procedure, to make

the moment evaluations independent from the optimization procedure. Locally ”first-

order” exponential approximation around the current design was utilized to construct



the equivalently deterministic objective functions and probabilistic constraints. In or-

der to efficiently calculate the coefficients, we developed the auxiliary distribution based

reliability sensitivity analysis and the PCE based moment sensitivity analysis.

We investigated and demonstrated the effectiveness of the proposed methods for UA

as well as RBRDO by several numerical examples. At last, RBRDO was applied to

design the tuned mass damper (TMD) in the context of passive vibration control, for

both deterministic and uncertain structures. The associated optimal designs obtained

by RBRDO cannot only reduce the variability of the response, but also control the

amplitude by the prescribed threshold.

Keywords: reliability, robustness, optimization, polynomial chaos, Monte Carlo, se-

quential formulation, vibration control.
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Résumé xi

Abstract xiii

List of Figures xix

List of Tables xxi

Abbreviations xxiii

1 Introduction 1

1.1 Motivation, objective and scope . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Uncertainties in design optimization . . . . . . . . . . . . . . . . . 1

1.1.2 Categories of uncertainty . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 RBDO and RDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4 Failure mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Organization of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Stochastic design optimization for structural systems 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Deterministic design optimization . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Terms and definitions . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Formulations and methodologies . . . . . . . . . . . . . . . . . . . 13

2.2.2.1 Single-objective optimization . . . . . . . . . . . . . . . . 13

2.2.2.2 Multi-objective optimization . . . . . . . . . . . . . . . . 14

2.3 Uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Basic probability theory . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Probabilistic transformation . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Methodologies and applications . . . . . . . . . . . . . . . . . . . . 21

xv



Contents

2.3.3.1 Perturbation method . . . . . . . . . . . . . . . . . . . . 23

2.3.3.2 Polynomial chaos expansion . . . . . . . . . . . . . . . . 23

2.3.3.3 First- or second-order reliability method . . . . . . . . . . 24

2.3.3.4 Response surface method . . . . . . . . . . . . . . . . . . 26

2.3.3.5 Direct Monte Carlo simulation . . . . . . . . . . . . . . . 27

2.3.3.6 Advanced Monte Carlo simulation . . . . . . . . . . . . . 28

2.4 Stochastic design optimization . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Reliability-based design optimization . . . . . . . . . . . . . . . . . 31

2.4.1.1 General formulations . . . . . . . . . . . . . . . . . . . . 31

2.4.1.2 Nested double loop . . . . . . . . . . . . . . . . . . . . . 33

2.4.1.3 Sequential double loop . . . . . . . . . . . . . . . . . . . 36

2.4.1.4 Single loop . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1.5 Comparative study between DDO and RBDO . . . . . . 38

2.4.2 Robust design optimization . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2.1 Concept of robust design . . . . . . . . . . . . . . . . . . 39

2.4.2.2 Design objective robustness . . . . . . . . . . . . . . . . . 41

2.4.2.3 Design feasibility robustness . . . . . . . . . . . . . . . . 44

2.4.3 Reliability-based robust design optimization . . . . . . . . . . . . . 46

2.4.3.1 Relation between RDO, RBDO and RBRDO . . . . . . . 47

2.4.3.2 Comparative study between RBDO and RBRDO . . . . . 48

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 PCE based MCS method for uncertainty analysis 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 PCE of second-order random variables . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Basic theory and validity . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Coefficients determination . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 PCE based MCS method for UA . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Random response approximated by PCE for linear systems . . . . 57

3.3.1.1 Impulse response for structures with proportional damping 58

3.3.1.2 Impulse response for structures with viscous damping . . 61

3.3.2 Application procedures . . . . . . . . . . . . . . . . . . . . . . . . 63

xvi



Contents

3.3.3 Fundamentals of reliability analysis . . . . . . . . . . . . . . . . . . 65

3.3.3.1 Failure region for static problems . . . . . . . . . . . . . . 65

3.3.3.2 Failure region for dynamic problems . . . . . . . . . . . . 65

3.4 Modal intermixing problem . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.2 MAC factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.3 Univariable based strategy . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.1 Case I: Plate-Beam (dynamic problem) . . . . . . . . . . . . . . . 71

3.5.1.1 Efficiency comparison . . . . . . . . . . . . . . . . . . . . 74

3.5.1.2 Influences of PCE orders and levels of probability of failure 74

3.5.1.3 Influences of the types of random parameters . . . . . . . 74

3.5.1.4 Influences of the modal intermixing . . . . . . . . . . . . 75

3.5.2 Case II: Plate-Beam (static problem) . . . . . . . . . . . . . . . . . 78

3.5.3 Case III: Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5.4 Case IV: Mass-Spring . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5.5 Case V: Ten-degree-of-freedom oscillator (linear simplification) . . 83

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Sequential formulation for RBRDO 89

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Approximation of probabilistic constraints . . . . . . . . . . . . . . . . . . 91

4.2.1 Local optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.2 Exponential representation . . . . . . . . . . . . . . . . . . . . . . 93

4.2.3 Adaptive bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.4 Coefficient evaluation and sensitivity analysis . . . . . . . . . . . . 95

4.2.4.1 Least square method . . . . . . . . . . . . . . . . . . . . 95

4.2.4.2 Reliability sensitivity analysis . . . . . . . . . . . . . . . 96

4.2.4.3 Moment sensitivity analysis . . . . . . . . . . . . . . . . . 98

4.2.5 Enhanced convergent condition . . . . . . . . . . . . . . . . . . . . 103

4.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.1 Cantilever: a static RBDO . . . . . . . . . . . . . . . . . . . . . . 105

xvii



Contents

4.3.2 Plate-Beam: a dynamic RBDO . . . . . . . . . . . . . . . . . . . . 108

4.3.3 Simply supported beam: a static RBRDO . . . . . . . . . . . . . . 111

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Application of RBRDO on passive vibration control: optimal design
of tuned mass dampers 115

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 CSDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 RBRDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.1 RBRDO-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.2 RBRDO-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.1 RBRDO-I versus CSDO . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.2 RBRDO-II versus CSDO . . . . . . . . . . . . . . . . . . . . . . . 127

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Conclusion 137

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1.1 PCE based MCS method for UA . . . . . . . . . . . . . . . . . . . 137

6.1.2 Modal intermixing problem . . . . . . . . . . . . . . . . . . . . . . 138

6.1.3 Sequential RBRDO . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1.4 Application of RBRDO on the design optimization of the TMD . . 140

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 143

A Publications of this Ph.D work 159

xviii



List of Figures

1.1 Development of design optimization [2, 3]. d1 and d2 are the two design
variables, and the safe region is confined in the shadow area. . . . . . . . 2

1.2 A well-known classification of uncertainty [15] . . . . . . . . . . . . . . . . 4

2.1 FORM/SORM [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Generalized nested double loop of RBDO . . . . . . . . . . . . . . . . . . 34

2.3 Generalized sequential double loop of RBDO . . . . . . . . . . . . . . . . 36

2.4 Comparison of DDO and RBDO. d1 and d2 are two design variables. In
RBDO, d1 = µΘ1 and d2 = µΘ2 ; In DDO, d1 = Θ1 and d2 = Θ2. . . . . . . 39

2.5 Comparison of RDO and DDO [37]. In DDO, the design variable d is
deterministic, while in RDO the design variable d is random, e.g. the
associated mean value d = µθ. The objective function f(d) is related to
the performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Concept of percentile difference method for RDO [23] . . . . . . . . . . . 43

2.7 Relation between RBDO, RDO and RBDRO . . . . . . . . . . . . . . . . 47

2.8 Mean (µf ), standard deviation (σf ) and coefficient of variance (δf ) of
objective function with different set of weight factors . . . . . . . . . . . . 48

2.9 Comparison between RBDO and RBRDO. d1 and d2 are the two design
variables, which are also the mean value of Θ1 and Θ2, i.e. d1 = µΘ1 and
d2 = µΘ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.10 Concerns of stochastic design optimization (the shadow area is the main
research formulation of this work) . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 PCE based MCS for uncertainty analysis . . . . . . . . . . . . . . . . . . 63

3.2 Direct MCS for uncertainty analysis . . . . . . . . . . . . . . . . . . . . . 64

3.3 PDF comparison of two adjacent eigenfrequencies . . . . . . . . . . . . . . 67

3.4 Plate-Beam model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Comparisons of MAC factor . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 Comparisons of mode shapes . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7 Comparison of PDFs of the stress for COV= 10% . . . . . . . . . . . . . . 79

3.8 Comparison of PDFs of the stress for COV= 20% . . . . . . . . . . . . . . 80

3.9 Beam model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.10 Mass-spring model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.11 Impulse response comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 83

xix



List of Figures

4.1 Sequential procedure for a local optimum search. d is the design variable,
PF (d0) and PF,t are initial and target probability of failure, respectively. . 92

4.2 Principles of selection of experimental points in LSM. d1 bounded in [(1−
δL

1 ), (1 + δR
1 )], and d2 bounded in [(1 − δL

2 ), (1 + δR
2 )] are the two design

variables. The ”•” represents the experimental point. . . . . . . . . . . . . 95

4.3 Sequential RBDO based on reliability sensitivity . . . . . . . . . . . . . . 103

4.4 Sequential RBRDO based on reliability and moment sensitivity . . . . . . 104

4.5 Cantilever beam model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Convergence comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7 Multi local optima investigations . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 TMD system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Comparisons of optimal designs between CSDO and RBRDO-I for deter-
ministic structure with variation of the mass ratio γ under xS,t = 0.02m . 123

5.3 Comparisons of effectiveness between CSDO and RBRDO-I for determin-
istic structure with variation of the mass ratio γ under xS,t = 0.02m. . . . 124

5.4 Comparisons of effectiveness and optimal designs between CSDO and
RBRDO-I for deterministic structure with variation of the mass ratio
γ under ζS = 0.02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5 Comparisons of probabilities of failure with variation of the mass ratio γ
under threshold xS,t = 0.02m and ζS = 0.02 with/without uncertainties . 128

5.6 Comparisons of effectiveness between CSDO and RBRDO-II with varia-
tion of the mass ratio γ for uncertain structure under xS,t = 0.02m and
ζS = 0.02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.7 Comparisons of optimal designs between CSDO and RBRDO-II with vari-
ation of the mass ratio γ for uncertain structure under xS,t = 0.02m and
ζS = 0.02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.8 Comparisons of optimal frequency ωT,opt with variation of the mass ratio γ
under the target probability of failure PF,t = 0.01 related to the threshold
xS,t = 0.07m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.9 Comparisons of the performance fopt with variation of the mass ratio γ
under the target probability of failure PF,t = 0.01 related to the threshold
xS,t = 0.07m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.10 Comparisons of optimal frequency ωT,opt with variation of the mass ratio γ
under the target probability of failure PF,t = 0.005 and the fixed damping
µζT = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.11 Comparison of the performance fopt with variation of the mass ratio γ
under the target probability of failure PF,t = 0.005 and the fixed damping
µζT = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xx



List of Tables

2.1 Analytical transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Cases description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Parameters of plate-beam . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 First passage probability for plate-beam . . . . . . . . . . . . . . . . . . . 73

3.4 Influences of the COV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Accuracy comparison of the first passage probability with COV= 20% . . 78

3.6 Probabilities of failure for plate-beam . . . . . . . . . . . . . . . . . . . . 79

3.7 Probabilities of failure for beam . . . . . . . . . . . . . . . . . . . . . . . . 81

3.8 First passage probability for mass-spring . . . . . . . . . . . . . . . . . . . 82

3.9 Statistical properties of the structural parameters . . . . . . . . . . . . . . 85

3.10 First passage probability for oscillator . . . . . . . . . . . . . . . . . . . . 85

4.1 Optimum obtained by Approach IV for cantilever . . . . . . . . . . . . 107

4.2 Optimum obtained by Approach III for plate-beam ([0.0405, 0.0405]) . . 108

4.3 Optimum obtained by Approach IV for plate-beam ([0.0405, 0.0405]) . . 109

4.4 Optimum obtained by Approach IV for plate-beam ([0.03, 0.03]) . . . . 109

4.5 Optimum obtained by Approach IV for plate-beam ([0.02, 0.02]) . . . . 110

4.6 Optimal results obtained by Approach Vand Approach VI for beam . 112

5.1 Probabilities of failure provided by CSDO and RBRDO-I associated with
xS,t = 0.03m and ζS = 0.02 . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Sequential strategy of RBRDO for the TMD . . . . . . . . . . . . . . . . 134

xxi





Abbreviations

AMV Advanced Mean Value

CDF Cumulative Distribution Function

CMV Conjugate Mean Value

CRP Cost Optimization with Reliability Constraints

CSDO Conventional Stochastic Design Optimization

COV Coefficient of Variance

DDO Deterministic Design Optimization

FEA Finite Element Analysis

FORM First-Order Reliability Method

HMV Hybrid Mean Value

HPCE Hermite Polynomial Chaos Expansion

LSF Least Square Method

MAC Modal Assurance Criterion

MCS Monte Carlo Simulation

MPP Most Probable Point of Failure

PCE Polynomial Chaos Expansion

PDF Probability Density Function

PMA Performance Measure Approach

RBDO Reliability-Based Design Optimization

RBRDO Reliability-Based Robust Design Optimization

RCP Reliability Optimization with Cost Constraints

RDO Robust Design Optimization

RIA Reliability Index Approach

RSM Response Surface Method

SDO Stochastic Design Optimization

SFEM Stochastic Finite Element Method

SORA Sequential Optimization and Reliability Assessment

SORM Second-Order Reliability Method

SQP Sequential Quadratic Programming

TMD Tuned Mass Damper

UA Uncertainty Analysis

xxiii





Chapter 1

Introduction

1.1 Motivation, objective and scope

1.1.1 Uncertainties in design optimization

Nowadays, increasingly competitive markets drive engineers to design products or sys-

tems characterized by low cost, high quality and high reliability, which cover a variety of

fields ranging from children’s toys to passenger cars and space systems such as satellites

or space stations [1]. To fulfill such requirements, the modern design process is usually

in conjunction with optimization techniques. The process of obtaining optimal designs is

known as design optimization which relies largely on simulation methods. In this sense,

advanced simulation techniques are required to allow for reproduction of the complexity

of real systems with high fidelity. Thanks to the significant developments of computer

science during the last 50 years, large-scale simulation tools (e.g. finite element codes

and computational fluid codes) have been well developed for simulations and analyses

of practical engineering systems.

Traditional approaches for design optimization coupled with the aforementioned ad-

vanced simulation techniques are usually based on the assumption of deterministic mod-

els and parameters in most engineering applications. This is the so-called deterministic

design optimization (DDO) which has been successfully applied to reduce the cost and

to improve the performances. However, the deterministic models are only the simplifi-

cations of practical systems since observations and measurements of physical processes

clearly show variability and randomness in different model parameters. In this case, the

optimal design will not be located at the design A provided by DDO (see Fig. 1.1) but

tends to occur in an area around A. More often such area falls outside the safe region.

This implies DDO leads to a failed design.
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1. Introduction

Figure 1.1: Development of design optimization [2, 3]. d1 and d2 are the two design
variables, and the safe region is confined in the shadow area.

In DDO, despite of the fact that the propagation of uncertainties is usually hidden be-

hind the use of the well-known ”safety factors”, the associated designs are calibrated for

average situation but the extreme cases [2, 4] which might cause severe failures. From

Fig. 1.1, the point B represents such a design compared with the optimal design C

obtained by the design under uncertainties (e.g. reliability-based design optimization).

There is also a possibility that the final design is too conservative when the ”safety

factors” are overestimated (shown by D in Fig. 1.1). On the other hand, due to an

increasingly global competitive market, optimal designs are pushed to limits of system

failure boundaries using DDO, leaving very little or no room for tolerances in modeling

and simulating uncertainties [5]. Accordingly, final designs obtained by DDO may re-

sult in unreliable designs without taking the uncertainties into account. Consequently,

uncertainties must be involved in design optimization and such problems are named by

stochastic design optimization (SDO) in this study.

It is remarkable that although design optimization is widely used in various fields, the

focus is confined to structural systems since the wide applications can be found in

engineering. One can refer to the literatures on DDO [6] or on SDO [7, 8]. Furthermore,

the linear structural systems are the research objective in respect that they are the most
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1.1. Motivation, objective and scope

frequently concerned in engineering practice.

1.1.2 Categories of uncertainty

For a real structural system, uncertainties might be involved in the design stage, in

the manufacturing progress, during the service/operation and throughout the entire

life time. In the design stage, uncertainties are derived from mathematical-mechanical

modeling process or incomplete knowledge about the system. Variabilities related to

the manufacturing progress are reflected by the manufacturing tolerance, material scat-

ter on account of the limited precision in tools and processes or the lack of advanced

technologies. During the service, uncertainties in the excitations (such as seismic loads,

waves, temperature changes and any other kind of environmental loads) and boundary

conditions as well as human factors are the major concerns. In respect that any struc-

ture owns limited age, randomness is usually introduced because of the deterioration

of material properties. Accordingly, uncertainties may be imposed upon, but not all

included, geometry tolerances, material properties, excitations, etc. These uncertainties

can influence the performances all through the life time of the systems.

One significant issue that must be considered is how to quantify uncertainties in design

optimization. To this end, it is indispensable to introduce the associated basic theories.

Over the last decades, much attention to uncertainties has been brought by engineers,

scientists and decision makers. There exist various representations and theories for un-

certainties. Each of them is characterized by distinct mathematical model according to

the information available. By far, uncertainties can be categorized as aleatory uncertain-

ty, epistemic uncertainty and error. The classification [9–12] as well as the associated

theories [11–14] are illustrated in Fig. 1.2.

As shown in Fig. 1.2, aleatory uncertainty is such a kind of uncertainty that the statisti-

cal properties are priori known. Accordingly, the probability theory, such as the classical

theory [16], Bayesian networks [17, 18] and the random matrix theory [19, 20], can be

applied. In contrast, epistemic uncertainty results from a lack of knowledge about the

system or is derived from some ignorance. The associated uncertainty quantification

(UQ) or uncertainty analysis (UA) depends mainly on the non-probabilistic theories,

including fuzzy set theory, evidence theory, convex model, etc. As is the common case,

the error should be avoided by careful examination or advanced methods.
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Figure 1.2: A well-known classification of uncertainty [15]

To carry out UA hence, the type of uncertainties must be figured out first since there is

no generally mathematical model for all uncertainties. With respect to multiple types of

uncertainties, hybrid models might be utilized. In this work, we assume all the required

information is available, which means the aleatory type quantified by the probability

theory is mainly concerned.

1.1.3 RBDO and RDO

In the context of the design optimization under aleatory uncertainties, one may refer to

reliability-based design optimization (RBDO) or robust design optimization (RDO).

However, they seek for the optimum by different criteria. RBDO aims to find the optimal

designs with low probabilities of failure corresponding some critical failure mechanisms.

While RDO concentrates on the optimal ones that make the performance (mainly as

to the objective function) less sensitivity to uncertainties. Namely, the main target of

RDO is to reduce the variability of the system performance, which is characterized most

often by its standard deviation [21].

The differences between RBDO and RDO can be also interpreted by the distinguished

definition of the objective function [22]: the objective function in RBDO is always with

respect in the mean (or deterministic) sense, whereas the one connected with RDO is

usually uncertain. For this reason, the correspondingly applicable scope may be quite

4



1.1. Motivation, objective and scope

different and one could complement the other. Therefore, it is natural to take both

RBDO and RDO as the research targets to fulfill various requirements in engineering

(e.g. vibration control). More general, both of robustness and reliability are desired

characteristics for the design optimization under uncertainties [23], i.e. design objective

robustness and design feasibility robustness [24]. Therefore, the integrated framework,

reliability-based robust design optimization (RBRDO) will be the final concentration of

this work, in which the robust design is obtained under uncertain constraints quantified

by the associated probability of failure. For convenience and clarity, we narrow the scope

of SDO onto RBDO, RDO and RBRDO in this dissertation.

In the context of vibration control, supplemental passive, active, hybrid, and semiactive

damping strategies offer attractive means to protect structures, including base isolation

systems, viscoelastic dampers and the tuned mass dampers, are well understood and

are widely accepted by the engineering community as a means for mitigating the effects

of dynamic loadings on structures [25]. However, the passive methods are unable to

adapt to structural changes and loading conditions. Then robust control methods in the

domain of active control were proposed so that the optimal controller can provide robust

performance and stability for a set of possible models of the systems. Nonetheless, if

passive devices are designed under uncertainties, i.e. in the framework RBDO, RDO or

RBRDO, the obtained optimal devices are somehow adaptive. Especially, the concept

of robustness in RDO or RBRDO is to reduce the variability of the performance, i.e.

to adapt a set of possible models of the systems, the goal of which is similar to the

robust control. Moreover, RBDO and RBRDO can also provide optimal passive devices

to make the protected systems with low probabilities of failure. Consequently, RBDO,

RDO and RBRDO can be applied to design passive controllers.

Unfortunately, practical applications of RBDO and RDO are usually restricted or even

prohibitive owing to their low efficiency. Two reasons are included. One is the UA or

UQ. The associated UA in RBDO is reliability analysis, whereas the mean and standard

deviation of the random response are essential in RDO. For convenience, reliability

analysis or moment (the mean and standard deviation) evaluations are termed by UA

indistinguishably. Generally, the target of UA is to determine the statistical properties

related to the random response. The latter can be specified explicitly just for simple

cases. In most practical structures however, the random response is only available in

numerical way, i.e. finite element analysis (FEA). Accurate results can be obtained by
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1. Introduction

calculating large quantities of random responses in the context of Monte Carlo simulation

(MCS). Moreover, a single transient response analysis may need a lot of CPU time. In

this sense, UA is a time consuming task.

The other one is the formulation of RBDO or RDO, the interpretation of which is how UA

is involved into the optimization process. Traditionally, UA involved in the probabilistic

constraints and the objective function is nested into the design optimization. As is well

known, the optimization algorithm is usually realized by the iteration process. During

each iterative step, one or more function evaluations are needed to be carried out, i.e.

the same number of UA is required. When the convergence rate is slow, the number of

iterative steps is large, which implies the number of UA is large. Then, it is not difficult

to imagine that RBDO or RDO is practically intractable due to its high computational

effort.

Hence, this study also attempts to develop advanced approaches for RBDO and RDO

that are computationally efficient and mathematically robust. Especially, these ap-

proaches are capable to establish connections among DDO, UA and deterministic FEA.

Two aspects ought to be considered to achieve this target, i.e. efficient methods for UA

and advanced formulations for RBDO or RDO.

Since either reliability analysis or moment evaluations (or the both) associated with the

random response are required in RBDO or RDO (or the both in RBRDO), it would

be better to develop an approach which can compute the both, fast and effectively.

Considering that estimating the random response takes up the most computational

effort in UA since the random response is practically obtained by repeated FEA, it

is reasonable to reduce the number of FEA to improve efficiency. In the framework of

the polynomial chaos expansion (PCE), the random response can be approximated with

an acceptable accuracy. In this sense, UA can be carried out efficiently and easily.

If the efficient method for UA aims to reduce the time for a single reliability analysis

or moment evaluation procedure, the advanced formulation is to reduce the number of

UA. The main concern to achieve the latter target is to establish an explicit relation

between the probability of failure/moments and the design variables. This is the so-

called sequential formulation. In this occasion, there is no need to execute UA for each

function evaluation. Then the efficiency is improved.
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1.2. Organization of the dissertation

1.1.4 Failure mechanisms

In both RBDO and RDO, the corresponding constraints are always defined by some

failure mechanisms of interest, which are very important to perform an optimization

procedure. According to [26, 27], the mechanisms of failure can be divided into two broad

categories: over-stress mechanisms (such as large elastic deformation, yield, buckling,

fracture) and wear-out mechanisms (such as fatigue crack initiation and growth as well

as creep).

In the former case, an failure event occurs only if the stress to which the structure

is subjected exceeds the allowable strength. If the stress is below the strength, the

stress has no permanent effect on the structure. In the latter case, however, the stress

causes damage that usually accumulates irreversibly. The accumulated damage does not

disappear when the stress is removed, although sometimes annealing is possible. The

cumulative damage does not cause any performance degradation until is it below the

endurance limit. Once this limit is reached, the structure fails.

As to random vibration, similar failure mechanisms can also be found in [28]: (1) Failure

can occur at the first time that the random response reaches a certain level; (2) Failure

can be due to the issue that the accumulation of small damages reaches a fixed sum.

The estimation of the first passage (or first excursion) probability of failure is usually in

conjunction with the former case; while the aging engineering belongs to the latter one.

In this work, we concentrate on the over-stress or the first passage failure mechanism.

Simply, when the structure is subjected to static loads, the over-stress mechanism is

considered; when the structure is under dynamic loads, the first passage problem is

regarded.

1.2 Organization of the dissertation

This dissertation is composed of six chapters, the organization of which will be described

as follows:

• In Chapter 1, the motivation, objective and scope have been underlined that are

the core of the rest of this dissertation. Namely, RBDO and RDO (or RBRDO)
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for linear structural systems are mainly regarded in the context of the probabil-

ity theory, following the over-stress or first passage failure mechanism. For the

sake of practical applications, advanced methods for RBDO and RDO, which are

computationally efficient and mathematically robust, are also concentrated on.

• In Chapter 2, the basic considerations of SDO for structural systems are intro-

duced, including the fundamentals (DDO and UA) as well as the formulations for

RBDO and RDO. In this chapter, we begin with DDO which provides the basic

knowledge of design optimization. UA is sequently followed, in which the basic

probability theories are introduced and the associated methods are reviewed. As to

SDO, the various formulations and methods corresponding to RBDO and RDO are

also reviewed. Based on the review, it is found that it is valuable to integrate RDO

and RBDO, i.e. the RBRDO problem. For comprehension, comparative studies

are shown between RBDO and DDO, as well as between RBDO and RBRDO. All

the work in this dissertation depends on this chapter.

• In Chapter 3, we propose a PCE based MCS method for UA. The efficiency is

mainly improved by avoiding repeated structural analyses. To overcome the curse

of high dimensionality in dynamic problems induced by the stochastic excitations,

the convolution form is used to compute the dynamic response, in which the PCE is

raised to approximate the modal properties so that the dimension of uncertainties

is reduced since only structural random parameters are considered. To correctly

capture the uncertainties in the modal content, it is indispensable to avoid modal

intermixing problem which is always encountered when using MCS to solve the

random eigenvalue problem. Since the proposed method relies on MCS and modal

analysis, this problem is also regarded. The MAC factor is applied to quantify the

intermixing, and we develop a unvariable method to check which variable results

in such a problem and thereafter to remove or reduce this issue.

• In Chapter 4, the sequential formulation of RBRDO is considered. The main

advantages of this formulation are to improve efficiency and to overcome the non-

convergence problem encountered in nested MCS based RBRDO. Different from

conventional sequential strategy that mainly aims to decouple the reliability anal-

ysis from the optimization procedure, we also concentrate on making the moment

evaluations independent from the optimization procedure. To realize the sequen-

tial RBRDO, locally ”first-order” exponential approximation around the current

8
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design is implemented to construct the equivalently deterministic objective func-

tions and probabilistic constraints. We develop the auxiliary distribution based

reliability sensitivity analysis and the PCE based moment sensitivity analysis to

calculate the associated coefficients within one reliability analysis or one moment

evaluation procedure respectively, such that the number of UA is reduced.

• In Chapter 5, main contribution is to apply RBRDO on passive vibration control,

i.e. the design optimization of the TMD. Unlike CSDO, this framework is capable

to consider uncertainties in both parameters and excitations. Minimization of

the mean square of the response is retained in objective function, which aims to

reduce the variability of the random response. Reliability analysis is involved in

the probability constraint not only to obtain high reliability but also to control the

amplitude of the random response within some prescribed threshold. Numerical

simulations demonstrate that RBRDO is a powerful tool to optimally design the

TMD.

• In Chapter 6, we present the conclusion of this dissertation and provide some

perspectives of the future work.
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Chapter 2

Stochastic design optimization for

structural systems

2.1 Introduction

In this chapter, the main concerns of SDO for structural systems are regarded. To

execute a SDO procedure, two aspects must be considered, i.e. DDO and UA. DDO

plays a very important role in SDO since it provides the basic optimization theories

and methods for SDO. If the values in DDO are uncertain, one needs UA to give the

associated statistical measures, such as the mean, standard deviation and probability of

failure. Therefore, three parts will be introduced in sequence:

1. We begin with the concerns related to DDO, including the terms, definitions, for-

mulations and methodologies that are very closely associated with this dissertation.

2. To quantify uncertainties, the relevance of UA is introduced next. Not only the

basic theories containing probability theory and probabilistic transformation are

regarded, but also the methods are briefly reviewed that will be combined into

DDO to construct SDO. Roughly speaking, these methods may give us a global

perspective of UA. Their applicable scopes will be specified respectively, from

which we can have an insight into which method is potential to give not only the

probability of failure but also the moments.

3. The formulations and methods of SDO are finally discussed. Considering different

criteria, RBDO, RDO and the integration of the two – RBRDO are all regarded.

For comprehension, comparative studies are shown between RBDO and DDO, as

well as between RBDO and RBRDO.
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2.2 Deterministic design optimization

2.2.1 Terms and definitions

As underlined before, designers can search for optimal designs by applying a determin-

istic model in the framework of DDO. Typically, some variables and functions are very

significant:

• Design variables denoted by the design vector d = [d1, d2, . . . , dNd ]
T, d ∈ RNd , are

the parameters that need to be determined to obtain the desired structural perfor-

mance under some constraints. In structural optimization, they can be geometry

parameters like beam length, plate thickness and cross section, as well as material

properties including reinforcement distribution, etc.

• State variables denoted by the vector x(d) = [x1(d), x2(d), . . . xn(d)]T, x ∈ Rn,

are the parameters representing responses of the structure. A typical response

refers to displacement, velocity, acceleration, stress, strain and so on. In practical

applications, the state variables are mostly implicit functions of design variables

and available in numerical way, e.g FEA. That leads to the implicit objective

function or constraints.

• Objective function denoted by the function f(d) or f(d,x(d)), is the function to

evaluate the merit of a design. Frequently, one objective function can measure

weight, stiffness, displacement in a given direction, or simple costs. Thus, the

objective function is usually termed by the cost function. Without generality,

the objective function is commonly formulated by a minimization problem. In

cases where only one objective function is considered, the optimization is termed

as single-objective optimization; while for two or more objective functions, multi-

objective optimization is regarded.

• Deterministic constraint denoted by the function h(d) or h(d,x(d)), is the restric-

tion that must be satisfied in a structural design optimization corresponding some

critical failure mechanism. Such a constraint divides the design space into the

failure domain h(d) < 0, the safety domain h(d) > 0 and the limit state h(d) = 0.

• Side constraints denoted by dL ≤ d ≤ dU, provide the the lower bound dL and

upper bound dU of the design variables d.
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The terms defined above characterize optimization problems. According to the types of

design variables, three categories [6] of optimization tasks are distinguished within the

structural design optimization community: sizing, shape and topology. Simply, design

variables associated with geometry dimensions like cross section of a beam belong to

sizing optimization; the ones with respect to geometry parameters like the height of a

shell are attached to shape optimization; the ones regarding to structural configuration

such as adding a new or removing an existing truss member of a truss is involved in

topology optimization.

2.2.2 Formulations and methodologies

2.2.2.1 Single-objective optimization

The classical formulation of DDO for structures is mathematically expressed by:

find d

minimize f(d)

subject to − hi(d) ≤ 0, i = 1, 2, . . . , Nh

dL ≤ d ≤ dU, (2.1)

where hi(d) is the ith deterministic constraint and Nh is the total number. Generally,

the optimum is located in the feasible design space D, which is defined as the set

D = {d|−hi(d) ≤ 0, i = 1, 2, . . . , Nh; and dL ≤ d ≤ dU}. Note that in this expression,

there is only one objective function which implies only one design target is focused on.

To solve the above optimization problem, much attention has been drawn to develop

more efficient and more powerful methods.

Particularly, the sequential quadratic programming (SQP) [29] method is one of the

most used methods. SQP is a standard mathematical programming algorithm for solv-

ing non-linear programming optimization problems. It makes use of derivatives of the

function with respect to the design variables to construct an approximate model of the

initial problem. A new design point producing a decrease of the objective function can

be found by a line search along the searching direction according to the information of

the derivatives. This method can assure a local optimum but not a global one. This
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shortcoming may be avoided by multiple initial designs. In this dissertation, we will use

SQP to perform the optimization procedure.

Apart from SQP (also called the conventional methods), some innovative approaches

employing analogies of physics and biology, such as simulated annealing method[30],

genetic algorithm [31] and evolutionary algorithm [32], are applied for the solution of

global optimization problems. Generally, in these approaches no gradient information is

needed, whereas a large number of function evaluations are required.

2.2.2.2 Multi-objective optimization

When more than one objective functions, i.e. f(d) = [f1(d), f2(d), . . . , fNf (d)]T are

needed to be optimized, multi-objective optimization is regarded. The principles of

multi-objective optimization, also known as multi-criteria or vector optimization, are

very different from those of a single-objective one. If all the objective functions are

compatible, only one function is active and the others are redundant. More often, the

objective functions are conflicting. In this case, a multi-objective optimization gives rise

to a set of optimal solutions rather than one general optimal solution. Each possible

solution cannot be considered to be better than the others. The relevant problem is

known as Pareto optimality [33], which is defined as follows:

Definition 1. Pareto Optimal: A point, d∗ ∈ D, is Pareto optimal if there does not

exist another point, d ∈ D, such that f(d) ≤ f(d∗), and fi(d) < fi(d
∗) for at least one

function.

A point is Pareto optimal if there is no other point that improves at least one objective

function without detriment to another function. For practical applications, algorithms

also provide solutions satisfying other criteria but Pareto optimal, such as weakly Pareto,

the definition of which is described as:

Definition 2. Weakly Pareto Optimal: A point, d∗ ∈ D, is weakly Pareto optimal if

there does not exist another point, d ∈ D, such that f(d) ≤ f(d∗).

Obviously, a point is weakly Pareto optimal if there is no other point that improves all

of the objective functions simultaneously [34]. Pareto optimal points are weakly Pareto

optimal, but weakly Pareto optimal points are not Pareto optimal.
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Many contributions have been made to solve the multi-objective optimization. The usual

way is to convert the multiple objective functions into one objective function, which is

also termed as the utility function. Before stating the ”utility function” method, some

common function transformation methods will be introduced first. Such transformations

that make the objective functions dimensionless are advantageous when the objective

functions have different units.

One way to construct non-dimensional objective function is given as follows [35]:

f trans
i (d) =

fi(d)− f∗i
f∗i

, (2.2)

where f∗i is the minimum of fi(d) for each i = 1, . . . , Nf . This approach provides a

dimensionless objective function with zero lower bound and unbounded upper value. In

this formulation, computational difficulties can arise by the zero denominator or the

negative value.

A variation on Eq. (2.2) is also developed [36]:

f trans
i (d) =

fi(d)

f∗i
, f∗i > 0. (2.3)

This approach overcomes the both difficulties of Eq. (2.2). Although it is impossible to

guarantee f∗i > 0 for all problems, this transformation is advantageous in some practical

applications since the quantities of interest are usually positive, e.g. in the context of

RDO. Note that it may be prohibitively expensive to compute f∗i used in the foregoing

approaches or f∗i is not attainable; therefore, one may use alternatives, such as initial

values [37]. Other analogical formulations can also be seen in relative works [38, 39].

In the following, combined with the transformed objective function, the ”utility func-

tion” method is introduced in the presence of articulation of different objectives or the

associated importance order. Regarding to the former, one of the most general utility

functions is expressed in its simplest form as the weighted exponential sum [40, 41]:

f(d) = U =

Nf∑
i=1

wi(fi(d))p, fi(d) > 0∀i, (2.4)

f(d) = U =

Nf∑
i=1

(wifi(d))p, fi(d) > 0∀i, (2.5)
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where U represents the utility function, p is the exponent, wi denotes the weights typ-

ically set by the design makers such that
∑Nf

i=1wi = 1 and wi > 0, and fi(d) can be

replaced by Eq. (2.3). Extensions of the above two expressions can be found in works

[42–44], described as

f(d) = U =

 Nf∑
i=1

wi(fi(d)− f∗i )p

 1
p

, (2.6)

f(d) = U =

 Nf∑
i=1

wpi (fi(d)− f∗i )p

 1
p

. (2.7)

Here, fi(d) − f∗i can be taken place by Eq. (2.2). In the weighted exponential sum

family, the most common approach is the weighted sum method,

f(d) =

Nf∑
i=1

wifi(d), (2.8)

which can be treated as a special form of Eq. (2.4) or Eq. (2.5) with p = 1. fi(d) here

can also be replaced by Eq.(2.3).

To check if or not these formulations (not confined to the weighted exponential sum

formulations) can provide Pareto optimal sets, a necessary and/or a sufficient condition

is central:

• If a formulation provides a necessary condition, then for a point to be Pareto opti-

mal, it must be a solution to that formulation. However, some solutions obtained

by this formulation may not be Pareto optimal.

• If a formulation provides a sufficient condition, then its solution is always Pareto

optimal. However, this formulation may not produce all the points of the associ-

ated Pareto optimal sets.

Generally, formulations that provide both necessary and sufficient conditions for Pareto

optimality are preferable [34]. When one is interested in determining a single solution

belonging to Pareto optimal sets, methods giving a sufficient condition are applicable.

This situation may be more attractable for some practical applications. Accordingly,

the effectiveness for the formulations in Eq.(2.5)-Eq.(2.8) are listed as follows:
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2.2. Deterministic design optimization

• Eq. (2.5) is sufficient and necessary for Pareto optimality according to the work

[41]. The property fi(d) > 0 ∀i is very valuable for RDO since the associated

dimensionless mean and standard deviation are both positive. Therefore, a RDO

problem can be formulated like this. A relatively large value of p may be help-

ful to capture certain Pareto optimal points for non-convex Pareto optimal sets.

However, as p trends to infinity, this formulation is only weakly sufficient.

• Eq. (2.6) is sufficient [44] as long as wi > 0, i = 1, . . . , Nf , which can be applied

when one single solution is required. Analogically, Eq. (2.7) is also proved to be

sufficient by Zeleny [43].

• Eq. (2.8) is sufficient for Pareto optimality but necessary [45]. This formulation

is impossible to deal with non-convex Pareto optimal sets, but non-convex phe-

nomenon is rare. Moreover involved in a local optimal problem, the non-convex

issue may be ignored.

In the weighted exponential family, varying only p can yield part of Pareto optimal

points. Typically, p and wi are not changed simultaneously. Design makers usually fix

p and change wi to produce a set of Pareto points. In this vein, a set of Pareto optimal

points might be obtained by varying the weights.

On the other hand, the bounded objective function methods have been developed in the

sense of importance order. Essentially, the most significant objective function is extract-

ed and the others are used to form additional constraints. Among these methods, Haimes

et al. [46] introduced the ε−constraint approach (also termed as the ε−constraint or

trade-off approach), which is described as

f(d) = fj(d)

fi(d) ≤ εi, i = 1, 2, . . . , j − 1, j + 1, . . . , Nf . (2.9)

It is apparent that the upper bound εi must be specified to construct the additional

constraints. In this sense, a systematic variation of εi yields a set of Pareto optimal

points. However, improper choice can lead to infeasible solutions.

Apart from the ”unity function” method which converts the original multi-objective op-

timization into a single-objective optimization, there exists approaches that can solve the
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2. Stochastic design optimization for structural systems

multi-objective problems directly, such as the genetic algorithm NSGA-II [47]. Genetic

algorithms for multi-objective optimization provide a set of Pareto optimal solutions

by one running rather than solve a sequence of single-objective problems as the ”unity

function” method does. In this dissertation, the main task is not to develop advanced

optimization algorithms, so only the close relevance is regarded in this brief review. For

more multi-objective optimization methods, one may refer to the survey [34].

2.3 Uncertainty analysis

So far, the fundamentals and formulations of DDO have been known. To consider

uncertainties, one needs to add them in the framework of DDO. In this sense, it is

indispensable to state the way to quantify uncertainties before introducing SDO. For the

aleatory uncertainty is focused on, we therefore in this part begin with the probability

theory. The transformation techniques are sequentially specified which are essential in

some UA methodologies. At last various methods for the UA that are frequently used

are reviewed.

2.3.1 Basic probability theory

In the context of the probability theory, the uncertainties are modeled by random vari-

ables, stochastic processes or random fields that can be either continuous or discrete.

They are characterized by the moments and correlation. Let y be a realization of con-

tinuous random variable Y , the randomness of which is represented by the probability

density function (PDF), qY (y). The probability of Y in the interval [a, b] is calculated

by the integral

P (a ≤ Y ≤ b) =

ˆ b

a
qY (y)dy, (2.10)

where P (·) is the probability operator. The cumulative distribution function (CDF)

denoted as QY (y) can be obtained by

QY (y) =

ˆ y

−∞
qY (y)dy, (2.11)

where qY (y) = dQY (y)/dy. The mean of Y , denoted as µ, the standard deviation of Y ,

denoted as σ, and the correlation of two random variables Y1 and Y2 denoted as ρ12 are
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2.3. Uncertainty analysis

respectively given by

µ =

ˆ ∞
−∞

yqY (y)dy, (2.12)

σ2 =

ˆ ∞
−∞

(y − µ)2qY (y)dy, (2.13)

ρ12 =
1

σ1σ2

ˆ ∞
−∞

ˆ ∞
−∞

(y1 − µ1)(y2 − µ2)qY1,Y2(y1, y2)dy1y2, (2.14)

where qY1,Y2(y1, y2) is the joint probability density function of Y1 and Y2. In cases where

Y1 and Y2 are independent, the joint PDF can be rewritten as

qY1,Y2(y1, y2) = qY1(y1)qY2(y2). (2.15)

Eq. (2.10)– Eq. (2.15) can be extended to multi-dimensional situations. This will be

shown later.

2.3.2 Probabilistic transformation

Let Y = [Y1, . . . , Yn]T and U = [U1, . . . , Un]T denote an arbitrary random vector and

a standard normal vector respectively. y = [y1, . . . , yn]T and u = [u1, . . . , un]T are the

associated realizations. Consider a transformation of these two:

U = Tr(Y). (2.16)

The probabilistic transformation in the last equation depends on the joint PDF qY(y)

of Y. Three types of practical considerations are possible:

• Y is a random vector with independent variables. The joint PDF can be given

qY(y) = qY1(y1)qY2(y2) · · · qYn(yn). (2.17)

The probabilistic transformation in this case is directly obtained by the one to one

mapping

ui = Φ−1(QYi(yi)), (2.18)

where Φ−1(·) is the inverse CDF of standard normal variable and QYi(·) is the

CDF corresponding to the ith random variable Yi.
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2. Stochastic design optimization for structural systems

• Y is a normal random vector with dependent variables, the PDF of which is in

the form of

qY(y) =
1√

(2π)ndetC
exp(−1

2
ȳTC−1ȳ), (2.19)

where ȳ = y − µ = [y1 − µ1, . . . , yn − µn]T and detC is the determinant of the

covariance matrix C, which is defined by

C =


σ2

1 ρ12σ1σ2 · · · ρ1nσ1σn

ρ21σ2σ1 σ2
2 · · · ρ2nσ2σn

...
...

. . .
...

ρn1σnσ1 · · · · · · σ2
n

 , ρij = ρji. (2.20)

The probabilistic transformation is then calculated by

u = Tr(y) = A−1ȳ, (2.21)

where A is obtained by the Cholesky decomposition of covariance matrix

C = AAT. (2.22)

• Y is a non-normal random vector with dependent variables. The joint PDF of these

random variables is not known. Two kinds of transformations may be regarded

according to the information known priori: Nataf model [48] and Rosenblatt trans-

formation [49]. If the marginal distributions and correlation matrix are available,

the Nataf model is applied, i.e.

ui = Φ−1(QYi(yi)), (2.23)

where QYi(yi) is referred particularly to the marginal CDF of ith random variable

Yi, and the associated marginal PDF is represented by qYi(yi). The joint PDF by

Nataf model is expressed as

qY(y) = φn(u,C0)
qY1(y1) . . . qYn(yn)

φ(u1) . . . φ(un)
, (2.24)

where φ(·) is the PDF of standard normal variable, φn(u,C0) is expressed similar

to the Eq. (2.19) and the C0 = A0A
T
0 has the same formulation with Eq. (2.20)
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2.3. Uncertainty analysis

with σi = 1. Then the probabilistic transformation to the standard normal space

is

u = Tr(y) = A−1
0 u = A−1

0 [Φ−1(QY1(y1)), . . . ,Φ−1(QYn(yn))]T, (2.25)

If the conditional PDF is known, the Rosenblatt transformation is applied. It

permits the mapping of jointly distributed, continuous valued random variables

from the physical space into the space of uncorrelated, standard normal random

variables. The associated definition is as follows:

u1 = Φ−1(QY1(y1))

u2 = Φ−1(QY2(y2|y1))

· · ·

un = Φ−1(QYn(yn|y1, . . . , yn−1)),

(2.26)

where QY1(y1), QY2(y2|y1), . . . , QYn(yn|y1, . . . , yn−1) are known as the conditional

CDFs.

Table 2.1: Analytical transformation

Distribution Type Parameters Transformation

Uniform a, b a+ (b− a)(1
2 + 1

2erf(u/
√

2))
Normal µ, σ µ+ σu
Lognormal µ, σ exp(µ+ σu)

Gamma a, b ab(u
√

1
9a + 1− 1

9a)3

Exponential λ − 1
λ log(1

2 + 1
2erf(u/

√
2))

Weibull a, b a(−ln(Φ(−u))
1
b

1 erf(x) = 2√
π

´ x
0
e−t

2

dt, error function; Φ(x) = 1√
2π

´ x
0
e

−t2

2 dt, CDF of standard
normal variable

Some analytical transformations mentioned in [50, 51] between random variables of

common univariate distributions and standard normal variables have been list in Table

2.1. These linear or nonlinear relations offer convenient transformations in UA.

2.3.3 Methodologies and applications

In this section, the relevant methods for UA are reviewed. Basically, the statistics

of the random response can be completed by a variety of approaches, among which the

perturbation method, polynomial chaos expansion (PCE) method, first- or second-order
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2. Stochastic design optimization for structural systems

reliability method (FORM/SORM), response surface method (RSM), direct Monte

Carlo Simulation (MCS) and advanced MCS are frequently used.

Some of them are special for reliability analysis, whereas some of them dominate in

moment evaluations. Roughly speaking, the aforementioned methods may give us a

global perspective of UA. Their applicable scopes will be specified respectively, from

which we can have an insight into which method is potential to give the probability of

failure and the moments at the same time.

In the framework of mechanical engineering, let the random vector θ = [θ1, . . . , θNs ]
T, θ ∈

RNs denote the Ns-dimensional random structural parameters (e.g. material property

and geometry tolerance) and the random vector Z = [Z1, . . . , ZNl ]
T, Z ∈ RNl represent

the Nl-dimensional random inputs (e.g. excitations). All the uncertainties of interest

can be described as the union of the random structural parameters and random inputs,

say Θ = {θ,Z}, Θ ∈ RN , N = Ns +Nl.

Generally, the probability of failure, the complement of reliability, is determined by a

multi-dimensional integral over the failure region:

PF = P (F ) =

ˆ
F
q(Θ)dΘ, (2.27)

where F is associated with the failure region defined by g(Θ) < 0, while g(Θ) = 0 is the

limit state function and g(Θ) > 0 denotes the safe region, q(Θ) denotes the joint PDF

and P (·) is the failure probability operator. Note that g(Θ) represents the uncertain

constraint, which is the function of the random response. Let xi(Θ), i = 1, . . . , n

represent any one of n random responses (or state variables). The associated mean µi,

standard deviation σi and correlation coefficients ρij are formed as

µi =

ˆ
RN

xi(Θ)q(Θ)dΘ. (2.28)

σ2
i =

ˆ
RN

(xi(Θ)− µi)2q(Θ)dΘ. (2.29)

ρij =
1

σiσj

ˆ
RN

(xi(Θ)− µi)(xj(Θ)− µj)q(Θ)dΘ. (2.30)
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2.3. Uncertainty analysis

2.3.3.1 Perturbation method

The perturbation method, introduced in the late 1970’s in the context of the stochas-

tic finite element method (SFEM) [52], has been successfully employed for random

eigenvalue problems [53, 54], for geotechnical problems [55, 56], for dynamic problems

[21, 57, 58] and for static problems [21, 59], thanks to its attractive efficiency. This

method is based on Taylor series expansion in terms of a set of zero mean random vari-

ables. It can be used advantageously in cases where the random fluctuations are small

[60] compared with the nominal structure, such that terms of order two or higher are

negligible. The recommended coefficients of variance of the uncertainties in structures

should be < 5% [61]. Hence, the perturbation method has the capability to determine

the uncertainties without large dispersion, especially for moment evaluations of the ran-

dom response. Additionally, according to the knowledge of the author, there is less

applications of such method to reliability analysis.

2.3.3.2 Polynomial chaos expansion

The original PCE, also termed as the homogenous chaos and Hermite polynomial chaos

expansion (HPCE), was developed by Wiener [62]. Over the last decades, the applica-

tion of PCE within the SFEM [63] has drawn significant attention. The application of

PCE, especially HPCE, may refer to modeling uncertain input parameters [64, 65], rep-

resenting non-Gaussian stochastic processes [66, 67], evaluating second order statistics

of the stochastic response [68–72], carrying out reliability analysis [73–75] and sensitivity

analysis [76–78].

As to representation of random inputs, the K-L expansion [79] has been widely used

and shown the almost sure convergence for Gaussian processes or fields. However, the

covariance structure of the random field is required which is always not available due to

the lack of available experimental data. The main advantage of the PCE compared to

the K-L expansion is that the covariance structure is not required.

In most applications mentioned above, HPCE is utilized to represent the random re-

sponse within SFEM or independent from the SFEM [80]. Yet, the implementations

apart from the structural analysis, such as the fluid analysis [81–84], transport transfor-

mation modeling [51], are still called much attention. Since HPCE has the capability to
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2. Stochastic design optimization for structural systems

approximate the random response, it is not difficult to deduce that HPCE in conjunc-

tion with direct MCS can be involved in UA, including both moment evaluations and

reliability analysis.

In cases where the random inputs are not normal, HPCE may be applied by transform-

ing the non-normal random variables to the standard normal variables. The associated

transformation techniques have been introduced in Section 2.3.2. However, the conver-

gence rate may be substantially slow when representing the random response by HPCE

due to the random inputs are not normal. To this end, extensions to other orthogonal

polynomials in terms of non-Gaussian random variables, named Wiener-Askey or general

PCE, could be used according to the work of Xiu and Karniadakis [85].

Generally, PCE is, from the efficiency point of view, more applicable for problems with

small number of random inputs. This situation is more involved with static problems

rather than dynamic ones since the stochastic excitation is discretized by a uncertain-

ty sequence with high dimension [86]. Hence, it is not surprising to find that most

applications are related to the static analysis according to the survey [87]. Regarding

to the dynamic problem, the associated analysis is mainly concentrated on the modal

properties, in which the uncertainties of the excitation are not included. Nonetheless, it

is possible to extend the PCE to approximate the dynamic response for a quite impor-

tant class of structures – linear random structures, thanks to its linear relation between

outputs and inputs. This study will be introduced in Chapter 3.

2.3.3.3 First- or second-order reliability method

FORM are the most probable point of failure (MPP) based reliability analysis method.

They are always realized in an independent and standard normal random space. Namely,

an arbitrary random vector Θ = [Θ1,Θ2, . . . ,ΘN ]T is mapped as ξ = [ξ1, ξ2, . . . , ξN ]T,

an independent standard normal vector. The limit state function is then transformed

into standard normal space is g(Θ) = G(ξ). Two formulations [50, 88, 89] of FORM

have been developed: the reliability index approach (RIA) and the performance measure

approach (PMA).

Pioneered by the work of Cornell [90], the reliability index was brought into the re-

searchers’ horizon. However, Cornell reliability index is not invariant to the selection of
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the failure surface [91]. To overcome this weakness, FORM was developed due to the

contributions by Hasofer and Lind [92], Rackwitz and Fiessler [93] as well as Hoenbichler

and Rackwitz [94]. Such studies have provided a foundation for the RIA, in which the

reliability index β is obtained by the following optimization problem in the standard

normal space

min ‖ξ‖

s.t. G(ξ) = 0. (2.31)

The solution associated with the minimum distance from the limit state surface G(ξ) = 0

to the origin is the MPP denoted as ξ∗. Then the reliability index is obtained by

β = ‖ξ∗‖.

An alternative FORM, the advanced mean value (AMV) method has been proposed

by Wu et al. [95]. This research defines an inverse reliability analysis compared to RIA

for FORM, termed by the PMA. However, the AMV is well suited for problems with

convex performance functions, while for concave ones the conjugate mean value (CMV)

[96] is more appropriate. The hybrid mean value (HMV) is an adaptive method also

proposed in [96] associated with either convex or concave type. Mathematically, the

PMA formulation is in the form of

min G(ξ)

s.t. ‖ξ‖ = βt, (2.32)

where βt is the target reliability index required in RBDO. The solution of the last

optimization problem is concerned with the MPP ξ∗ where the performance G(ξ∗) is

minimized. It has been reported that PMA is inherently robust and far more effective

when the probabilistic constraint is either very feasible or very infeasible [50].

FORM has been widely used in engineering [97] for many years. However, its applica-

tions are restricted for some aspects. Since FORM is a point estimation method (MPP

search) with linear approximation, it encounters difficulties when dealing with problems

with strongly non-linear limit state functions or with high dimension, criticized for its

inaccuracy and inefficiency. Moreover, the effort to compute the MPP grows propor-

tionally with the dimension [98].
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To enhance the results by FORM, SORM has been proposed. The basic idea is to

approximate the limit state function by a quadratic surface at the MPP. Examples can

be found in the studies [99, 100]. In SORM, besides the evaluation of the MPP, some

curvatures are needed to be calculated compared with FORM. From this view, the

computational burden is aggravated. Analogically, with the dimension increasing, the

results may be questionable. Note that both methods are seldom applied in moment

evaluations. From the view of comprehension, a simple 2−D example for FORM and

SORM is depicted by Fig. 2.1.

Figure 2.1: FORM/SORM [1]

2.3.3.4 Response surface method

Most often, it is hard to find the close-form limit state functions for practical consider-

ations, which can be commonly available by numerical way. In this case, applications of

FORM/SORM are confined. Direct and advanced MCS are ”fit candidates”, but MCS

is cumbersome due to its high computational expense. To incur excessive computational

costs, researchers have adopted the RSM [101–104] that permits FEA to be combined

with FORM/SORM. Profited from this procedure, a polynomial response function up

to second order is generally evaluated by performing Taylor series expansion around the

MPP. The reason of abandoning higher order polynomials is because of their possibly

instable solutions [105]. To evaluate the associated coefficients, the least square method

(LSF) is usually utilized, where the experimental data are prepared either by physical

experiment or by numerical analysis.

The RSM has been used in researches and it works well when the number of input

variables is small. However, analogical to FORM/SORM, it may be criticized for its

inaccuracy and inefficiency with a large number of input variables. To that end, one can

turn to other approaches for sound solutions, e.g. advanced MCS.

26



2.3. Uncertainty analysis

2.3.3.5 Direct Monte Carlo simulation

Direct MCS is the most generally applicable procedure to simulate and quantify un-

certainties. The word ”direct” here is associated with the original MCS to distinguish

the advanced one. Both the moments and probabilities of failure can be evaluated by

this procedure. It was proposed by physicists [106] for the Manhattan Project of Los

Alamos Labs. And now, it is extended to the fields ranging from finance, social science,

chemistry, medicine, biology and mathematics [107–111]. Several advantages have been

shown with the application of direct MCS. The following discussions are limited in the

context of mechanical engineering.

1. It provides the possibility to deal with any mechanical models. That implies the

structural properties, i.e. linear or nonlinear, static or dynamic, continuous or

discrete, are inessential.

2. There is no need to modify the numerical code when applying direct MCS, which

ensures that direct MCS can deal with very complex structural systems. Further-

more, with such an advantage, it can also be coupled with parallel processes to

improve efficiency.

3. It is insensitive to the number of the uncertainties. It happens that the large

number of uncertainties are more frequent situations encountered in engineering.

In mechanical engineering, direct MCS is implemented to generate samples from the

given PDF, and to provide the information of the random responses in the presence of

the moments and probabilities of failure. Mathematically, the multi-dimension integral

in Eq. (2.27) can be rewritten as

PF = P (F ) =

ˆ
F
f(Θ)dΘ =

ˆ
RN

IF (Θ)f(Θ)dΘ = E(IF (Θ)), (2.33)

where E(·) denotes the mean or mathematical expectation, and IF (Θ) is the indicator

function. The interpretation is IF (Θ) = 1, Θ ∈ F ; otherwise, IF (Θ) = 0. The Monte-

Carlo estimator of PF is then formulated as

P̂F =
1

Nmc

Nmc∑
k=1

IF (Θ(k)), (2.34)
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where Θ(k) is the kth set of random variables and Nmc is the number of samples used

by direct MCS. Its convergence is measured by the coefficient of variation of P̂F

δmc =

√
Var(P̂F )

PF
=

√
1− PF
NmcPF

, (2.35)

where the variance of P̂F is calculated by

Var(P̂F ) =
(1− P̂F )P̂F

Nmc
. (2.36)

Similarly, the Monte-Carlo estimator for the mean and standard deviation of the random

response xi(Θ) can be respectively expressed by

µ̂i =
1

Nmc

Nmc∑
k=1

xi(Θ
(k)). (2.37)

σ̂2
i =

1

Nmc − 1

Nmc∑
k=1

(xi(Θ
(k))− µ̂i)2. (2.38)

ρ̂ij =
1

Nmcσ̂iσ̂j

Nmc∑
k=1

(xi(Θ
(k))− µ̂i)(xj(Θ(k))− µ̂j). (2.39)

Consideration of requirements of high accuracy however, direct MCS is computational

intensive because a lot of samples, more general structural analyses, are required. As

a consequence, its implementation is practically prohibitive especially for large-scale

structural systems whose responses are only available in numerical way, i.e. FEA. This

is aggravated to estimate small probability of failure. For example, in civil engineering,

it is common to use an admissible probability of failure of PF = 10−4 for the ultimate

limit state. That implies at least 104 structural analyses are required. More refined

target values can be found in the Eurocodes.

2.3.3.6 Advanced Monte Carlo simulation

To overcome the main disadvantages mentioned in Section 2.3.3.5 and to make use of

the advantages of direct MCS, advanced MCS has been raised. The word ”advanced”

emphasized here is with respect to high efficiency compared to direct MCS.

The most significant concern for reliability analysis is the variance reduction technique,

among which the important sampling theory [108, 112] is widely used. The basic idea

28



2.3. Uncertainty analysis

is to generate more samples from the failure regions and thereafter the total number of

samples is reduced. The critical issue of importance sampling is to recognize the failure

region and to formulate the importance sampling density.

Importance sampling methods [113–115] based on design points or pre-samples are well

suited for static problems. These methods have difficulties to deal with problems with

high dimension of uncertainties, e.g. structures with stochastic excitations. Hence, for

dynamic structures alternatives are needed. One can refer to a very efficient method

[116] which is appropriate for the linear dynamic systems with deterministic structural

parameters. As to more general cases, subset simulation family [117–119] have shown

their advantages especially involved in problems with high dimension of uncertainties.

This has been demonstrated by a benchmark study [120].

Apart from the importance sampling, other methods such as line sampling methods [121]

and an approximate method by selecting the reference point of the random structural

parameters [122] have the advantages in estimating the first-passage probability of failure

for random linear dynamic systems.

Note that the methods mentioned above are mainly regarding reliability analysis, the

efficiency of which is improved by reducing the number of samples. The contributions

of this methodology should be paid pretty much respect. This methodology dominates

without doubt in reliability analysis, whereas it may not obtain the moments of the

associated response accurately. We can deduce that the moments may be overestimated

by the importance sampling since most of samples are located in the failure region which

may be very relevant to the tails of the PDF.

If the improvement of efficiency is realized by fast calculation of the random response

rather than reducing the number of samples, as is done by PCE, direct MCS becomes

computational manageable. It is not difficult to expect that with the help of this strategy,

the associated probability of failure, the mean, and the standard deviation of the random

response are readily obtained by Eq. (2.34), Eq. (2.37) and Eq. (2.38) respectively. In

this sense, the PCE based MCS belongs to advanced MCS since its efficiency is improved.

This method is proposed in this work that will be specified in Chapter 3.

Until now, two basic parts (i.e. DDO and UA) of SDO are well known. In the following,

the issues related to SDO are introduced.
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2.4 Stochastic design optimization

As stated in DDO, an optimal design is searched under deterministic merit functions

and constraints. While in SDO, these functions are either deterministic or uncertain,

which are usually shown by their statistical measurements, i.e. the mean, standard

deviation and probability of failure. In the framework of structural optimization, most

of practical applications pursue at least three conflicting aims [123]: low structural cost,

high reliability and good structural performance.

1. Low structural cost. Generally, the cost refers to the total cost CT all through

the life cycle, which consists of the initial cost CI (including design, manufactur-

ing, transport and construction costs), the failure cost CF (function of PF ), the

preventive maintenance cost CM, the inspection cost CS, the repair cost CP, the

use cost CU and the recycling cost CR and destruction cost CD [124], leading to

the cost function

CT = CI + CF + CM + CS + CP + CU + CR + CD. (2.40)

Consideration of human factors and economy levels with respect to different coun-

tries, except the initial cost the total cost is very complicated to estimate, for

example, the failure cost. Hence, the above equation is not tractable to utilize and

only the initial cost is involved, say CT = CI [2]. Accordingly, to reduce the cost,

design makers at least try to minimize the initial cost CI.

2. High reliability. In essence, high reliability is equivalent to small probability

of failure, which gives the probability that one performance index exceeds the

prescribed value, e.g. the probability of the stress greater than the allowable

strength. To achieve this kind of design, reliability analysis is a powerful tool.

3. Good structural performance. This implies the serviceability and good qual-

ity are insured during the life time. A reasonable way to achieve these goals is

connected with the dispersion reduction of the performance. This requires a ro-

bust design where the structural performance is less sensitive to the variation of

parameters.
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To achieve such aims, RBDO, RDO and the integration of the both RBRDO have been

developed and implemented corresponding to specified requirements. In the following,

the formulations and methodologies are reviewed respectively.

2.4.1 Reliability-based design optimization

2.4.1.1 General formulations

RBDO is a methodology for finding optimized designs that are characterized with a low

probability of failure. Primarily, RBDO consists of optimizing a merit function by sat-

isfying probabilistic and deterministic constraints. Mathematically, a basic formulation

is described as

find d

minimize f(d)

subject to P (gi(d,Θ) ≤ 0)− PFt,i ≤ 0, i = 1, 2, . . . , Ng

− hj(d) ≤ 0, j = 1, 2, . . . , Nh

dL ≤ d ≤ dU. (2.41)

This formulation is similar to DDO, except that the probabilistic constraints P (gi(d,Θ) ≤

0) − PFt,i ≤ 0, i = 1, 2, . . . , Ng are involved, where gi(d,Θ) < 0 defines the failure re-

gion, gi(d,Θ) = 0 is the limit state function and gi(d,Θ) > 0 refers to safe region; PFt,i

is the associated target probability of failure; Ng represents the total number of the

probabilistic constraints. Note that gi(d,Θ) is equivalent to gi(Θ). The later replaced

by the former is to stress the concept of design. For convenience of the notation, we also

denote PF,i(d,Θ) = P (gi(d,Θ) ≤ 0).

Design vector d in this case, may comprise deterministic parameters, e.g. geometry

dimensions, or distribution parameters, i.e. the means of random variables µΘ. The

variance design is seldom used as an independent design parameter due to the practically

uncontrollably manufacturing process [5]. In this case, the variance is always assumed

according to the manufacturing criteria and the practical requirements. Generally, the

coefficient of variance (COV, the ratio between the mean µ and standard deviation σ

of a random variable, i.e. µ/σ) is not very large.
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In RBDO, deterministic objective function at the mean values of random variables are

often used [23]. When the objective function is also uncertain, i.e. f(d,Θ), a more rig-

orous mathematical notation is in writing E(f(d,Θ)) instead of f(d), which is pursuing

the nominal design. For simplicity, the notation f(d) is maintained. As to the associated

standard deviation that represents the quality control and dispersion reduction aspects

will be referred to the concept of the robust design and not involved in the context of

RBDO. We will talk about it later.

Generally, the objective function is also termed as the cost function, i.e. f(d) = CI(d).

In this sense, the formulation in Eq. (2.42) is called the cost optimization with relia-

bility constraints (CRP) [123] since the cost is minimized subject to a given minimum

reliability, say

find d

minimize CI(d)

subject to P (gi(d,Θ) ≤ 0)− PFt,i ≤ 0, i = 1, 2, . . . , Ng

− hj(d) ≤ 0, j = 1, 2, . . . , Nh

dL ≤ d ≤ dU. (2.42)

The optimal design can also be obtained by minimizing the probability of failure subject

to a given maximum cost, which is known as the reliability optimization with cost

constraints (RCP) [123]. Then RCP formulation is written as

find d

minimize PF (d,Θ)

subject to CI(d)− CI,t ≤ 0

− hj(d) ≤ 0, j = 1, 2, . . . , Nh

dL ≤ d ≤ dU, (2.43)

where CI,t is the target cost. Note that in the above formulation, only one probability

of failure is treated as merit function. This is a simplified expression. When concerning

two or more probabilities of failure need to be minimized, one may construct a multi-

objective optimization problem (see Section 2.2.2.2) for solutions. In cases where the

minimum cost is priori unknown, a variant [2] of CRP is particularly useful. It is realized
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by maximizing the reliability per unit cost under other constraints:

find d

maximize
1

PF (d,Θ)CI(d)

subject to − hj(d) ≤ 0, j = 1, 2, . . . , Nh

dL ≤ d ≤ dU. (2.44)

Among these three, the first formulation, i.e. CRP (see Eq. (2.41) or (2.42)), is the most

frequently used. One probable reason is because the RCP problem requires considerably

more numerical effort than CRP, which was shown in the case study of the work [123].

Nonetheless, applications of RCP can be found in some fields, such as design optimization

for the tuned mass damper [125, 126].

Over the last couple of decades, a variety of approaches have been proposed to perfor-

m RBDO (mainly concerning CRP). Because reliability analysis is a computationally

expensive task in engineering, in order to reduce the computational burden of RBDO,

two kinds of approaches are mainly applied. One is through improving the efficiency

of reliability analysis as shown in Section 2.3.3. The other is the way that reliability

analysis is involved in the optimization procedure, based on which these approaches can

be divided into three broad categories.

2.4.1.2 Nested double loop

The traditional way to perform RBDO is the so-called nested double loop algorithm,

as shown in Fig. 2.2. This formulation is basic but the most expensive. It is evident

that reliability analyses are included in the outer optimization loop. Often, reliability

analysis is realized by an MPP-based iterative numerical analysis procedure, such as

FORM. This is the reason why the traditional RBDO is called as nested double loop.

When applying FORM, the probability of failure has a non-linear relation with the

corresponding reliability index, PF = Φ(−β) or β = −Φ−1(PF ), where Φ(·) and Φ−1(·)

are the Gaussian CDF and inverse Gaussian CDF respectively.

Combined with the algorithm of RIA (see Section 2.3.3.3), where the probabilistic con-

straints in Eq. (2.41) is taken place by the reliability index constraints, then the RIA
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based RBDO is expressed as

find d

minimize f(d)

subject to − βi(d,Θ) + βt,i ≤ 0, i = 1, 2, . . . , Ng

− hj(d) ≤ 0, j = 1, 2, . . . , Nh

dL ≤ d ≤ dU, (2.45)

where the reliability index βi(d,Θ) related to the ith limit state function gi(d,Θ) is the

solution of RIA optimization procedure solved in the standard normal space (shown in

Eq. (2.31)), and βt,i is the associated target reliability index.

Figure 2.2: Generalized nested double loop of RBDO

The statistical description of the failure of the limit state function gi(d,Θ) can be

characterized by its CDF Fgi(0) as

P (gi(d,Θ) ≤ 0) = Fgi(0) ≤ Φ(−βt,i), (2.46)

i.e.

gi(d,Θ) = F−1
gi (Φ(−βt,i)) ≥ 0, (2.47)
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and therefore an alternative constraint is brought in, based on which the PMA based

RBDO is constructed in the form of

find d

minimize f(d)

subject to − gi(d,Θ) ≤ 0, i = 1, 2, . . . , Ng

− hj(d) ≤ 0, j = 1, 2, . . . , Nh

dL ≤ d ≤ dU, (2.48)

where gi(d,Θ) is evaluated by PMA (see Section 2.3.3.3) mentioned in Eq. (2.32) in

the standard normal space. Solving RBDO by the PMA formulation is usually more

efficient and robust than the RIA one where the reliability analysis is executed directly.

The efficiency lies in the fact that the search for the MPP of an inverse reliability

problem (PMA) is easier to realize than the search for the MPP corresponding to an

actual reliability [89]. Moreover, the RIA based RBDO fails to converge for distributions

with bound (e.g., uniform) and extreme type distributions (e.g., Gumbel) [127]. Hence,

the PMA based RBDO is more frequently used than the RIA based RBDO.

It is found that the PMA based RBDO is not that efficient for large-scale applications.

To this end, a PMA+ [128] based RBDO is proposed to make RBDO computationally

affordable. When there is not sensitivity information available or no closed form limit

state function, the PMA family may not be efficient enough. To attain this objective, a

new RBDO methodology [102] is developed to integrate the PMA method with a new

RSM, in which a moving least square method is implemented.

Apart from the integration of FORM into RBDO framework, one can also utilize M-

CS, especially for the situation when there are a large number of random variables,

when no closed-form limit state function exists or when the limit state function is high-

nonlinear. In the context of MCS, advanced MCS is more attractive thanks to its high

efficiency. A reliability-based structural optimization, combination of neural networks

and importance sampling into the evolution strategy optimization, is proposed [129].

In this method, the neural networks are applied to construct implicit deterministic or

probabilistic constraints and thereafter importance sampling is employed to carry out

the associated reliability analysis.
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Recall that all aforementioned RBDO is in the nested double loop content, the improved

efficiency of which is mainly achieved by advanced reliability analysis. The nested dou-

ble loop is computationally intensive for problems where the function evaluations are

expensive. This problem will be aggravated as the number of probabilistic constraints

increase. To alleviate the computational expense, sequential RBDO have been developed

and widely applied.

2.4.1.3 Sequential double loop

The basic idea behind sequential double loop of RBDO is to decouple the reliability

analysis from the optimization loop, which provides the designer with the option of us-

ing existing optimizers and the probabilistic software without code modifications. In

sequential RBDO, the optimization loop and the reliability analysis are performed se-

quentially and the entire procedure is repeated until the desired convergence is achieved.

For convenience, a sub-sequential-procedure comprising one or more reliability analyses

(or several reliability analyses) and an equivalently deterministic optimization loop is de-

fined. By repeating several these sub-procedures, it is possible to find the local or global

optimum. A generalized procedure is illustrated in Fig. 2.3. The task of the reliability

analysis here is used to providing the information required by the optimization.

Figure 2.3: Generalized sequential double loop of RBDO
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In most sequential RBDO, a design is obtained by performing an equivalent DDO by

converting probabilistic constraints into equivalent deterministic ones and is updated

based on the information supplied by the reliability analysis, such as the sensitivity with

respect to the design variables, the MPP when FORM is utilized, and other relevance.

Consequently, the most critical issue is how to construct the equivalent deterministic

constraints. Several techniques have been developed to achieve this target:

• Sequential optimization and reliability assessment (SORA)[130]. In SORA, the

key concept is to shift the boundaries of violated deterministic constraints (with

low reliability) to the feasible direction. PMA is used to do reliability analysis,

which supplies the MPP and the associated shifted factors. Then the equivalent

deterministic constraints are functions of the design variables and shifted factors.

• Safety-factor based RBDO [131]. This approach merges the safety-factor concept

into the MPP concept to replace probabilistic constraints by deterministic con-

straints. The basic idea is to replace random variables by the safety-factor based

values. After each reliability analysis, the MPP and design shift are given. With

these value, a deterministic limit state function is formulated. Then DDO is per-

formed and a new design is found. The whole process is repeated until the MPP

procedure and DDO converge.

• Alternative way to construct the equivalent deterministic constraints is proposed

by Agarwal [1]. In this method, the sensitivities of the MPP with respect to the

decision variables are introduced to update the MPP during DDO of the sequential

procedure. This method not only finds the optimal solution but also locates the

exact MPP, which is important to ensure the target reliability index. The MPP

update is based on the first order Taylor series expansion around the design point

from the last sub-sequential-procedure. The inverse reliability analysis or PMA is

used to search the MPP.

• When FORM is inaccurate for situations with higher nonlinearity or with large

number of random variables, simulation techniques are necessary, e.g. MCS. To

this end, the sequential RBDO with conjunction of MCS [132] is also raised. The

equivalent deterministic constraints are approximated by a first order Taylor series

expansion around the current design points. Apart from the usage of the sequential

strategy, the importance sampling is implemented to improve efficiency of MCS.
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2.4.1.4 Single loop

Besides the sequential RBDO, there is also an alternatively advanced formulation, the

so-called single loop, which can reduce the computational expense. In the single loop,

the reliability constraints are replaced by their corresponding first-order Karush-Kuhn-

Tuchker (KKT) necessary optimality conditions in the optimization loop, as the works

[123, 133, 134] did. Accordingly, there is no need to execute reliability analysis and the

nested double loop is converted into a single optimization loop. Such a single loop is e-

quivalent to the originally nested one as long as the optimization is solved by numerically

satisfying the KKT conditions.

It should be noted that the dimension of the design space is usually increased. The reason

is that the random variables entering the optimization are also seen as design variables

[133, 134]. Additionally, the converged solutions are the desired MPPs according to the

work [133], in which the Lagrange multipliers are also treated as design variables and

needed to be optimized.

2.4.1.5 Comparative study between DDO and RBDO

This simple case study aims at showing that to get a more security design, uncertainties

must be taken into account in practical engineering. Consider a mathematical model

[50] of RBDO with the distribution type of design variables d = [µΘ1 , µΘ2 ]T. The RBDO

problem is described as follows

find d

minimize f(d) = d1 + d2

subject to P (gi(d,Θ) ≤ 0) ≤ Φ(−βt,i), i = 1, 2, 3

0 ≤ dj ≤ 10, j = 1, 2, (2.49)

where

g1(Θ) = Θ2
1Θ2/20− 1,

g2(Θ) = (Θ1 + Θ2 − 5)2/30− (Θ1 −Θ2 − 12)2/120− 1,

g3(Θ) = 80/(Θ2
1 + 8Θ2 + 5)− 1, (2.50)
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and βt,i = 3, the standard deviation σi = 0.3, i = 1, 2, 3 and Θ follow normal dis-

tribution. To investigate the difference between DDO and RBDO, Θ are treated as

deterministic variables in DDO, i.e. d = [Θ1,Θ2]T.
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Figure 2.4: Comparison of DDO and RBDO. d1 and d2 are two design variables. In
RBDO, d1 = µΘ1 and d2 = µΘ2 ; In DDO, d1 = Θ1 and d2 = Θ2.

Both optimization processes begin with the same start point d0 = [5, 5]T shown by

”x” in Fig. 2.4. The optimal designs obtained by RBDO and DDO are dRBDO =

[3.4391, 3.2866]T and dDDO = [3.1139, 2.0626]T, respectively.

From Fig. 2.4, it is evident that no matter what optimization problem is considered, only

two constraints (g1 and g2) are active. When uncertainties are involved, consideration

of a deterministic model to take place of the random model brings sever failure, since

the optimum (depicted by ”∗”) provided by DDO is located at the crossing of the active

limit states whereas the RBDO optimum falls in the safe region (shown by ”•”).

2.4.2 Robust design optimization

2.4.2.1 Concept of robust design

As outlined before, RBDO is a methodology for finding optimized designs that are char-

acterized with a low probability of failure. However, RDO is a very different paradigm.
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Robust design is an engineering methodology for optimal design of products and pro-

cess conditions that are less sensitive to system variations [21]. The aim of RDO is to

improve the quality of a product through minimizing the effect of variation without e-

liminating the causes [135]. Consequently, RDO is to reduce the variability of the system

performances.

Fig. 2.5 compares a DDO with a RDO for a one-dimensional performance function

to give a conceptual comprehension of RDO. With the same variability of a design

variable, the robust optimum shows less variation of the performance function f(d) than

the deterministic optimum.

Figure 2.5: Comparison of RDO and DDO [37]. In DDO, the design variable d is
deterministic, while in RDO the design variable d is random, e.g. the associated mean

value d = µθ. The objective function f(d) is related to the performance.

RDO always emphasizes on achieving the robustness of the performance (usually for

design objective, seen from Fig. 2.5). In this context, the associated objective function

is usually uncertain which might not be dealt with the mean sense as is done in RBDO.

This problem will be concerned later.

Basically, robust design addresses both the design objective robustness and the design

feasibility robustness. The former is realized by minimizing the variability of the objec-

tive function, whereas the latter is guaranteed by satisfying the uncertain constraints,

such as in manner of reliability analysis. To achieve these targets, unlike RBDO, there

is not a unified mathematical formulation in the literatures. The distinctions among all

are mainly shown by the way to quantify the design objective robustness and the design

feasibility robustness.
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To discuss various developed formulation of RDO, a typical design model under uncer-

tainties is given first, i.e.

find d

minimize f(d,Θ)

subject to − gi(d,Θ) ≤ 0, i = 1, 2, . . . , Ng

dL ≤ d ≤ dU, (2.51)

where f(d,Θ) is the uncertain objective function which is distinguished from f(d) by

entering the uncertainties Θ, d is the design vector which can be deterministic variables

or distribution parameters of random design variables, and gi(d,Θ) is the uncertain

constraint. For simplicity, the deterministic constraint hj(d) is not listed here. If the

random response x(d,Θ) is involved in the objective function, the notation f(d,Θ) is

equivalent to f(d,Θ, x(d,Θ)). For convenience, we use f(d,Θ) to represent the both.

2.4.2.2 Design objective robustness

It has been recognized that the robustness of a design objective can be achieved by

simultaneously minimizing the mean performance and the performance variance [21, 22,

24]. In this case, the objective function can be expressed as

minimize f(d,Θ) = [µf (d,Θ), σf (d,Θ)]T. (2.52)

Within this formulation, RDO is solved in the framework of multi-objective optimiza-

tion. As introduced in Section 2.2.2.2, one can adds a weight factor before each entry

to transform the vector objective type to a scalar type. More often, a normalized for-

mulation is used, i.e.

minimize f(d,Θ) = w1
µf (d,Θ)

µ∗
+ w2

σf (d,Θ)

σ∗
, (2.53)

where µf (d,Θ), σf (d,Θ) are the mean and standard deviation of the objective function

f(d,Θ) respectively; w1, 0 < w1 < 1 and w2, 0 < w2 < 1 are the positive wight factors,

the relation of which is w1 + w2 = 1; µ∗ is the normalized factor obtained by w1 = 1

and w2 = 0, and σ∗ is analogically evaluated by w1 = 0 and w2 = 1. This formulation
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in Eq. (2.53) is actually following the principle shown in Eq. (2.8) in which the original

objective function is transformed as Eq. (2.3).

Alternative formulations based on Eq. (2.4) have also been developed [37]. Three typical

formulations are stated as follows:

• Nominal-the-best type.

minimize f(d,Θ) = w1(
µf (d,Θ)− ft
µ0 − f0

)2 + w2(
σf (d,Θ)

σ0
)2, (2.54)

where ft and f0 are the target nominal value and the initial nominal value of

the objective function f(d,Θ), µ0 and σ0 are the values at the start point. This

selection of normalized parameters can save CPU time when the convergence rate

is slow.

• Smaller-the-better type.

minimize f(d,Θ) = w1 · sgn(µf (d,Θ)) · (
µf (d,Θ)

µ0
)2 + w2(

σf (d,Θ)

σ0
)2. (2.55)

• Larger-the-better type.

minimize f(d,Θ) = w1 · sgn(µf (d,Θ)) · ( µ0

µf (d,Θ)
)2 + w2(

σf (d,Θ)

σ0
)2. (2.56)

Since the weighted sum approach is utilized to solve the multi-objective optimization

problem, it is natural to raise a problem: how to choose the weight factors. The most

simple way is to fix different wight factors at each optimization process so that the

associated solutions provide a possibility of generating a set of Pareto optima. Note that

the final decision should be made by the designer based on the practical requirements

and subjective judgement.

Apart from reducing the variance of the objective function to control the variability,

alternative measure is also developed. In the original Taguchi’s robust design [136],

the ”compound noise” is implemented to assess high or low quality performances. The

associated typical value of ±
√

3/2σ for noise level does not always generate the highest

and lowest quality performance. To overcome this drawbacks but maintain the basic idea

of the ”compound noise”, recently a percentile performance difference method [23] has
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been proposed to represent the variation of a performance, taking place of the frequently

used standard deviation method (see Eq. 2.53). The percentile performance difference

is given by

∆fα2
α1

(d,Θ) = fα2(d,Θ)− fα1(d,Θ), (2.57)

in which α1 and α2 are probabilities of failure or the CDFs of f(d,Θ), i.e.

P (f(d,Θ) ≤ fαi(d,Θ)) = αi, i = 1, 2, (2.58)

where α1 is a left-tail CDF, e.g. 0.05 or 0.01 that presents the performance at the left tail

of its distribution and α2 is a right-tail CDF, e.g. 0.95 or 0.99. Percentile performances

fα1(d,Θ) and fα2(d,Θ) represent the low and high quantity levels respectively, as is

depicted in Fig 2.6, from which we can see that the percentile performance difference

is the distance between fα2(d,Θ) and fα1(d,Θ) corresponding α1 and α2 respective-

ly. Minimizing the percentile performance difference helps to shrink the range of the

distribution.

Figure 2.6: Concept of percentile difference method for RDO [23]

In the percentile performance difference method, the critical issue is to evaluate fα1(d,Θ)

and fα2(d,Θ) that are obtained by the inverse reliability analysis (e.g. PMA), as is de-

scribed in Section 2.3.3.3. In summary, the normalized formulation of the objective

function is constructed as

minimize f(d,Θ) = w1
µf (d,Θ)

µ∗
+ w2

∆fα2
α1

(d,Θ)

∆∗
, (2.59)

where wi, i = 1, 2, µ∗ and ∆∗ have the same definition with Eq. (2.53). Indicated also

by Du et al. [23], this formulation is not suited for the non-unimodal distribution of the
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performance function (or objective function) since the percentile performance difference

at two tails may not decrease the variance of such performance distribution.

2.4.2.3 Design feasibility robustness

No matter what formulation of the objective function we use to achieve the robustness

of product performance, it is critical to maintain the design feasibility under uncertain-

ties [24]. This in fact, leads to a problem: the measure of uncertainties in uncertain

constraints to ensure the requirements.

The probabilistic measure, i.e. probability of failure or reliability, is usually used as is

done in RBDO. Considering the high computational burden, several alternatives with

low computational expense have been developed:

• The moment approach [21]. In this approach, the first and second moments of

gi are used. According to Kang [21], the uncertain constraint is equivalent to

µgi(d,Θ)− βt,iσgi(d,Θ) ≥ 0, i = 1, 2, . . . , Ng, (2.60)

where µgi(d,Θ) and σgi(d,Θ) are the mean and standard deviation of uncertain

constraint gi respectively, γi = µgi(d,Θ)/σgi(d,Θ) can be interpreted as the re-

liability index which is identical with the Cornell reliability index and βt,i can be

seen as the target reliability index. Accordingly, the last expression is written as

γi ≥ βt,i. (2.61)

The mean and standard deviation can be evaluate efficiently by approximate

method, such as the perturbation method and the first order Taylor’s series. This

formulation is not a real reliability measure unless the uncertain constraint gi

follows normal distribution. With this assumption, the moment matching formu-

lation [137] was proposed. The associated uncertain constraint is replaced by the

probabilistic constraint, say

P (gi(d,Θ) ≤ 0) = Φ(−γi) ≤ Φ(−βt,i). (2.62)
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When the constraint gi is not normal, the last expression is not an exact relia-

bility formulation. As stressed, this method is attractive in cases where the the

calculation cost is more concerned by the designers.

• The worst case approach [137]. It is another simplistic approach to evaluate the

feasibility robustness. It is applicable to general robust design problems including

those in which the distributions of random variables are not given. As the name

defined, the worst case assumes that all fluctuations may occur simultaneously

in the worst possible combinations. The variability of a uncertain constraint is

estimated by a first Taylor’s series.

In most cases, the worst case approach is almost conservative because it is impossi-

ble that the worst cases of variable will simultaneously occur. On the contrary, the

Taylor expansion may lead to inaccuracy for extreme conditions such as minimum

and maximum. However, due to its low computational cost, its applications are

widely accepted.

• The corner space evaluation approach [138]. Based on the basic idea of the

worst case approach, the corner space evaluation method is developed, in which

the descriptions of the distributions of random variables are not required. In this

method, there is no need to propagate the uncertainties to the constraints and the

”worst case” is determined in the tolerance space (T ).

Assume that a random design variable θ has a nominal value µθ and a tolerance

∆θ. A selection of points close to the target design point θt where each point

represents a possible design variable construct the tolerance space, as

T (θt) = {θt : |θt − θ| ≤ ∆θ}, (2.63)

according to which, the corner space (W ) consists only of the corner vertices of

the corresponding tolerance space, say

W (θt) = {θt : |θt − θ| = ∆θ}. (2.64)

Note that to maintain the design feasibility, the nominal value µθ should be inside

the feasible region. This can be achieved by keeping the corner space always

touching the original constraint boundary.
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Comparative studies have been shown in the work [24], depending on which the appli-

cable scope can be concluded as follows:

• Consideration of the accuracy to represent the uncertainties and to assure the

design feasibility robustness, the probabilistic measure is an ideal method, while

it is the most expensive, especially for cases where the approximate method, e.g.

FORM, is not available and MCS is employed.

• If both the calculation cost and the accuracy are needed, the moment approach

can be used. It provides an accurate estimation of the probability when the con-

straint normally distributed. The moment approach is much more computationally

efficient than the probabilistic one. Unfortunately, such reliability index is not in-

variant depending on the formulation of the uncertain constraint [91].

• The worst case approach is usually a conservative method that provides safer de-

signs. The obtained results are more accurate than those obtained by the moment

approach, and meanwhile the efficiency is also attractive. However, the cost is

not the minimum and it may not very competitive in the market. Furthermore,

there is the possibility that the design points violate the constraint satisfactions.

Consequently, we should use it with caution.

• When the economy is the most concerned, one can use the corner space evaluation

approach since this approach avoids the statistical analysis. The accuracy of this

method depends on whether the constraint function is monotonic with respect

to all design variables in the tolerance space. One limitation is that it does not

provide the information on the probability of failure of the constraint.

2.4.3 Reliability-based robust design optimization

With the development of computer science and algorithms of reliability analysis, reduc-

ing the computational burden will not be a tough task. Therefore, as to RDO both design

objective robustness and the reliability analysis to the uncertain constraints are desired

characteristics. Then we come to a hybrid paradigm, RBRDO. A typical formulation of
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2.4. Stochastic design optimization

RBRDO is formulated as

find d

minimize f(d,Θ) = w1
µf (d,Θ)

µ∗
+ w2

σf (d,Θ)

σ∗

subject to P (gi(d,Θ) ≤ 0)− PFt,i ≤ 0, i = 1, 2, . . . , Ng

dL ≤ d ≤ dU. (2.65)

Until now, the quantities of the weight factors are 0 < w1 < 1 and 0 < w2 < 1 to specify

the applicable scope of RBBDO or RDO.

2.4.3.1 Relation between RDO, RBDO and RBRDO

Generally, the design feasibility robustness in RDO can be quantified by probabilistic

method, the moment method, the worst case approach and so on. While in the context

of RBRDO, the design feasibility robustness is guaranteed only by probabilistic method,

which renders RBRDO a special case within RDO.

On the other hand, RBDO considers the cases where the objective function is determin-

istic or in the mean sense. From this view, RBDO and RBRDO are mutually comple-

mented, with the design feasibility robustness guaranteed by the probabilistic measure.

If we extend the scope of RDO and RBRDO onto 0 ≤ w1 ≤ 1 and 0 ≤ w2 ≤ 1, then

RBDO can be seen as a part of RBRDO. Mathematically, that means w1 = 1, w2 = 0

in Eq. (2.65). In this occasion, a rough relation between RBDO, RDO and RBDRO is

shown in Fig. 2.7.

Figure 2.7: Relation between RBDO, RDO and RBDRO

In conclusion, RDO refers to the most wide considerations and applications since it

contains both deterministic or uncertain objective function and various approaches to
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2. Stochastic design optimization for structural systems

ensure the design feasibility robustness. Based on the category of the objective function

and the way to ensure the design feasibility robustness, RBRDO is a branch of RDO and

RBDO is a subset of RBRDO. In the following work, we will see RBDO involved

in RBRDO.

2.4.3.2 Comparative study between RBDO and RBRDO

The difference between RBDO and RBRDO is also illustrated by the mathematical

example in Section 2.4.1.5 with the same constraints but different minimized objective

f(d,Θ) = Θ2
1+Θ1Θ2, in which d = [µΘ1 , µΘ2 ]T are the design variables, i.e. mean values

of the random design variables Θ = [Θ1,Θ2]T. The RBRDO problem is formulated as

minimize f(d,Θ) = w1
µf (d,Θ)

µ∗
+ w2

σf (d,Θ)

σ∗
,

subject to P (gi(d,Θ) ≤ 0) ≤ Φ(−βi,t),

0 ≤ dj ≤ 10, j = 1, 2. (2.66)

Since this problem is a multi-objective optimization, different set of weight factors can

lead to different optimum which might comprise the Pareto optima. Under different

selection of weight factor, we chose 11 sets of weight factors, i.e. w1 = 1 : −0.1 : 0

corresponding to w2 = 0 : 0.1 : 1.

[1,0] [0.9,0.1] [0.8,0.2] [0.7,0.3] [0.6,0.4] [0.5,0.5] [0.4,0.6] [0.3,0.7] [0.2,0.8] [0.1,0.9] [0,1]
22.8

23

23.2

[w
1
,w

2
]

µ f

[1,0] [0.9,0.1] [0.8,0.2] [0.7,0.3] [0.6,0.4] [0.5,0.5] [0.4,0.6] [0.3,0.7] [0.2,0.8] [0.1,0.9] [0,1]
3.22

3.24

3.26

3.28

[w
1
,w

2
]

σ f

[1,0] [0.9,0.1] [0.8,0.2] [0.7,0.3] [0.6,0.4] [0.5,0.5] [0.4,0.6] [0.3,0.7] [0.2,0.8] [0.1,0.9] [0,1]
0.135

0.14

0.145

[w
1
,w

2
]

δ f

Figure 2.8: Mean (µf ), standard deviation (σf ) and coefficient of variance (δf ) of
objective function with different set of weight factors
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Figure 2.9: Comparison between RBDO and RBRDO. d1 and d2 are the two design
variables, which are also the mean value of Θ1 and Θ2, i.e. d1 = µΘ1 and d2 = µΘ2 .

Fig. 2.8 depicts the mean values (µf ), standard deviation (σf ) and coefficient of variance

(δf = σf/µf ) of the objective function under different sets of weight factors. It is evident

that with increase of the weight factor w1, the mean value of the objective function is

monotone decreasing, while with increase of the weight factor w2, the opposite results

are observed. The corresponding standard deviation is decreased with increase of w2,

which signifies that the larger weight of the standard deviation, the less sensitive to the

uncertainties the results are. More direct observation for variability reduction can be

seen from the change of δf .

When w1 = 1 and w2 = 0, RBRDO is equivalent to RBDO. The results indicate that

RBDO can provide the minimum mean value, whereas the maximum standard deviation

is meanwhile obtained by RBDO. In robust design, designers care about the robustness

more. Small standard deviation of objective function can help to achieve this target. In

this sense, in RBRDO the objective in the mean sense cannot fulfill such a requirement,

which implies RBDO is not adequate to solve the robust optimization problem.

Fig. 2.9 depicts the optimal designs obtained by RBDO (dRBDO = [3.1637, 4.0340]T

under w1 = 1, w2 = 0) and RBRDO (dRBRDO = [3.2639, 3.7169]T under w1 = 0.5, w2 =

0.5, and dRBRDO = [3.4053, 3.3637]T under w1 = 0, w2 = 1). Apparently, when the

weight w2 increases, the associated optimum gets closed to the ones at w2 = 1. Moreover,

only the constraint g1 is active for both RBDO and RBRDO.
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2. Stochastic design optimization for structural systems

2.5 Summary

In this chapter, the fundamentals and formulations of SDO are introduced, including

the issues of DDO that are closely associated with the design optimization, the methods

of UA which give us an almost global perspective of uncertainty quantification needed

in SDO, and the formulations as well as methodologies for RBDO, RDO and RBRDO.

All the concerns can be found in Figure 2.10.

In engineering, designers care about not only the design objective robustness but also the

design feasibility robustness which is satisfied by reliability analysis (an ideal measure).

Consequently, in the following work, RBRDO will take place of RDO as the research

target and RBDO is included as a special case of RBRDO. Keeping in mind, RBDO

is only related to RBRDO when the objective function is deterministic or in the mean

sense, while RBRDO is also with respect to the rest situations that the dispersion in

the objective cannot be neglectable.

Figure 2.10: Concerns of stochastic design optimization (the shadow area is the main
research formulation of this work)
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Chapter 3

PCE based MCS method for uncertainty

analysis

3.1 Introduction

This work aims to obtain the optimal design for random structures by means of RBRDO

(RBDO is included). One of the most critical issues in RBRDO is UA, i.e. reliability

analysis associated with the design feasibility robustness and moment evaluations related

to the design objective robustness.

In the last chapter, the associated methodologies have been reviewed. It is found that the

most effective approach usually corresponds to the procedure of FEA in conjunction with

MCS within the framework of mechanical engineering. Unfortunately, this procedure is

computationally intensive. To get over this, the importance sampling is implemented to

improve efficiency of reliability analysis.

However, when the objective function is implicitly uncertain, e.g. usually in the presence

of the random response, the associated moment evaluations also need high computational

expense and may not be obtained by importance sampling accurately. From this sense, it

would be better to develop a method which is capable to estimate not only the moments

but also the probabilities of failure. Hence, this chapter is contributed to developing

efficient methods for UA.

Note that the time used for UA (assuming that the associated samples are priori known)

is much less than the one used for performing a large quantity of FEA (the process

to calculate the random response). It is not difficult to imagine that if the relation

between uncertainties and the random response is known, a large number of repeated

FEA are avoided. From this view, we can expect that direct MCS is computationally

manageable. Therefore, we propose a PCE based MCS method to carry out UA for
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3. PCE based MCS method for uncertainty analysis

linear random structures, in which the time consuming repeated FEA is avoided in

manner of approximating the random response by PCE.

However, applications of PCE are always restricted for the dynamic response approxima-

tion due to the curse of high dimensionality caused by the large dimension of stochastic

excitations. To overcome this, we use the convolution form to compute the dynamic

response, in which PCE is utilized to approximate the modal properties (natural fre-

quency, modal damping ratio, mode shape or the functions of these values) so that the

dimension of uncertainties is reduced since only structural random parameters are con-

sidered in the PCE approximation. As a matter of fact, the PCE here is applied to deal

with the random eigenvalue problem.

Since the proposed method is based on MCS and modal analysis, there exists a problem

named modal intermixing [139] or modal interaction [53, 140] always encountered when

using Monte Carlo sampling to solve the random eigenvalue problem. To correctly

capture the uncertainties in the modal content by analyzing the modal scatter observed

in MCS, it is indispensable to avoid modal intermixing [139]. Therefore, this problem is

also regarded.

It is found that the modal intermixing is caused by large dispersion of the random pa-

rameters. Immediate attempts to avoid this problem are to model uncertainties with

small variances. Although the variances are difficult to control, based on some engi-

neering criteria (such as the geometry tolerances), the variance is somehow controllable

and is usually not large. Moreover, the similar issue has been pointed out in the work

[141], which denoted that large variances (e.g. COV= 30%) of random parameters may

lead to negative quantities and thereafter physically meaningless results. From above,

application of relatively small variance (or COV) is practically reasonable.

Accordingly, to correctly obtain the uncertainties in the modal content, first the Modal

Assurance Criterion (MAC) factor is implemented to quantify the intermixing. Then a

unvariable method is raised to check which variable results in such a problem, according

to which relatively smaller variance will be selected to remove or reduce the intermixing

issue as far as possible.
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3.2. PCE of second-order random variables

3.2 PCE of second-order random variables

3.2.1 Basic theory and validity

The original PCE, also termed as HPCE, was developed by Wiener [62]. With this

expansion, any second-order random variable or stochastic process, i.e. the quantities

with finite variance, may be expanded as follows:

u = û0H0

+
∞∑
i1=1

ûi1H1(ξi1)

+

∞∑
i1=1

i1∑
i2=1

ûi1i2H2(ξi1 , ξi2)

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ûi1i2i3H3(ξi1 , ξi2 , ξi3) + · · · , (3.1)

where Hp(ξi1 , . . . , ξip) denotes the multivariate Hermite polynomial chaos of order p in

terms of standard normal vector ξ = [ξi1 , . . . , ξip ]
T and ûi1...ip is the associated coefficient.

For notational convenience, Eq. (3.1) can be rewritten as

u =
∞∑
i=0

uiΨi(ξ). (3.2)

In this expression, there is a one-to-one correspondence between the polynomial basis

functions Ψi(ξ) and Hp(ξi1 , . . . , ξip), and also the deterministic coefficients ui and ûi1...ip .

The union of the former polynomials {Ψi} forms a complete orthogonal basis, i.e.,

Ψ0 ≡ 1, 〈Ψi = 0〉 , i > 0, 〈ΨiΨj〉 = δij
〈
Ψ2
i

〉
, (3.3)

where δij is the Kronecker delta and 〈·, ·〉 denotes the ensemble average. This is the

inner product in the Hilbert space of Gaussian random variables defined by

〈f(ξ)g(ξ)〉 =

ˆ
f(ξ)g(ξ)q(ξ)dξ, (3.4)

where q(ξ) is the multidimensional Gaussian joint PDF. Based on the theorem of

Cameron-Martin [142], the expression in Eq. (3.2) converges in the L2 sense. From
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3. PCE based MCS method for uncertainty analysis

this point of view, most physical processes can be represented by HPCE since they are

supposed to have finite variance.

According to Soize et al. [64], the chaos representation of the random response S may

be written as

S =

∞∑
i=0

ŜiΓi(Θ), Θ ∈ RN , (3.5)

where {Γi} is a Hilbertian basis of the suitable Hilbert space containing the response.

Here the response S can be seen as a function of random inputs, i.e. N -dimensional

uncertainties Θ. When the random inputs are standard normal, a possible Hilbertian

basis is the multivariate Hermite polynomial chaos basis.

Pay attention that the HPCE is in the presence of standard normal variables ξ; on the

contrary, the response S is the function of Θ. Generally, Θ and ξ are usually not the

same. Nonetheless, implementation of transformation techniques mentioned in Section

2.3.2 can make HPCE available. Then Eq. (3.5) is rewritten in the form of HPCE

S =

∞∑
i=0

SiΨi(ξ), ξ ∈ RN . (3.6)

However, the convergence rate may be substantially slow when representing the random

response by Eq. (3.6) rather than Eq. (3.5). In this case, extensions to other orthogonal

polynomials in terms of non-Gaussian random variables, named Wiener-Askey or general

PCE, could be used according to the work of Xiu and Karniadakis [85]. In this study,

we focus on the application of HPCE due to its wide applications. If there is

no other notification, PCE means HPCE.

Practically, the infinite summation will be truncated for computational purposes. Con-

sideration of N -dimensional PCE up to order p, the approximate response is obtained

as follows:

S ≈
P−1∑
i=0

SiΨi(ξ), ξ ∈ RN , (3.7)

in which the total number of the PCE terms is P , and it is determined by

P =

 N + p

p

 =
(N + p)!

N !p!
. (3.8)
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3.2.2 Coefficients determination

When applying PCE, one critical issue is to estimate the coefficients. A variety of meth-

ods have been developed. According to [77], two categories of methods are distinguished

to determine the coefficients: the intrusive and non-intrusive methods.

Intrusive methods provide a weak solution in manner of Galerkin projection [63] of the

equilibrium equation on the Hermite polynomial basis by minimizing the residual. How-

ever, it requires additional modification of the deterministic numerical code, i.e. finite

element code. Considering the high-dimensional systems, this method could computa-

tionally expensive. Alternatively, non-intrusive methods termed by the projection and

regression method were developed.

Projection method makes use of the orthogonality of the polynomial chaos basis.

Taking the inner product in Eq. (3.4) with Ψj , we have

〈SΨj〉 = 〈
P−1∑
i=0

SiΨiΨj〉. (3.9)

Based on the orthogonality of the basis, 〈ΨiΨj〉 = 0, i 6= j. Thus,

Si =
〈SΨi〉
〈Ψ2

i 〉
. (3.10)

The denominator in the above expression is known analytically and listed in [63]. In

contrast, the numerator is only available in numerical way. Although direct MCS can

deal with such a problem, large quantities of realizations of S are needed to achieve

a reasonable accuracy at the cost of efficiency. Recall that the numerator follows the

principle of the inner product defined in Eq. (3.4). This integral may be obtained by

the full tensorization of one-dimensional Gaussian quadrature [143], Smolyak’s cubature

[77], the main shortage of which is that they will suffer low efficiency as the number of

random inputs N and the order p increase. To reduce the total number of the terms

{Ψi}, an adaptive-sparse scheme [80] to minimize the number of bivariate terms was

developed. Yet, it may miss the information in the tails.
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Regression method is in the sense of the least square measure. The estimator Ŝ =

[Ŝ1, . . . , ŜP ]T of S = [S1, . . . , SP ]T is estimated by solving the least square problem,

Ŝ = arg min

M∑
k=1

(S(k) −
P−1∑
i=0

SiΨi(ξ
(k)))2, (3.11)

where k represents the kth set of experimental points and M is the corresponding total

number. Let us denote S = [S(1), . . . , S(M)]T the random output vector. The famous

solution of the last equation is

Ŝ = (ΨTΨ)−1ΨTS, (3.12)

where

Ψ =


Ψ0(ξ(1)) Ψ1(ξ(1)) · · · ΨP (ξ(1))

Ψ0(ξ(2)) Ψ1(ξ(2)) · · · ΨP (ξ(2))
...

...
. . .

...

Ψ0(ξ(M)) Ψ1(ξ(M)) · · · ΨP (ξ(M))

 . (3.13)

The very important consideration of the least square method (LSM) is the choice of

the experimental points ξ(k). Collocation based method [51] allows to select the points

corresponding to the roots of the Hermite polynomial of one degree higher than the

maximum order of the current PCE. The total number of the collocation points is equal

to nc = (p + 1)N , which also has the curse of dimensionality as the approaches of

Gaussian quadrature and Smolyak’s cubature are challenged. This leads to the idea of

selecting a subset Nc points out of nc-dimensional ensemble. Its principle is to choose

the points closest to the origin. However, different combination of collocation points may

result in different coefficients. This imposes the instability of the collocation method.

Furthermore, investigations by Berveiller [144] showed that selection like Nc = 2P [51]

does not yield accurate estimations in most applications. They proposed an empirical

rule on the optimal number of regression points: ne = (N − 1)P .

In conclusion, the aforementioned approaches are dedicated to improving efficiency com-

pared with direct MCS. Nonetheless, the improvement is still limited to the problems

with high dimensionality. In this context, we use the regression method. The

difference from the one stated above is that the experimental points are chosen arbi-

trarily but the collocation points so that the instability is inherently avoided. Moreover,
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we utilize NLSF = 3P experimental points according to the simulations, which is more

competitive than the empirical rule when N ≥ 4.

3.3 PCE based MCS method for UA

3.3.1 Random response approximated by PCE for linear systems

For static problems in which the number of random variables is relatively small, the

random response such as the displacement, strain and stress can be approximated with

Eq. (3.7) directly. However, in cases where the dimension of random variables Θ, Θ ∈

RN is high, e.g. N ≥ 100, the application of PCE is usually cumbersome since a large

quantity of structural analyses are required to evaluate the coefficients. This is always the

situation in dynamic problems because the excitations Z(t) (note that Θ = {θ,Z(t)})

are always modeled in the discrete formula which leads to very high dimensionality (see

section 3.3.3.2).

To circumvent the high dimensionality curse, the dynamic response is calculated by the

convolution [145, 146] of the impulse response and excitations for linear structures rather

than the direct calculation. Consider a deterministic multi-degree structure, the motion

equation of which is given by

Mẍ(t) + Cẋ(t) + Kx(t) = Gf(t), (3.14)

where x(t) is the n-dimensional displacement response vector, M, C and K denote the

mass, damping and stiffness matrices of dimension n × n respectively, f(t) is the Nl-

dimensional excitation vector, and G is a position matrix of dimension n×Nl. Without

loss of generality, the solution with zero initial conditions at t = 0 is given in the form

of convolution, as

xr(t) =

Nl∑
k=1

ˆ t

0
hrk(t− τ)fk(τ)dτ, (3.15)

in which xr(t) represents the displacement at the rth DOF (degree of freedom), hrk(t)

is the impulse response at the rth DOF under the excitation at the kth DOF, and fk(t)

is the corresponding excitation.

57



3. PCE based MCS method for uncertainty analysis

Thinking of a random structure by entering random structural parameters θ and replac-

ing the deterministic excitations f(t) by Z(t), we have the associated random response

xr(t,θ,Z(t)) =

Nl∑
k=1

ˆ t

0
hrk(t− τ,θ)Zk(τ)dτ. (3.16)

For practical applications, the response is always applied in the discrete form due to

the discretized modeling of Zk(t). As long as the time step ∆t is sufficiently small, the

discrete response will tend to its continuous one. At arbitrary time instant ts within the

time interval [0, T ], the response is described as

xr(ts,θ,Z(t)) =

Nl∑
k=1

ˆ ts

0
hrk(ts − t,θ)Zk(t)dt

= lim
∆t→0

Nl∑
k=1

s∑
m=1

hrk(ts − tm,θ)Zk(tm)∆t

≈ ∆t

Nl∑
k=1

s∑
m=1

hrk(ts − tm,θ)Zk(tm), 0 ≤ m ≤ s ≤ nT . (3.17)

Apparently, this expression offers a way to consider the uncertainties in the structure

and in excitations separately because all the information of a structure is uniquely

characterized by the impulse response. It is found that the number of structural random

parameters is much less than the one of excitations. With this advantage, it is natural

to apply PCE to approximate the impulse response, which is the function of modal

properties (natural frequency, modal damping ratio, mode shape or the functions of

these values). Then one can use PCE to approximate the modal properties so that the

original problem is reduced to the random eigenvalue problem.

Based on different types of the damping, there is no uniform expression of impulse re-

sponse hrk(t,θ). In this work, we concentrate on linear structures with viscous damping:

classically proportional damping and generally viscous damping.

3.3.1.1 Impulse response for structures with proportional damping

For simpleness, we begin with the deterministic problem. In this work the modal su-

perposition principle will be used to evaluate the dynamic response. That implies the
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dynamic response in Eq. (3.14) can be represented by

x(t) =
n∑
j=1

φjηj(t), (3.18)

where ηj(t), j = 1, . . . , n are the modal responses, and φj denotes the jth mode eigen-

vector or mode shape, which is obtained by solving the following eigenvalue problem,

Kφ = λMφ, (3.19)

where λ is the eigenvector. With the orthogonal properties

φT
j Mφk = 0, j 6= k,

φT
j Mφk = 1, j = k,

φT
j Kφk = 0, j 6= k,

φT
j Kφk = ω2

j , j = k, (3.20)

in which ωj represents the jth eigenfrequency of natural frequency following a relation

with the associated eigenvalue λj = ω2
j , we have the expression in the modal space

η̈j(t) + 2ζjωj η̇j(t) + ω2
j ηj(t) = φT

j GZ(t), (3.21)

where ζj denotes the jth modal damping ratio. Then the modal response under a unit

impulse applied at the kth DOF at time t = 0 is in the form of

ηj(t) =
φT
j gk

ωdj
e(−ζjωjt)sin(ωdjt), (3.22)

in which gk is the kth column of G, and ωdj = ωj
√

1− ζ2
j is the jth damped frequency.

Then the impulse response can be written as

hrk(t) =

n∑
j=1

φrjφ
T
j gk

ωdj
e−ζjωjtsin(ωdjt), (3.23)

where φrj is the rth component of the jth mode shape. The truncated representation

[145, 147] is usually used which recalls that only the first few modes contribute most to
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the impulse response and the remaining will be ignored, i.e.

hrk(t) =

m�n∑
j=1

φrjφ
T
j gk

ωdj
e−ζjωjtsin(ωdjt). (3.24)

Considering the random structural parameters θ,θ ∈ RNs , the associated random im-

pulse response is expressed as

hrk(t,θ) =
m�n∑
j=1

φrj(θ)φT
j (θ)gk

ωdj(θ)
e−ζj(θ)ωj(θ)tsin(ωdj(θ)t). (3.25)

All the random modal properties are the solutions of the random eigenvalue problem,

described as follows,

K(θ)φ(θ) = λ(θ)M(θ)φ(θ). (3.26)

Physically speaking, the modal properties are supposed to have finite variance. There-

fore, it is reasonable to express them by PCE. Similar work can be found in [53, 148]. By

means of transformation techniques, the jth set of random eigenvalue and eigenvector

can be written in terms of standard normal random variables

λj =
P−1∑
i=0

aiΨi(ξ), φj =
P−1∑
i=0

biΨi(ξ), (3.27)

where ai and bi, bi ∈ Rn are the constant scalar and vector coefficients respectively.

Seen from Eq. (3.25), the impulse response is actually the function of random eigenfre-

quency ωj(θ), and the eigenfactor defined as φrj(θ)φT
j (θ)gk similar to the mode factor

used in [147]. The work [149] indicated that multiplication or division of two random

variables expanded by polynomial chaos can also be expanded by the same order poly-

nomial chaos such that the CPU time is saved. Consequently, we have

ωj =

P−1∑
i=0

aiΨi(ξ), φrjφ
T
j gk =

P−1∑
i=0

ciΨi(ξ), ξ ∈ RNs , (3.28)

where ci is ith constant coefficient with respect to ith eigenfactor.
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3.3.1.2 Impulse response for structures with viscous damping

In this case, the deterministic problem is also taken into account first for simpleness. As

is well known, the eigenvalue problem is always related to the complex one, i.e.

(λ̄2M + λ̄C + K)φ̄ = 0, (3.29)

where λ̄ and φ̄ are the complex eigenvalue and eigenvector, respectively. Similarly, the

dynamic response in linear combination of modal shapes is formed as

x(t) =
2n∑
j=1

φ̄jϑj(t), (3.30)

in which ϑj is the modal response that is always evaluated in the state-space. Namely,

the originally deterministic problem described in Eq. (3.14) will be solved in the state-

space, i.e.

Aẏ(t) + By(t) = Q(t), (3.31)

where

A =

 0 M

M C


2n×2n

, B =

 −M 0

0 K


2n×2n

,

y(t) =

 ẋ(t)

x(t)


2n×1

, Q(t) =

 0

Gf(t)


2n×1

. (3.32)

The associated eigenvalue problem in the state space is formulated as

Bϕ = −λ̄Aϕ, (3.33)

where λ̄ is the eigenvalue that is equal to the one of original complex eigenvalue problem

and ϕ is the corresponding eigenvector that has the relation

ϕ =

 λ̄φ̄

φ̄


2n×1

. (3.34)
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3. PCE based MCS method for uncertainty analysis

The eigenvalues and eigenvectors have the similar orthogonal properties written as

ϕT
i Aϕj = 0, i 6= j,

ϕT
i Aϕj = āi, i = j,

ϕT
i Bϕj = 0, i 6= j,

ϕT
i Bϕj = b̄i, i = j,

b̄i
āi

= −λ̄i. (3.35)

In the state-space, the jth uncoupled equation is formulated as

ϑ̇j(t)− λ̄jϑj(t) =
1

āj
φ̄T
j Gf(t). (3.36)

Its solution with respect to a unit impulse at kth DOF is

ϑ(t) =
φ̄T
j gk

āj
e(λ̄jt). (3.37)

Analogically, the truncated representation of impulse response is in the form of

hrk(t) =
2m�2n∑
j=1

φ̄rjφ̄
T
j gk

āj
eλ̄jt, (3.38)

where the φ̄rj is the rth component of the j complex eigenvector. Other expression can

be found in [145] by means of state-space method as well.

By entering the uncertainties, the random impulse response is written as

hrk(t) =
2m�2n∑
j=1

φ̄rj(θ)φ̄T
j (θ)gk

āj(θ)
eλ̄j(θ)t, (3.39)

in which all the random modal properties can be estimated by the associated complex

random eigenvalue problem

(λ̄2(θ)M(θ) + λ̄(θ)C(θ) + K(θ))φ̄(θ) = 0, (3.40)

In a similar way, PCE is not used to represent the eigenvalue and eigenvector directly,

but to represent the real part and imaginary part for modal properties with to be defined
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3.3. PCE based MCS method for UA

coefficients dre,i, dim,i and ere,i, eim,i, say

Re(λ̄j) =

P−1∑
i=0

dre,iΨi(ξ), Im(λ̄j) =

P−1∑
i=0

dim,iΨi(ξ),

Re(
φ̄rjφ

T
j gk

āj
) =

P−1∑
i=0

ere,iΨi(ξ), Im(
φ̄rjφ

T
j gk

āj
) =

P−1∑
i=0

eim,iΨi(ξ). (3.41)

Figure 3.1: PCE based MCS for uncertainty analysis

3.3.2 Application procedures

In this section, the approximation of the random dynamic response produced by PCE

has been specified, which is summarized as follows:

1. Generating NLSF sets of structural parameters by MCS sampling.

2. Executing the associated NLSF modal analyses to provide NLSF eigen-pairs.
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3. PCE based MCS method for uncertainty analysis

3. Constructing the PCE models for needed modal properties with the NLSF eigen-

pairs obtained in step 2.

4. Entering Nmc sets of structural parameters into the PCE models to attain the

modal properties.

5. Calculating Nmc impulse responses and thereafter Nmc random dynamic responses.

Figure 3.2: Direct MCS for uncertainty analysis

Once the samples of the random response have been prepared, the UA can be carried

out by direct MCS readily (see Eq. (2.34), Eq. (2.37) and Eq. (2.38) respectively). A

flowchart describing the procedure is given in Fig. 3.1.

As calibration, direct MCS is applied in this work, which is illustrated in Fig. 3.2.

From these two figures, it is seen that the time consuming Nmc modal analyses are

replaced by NLSF ones. This always leads to large reduction of CPU time due to

NLSF � Nmc, especially for large-scale structures. The rest parts of uncertainty analysis

almost consume the same time since the same methods are applied to calculate the

dynamic response and the statistical quantities. It will be found in Section 3.5 that
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3.3. PCE based MCS method for UA

the time associated with the rest parts is much less than the one used for Nmc modal

analyses.

3.3.3 Fundamentals of reliability analysis

To correctly carry out reliability analysis, the failure mechanism and the associated

failure region much be defined first. Remind that the failure mechanism concerned in

this work is the over-stress or the first passage failure problem. Corresponding to static

problems and dynamic problems, the associated failure regions are defined differently

due to the effect of time.

3.3.3.1 Failure region for static problems

The probability of failure in static systems is to determine the probability that any one

of q time-invariant outputs xi(θ,Z), i = 1, . . . , q exceeds in magnitude a prescribed

threshold Xi > 0, i = 1, . . . , q. Hence, the probability of failure is described as

PF,i = P (Fi) = P (gi(θ,Z) = Xi − |xi(θ,Z)| ≤ 0), (3.42)

where the failure region related to xi(θ,Z) is given by

Fi = gi(θ,Z) = Xi − |xi(θ,Z)| ≤ 0. (3.43)

Note that the random inputs Z is time-invariant which are usually modeled as random

variables following some special distribution.

3.3.3.2 Failure region for dynamic problems

In this case, since random outputs vary with time, the first passage problem is al-

ways concerned. One needs to determine the probability that any one of q outputs

xi(θ,Z(t)), i = 1, . . . , q exceeds in magnitude, for the first time, a prescribed thresh-

old Xi(t) > 0, i = 1, . . . , q within a given time interval [0, T ], where Xi(t) could be

constant or time-variant. Then the first passage probability is given by

PF,i = P (Fi) = P (∃t ∈ [0, T ] : gi(θ,Z(t)) = Xi(t)− |xi(θ,Z(t))| ≤ 0), (3.44)
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3. PCE based MCS method for uncertainty analysis

where the associated failure region is given by

Fi = ∃t ∈ [0, T ] : gi(θ,Z(t)) = Xi(t)− |xi(θ,Z(t))| ≤ 0. (3.45)

In practical applications, the random inputs Z(t) are always modeled by stochastic

processes in the discrete formula [86]. Let the sampling be uniform with time spacing

∆t = T/(nT − 1), where nT is the number of time instants so that the sampling time

instants are ts = (s−1)∆t, s = 1, . . . , nT . The discrete random input vector is given by

Z(t) = [Z1(1), . . . , ZNl(1), . . . , Z1(nT ), . . . , ZNl(nT )]T, Z(t) ∈ RnT×Nl , the interpretation

of which is that there are Nl discrete stochastic excitations. To obtain an accurate result,

the time step ∆t is relatively small, e.g. T = 15s, ∆t = 0.01s and nT = 1501. As a

result, the dimension of uncertainties are very high, say N = Ns + 1501Nl.

When the threshold Xi(t) is constant, one can get the simplified failure region, say

Fi = ∃t ∈ [0, T ] : gi(θ,Z(t)) = Xi −max(|xi(θ,Z(t))|) ≤ 0. (3.46)

3.4 Modal intermixing problem

3.4.1 Problem description

Since the proposed method is based on MCS and modal analysis, there exists a problem

named modal intermixing [139] or modal interaction [53, 140] always encountered when

using Monte Carlo sampling to solve the random eigenvalue problem. That means, from

one simulation to next, the modes may alter whereby the random mode shapes associated

with the same order, actually, contain more than one mode. Generally, different modes

behave physically different. Such a problem is exacerbated for those structures with

closed space eigenfrequencies [53].

In engineering, when concerning random structures, the mean model is usually treated

as the reference. The modal behaviors should be consistent with the reference which is

very significant for engineers to grasp the inherent properties of random structures. To

correctly capture the uncertainties in the modal content by analyzing the modal scatter

observed in MCS, it is indispensable to avoid modal intermixing [139]. For this purpose,

it is significant to figure out what arouses such a problem.
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3.4. Modal intermixing problem

Fig. 3.3, taking the eigenfrequency as the example, describes the PDFs associated with

the two adjacent eigenfrequencies, i.e. mode n and mode n + 1, in which Fig. 3.3a

is with respect to the situation without modal intermixing and Fig. 3.3b depicts the

situation with modal intermixing. Comparing with these two situations, we can see that

the variances of both eigenfrequencies with modal intermixing are obviously greater

than the ones without modal intermixing. Moreover, the overlapping area under modal

intermixing is much larger than that when there is no modal intermixing.

(a) No modal intermixing

(b) Modal intermixing

Figure 3.3: PDF comparison of two adjacent eigenfrequencies

Therefore, it can be concluded that large dispersion of modal solutions can result in the

modal intermixing. That is mathematically, because the overlapping area of the PDFs
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3. PCE based MCS method for uncertainty analysis

with respect to adjacent modes becomes larger. However, recall that the presence of large

dispersion connected with modal solutions is induced from the large variances of random

structural parameters. In Fig. 3.3a, the coefficient of variance of random structural

parameter is 2%, while in Fig. 3.3b the coefficient of variance is 20%. Essentially, the

modal intermixing is caused by the large dispersion (or variance, standard deviation or

COV) of structural parameters.

If one wants to get rid of the modal intermixing, the variance of the eigenfrequency or

eigenvector should be small. In some extent, that implies the variances of the random

structural parameters are not supposed to be large. The similar issue has been pointed

out in the work [141], which denoted that large variances of random parameters may

lead to negative quantities (e.g. normal distributed parameters) and thereafter physically

meaningless results. Even though all the uncertainties are generated from a distribution

supported by positive values, such as lognormal distribution, the large variances may

lead to structural parameters very close to zero. In these cases, the random structures

are not practically required.

Generally, it is difficult to control the variances. However, based on some criteria, such as

the geometry tolerances, the dispersion could be not very large. From this point of view,

selection of relatively small variance is not only helpful to avoid the modal intermixing

or reduce the associated influences, but also necessary to fulfill practical requirements

3.4.2 MAC factor

To avert the modal intermixing, it would be better get the quantification first. As

stated above, the variabilities of random eigenvectors (eigenvalues also) around the ones

of mean model ought to be small in order to remove the modal intermixing issue. If

this property holds, the random eigenvectors can be interpreted as small rotations with

respect to a reference model (i.e. mean model) [150]. Therefore, the rotated eigenvectors

can be approximated by a linear combination of m eigenvectors of the mean model. The

jth eigenvector of simulation k is formulated as

φ
(k)
j =

m∑
i=1

A
(k)
i φ

(0)
i , 1 ≤ j < m, (3.47)
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where A
(k)
i denotes the constant weight coefficient; φ

(0)
i represents the ith eigenvector

of the mean model. When the behaviors of random models are identical with the ones

of mean model, the effects of the other modes can be ignored, which is interpreted that

the most contribution to the sample φ
(k)
j is from the jth mode of the mean model. In

this situation, the last equation in the approximate formula is

φ
(k)
j ≈ A

(k)
j φ

(0)
j , A

(k)
j > 0. (3.48)

Obviously, the angle between the eigenvector φ
(k)
j and φ

(0)
j will meet α

(k)
jj ≈ 0. In

conjunction with the last expression, the direction cosine of these two eigenvectors has

the property

cos(α
(k)
jj ) =

φ
(k)
j · φ

(0)
j∥∥∥φ(k)

j

∥∥∥∥∥∥φ(0)
j

∥∥∥ ≈ 1, (3.49)

in which φ
(k)
j ·φ

(0)
j denotes the dot product and ‖·‖ is the Euclidean norm. Eq. (3.49) is

the condition to prevent the random models from the modal intermixing. It is actually

a variant of the MAC [151] factor, which is defined by

f
(k)
MACjj

=
(φ

(k)
j · φ

(0)
j )2∥∥∥φ(k)

j

∥∥∥2 ∥∥∥φ(0)
j

∥∥∥2 = cos2(α
(k)
jj ) ≈ 1. (3.50)

The MAC is the criterion to check the consistency between two modes. In this work, it

is used to check the consistency between the random mode φ
(k)
j and the corresponding

mean mode φ
(0)
j . When the value approaches unity, the consistency is well observed;

in contrast, the value is smaller than 1, the behaviors show the violation. The modal

intermixing is the right phenomenon from one simulation to another that reflects the

violated modes against the mean modes. Therefore, in accordance with Eq. (3.50), the

MAC factor is an indicator of the modal intermixing

f
(k)
MACjj

≈ 1, no modal intermixing,

f
(k)
MACjj

< 1, modal intermixing.
(3.51)

Note that when modal intermixing occurs, the MAC factor usually shows a relatively

large difference from 1.
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3.4.3 Univariable based strategy

Emphasized again, the modal intermixing is aroused by the large scatter of the random

parameters. Generally, some of them may have the large possibility to induce the modal

intermixing issue, while the rest parameters may not. So as to check which parameter

can cause the modal intermixing, a univariable based strategy is proposed. In this

strategy, only one parameter is treated as random variable; others are deterministic. We

use the basic concept of the worst case approach (see Section 2.4.2.3) to check whether

the intermixing problem is caused referring to the defined worst case.

Most often, designers prefer to prevent the intermixing at a large confidential probability,

which corresponds a large confidential interval. We take a normal random variable θ

with mean value µθ and standard deviation σθ as example. Confidential probability

68.3% is related to the confidential interval µθ ± σθ, 95.5% is corresponding to µθ ± 2σθ

and 99.7% is associated with µθ ± 3σθ. In this case, the worst case can be defined at

µθ ± 3σθ.

Recall that the worst case does not depends on the distribution types of structural

random parameters. Accordingly, when considering the worst case, the type needs not

be considered. Based on the above analysis, we set the worst case in the presence of

θ̃ = [µθ ± 2σθ µθ ± 3σθ µθ ± 4σθ]
T, (3.52)

where θ̃ is the worst case vector. The last four elements of θ̃ suggest the rare events.

If all the associated eigenvectors especially the ones corresponding the rare events can

meet the condition in Eq. (3.51), σθ is a proper standard deviation for averting the

modal intermixing.

This strategy is useful to check which parameter can cause the modal intermixing, but

is not a rigorous optimization process to obtain a reasonably maximum COV. When an

improper COV is investigated, one just needs to reduce the value directly according to

the engineering experiences until a fair one is found. To this end, this strategy is also

suited to find a proper COV.

Again, it is underlined that the modal intermixing is caused by the large dispersion of

random structural parameters. From this view, it is reasonable to use a relatively small
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variance to model the uncertainties. Although the variance is difficult to fix or control,

however the scatter of structural parameters is usually small to fulfill the practical

engineering, e.g. the geometry tolerance. Therefore, it is not rigorously conflicting

between the usage of small variance or COV (always not greater than 10%) and the

practical engineering.

3.5 Numerical examples

Since this work aims to apply PCE in UA for both static and dynamic problems, four

examples, i.e. plate-beam, simply supported beam, mass-spring and an oscillator have

been tested in 5 cases respectively, which are listed in Table 3.1.

Table 3.1: Cases description

Model Excitation Response Ns N ∆t(s) T (s) Case

Plate-Beam Dynamic Displacement 4 1505 0.01 15 Case I
Plate-Beam Static Stress 4 5 – – Case II
Beam Static Stress 5 6 – – Case III
Mass-Spring Dynamic Displacement 2 1503 0.01 15 Case IV
Oscillator Dynamic Displacement 30 4031 0.005 20 Case V

The stress is expanded by the PCE directly following Eq. (3.7) and the displacement

is calculated by the discrete convolution in Eq. (3.17). For clarity, the dimension of

structural parameters Ns and total number of the random variables N , time step ∆t

and duration T are also listed here.

Basically speaking, the accuracy of probability of failure is more difficult to achieve

than those of the moments. To this end, most results will be shown in the presence

of probability of failure. Conveniently, the probability of failure estimated by direct

MCS is denoted by PF,DMCS, while the one evaluated by PCE based MCS is denoted by

PF,PCEMCS. The error is defined as ε =
|PF,DMCS−PF,PCEMCS|

PF,DMCS
.

3.5.1 Case I: Plate-Beam (dynamic problem)

In current case, the reliability analysis of a plate-beam structure under stochastic loads,

shown in Fig. 3.4 is carried out. There are 294 nodes in the FE model. The excitation

acts at node 14 along positive X. First 10 modes are retained for the response calculation.
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Figure 3.4: Plate-Beam model

The damping is assumed as Rayleigh damping. The associated modal damping ratio is

calculated by

ζj =
α

2ωj
+
βωj

2
, (3.53)

where α = 0.0212 and β = 0.0182 are constants. The other parameters are listed

in Table 3.2. All the unites belong to SI. The excitation is the modulated Gaussian

white noise defined as Zk(tm) = e(tm)Wk(tm) at the time instant tm, m = 1, . . . , nT

within the time interval [0, T ]. The associated band-limited Gaussian white noise is

Wk(tm) =
√

2πSk/∆tξ
m
k , where ξmk denote independent, identically distributed (i.e.

i.i.d.) standard normal random variables at time instant tm for the kth excitation;

Sk = 3000 is the associated constant power density. The modulated function is defined

as follows

e(tm) =



0 tm ≤ 0s

(tm/4)2 0 ≤ tm ≤ 4s

1 4 ≤ tm ≤ 10s

e−(tm−10)2 10s ≤ tm ≤ T.

(3.54)

The first passage probability needs to be calculated, and the associated limit state

function is given by g(θ,Z(t)) = Xt,14 − |x14(θ,Z(t))| < 0, where x14(θ,Z(t)) denotes

the displacement at node 14 and Xt,14 is the positive threshold.

Theoretically, PCE can model the second-order random variables with an acceptable

convergence. In the light of transformation techniques introduced in section 2.3.2, the
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Table 3.2: Parameters of plate-beam

Parameter Symbol Deterministic/Random Value/Mean

Poisson’s ratio ν deterministic 0.3
Density ρ random 7.8× 103

Young’s modulus E random 2.0× 1011

Beam length BL random 3
Beam width BW deterministic 0.04
Beam height BH deterministic 0.04
Plate thickness PT random 0.02
Plate length PL deterministic 5

applications can be relaxed to other non-Gaussian distributions. However, slow conver-

gence [85] has been observed when the random inputs are non-Gaussian. From this view,

it is worth to state the influences of the distributions. Four situations with the same

COV= 10% are discussed. 1) Normal: all random parameters are normal; 2) Lognormal:

all random parameters are lognormal; 3) Gamma: all random parameters are Gamma;

4)Mixed: ρ and E are lognormal while PT and BL are normal.

Table 3.3: First passage probability for plate-beam

Situation p P NLSF
Xt,14 = 0.025m Xt,14 = 0.030m

PF,DMCS PF,PCEMCS PF,DMCS PF,PCEMCS

Normal 1 5 20 2.1× 10−3 3.0× 10−3 3.2× 10−4 5.6× 10−4

2 15 50 2.1× 10−3 2.8× 10−4

3 35 100 2.1× 10−3 3.2× 10−4

Lognormal 1 5 20 2.1× 10−3 2.1× 10−3 3.0× 10−4 3.9× 10−4

2 15 50 2.1× 10−3 2.7× 10−4

3 35 100 2.1× 10−3 3.1× 10−4

Gamma 1 5 20 2.4× 10−3 2.9× 10−3 3.2× 10−4 5.1× 10−4

2 15 50 2.1× 10−3 2.7× 10−4

3 35 100 2.3× 10−3 3.1× 10−4

Mixed 1 5 20 2.3× 10−3 3.7× 10−3 2.7× 10−4 8.8× 10−4

2 15 50 2.1× 10−3 2.6× 10−4

3 35 100 2.3× 10−3 2.6× 10−4

Additionally, the effectiveness of the proposed method may be influenced by the trun-

cated order of the PCE, the modal intermixing problem and the levels of the probability

of failure. Combination of all theses influences, the associated results are reported in

Table 3.3, based on which some comprehensive comparisons are concluded as follows.
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3.5.1.1 Efficiency comparison

The reliability analysis relies on 105 random responses, for which there needs Nmc = 105

modal analyses in direct MCS, while only NLSF ≈ 3P modal analyses are required in

PCE based MCS. The number of the modal analyses needed by the proposed method

is specified in column #4 corresponding to different order p (or P ), among which the

largest one is NLSF = 100 to achieve a reasonable accuracy ε ≤ 5%. It is evident that

the efficiency is largely improved by the proposed method compared with direct MCS.

Moreover, the CPU time to evaluate the 105 random responses (i.e. convolution pro-

cesses with known modal properties) and the corresponding failure probability for both

methods is about 6 minutes. While the time for 105 modal analyses (obtained by FEA)

equals to 56 hours on average. Consequently, it is apparent that the time used for

reliability analysis alone is much less than the time to prepare the random responses.

3.5.1.2 Influences of PCE orders and levels of probability of failure

In the limit state function, two levels of the threshold are considered, Xt,14 = 0.025m

and Xt,14 = 0.030m corresponding to the probabilities of failure with order 10−3 and

10−4 respectively. Since the truncated form of PCE is used, different order may result

in different results.

Table 3.3 shows that at least p = 2 is required for a larger level of failure probability and

p = 3 for a smaller one to achieve an acceptable error, say ε ≤ 5%. The reason is that

evaluation of relatively small probabilities of failure (e.g. order 10−4), a more accurate

approximation in the tails of the distribution with respect to the associated response is

essential. As expected, PF,PCEMCS should converge to PF,DMCS when the order p fulfills

p −→∞. To some extent, increasing the order is feasible to achieve reasonable accuracy.

3.5.1.3 Influences of the types of random parameters

For the four sets of random inputs, the convergent rates of the smaller probabilities of

failure are equivalent, i.e. the 3rd order PCE is necessary with the error ε ≤ 5%. With

respect to larger failure probabilities however, the Gamma and mixed random inputs

lead to the slower convergence where p = 3 is required; the situation of Lognormal
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owns almost the same convergent rate with the normal one. This is not occasional since

Lognormal stochastic processes and variables can be reasonably expressed by PCE [67].

Although it is impossible to consider all distribution types, nonetheless we may conclude

that increasing the order, in a way, is helpful to obtain a reasonable accuracy. Addi-

tionally, a little differences of the first passage probabilities corresponding to the four

distinct random inputs have been observed, but the order (10−3 and 10−4) is identical.

The interpretation is that the four situations have the same COV, which will lead to

similar scatter of the random response.

3.5.1.4 Influences of the modal intermixing

Because the modal intermixing is caused by the large COV of random inputs, checking

the influence of modal intermixing is equivalent to checking the influence of COV. There-

fore, three levels of COV are examined. Taking the random plate thickness as example,

Fig. 3.5 schematically gives the MAC factors of the first 10 modes with respect to 6

worst cases under 3 levels of COV.

Observations indicate that with respect to the same worst case, large COV= 20% tends

to cause the modal intermixing more easily. Moreover, the worse the case is, the more

severe the phenomenon is, as shown in Fig. 3.5e. It is also found that the modal

intermixing always occurs related to higher modes and with increase of the COV. The

effects are always diffused from higher modes to lower modes.

Comparing the sub-figures on the left to the right, it is shown that the modal intermixing

always concerns the random model whose plate thickness is less than the mean value.

The explanation is that as the thickness decreases, the flexibility increases since the plate

belongs to thin walled structures. The associated structural behaviors can be different

from the reference (mean model) more easily. Whereas for thicker plates, the modes

have a large probability to agree with the ones of the mean model.

We also discover that when we increase the COVs of density and Young’s modulus to

30%, no modal intermixing occurs, the MAC factors of which are always very close to

one. This reveals that not all parameters cause the intermixing phenomenon. Note

that the worst case associated with Young’s modulus up to COV= 30% is set up to

µθ±3σθ because the value like µθ−4σθ will be negative which is physically meaningless.
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Figure 3.5: Comparisons of MAC factor

For reliability analysis, the samples in the tails play more important role than those in

the central region. That implies as to small probability of failure (e.g. 10−4), negative

samples or very small samples may be generated by MCS sampling due to large variance.

In this sense, large COV should be avoided for practical applications.

The instinctive sense for the modal intermixing is schematically illustrated in Fig. 3.6,

in which the mode shapes of the 10th mode corresponding to three levels of COV and

the mean model are shown respectively. It is clear that the violations are observed for

COV= 10% and COV= 20%. While the behavior related to COV= 2% is almost the

same with the mean model.
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3.5. Numerical examples

(a) mean model (b) COV= 2%

(c) COV= 10% (d) COV= 20%

Figure 3.6: Comparisons of mode shapes

For clarity, the associated probabilities are listed in Table 3.4 under normal random

parameters. From Table 3.4, it is found that the probability of failure is monotonic

increasing with the increase of COV. Zero probabilities of failure in column #7 and #8

imply that 105 samples are insufficient to obtain a much higher reliability level. We

can see that the smaller the COV is, the more accurat the results are. Regarding to

COV= 10%, although there exists the modal intermixing though (see Fig. 3.5), the

consistent results are observed. The reason is that the modal intermixing only appears

for the last four modes which contribute the least to the response evaluation.

Table 3.4: Influences of the COV

COV? p
Xt,14 = 0.020m Xt,14 = 0.025m Xt,14 = 0.030m

PF,DMCS PF,PCEMCS PF,DMCS PF,PCEMCS PF,DMCS PF,PCEMCS

2% 2 3.70 × 10−3 3.70 × 10−3 1.70 × 10−4 1.70 × 10−4 0 0
10% 3 1.46 × 10−2 1.46 × 10−2 2.10 × 10−3 2.10 × 10−3 3.20 × 10−4 3.20 × 10−4

20% 5 7.03 × 10−2 7.11 × 10−2 3.07 × 10−2 3.16 × 10−2 1.46 × 10−2 1.56 × 10−2

? COV= 2% denotes δE = 10%, δρ = 10%, δBL = 1.75% and δPT = 2%; COV= 10% denotes δE = δρ =
δBL = δPT = 10%; COV= 20% denotes δE = δρ = δBL = δPT = 20%.

With respect to COV= 20%, the error is amplified as the threshold increases, even

77



3. PCE based MCS method for uncertainty analysis

though the current probability only achieves 10−2. More accurate results are supposed

to be obtained by increasing the order of PCE. However, the conflicting results have

been shown in Table 3.5 where only the COV= 20% is regarded. Obviously, accuracy

improvements have not much benefit from increasing the order since the most accurate

results correspond with p = 5. It is concluded that bad approximation by PCE will

be induced by sever modal intermixing, i.e. fair approximation by PCE can only be

obtained provided that the COV is not very large (usually less than 10%), i.e. no severe

modal intermixing happens. From this view, the PCE based MCS is capable to solve

problem in practical engineering.

Table 3.5: Accuracy comparison of the first passage probability with COV= 20%

p
Xt,14 = 0.020m Xt,14 = 0.025m Xt,14 = 0.030m

PF,DMCS PF,PCEMCS PF,DMCS PF,PCEMCS PF,DMCS PF,PCEMCS

4 7.03× 10−2 7.38× 10−2 3.07× 10−2 3.26× 10−2 1.46× 10−2 1.62× 10−2

5 7.11× 10−2 3.16× 10−2 1.56× 10−2

6 7.22× 10−2 3.30× 10−2 1.72× 10−2

3.5.2 Case II: Plate-Beam (static problem)

In this section, the static issue of plate-beam model is taken into account. The static

load is modeled by a normal random variable. The limit state function is defined as

g(θ,Z) = R− S(θ,Z) < 0, (3.55)

where R = 160MPa is the resistance, i.e. the allowable stress in this case and S(θ,Z)

denotes the maximum stress in the structure. Studies focus on normal parameters.

Table 3.6 describes the probabilities under two distinguished COVs. To obtain the same

level of probability of failure, the excitations are different. The larger the COV the

smaller the excitation is required. More than 99% CPU time is saved, i.e. 800 modal

analyses needed in the PCE approximation method compared with 105 ones required in

direct MCS.

Fig. 3.7 shows the comparisons of the probability density functions (PDFs) of the

maximum stress associated with different orders of PCE for COV= 10%. It is evident

that the 2end order approximation is not sufficient not only in the tails but also in the
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Figure 3.7: Comparison of PDFs of the stress for COV= 10%

central region. In the contrary, the 3rd and 4th order both offer better fits through the

whole region. Nonetheless, more accurate probability of failure is evaluated with the 4th

order PCE which is listed in Table 3.6.

Table 3.6: Probabilities of failure for plate-beam

COV µF (N) p P NLSF PF,DMCS PF,PCEMCS

10% 2500 2 21 60 1.30× 10−4 1.00× 10−5

3 56 200 1.00× 10−4

4 126 400 1.30× 10−4

20% 1000 2 21 60 1.10× 10−4 0
3 56 200 8.00× 10−5

4 126 400 1.50× 10−4

5 252 800 1.50× 10−4

Because of the modal intermixing problem, the PCE only offers the results with limited

accuracy for random eigenvalue problems with the large COV of random parameters,

e.g. 20%. Although the response of static problems have no direct relation with the

random eigenvalue problem, it has to be noted that the modal properties are associated

with the inherent properties of structures. In this sense, large COV may change the

position where the maximum stress is located.

The investigations of PDF for COV= 20% are illustrated in Fig. 3.8. The order increased

up to 4 is helpful to obtain better fits for both central region and tails. In Table 3.6,

zero probability of failure obtained by the 2end PCE is not resulted from the inadequate
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3. PCE based MCS method for uncertainty analysis

samples but the inaccurate approximation in tails. It is evident according to Fig. 3.8

that no data greater than 1.5 × 108 are generated. Again shown in Table 3.6 however,

the 4th and 5th order show the same convergence that implies the further increase of

the order cannot improve the accuracy effectively.

Note that the 4th order PCE required in current case is one order higher than the

corresponding dynamic case (see in Table 3.3). The probable reason is that the excitation

uncertainties involved in dynamic problems are not propagated by the PCE model,

whereas those within static problems are involved.
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Figure 3.8: Comparison of PDFs of the stress for COV= 20%

3.5.3 Case III: Beam

Figure 3.9: Beam model

A simply supported beam contains 252 nodes shown in Fig. 3.9. The response is

estimated by the superposition of the first three modes. The beam is subjected to
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3.5. Numerical examples

random loads in the middle with direction Y. Deterministic parameters are Poisson’s

ratio ν = 0.3 and damping ratio ζ = 0.05; the rest parameters are assumed to be

statistically independent normal random variables, the mean values of which are ρ =

7.8× 103 kg/m3, E = 2.0× 1011Pa, L = 2.5m, H = 0.1m, W = 0.08m and F = 6000N

for density, Young’s modulus, length, height, width and excitation respectively. All the

parameters have the same variability, say COV= 10%.

Table 3.7: Probabilities of failure for beam

p P NLSF PF,DMCS PF,PCEMCS

1 7 20 7.0× 10−5 0
2 28 85 0
3 84 250 1.0× 10−5

4 210 650 6.0× 10−5

The limit state function is also described by Eq. (3.55). Table 3.7 lists the probabilities

of failure corresponding different order PCE approximation. In the same manner, 105

static analyses are needed in direct MCS. Despite of that the error ε > 10%, however, the

result is still acceptable since the probability of failure is very small, say 10−5. Efficiency

is strongly improved by PCE with 650 static analyses compared with direct MCS with

105 static analyses.

Although for 10−5 probability of failure, 105 samples are not adequate, the examples

used in this work are to demonstrate the effectiveness of the proposed PCE based MCS

method. To reduce the inherent variability due to different sets of samples, the random

excitations in this work are generated under the same seed.

3.5.4 Case IV: Mass-Spring

Figure 3.10: Mass-spring model
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3. PCE based MCS method for uncertainty analysis

The geometry parameters of the mass-spring are illustrated in Fig. 3.10, in which there

are 27 mass elements and 75 spring elements. Four corners in the plane XZ are fixed

against the base. The crossing-section is a regular triangle. The mean of the mass and

the stiffness are µm = 1 kg and µk = 1000 N/m. Rayleigh damping is implemented

for this model with α = 0.10 and β = 0.0036. First 40 modes are utilized to calculate

the response. The lower and upper band of the natural frequency of the mean model

are ω1 = 3.47 rad/s and ω40 = 55.03 rad/s. The excitation acts on node 12 along

X direction. The stochastic excitation has the same definition in Section 3.5.1 with

Sk = 0.1. The failure region is defined by

g(θ,Z(t)) = Xt,12 − |x12(θ,Z(t))| < 0, (3.56)

where x12(θ,Z(t)) denotes the displacement at node 12 and Xt,12 is the positive thresh-

old. In this case, we consider two levels of COV and two distinguished thresholds. The

associated results approximated by different order of PCE are given in Table 3.8. It is

found that a lot of CPU time is saved since at most 50 modal analyses are required by

the PCE based MCS. While 105 modal analyses is needed by direct MCS, the average

time of which is 76 hours. Moreover, the convergence is achieved up to the 2end order

for COV= 5%, while the 3rd order for COV= 10%. The accuracy is guaranteed.

Table 3.8: First passage probability for mass-spring

COV p P NtLSF
Xt,12 = 0.03m Xt,12 = 0.035m

PF,DMCS PF,PCEMCS PF,DMCS PF,PCEMCS

5% 1 3 10 2.1× 10−3 2.0× 10−3 1.5× 10−4 1.6× 10−4

2 6 20 2.1× 10−3 1.5× 10−4

3 10 30 2.1× 10−3 1.5× 10−4

4 15 50 2.1× 10−3 1.5× 10−4

10% 1 3 10 3.5× 10−3 3.8× 10−3 1.3× 10−4 1.5× 10−4

2 6 20 3.5× 10−3 1.4× 10−4

3 10 30 3.5× 10−3 1.3× 10−4

4 15 50 3.5× 10−3 1.3× 10−4

The accuracy of the proposed method can also be shown by the moment evaluations.

Fig. 3.11 schematically depicts the mean and standard deviation (SD) of the impulse

responses with respect to COV= 5% and COV= 10%. It is found that the results

obtained by the PCE based MCS are consistent with those obtained by direct MCS, for

either COV= 5% or COV= 10%.
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Figure 3.11: Impulse response comparisons

3.5.5 Case V: Ten-degree-of-freedom oscillator (linear simplification)

This model is a ten-degree-of-freedom Duffing type oscillator which has been treated as

a benchmark problem in [120]. In this work, we focus on the linear random structures

under stochastic excitations. The governing equation is given by

Mẍ(t) + Cẋ(t) + Kx(t) = Z(t), (3.57)
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3. PCE based MCS method for uncertainty analysis

with zero initial conditions, where

M =


m1 0 0 · · · 0

0 m2 0 · · · 0
...

...
...

. . .
...

0 · · · 0 0 m10

 , K =


k1 + k2 −k2 0 · · · 0

−k2 k2 + k3 −k3 · · · 0
...

...
...

. . .
...

0 · · · 0 −k10 k10

 ,

Z(t) = p(t)



m1

m2

...

m10


, C =


c1 + c2 −c2 0 · · · 0

−c2 c2 + c3 −c3 · · · 0
...

...
...

. . .
...

0 · · · 0 −c10 c10

 .

(3.58)

The structural parameters are random, the mean and standard deviation are described

in Table 3.9. The damping ci = 2ζi
√
miki in this case is the viscous damping but

the proportional one. Accordingly, the PCE is used to represent the complex modal

properties (see Section 3.3.1.2). The stochastic excitation p(t) is modeled by a modulated

filtered Gaussian white noise

p(t) = Ω2
1gvf1(t) + 2ζ1gΩ1gvf2(t)− Ω2

2gvf3(t)− 2ζ2gΩ2gvf4(t), (3.59)

where

d

dt



vf1(t)

vf2(t)

vf3(t)

vf4(t)


=


0 1 0 0

−Ω2
1g −2ζ1gΩ1g 0 0

0 0 0 1

Ω2
1g 2ζ1gΩ1g −Ω2

2g −2ζ2gΩ2g





vf1(t)

vf2(t)

vf3(t)

vf4(t)


+



0

w(t)

0

0


,

(3.60)

and

h(t) =



0 t ≤ 0s,

t/2 0 ≤ t ≤ 2s,

1 2 ≤ t ≤ 10s,

e−0.1(t−10) 10s ≤ t ≤ T.

(3.61)

w(t) stands for a modulated Gaussian white noise with autocorrelation function E[w(t)w(t

+ τ)] = Sδ(τ)h2(t) and S denotes the intensity of the white noise. The values Ω1g =

15.0rad/s, ζ1g = 0.8, Ω2g = 0.3rad/s, ζ2g = 0.995, and S = 0.08m2/s3 have been used
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to model the filter. The impulse of each discrete time step has zero mean and standard

deviation h(t)
√
S∆t.

Table 3.9: Statistical properties of the structural parameters

Variables Mean Standard Deviation

m1, . . . ,m10 10 Mg 1.0 Mg
k1, k2, k3 40 MN/m 4.0 MN/m
k4, k5, k6 36 MN/m 3.6 MN/m
k7, k8, k9, k10 32 MN/m 3.2 MN/m
ζ1, . . . , ζ10 0.04 0.004

We are interested in the first passage probability that the relative maximum displacement

of the first DOF is greater than the threshold 0.057m; on the other hand, the probability

that the relative maximum displacement between the ninth DOF and tenth DOF exceeds

the threshold 0.013m is concerned. First 8 modes are used to evaluate the response.

The corresponding quantities of the mean model are λ1,2 = −0.0548 ± i9.1440, λ3,4 =

−0.4699± i28.3350, λ5,6 = −1.2672± i43.3092 and λ7,8 = −2.3774± i59.0970.

Table 3.10: First passage probability for oscillator

Threshold PF,PCEMCS Reference value?

0.057m 8.6× 10−5 9.8× 10−5

0.013m 7.1× 10−5 6.0× 10−5

? results in [120].

Based on the analysis for the last four cases, to achieve an acceptable result for problem

with COV= 10%, at least 2end order PCE ought to be applied. The order up to 4th

may supply more accurate results. Note that the dimension of structural parameters

of this case is high somehow, say Ns = 30 which needs more computational effort to

determine the PCE model. Accordingly, a fair tradeoff should be counted for between

the accuracy and economy. To that end, the 2end order PCE (i.e. NLSF = 1500) is

used to approximate the modal properties in Eq. (3.41). First passage probabilities

concerning with 106 approximate random responses can be found in Table 3.10. It is

observed that the obtained results are close to the reference ones, which can satisfy

the practical requirements. The reasonable inference for the differences between the

probabilities is to applying low order PCE.
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3. PCE based MCS method for uncertainty analysis

This case study here mainly shows the capability of the PCE for large dimensional

problems with reasonable solutions. The efficiency, especially for the large-degree-of-

freedom structures, could be improved in two aspects. The modal superposition method

could save the CPU time than the direct methods, e.g. Newmark method; for the other

thing, the PCE can provide a fast calculation of modal properties by avoiding repeated

modal analyses. This benchmark study is only a ten-degree-of-freedom structure, so the

first advantage is weakened. About 90% CPU time is mainly saved from the application

of PCE approximation.

3.6 Summary

In this chapter, a PCE based MCS method for UA is proposed in the framework of

mechanical engineering. The efficiency is improved in manner of approximating the

random response by PCE (HPCE is mainly concerned).

For a considered structure under static loads, the PCE is used to approximate the

random response directly. To overcome the curse of high dimensionality caused by

the stochastic excitation that is usually specified by a finitely large number of random

inputs, we use the convolution form to compute the dynamic response. The PCE is

applied to approximate the modal properties but the response so that the dimension of

uncertainties is reduced since only random structural parameters are considered.

Case studies exhibit that the proposed method has the capability to cope with UA for

both static and dynamic problems related to relatively large COV, e.g. 10%, as well as

for the problems with small probability of failure, e.g. 10−4 or 10−5. It is found that

this method can achieve reasonable accuracy and greater efficiency compared with direct

MCS. Depending on the case studies, at least the 2end order PCE is necessary.

To correctly capture the uncertainties in the modal content by analyzing the modal

scatter observed in MCS, the encountered modal intermixing problem should be avoided

or reduced. For this purpose, the MAC factor is used to quantify the modal intermixing

between some random mode and the corresponding mean mode. And then, based on the

concept of worst case, we develop a univariable based method to check which parameter

can leads to the modal intermixing and to avert it by reducing the COV.
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3.6. Summary

Although the variance (or COV) is not easy to fix or control, the small one fulfills

the practical applications, from the view of generating positive samples and grasping

the consistently inherent properties of random models with the mean model. Based

on simulations, it is found that when the COV of random structural parameters is not

greater than 10%, there is no sever modal intermixing.
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Chapter 4

Sequential formulation for RBRDO

4.1 Introduction

In this chapter, the efficiency of RBRDO (RBDO is also included) is further improved by

the sequential formulation, which is usually related to decoupling the reliability analysis

from the optimization loop by converting probabilistic constraints into the equivalent

deterministic ones. As to aforementioned sequential formulations, a variety of methods

have been developed (see Section 2.4.1.3). It is found that most of these methods rely on

the information about the MPP, which signifies FORM/SORM is applied for reliability

analysis. However, if FORM/SORM is not available, MCS will dominate due to its

facility and accuracy. In this vein, alternative sequential RBRDO in conjunction with

MCS is necessary to develop since MCS provides none of MPPs.

In order to realize this, response surface approximations between the probability of

failure and the design variables have been developed, among which the exponential

function is useful to give a global approximation [152] or a local approximation [153].

Although no formal proof has been stated regarding the convergence of the optimization

procedure in conjunction with the exponential approximation, numerical experience has

indicated that this approach is most suitable [4, 153, 154]. One of the main challenges for

this method is the estimation of the coefficients, which can be obtained in the least square

sense [153]. However, the numerical effort associated with LSM will be increased with

increase of the dimension of design variables since more and more reliability analyses are

required. In these cases, efficient approaches are needed to overcome this disadvantage.

From the algorithm point of view, two ways can achieve this target. One is to utilize

advanced reliability methods, e.g. the PCE based MCS method proposed in Chapter

3; and the other one is to reduce the number of reliability analyses. Note that if the

approximation of probability of failure is in the presence of ”first-order” design variables,
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4. Sequential formulation for RBRDO

such as the first Taylor expansion method [132], reliability sensitivity analysis is capable

to provide the coefficients (i.e. the derivatives or sensitivities of the probability of failure

with respect to the design variables) within one reliability analysis. Such sensitivities

can be utilized to construct the approximate representation of the probability of failure

as an explicit function of the design variables efficiently.

Based on simulation methods, an efficient reliability sensitivity approach [155] is pro-

posed. The main advantage is that only one reliability analysis is carried out, whereas

their applicable scope may be restricted to a low number of design variables[155], i.e.

less than 3. Wu et al. [156, 157] developed another reliability sensitivity method that is

not confined to the number of the design variables. Unfortunately, it is not applicable

within the scope of deterministic design variables. Nonetheless, this weakness can be

removed. For this purpose, we propose an auxiliary distribution based sensitivity anal-

ysis method, in which the deterministic design variables are assumed to be be random

variables following some random distribution. Although, the auxiliary uncertainties will

influence the results of reliability analysis, when the given variance is small, it is found

that the influence can be neglected according to the simulation investigations.

On the other hand, sequential strategy should be extended into a wider scope in the

context of RBRDO. That is because the objective is to reduce the variability of the

performance (usually characterized by the random response), which means the design

objective robustness must be taken into account and the associated first and second

order moments of the random response are required.

Practically, most of the random responses are available in numerical manner which

usually do not have an explicit relation with the design variables. In this occasion,

during each function evaluation with respect to the optimization procedure, substantial

repeated structural analyses are needed to determine the desired moments. In this

dissertation, the random response is approximated by the PCE, and the time of the

repeated analyses is largely reduced. Even so, in cases where the convergence rate

is slow, the number of moment evaluations will be increased, and the computational

burden is somehow heavy. To this end, decoupling the moment evaluations from the

optimization procedure would be useful to accelerate the entire optimization process.

For the sake of decoupling the moment evaluations from the optimization procedure,

the locally exponential approximation is also applied to establish the relation between
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the moments and the design variables. To determine the corresponding coefficients effi-

ciently, we propose a PCE based moment sensitivity analysis with respect to the design

variables, which is capable to provide the coefficients within one moment evaluation

procedure. This method is still developed based on assumptions of random design vari-

ables. If deterministic design variables are involved, such a limitation can be removed

by applying the auxiliary distribution method, the concept of which is consistent with

the one mentioned above for the reliability sensitivity analysis.

In conclusion therefore, the final target of this chapter is to decouple UA (both the reli-

ability analysis and the moment evaluation are included) from the design optimization.

Numerical examples demonstrate that the developed sequential RBRDO is computa-

tionally affordable and reasonably accurate.

4.2 Approximation of probabilistic constraints

In respect that the decoupling concepts for the design objective robustness (i.e. the

concerned moment evaluations) and the design feasibility robustness (i.e. the required

reliability analysis) are identical, all details will be specified in the context of the ap-

proximating probabilistic constraints.

4.2.1 Local optimization

Basically speaking, construction of the equivalent constraint is to find an approximate

probability of failure as an explicit function of the design variables, i.e. the original one

PF (d) (i.e. PF (d,Θ), in which the uncertainty vector Θ is omitted for simplicity) is

replaced by P̄F (d),

PF (d) ≈ P̄F (d), d ∈ RNd . (4.1)

The approximation in the last equation is a global and ideal approximation. Generally,

such an approximation is not feasible, as the relation between the probability of failure

and the design variables can be very complicated, and it is not an easy task to find a

properly surrogate function. The most probable explanation is that significant disconti-

nuities in probability of failure arise due to changes in curvature of the limit state surface
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4. Sequential formulation for RBRDO

with design changes [158]. In this sense, it might be much more tractable to construct

a local approximation around a current optimal design dk, say

PF (d) ≈ P̄F (d,dk), d ∈ R̄Ndk , R̄Ndk ⊂ RNd , (4.2)

where R̄Ndk is a neighborhood of the design dk and is also a subdomain of the entire

design domain RNd . This approximation is used to produce an improved design that

makes the current probability of failure approach the target. After some repeated sub-

sequential-procedures (see 2.4.1.3), it is possible to find a local optimum of the original

RBRDO problem.

Figure 4.1: Sequential procedure for a local optimum search. d is the design variable,
PF (d0) and PF,t are initial and target probability of failure, respectively.

For a better understanding, the whole procedure is illustrated by a one-dimensional

problem schematically shown in Fig. 4.1. In this figure, each solid line depicted by

distinguished color represents an approximate relation between the probability of failure

and the design variables that are in the neighborhood of dk, k = 0, 1, 2, 3 (assume that

the local optimum is found in the neighborhood of d3). The associated colored dash line

describes the bound (or the neighborhood) of the design variable. Most often, in each

sub-sequential-optimization problem, the relation is not exactly the same, which implies

there needs to reconstruct the relation for each sub-problem, schematically shown by

the solid lines with different colors.

In Fig. 4.1, it is not difficult to image that such approximations may be more accurate

in a relatively small subdomain. Actually, the accuracy of the original optimization

problem depends on selections of this subdomain.
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4.2. Approximation of probabilistic constraints

4.2.2 Exponential representation

As stated in the very beginning of this chapter, the probability of failure can be reason-

ably represented as an explicitly exponential function of the design variables around a

current design dk, i.e.

PF (d) ≈ P̄F (d,dk) = ea0+
∑Nd
i=1 ai(di−d

k
i ), d ∈ R̄Ndk , R̄Ndk ⊂ RNd , (4.3)

where ai : i = 0, 1, . . . , Nd denote the constant coefficients. It is evident that the

original optimization problem is converted into an approximate one by replacing the

probabilistic constraint as the equivalently deterministic constraint. In the same manner,

approximations for the mean and standard deviation of the objective function can also

be approximated locally as

µf (d) ≈ µ̄f (d,dk) = eb0+
∑Nd
i=1 bi(di−d

k
i ), d ∈ R̄Ndk , R̄Ndk ⊂ RNd , (4.4)

σf (d) ≈ σ̄f (d,dk) = ec0+
∑Nd
i=1 ci(di−d

k
i ), d ∈ R̄Ndk , R̄Ndk ⊂ RNd . (4.5)

The RBRDO problem described in Eq. (2.65) is then approximated by the local opti-

mization problem as

find d

minimize f(d,Θ) = w1
µ̄f (d,dk)

µ∗
+ w2

σ̄f (d,dk)

σ∗

subject to P̄F (d,dk)− PFt,i ≤ 0, i = 1, 2, . . . , Ng

dL ≤ d ≤ dU, (4.6)

where P̄F (d,dk), µ̄f (d,dk) and σ̄f (d,dk) are the local exponential approximations for

the probability of failure, the mean and standard deviation of the objective function

depicted by Eq. (4.3) to Eq. (4.5) respectively.

Two important issues of this approximate problem must be considered. One is the

convergence and the other is the coefficient evaluation. The former is related to the

selection of the bounds of the design variables, in which the local approximation is valid,

while the latter concerns how to determine the coefficients efficiently. We will discuss

them in sequence.
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4. Sequential formulation for RBRDO

4.2.3 Adaptive bounds

The practical implementation of the local approximation requires the selection of ap-

propriate neighborhood R̄Ndk or the bound dL and dR. If the approximation is relatively

accurate, large bounds can be chosen. In contrast, it would be better to choose small

ones. A possible selection proposed in [153] is described as follows

R̄Ndk = {d : di ∈ [(1− δi)dki , (1 + δi)d
k
i ], i = 1, . . . , Nd}, R̄Ndk ⊂ RNd , (4.7)

where δi, i = 1, . . . , Nd control the size of the subdomain, within a typical range

[10%, 50%] [153]. This bound definition can be treated as an adaptive bound since

it is changed with the current design variables.

From the point of the worst case, it can be expected that for some special problems

the probability of failure will achieve the maximum and minimum corresponding to

d = [(1− δ1)dk1, . . . , (1− δNd)dkNd ]
T and d = [(1 + δ1)dk1, . . . , (1 + δNd)d

k
Nd

]T respectively.

This means the larger the design variables are, the smaller the associated probability

of failure is. A typical example is the cross section design of a beam in the context of

sizing optimization problems. It can be expected that the larger the cross section, the

safer the beam is. In this case, to accelerate the optimization process the asymmetric

bound would be a more appropriate choice, i.e.

R̄Ndk = {d : di ∈ [(1−δL
i )dki , (1+δR

i )dki ], i = 1, . . . , Nd}, δL
i ≤ δR

i , R̄Ndk ⊂ RNd , (4.8)

where δLi and δRi control the left and right bound of the local problem respectively. The

side constraint is given by dL = {d : di = (1− δL
i )dki , i = 1, . . . , Nd} and dU = {d : di =

(1 + δR
i )dki , i = 1, . . . , Nd}.

Be aware that no matter what approximation is exploited, higher accuracy can be cap-

tured in a relatively small bound. Unfortunately, small bound signifies the relatively

slow convergence rate. To overcome this problem, the start point is usually in the fail-

ure domain, which approaches the regions with the probabilities of failure not very far

from the desired one. In fact, different start points may lead to different local optimum.

However, these properties do not impose a serious limitation, as usual engineering crite-

ria and the knowledge on the problem at hand provide guidelines for judging the quality

of the optimum [154].
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4.2. Approximation of probabilistic constraints

There exists another problem that is needed to be noted. When determining the right

bound, zero probability of failure should be averted. The reason is that zero probability

will result in ill approximation during the process of coefficient evaluations. Hence, the

right bound controlling coefficient δR
i should be chosen with caution. It can be imagined

that when the probability of failure corresponding to the current design is close to the

target one (especially the target one is small, e.g. 10−4), the large value of δR
i may lead to

zero probability of failure. According to the simulation investigations, the recommended

range of controlling coefficients are defined as

0 < δL
i ≤ δR

i ≤ 10%. (4.9)

4.2.4 Coefficient evaluation and sensitivity analysis

4.2.4.1 Least square method

To determine the coefficients in Eq. (4.3) - Eq. (4.5), one may refer to the LSM, in

which the probabilities of failure or moments are usually calculated at a grid of points

(see Fig. 4.2). Selections like this can cover the probability information in the associated

subdomain as far as possible. The number of experimental points is about 2Nd or 3Nd

to obtain relatively accurate results.

Figure 4.2: Principles of selection of experimental points in LSM. d1 bounded in
[(1− δL

1 ), (1 + δR
1 )], and d2 bounded in [(1− δL

2 ), (1 + δR
2 )] are the two design variables.

The ”•” represents the experimental point.

However, the main drawback of this method is the low efficiency caused by the large

dimension of the design variables. To overcome this, we propose the (auxiliary distribu-

tion based) reliability sensitivity analysis method and the PCE based moment sensitivity
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4. Sequential formulation for RBRDO

analysis method so that the associated coefficients will be estimated in one reliability

analysis and one moment evaluation procedure respectively.

4.2.4.2 Reliability sensitivity analysis

From Eq. (4.3), the coefficients can be calculated by the information on the reliability

analysis and the associated sensitivity analysis, i.e.

a0 = ln(PF (dk)), (4.10)

ai =
1

PF (dk)

∂PF (d)

∂di

∣∣∣∣
d=dk

, i = 1, . . . , Nd. (4.11)

In the last two expressions, the main challenge is to determine the derivatives of the

probability with respect to the design variables. Consider the definition of the probability

of failure described in Eq. (2.27), i.e.

PF = P (F ) =

ˆ
F
q(Θ)dΘ. (4.12)

where F represents the failure region and the q(Θ) is the joint PDF. If the design

variables d are assumed as the distribution parameters of the design random variables Θ,

the associated sensitivity of PF with respect to the ith design variable can be formulated:

∂PF
∂di

=

ˆ
F

∂q(Θ)

∂di
dΘ, (4.13)

The last equation can be represented by an expectation function,

∂PF
∂di

=

ˆ
F

PF∂q(Θ)

q(Θ)∂di

(
q(Θ)

PF
dΘ

)
= E

[
PF∂q(Θ)

q(Θ)∂di

]
F

, (4.14)

in which q(Θ)/PF is the reconstructed sampling density in the domain F and E[·]F

is the expectation or average supported in F and zero elsewhere. In this dissertation,

the distribution parameter is confined to the mean values. Accordingly, the sensitivity

determination is actually connected with the derivatives of the probability of failure

with respect to the mean value, i.e. ∂PF /∂di = ∂PF /∂µi. Based on Eq. (4.14), the

normalized mean sensitivity is described as

Sµi =
∂PF /PF
∂µi/σi

, (4.15)
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4.2. Approximation of probabilistic constraints

where µi = di and σi are the mean and standard deviation of the random variable

Θi. For independent variables, the joint PDF of Θ is a product of the PDF of Θi.

Substituting Eq. (4.14) into Eq. (4.15), we have

Sµi = E

[
σi∂q(Θ)

q(Θ)∂µi

]
F

= E

[
σi
q(Θ)

∂qi(Θi)

∂µi

q(Θ)

qi(Θi)

]
F

= E

[
σi

qi(Θi)

∂qi(Θi)

∂µi

]
F

. (4.16)

In the same manner, if Θi is assumed to be normally distributed, the normalized mean

sensitivity in the standard normal space can be simplified to [156]

Sµξi =
∂PF /PF
∂µξi/σξi

= E[ξi]F , (4.17)

in which µξi and σξi are the calculated mean value and standard deviation of the standard

normal variable ξi, not exactly the nominal values 1 and 0. According to chain rule,

Sµi =
∂PF /PF
∂µi/σi

= (
∂PF /PF
∂µξi/σξi

)(
∂µξi/∂µi
σξi/σi

) = Sµξi (
∂µξi/∂µi

1/σi
), (4.18)

the originally normalized sensitivity is in the presence of the one in the standard normal

space. When Θi is a normal random variable, based on the transformation

ξi =
Θi − µi
σi

, (4.19)

the derivative is found, i.e. ∂µξi/∂µi = 1/σi, we get

Sµi = Sµξi = E[ξi]F =
1

NF

NF∑
j=1

Θ
(j)
i − µi
σi

, (4.20)

where NF is the number of samples in the failure region F . At last, the mean sensitivity

is written as
∂PF
∂µi

=
PF
σi
Sµi =

PF
σi
E[ξi]F . (4.21)

Eq. (4.21) can be realized by direct MCS or the importance sampling method. In this

context, direct MCS is applied. Note that Eq. (4.21) is obtained under the assumption

that all the random variables are independently normally distributed. In other cases,

the transformation methods introduced in Section 2.3.2 are required to re-deduce the
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4. Sequential formulation for RBRDO

Eq. (4.17) to Eq. (4.21). Substituting Eq. (4.21) into Eq. (4.11), the coefficients are

calculated by

ai =
1

σi
E[ξi]F , i = 1, . . . , Nd. (4.22)

Pay attention that the expectation E[ξi]F is obtained in the failure region F at the

design variables µ = µk (i.e. d = dk).

Apart from the random design variables (i.e. the associated distribution parameters),

they also can be deterministic. However, the aforementioned sensitivity method is not

proper since it concentrates on the former type of the design variables. Under this

circumstance, we develop the auxiliary method to make this method available.

Generally, the deterministic design variables are assumed as random variables following

some probabilistic distribution. For simplicity, normal distribution is preferred. It is

not difficult to deduce that the larger the scatter of the design variable, the larger the

probability of failure is. To this end, the variance of the auxiliary distribution should

not be large. On the other hand, the value is not supposed to be very small to avoid

inaccuracy of the sensitivity (see Eq. (4.21)). Based on the simulation investigations,

the recommended scope depending on the value of the probability of failure is given by

PF,t ≤ σi ≤ 10PF,t, (4.23)

where PF,t is relatively small, e.g. PF,t = 1× 10−5. If the target probability of failure is

relatively large, e.g. PF,t = 1× 10−1, the proposed standard deviation is

σi = 0.001µi. (4.24)

4.2.4.3 Moment sensitivity analysis

Analogically, the coefficients in Eq. (4.4) and Eq. (4.5) can be also obtained by the

derivatives with respect to the design variables, as is done in Eq. (4.10) and Eq.(4.11),

i.e.

b0 = ln(µf (dk)), (4.25)

bi =
1

µf (dk)

∂µf (d)

∂di

∣∣∣∣
d=dk

, i = 1, . . . , Nd, (4.26)
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4.2. Approximation of probabilistic constraints

and

c0 = ln(σf (dk)) (4.27)

ci =
1

σf (dk)

∂σf (d)

∂di

∣∣∣∣
d=dk

, i = 1, . . . , Nd. (4.28)

In the context of RBRDO, the objective function is always the function of the random

response, the variability of which needs to be reduced. Accordingly, moment evaluations

and the associated sensitivities for the objective function is equivalent to those for the

random response. For simplicity, only one random response x(dk) of interest is involved

in the objective function f(d), i.e. f(d) = x(d), µf (d) = µx(d) and σf (d) = σx(d).

Then the last four equations can be rewritten as

b0 = ln(µx(dk)), (4.29)

bi =
1

µx(dk)

∂µx(d)

∂di

∣∣∣∣
d=dk

, i = 1, . . . , Nd, (4.30)

and

c0 = ln(σx(dk)) (4.31)

ci =
1

σx(dk)

∂σx(d)

∂di

∣∣∣∣
d=dk

, i = 1, . . . , Nd. (4.32)

Apparently, the original problem is converted to calculating the moments of the random

response and the associated derivatives related to the design variables. The design

variables d are seen as the mean values of the random design variables Θ, i.e. di = µi.

For convenience, we denote the random response as x(d) = x(Θ). Consider the definition

of the moments in Eq. (2.28) and Eq. (2.29), that is

µx =

ˆ
RN

x(Θ)q(Θ)dΘ. (4.33)

Vx = σ2
x =

ˆ
RN

(x(Θ)− µx)2q(Θ)dΘ, (4.34)

where Vx is the variance, and q(Θ) is the joint PDF.

In order to improve efficiency of moment evaluations, the PCE based MCS is applied.

That implies the random response is approximated by the PCE, which is exactly the
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4. Sequential formulation for RBRDO

function of the corresponding independent standard normal variables ξ, i.e.

µx =

ˆ
RN

x(ξ)Q(ξ)dξ, (4.35)

Vx = σ2
x =

ˆ
RN

(x(ξ)− µx)2Q(ξ)dξ, (4.36)

where Q(ξ) is the joint PDF for standard normal variables. If Θi is normally distributed,

based on the transformation described in Eq. (4.19), we can get the derivatives as follows

∂Θi

∂µi
= 1,

∂Θi

∂ξi
= σi. (4.37)

Then the sensitivities can be obtained by the chain rule, say

∂µx
∂di

=
∂µx
∂µi

=
∂µx
∂Θi

∂Θi

∂µi
=
∂µx
∂Θi

=
∂µx
∂ξi

∂ξi
∂Θi

=
1

σi

∂µx
∂ξi

, (4.38)

∂σx
∂di

=
∂σx
∂µi

=
∂σx
∂Θi

∂Θi

∂µi
=
∂σx
∂Θi

=
∂σx
∂ξi

∂ξi
∂Θi

=
1

σi

∂σx
∂ξi

. (4.39)

From Eq.(4.35), we can get ∂µx/∂ξi readily, i.e.

∂µx
∂ξi

=

ˆ
RN

∂x(ξ)

∂ξi
Q(ξ)dξ +

ˆ
RN

x(ξ)
∂Q(ξ)

∂ξi
dξ. (4.40)

In respect that ξ consists of independent standard normal variables, the joint PDF is

then represented by Q(ξ) = φ(ξ1) · · ·φ(ξN ). Accordingly, the associated derivative is

given by
∂Q(ξ)

∂ξi
= −ξiQ(ξ). (4.41)

Substituting Eq. (4.41) into Eq. (4.40), the original derivative can be approximated by

the associated Monte-Carlo estimator as

∂µx
∂ξi
≈ E[

∂x(ξ)

∂ξi
]− E[x(ξ)ξi], (4.42)

where E[·] is the expectation of average defined in the sampling space but the nominal

mean. For example, the average of a standard normal variable ξ is E[ξ] =
∑Nmc

j=1 ξ
(j)/Nmc

but zero, in which Nmc is the number of samples. The coefficient bi is given by

bi =
1

µx(dk)σi
(E[

∂x(ξ)

∂ξi
]− E[x(ξ)ξi]), i = 1, . . . , Nd. (4.43)

Note that the average is estimated at µ = µk (i.e. d = dk). Since the random response
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is represented by the PCE, the derivative in the last equation is easily attained. Taking

the static response (see Eq. (3.7)) as example, the derivative is written as

∂S

∂ξi
=

P−1∑
i=0

Si
∂Ψi(ξ)

∂ξi
. (4.44)

All the information needed in this derivative estimation can be found in the PCE model

of the random response. In the same manner, we will give the expression of the coefficient

ci concerned with the standard deviation of the random response. From Eq. (4.36), two

relations are obtained, i.e.
∂σx
∂ξi

=
1

2σx

∂Vx
∂ξi

, (4.45)

and

∂Vx
∂ξi

= +

ˆ
RN

2x(ξ)
∂x(ξ)

∂ξi
Q(ξ)dξ

−
ˆ
RN

x2(ξ)ξiQ(ξ)dξ

− 2µx

ˆ
RN

∂x(ξ)

∂ξi
Q(ξ)dξ

+ 2µx

ˆ
RN

x(ξ)ξiQ(ξ)dξ

− µ2
x

ˆ
RN

ξiQ(ξ)dξ. (4.46)

Substituting Eq. (4.39) and Eq. (4.45) into Eq. (4.32), the coefficient ci is finally

obtained as

ci =
1

2σ2
x(dk)σi

∂Vx
∂ξi

∣∣∣∣
d=dk

, i = 1, . . . , Nd, (4.47)

where ∂Vx/∂ξi is rewritten in the form of the average as

∂Vx
∂ξi

∣∣∣∣
d=dk

≈+ 2E[x(ξ)
∂x(ξ)

∂ξi
]

− E[x2(ξ)ξi]

− 2µx(dk)E[
∂x(ξ)

∂ξi
]

+ 2µx(dk)E[x(ξ)ξi]

− µ2
x(dk)E[ξi]. (4.48)

In this equation, all the definitions are consistent with Eq. (4.42) and Eq. (4.43).
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Pay attention that the coefficient expressions (see Eq. (4.43) and Eq. (4.48)) are ob-

tained based on the assumption that only random design variables are considered. In

cases where deterministic design variables are involved, such coefficient evaluations can-

not be used. However, as is done in Section 4.2.4.2, the auxiliary distribution method

can be applied. The associated principles are identical with Section 4.2.4.2.

For clarity and convenience, we summarize the sensitivity based sequential strategy as

follows:

1. Construct the approximate RBRDO formulation with use of the locally exponential

approximation, as

find d

minimize f(d,Θ) = w1
µ̄f (d,dk)

µ∗
+ w2

σ̄f (d,dk)

σ∗

subject to P̄F (d,dk)− PFt,i ≤ 0, i = 1, 2, . . . , Ng

dL ≤ d ≤ dU,

where

PF (d) ≈ P̄F (d,dk) = ea0+
∑Nd
i=1 ai(di−d

k
i ), d ∈ R̄Ndk , R̄Ndk ⊂ RNd ,

µf (d) ≈ µ̄f (d,dk) = eb0+
∑Nd
i=1 bi(di−d

k
i ), d ∈ R̄Ndk , R̄Ndk ⊂ RNd ,

σf (d) ≈ σ̄f (d,dk) = ec0+
∑Nd
i=1 ci(di−d

k
i ), d ∈ R̄Ndk , R̄Ndk ⊂ RNd .

2. Determine the associated coefficients with reliability analysis and moment evalua-

tions, and the associated sensitivities, i.e.

a0 = ln(PF (dk)),

ai =
1

PF (dk)

∂PF (d)

∂di

∣∣∣∣
d=dk

=
1

σi
E[ξi]F , i = 1, . . . , Nd,

b0 = ln(µx(dk)),

bi =
1

µx(dk)

∂µx(d)

∂di

∣∣∣∣
d=dk

=
1

µx(dk)σi
(E[

∂x(ξ)

∂ξi
]− E[x(ξ)ξi]), i = 1, . . . , Nd,

c0 = ln(σx(dk))

ci =
1

σx(dk)

∂σx(d)

∂di

∣∣∣∣
d=dk

=
1

2σ2
x(dk)σi

∂Vx
∂ξi

∣∣∣∣
d=dk

, i = 1, . . . , Nd,
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where f(d) = x(d), and

∂Vx
∂ξi

∣∣∣∣
d=dk

≈+ 2E[x(ξ)
∂x(ξ)

∂ξi
]

− E[x2(ξ)ξi]

− 2µx(dk)E[
∂x(ξ)

∂ξi
]

+ 2µx(dk)E[x(ξ)ξi]

− µ2
x(dk)E[ξi].

4.2.5 Enhanced convergent condition

Figure 4.3: Sequential RBDO based on reliability sensitivity

As the equivalent deterministic constraints or the moments of the objective function

are only approximated representations with respect to the design variable, the optimal

designs obtained by the equivalent deterministic optimization might not satisfy the real
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probabilistic constraints, even if the optimization procedure is converged. In this sense,

it is necessary to execute the reliability analysis after each convergent sub-optimization

procedure to check if the current design is the desired one.

The sensitivity based sequential RBDO and RBRDO are schematically depicted respec-

tively in Fig. 4.3 and Fig. 4.4. For the former, the sequential strategy is to decouple

the reliability from the optimization; while for the latter, both reliability analysis and

moment evaluations are independent from the optimization.

Figure 4.4: Sequential RBRDO based on reliability and moment sensitivity

4.3 Numerical examples

In this section, several methods have been applied to solve RBRDO or RBDO problem

for comparative purposes, among which the methods in the context of MCS are main-

ly concerned since the main contributions in this chapter are to develop MCS based

RBRDO. For clarity, these approaches are listed as follows:

• Approach I. PMA based nested RBDO.
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• Approach II. MCS based nested RBDO.

• Approach III. MCS based sequential RBDO, in which the coefficients with re-

spect to the probability of failure are obtained by the LSM involved in several

reliability analyses.

• Approach IV. MCS based sequential RBDO, in which the coefficients with re-

spect to the probability of failure are obtained by the (auxiliary distribution based)

reliability sensitivity analysis within on reliability analysis.

• Approach V. MCS based sequential RBRDO, in which the coefficients with re-

spect to the moments and probability of failure are obtained by the LSM involved

in several moment evaluation procedures and reliability analyses, respectively.

• Approach VI. MCS based sequential RBRDO, in which the coefficients with re-

spect to the moments and probability of failure are obtained by the PCE Based

moment sensitivity analysis and the (auxiliary distribution based) reliability sensi-

tivity analysis within one reliability analysis and one moment evaluation procedure,

respectively.

4.3.1 Cantilever: a static RBDO

Figure 4.5: Cantilever beam model

In this section, the RBDO problem is studied by investigating a cantilever beam [131],

which is schematically represented in Fig. 4.5. The objective is to minimize the weight

characterized by the cross section under two uncertain constraints. The optimization

problem is formulated as

minimize f(d) = d1d2

subject to PFi = P (gi(d,Θ) ≤ 0) ≤ PFt,i , i = 1, 2

(1− δL
i )dki ≤ di ≤ (1 + δR

i )dki , i = 1, 2, (4.49)
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where two deterministic design variables are d1 = w and d2 = t, PFt,i = 0.0013, δL
i = 3%

and δR
i = 5%, and the uncertain constraints (yielding stress at the fixed end and the tip

displacement) are described as

g1(R,X, Y,w, t) = R− (
600

wt2
Y +

600

w2t
X),

g2(E,X, Y,w, t) = Dt −
4L3

Ewt

√
(
Y

t2
)2 + (

X

w2
)2, (4.50)

in which Dt = 2.5 is the allowable tip displacement, the random variables are the random

yield strength Z1 = R, random external forces Z2 = X and Z3 = Y , and random Young’s

modulus θ1 = E (Note that Θ = {θ,Z}). All the random variables are independent

normal variables, i.e. R ∼ N(40000, 2000) psi, X ∼ N(500, 100) lb, Y ∼ N(1000, 100)

lb and E ∼ N(29× 106, 1.45× 106)psi.

To show the effectiveness of the proposed methods, this cantilever has been studied by

4 approaches, respectively, the results of which are specified sequentially:

• The optimization procedure begin with the point w = 3, t = 3. The optimal

designs provided by Approach I are w = 2.4460, t = 3.8922, f = 9.5052, PF1 =

0.0013 and PF2 = 5 × 10−5. Obviously, the first constraint is more significant.

These results are treated as the reference.

• Using Approach II, the start point is selected as w = 5, t = 5 (the optimization

procedure is out of convergence with the start point w = 3, t = 3). The opti-

mal designs are w = 3.1204, t = 3.1204 and f = 9.7371, with PF1 = 0.0012 and

PF2 = 3 × 10−6. The active constraint is exactly the first one. It is obvious that

the associated optimum is safer than the one obtained by PMA based method.

The number of function evaluation (NFE) is 128 and so is the number of relia-

bility analysis (NRA). The efficiency is mainly measured by NRA since reliability

analysis is the most computationally expensive.

• The optimization procedure starts in the failure region, i.e. w = 3, t = 3. After

one sub-sequential-optimization, Approach III converges, providing the optimum

w = 3.1068, t = 3.1500, f = 9.7863, PF1 = 8.52× 10−4 and PF2 = 3× 10−6. The

CPU time is characterized by NFE= 21 and NRA= 20. For each equivalent

deterministic constraint, 9 reliability analyses are used to calculate the coefficients

with respect to the exponential approximation, and one is to check if the current
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optimum satisfies the constraints. This method is more efficient than Approach

II. Moreover, the results are closer to Approach II than to Approach I, which

signified the design is more security.

• In Approach IV, the start point is also w = 3, t = 3. The results are listed in

Table 4.1. After 3 sub-sequential optimizations, the final weight is f = 9.7044.

From Table 4.1, it is observed that the first optimization procedure is not con-

verged (note that ”−” represents no reliability analysis is carried out); the second

optimization procedure is converged but the first probabilistic constraint is not

satisfied. NRA is 10 in total for the entire optimization procedure, which demon-

strates Approach IV is the most efficient compared with Approach II and

Approach III.

Table 4.1: Optimum obtained by Approach IV for cantilever

Sub-Optimization
Design Variables Probability of failure

NFE NRA
w t PF1 PF2

1 3.1512 3.1292 − − 202 2
2 3.1087 3.0353 0.0063 1.05× 10−4 21 4
3 3.0449 3.1871 0.0012 4.00× 10−6 15 4

Additionally, the deterministic design variables are assumed normally distributed

with the standard deviation is σi = 10−3di ∈ [0.0013, 0.013], i = 1, 2 (see E-

q.(4.23)). Based on the results, it is found that the small variance assumption is

proper since there is not much influence on the final optimum.

From the above comparisons, it can be concluded that Approach III and Approach

IV are more robust than Approach II. That is because the start point in Approach II

is uncontrollable. The used start point is selected after some simulation investigations.

Although it is located in the safe region, not all points in the safe region can make the

optimization converged, e.g. w = 4, t = 4. It can be deduced that if an improper start

point is used, the convergence rate may be very slow or there no convergence achieves.

On the contrary, in despite that the sequential strategy only provides the local minimum,

the start points and the final designs can be judged by the designers depending on

the information of the problem right in hand or engineering experiences. Hence, the

sequential RBDO is not only more efficient, but also more robust than the MCS based

nested RBDO.
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4.3.2 Plate-Beam: a dynamic RBDO

In this section, the RBDO problem for dynamic structures is studied by a plate-beam

model. The deterministic design variables are the beam width d1 = BW , and height

d2 = BH. The objective is to minimize the cross section of the beam f = d1d2. The

constraints are the probabilistic constraint PFt = P (0.03 − |x14(θ,Z(t))| ≤ 0) ≤ 10−4

and the side constraint. More details can be found in Section 3.5.1.

Both Approach III and Approach IV are used to solve this RBDO problem. Because

the design variables are deterministic, the auxiliary method is applied. The selected

variance is σi = 1%di ∈ [PF,t, 10PF,t] = [0.0001, 0.001], i = 1, 2 (see Eq. (4.23)). The

controlling coefficients are chosen as δL
i = 3% and δR

i = 5%.

In Approach III, 9 reliability analyses are required to construct the exponential ap-

proximation for each sub-sequential-optimization. Table 4.2 summarizes the results

obtained by Approach III with start point [0.0405, 0.0405]. Apparently, there needs

4 sub-sequential-optimization loops and the first two equivalent deterministic optimiza-

tion loops are not converged. The third sub-sequential-optimization is converged, but

the probabilistic constraint is violated. In this sense, it is necessary to check the relia-

bility after each converged sub-optimization to ensure the real convergence. Finally, the

optimal design is obtained in the fourth sub-sequential-optimization.

Table 4.2: Optimum obtained by Approach III for plate-beam ([0.0405, 0.0405])

Sub-Optimizatoin
Design Variables

f PF NFE NRA
BW BH

0 0.0405 0.0405 0.001625 2.92× 10−4 − −
1 0.0428 0.0428 0.001835 − 6 9
2 0.0451 0.0451 0.002090 − 9 9
3 0.0454 0.0437 0.001986 1.04× 10−4 6 10
4 0.0457 0.0445 0.002035 9.20× 10−5 6(30) 10(38)

While in Approach IV, only one reliability analysis is wanted to evaluate the coeffi-

cients. In Table 4.3, the results under the same start point obtained by Approach

IV are listed. The entire optimization procedure is composed of 6 sub-sequential-

optimization loops. Comparing those results in Table 4.2 and Table 4.3 however, Ap-

proach IV is more efficient than Approach III since only 9 reliability analyses are

utilized, while the number of reliability analyses in Approach III is 38. And seen

108



4.3. Numerical examples

from the final probabilities of failure PF = 9.2 × 10−5 and PF = 9.4 × 10−5 for these

two approaches respectively, the optimum is close to each other as the both final cross

sections approach to 0.00200.

Table 4.3: Optimum obtained by Approach IV for plate-beam ([0.0405, 0.0405])

Sub-Optimizatoin
Design Variables

f PF NFE NRA
BW BH

0 0.0405 0.0405 0.001625 2.92× 10−4 − −
1 0.0389 0.0429 0.001690 − 9 1
2 0.0408 0.0417 0.001700 − 9 1
3 0.0413 0.0437 0.001807 2.20× 10−4 12 2
4 0.0434 0.0439 0.001904 1.70× 10−4 9 2
5 0.0417 0.0464 0.001938 − 6 1
6 0.0436 0.0450 0.001966 9.40× 10−5 9(54) 2(9)

Note that the selected start point is very close to the optimal design, since the initial

probability of failure 2.92 × 10−4 is close to the target one 1.00 × 10−4. There is a

possibility when the start point is far away from the optimum, the convergence rate will

be slower. In this situation, investigations on convergence with respect to start points

[0.02, 0.02] and [0.03, 0.03] are carried out. The corresponding optimization procedures

are specified in Table 4.4 and Table 4.5, respectively.

Table 4.4: Optimum obtained by Approach IV for plate-beam ([0.03, 0.03])

Sub-Optimization
Design Variables

f PF NFE NRA
BW BH

0 0.0300 0.0300 0.000900 1.76× 10−2 − −
1 0.0338 0.0338 0.001140 − 18 1
2 0.0362 0.0362 0.001312 − 9 1
3 0.0385 0.0385 0.001483 − 11 1
4 0.0372 0.0406 0.001512 − 12 1
5 0.0392 0.0428 0.001672 − 21 1
6 0.0418 0.0455 0.001904 − 6 1
7 0.0406 0.0469 0.001901 1.08× 10−4 6 2
8 0.0407 0.0492 0.002000 9.20× 10−5 18(101) 2(10)

If the convergence rate of Approach IVis characterized by the number of sub-optimization,

the comparison is shown in Figure 4.6. It is observed that the farther the start point the

more sub-optimizations are required. Comparing the number of reliability analysis from

Table 4.3 to Table 4.5, the more reliability analyses are derived from the start point

farther from the optimum. However, the increment of reliability analysis is acceptable.
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In other word, the convergence rate of Approach IV depends on the start point, but

the latter will not arouse limited applications. It is also found that the final values

of objective function under different start points are all close to 0.002. In this sense,

the proposed Approach IV achieve the local optimization with different start point,

regardless of farther one or closer one related to the optimum.

Table 4.5: Optimum obtained by Approach IV for plate-beam ([0.02, 0.02])

Sub-Optimization
Design Variables

f PF NFE NRA
BW BH

0 0.0200 0.0200 0.000400 3.83× 10−1 − −
1 0.0282 0.0282 0.000796 − 33 1
2 0.0331 0.0331 0.001096 − 30 1
3 0.0365 0.0365 0.001328 − 9 1
4 0.0391 0.0391 0.001528 − 6 1
5 0.0414 0.0414 0.001714 − 9 1
6 0.0402 0.0416 0.001670 2.94× 10−4 12 2
7 0.0425 0.0439 0.001864 − 9 1
8 0.0412 0.0453 0.001868 1.28× 10−4 9 2
9 0.0433 0.0463 0.002000 9.20× 10−5 9(126) 2(12)
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f(d)=0.00200

Figure 4.6: Convergence comparisons

Remind that in a local optimization problem, there usually exist multi local optima,

which is schematically described in Figure 4.7 based on the results in Table 4.3 to Table

4.5. The multi local optima are caused by different start point. From this view, the start

point has effects on the optimum, but not on the convergence denoted in the above.
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Figure 4.7: Multi local optima investigations

In the last two numerical examples, i.e. cantilever and plate-beam, it is observed that

more sub-sequential-optimization loops trends to be executed by Approach IV than

Approach III. The probable explanation is that the sensitivity reflects more informa-

tion around the current design, but not the whole subdomain. Whereas, the LSM gives a

global fit throughout the whole domain due to the grid selection of experimental points.

In this sense, in a selected subdomain, Approach III can somehow supply a relatively

”global” optimum than Approach IV.

4.3.3 Simply supported beam: a static RBRDO

This example is to study the RBRDO problem, in which both the weight (or cross

section) and the maximum deformation of a simply supported beam are the objectives.

Mathematically, the RBRDO problem is formulated as

minimize f(d) = w1
M

M∗
+ w2

σDmax
σ∗Dmax

subject to PF = P (g(d,Θ) = R− S(d,Θ) ≤ 0) ≤ 10−4

dL ≤ d ≤ dU, (4.51)

in which w1 and w2 are the weight factors, M = d1d2 is the cross section in the mean

sense since d1 and d2 are the mean value of the width W and height H respectively,

R is the allowable stress, S(d,Θ) is the maximum stress in the beam, σDmax is the
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4. Sequential formulation for RBRDO

standard deviation of the maximum deformation Dmax in the beam, M∗ is obtained

at the start point and σ∗Dmax is calculated in the same manner for the computational

purposes. Other concerns can be found in Section 3.5.3, except that the mean value of

the excitation is 6500N.

Both of the deformation and the stress are obtained by FEA, which means there is no

explicit relation with the design variables. Therefore, the sequential strategy is applied to

decouple the standard deviation estimation and reliability analysis from the optimization

procedure (see Fig. 4.4). The start point is d1 = 0.08, d2 = 0.1, and the weight factors

are fixed as w1 = 0.5 and w2 = 0.5 (how to choose the weights is not the task in this

work).

Table 4.6: Optimal results obtained by Approach Vand Approach VI for beam

Methods
Design variables M Dmax PF
d1 d2 µM σM µDmax σDmax

Initial 0.0800 0.1000 0.0080 0.0012 0.0018 8.5145× 10−4 1.3× 10−4

Approach V 0.0776 0.1050 0.0081 0.0016 0.0016 7.5934× 10−4 7.4× 10−5

Approach VI 0.0776 0.1037 0.0080 0.0012 0.0016 7.8881× 10−4 9.2× 10−5

Table 4.6 shows the results by Approach V and Approach VI, in which the mean

value and standard deviation are listed respectively for the weight and the maximum de-

formation. It is found that the optimum obtained by Approach V is more conservative

than the one obtained by Approach VI since the former has a smaller final probability

of failure. That is why the reduction of the variability of the deformation by Approach

VI is less than the one of Approach V. Note that Approach VI (NRA=2) is more

efficient than Approach V (NRA=10). From this point of view, Approach VI is more

attractive for practical purposes.

4.4 Summary

In this chapter, the sequential formulation for RBRDO in the context of MCS is con-

centrated on, which is not only valuable to improve efficiency of RBRDO procedure,

but also helpful to overcome the non-convergence problem encountered in MCS based

nested double loop RBRDO due to the improper start point.
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Different from the conventional sequential strategy, the one considered here aims to

decouple both the reliability analysis and moment evaluations from the optimization

procedure since the moment evaluations are usually computationally expensive.

To realize the sequential RBRDO, locally ”first-order” exponential approximation around

the current design is implemented to construct the equivalently deterministic objective

functions and probabilistic constraints. The associated coefficients can be evaluated by

the LSM. However, the efficiency is always challenged by high dimension of the design

variables. In this case, advanced UA method is used to reduce the computational ex-

pense for one UA process, i.e. the PCE based MCS method. On the other hand, we

develop the (auxiliary distribution based) reliability sensitivity analysis and the PCE

based moment sensitivity analysis to calculate the associated coefficients such that the

number of UA is reduced.

Numerical examples demonstrate that the proposed sequential RBRDO is computational

efficient and reasonably accurate. Convergence investigations are studied with different

start point. It turns out that the local convergence is achieved. Multi local optima are

also observed due to different start point. However, these properties do not impose a

serious limitation, as usual engineering criteria and the knowledge on the problem at

hand provide guidelines for judging the quality of the optimum [154].
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Chapter 5

Application of RBRDO on passive

vibration control: optimal design of

tuned mass dampers

5.1 Introduction

An important task in the field of mechanical engineering is to suppress the vibrations

of dynamic structures. To this end, passive or active vibration control techniques have

been developed. One of the most widely used strategies for passive vibration control is

based on applications of the tuned mass damper (TMD). A typical TMD, consisting of

a mass, a damping and a spring, is commonly attached to a protected primary structure

for suppressing undesirable vibrations induced by external excitations.

Through intensive researches and developments in recent years, the TMD has been

accepted as an effective vibration control device to enhance the performances of the

protected structures [159–162]. For the TMD is one of the simplest and most reliable

passive control devices, the study on optimal design of the TMD is still an ongoing

topic. Since Den Hartog [163] first proposed an optimal design for the TMD for an

undamped single DOF (SDOF) structure, many optimal design methods for the TMD

have been developed to control the structural vibration under various types of excitation

sources [162, 164–168]. The optimal design of the TMD is obtained by the above meth-

ods with assumptions of deterministic structural parameters. This problem is always

characterized as conventional SDO (CSDO).

However, the assumption that uncertainties in structural systems have negligible effects

on response can become unacceptable in many real situations [169]. The effectiveness

of the TMD may be therefore drastically reduced [126]. It is reported that the uncer-

tainties in structural parameters might have equal or even greater influence on response
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than uncertainty in excitation [170]. Moreover, Jensen [171] indicated that different

designs are attained due to the influences of parameter uncertainties. In this sense, the

uncertainties must be considered.

Recently, much attention has been drawn on vibration control problems with both struc-

tural uncertainties and random excitations. The optimal design can be captured by two

main approaches [172]. One from the risk point of view is RBDO [125], which aims to

minimize the probability of failure with respect to the random response of the protected

structure; the other is to reduce the sensitivity of the performances to the variabilities,

which is achieved by RDO [172]. The optimal design by the former method concentrates

on the rare events at the tails of the PDF and thereafter can confine the amplitude with-

in some threshold, while the latter guarantees the quality. Both measurements could be

very valuable in design optimization of the TMD. To our knowledge, nevertheless, there

is little research work that is concerned about both properties for the TMD optimization.

Therefore, in this chapter we will focus on application of RBRDO to optimally design

the TMD with consideration of structural uncertainties as well as stochastic excitations.

Quite often, the objective function of RBRDO is constructed by minimizing the mean

and standard deviation of the random response with respect to the protected structure

simultaneously. Nonetheless, mean minimization for the TMD design can be eliminated

since the response level is, in a way, limited by the threshold required in the proba-

bilistic constraint. In this case, the original multi-objective optimization is reduced to

a single-objective optimization. For completeness and comparison, CSDO and RBRDO

for deterministic structures are also regarded.

5.2 CSDO

An ideal mechanical TMD system (see Fig. 5.1) is composed of a protected primary

structure represented by a SDOF system with mass mS , stiffness kS and damping cS ,

and a passive TMD with mass mT , stiffness kT and damping cT . All the parameters of

interest are time-invariant. In case of the TMD system excited by a base acceleration,

the structural response is determined by solving the motion equations

MẌ(t) + CẊ(t) + KX(t) = Z(t), (5.1)
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Figure 5.1: TMD system

where the mass matrix M, stiffness matrix C, damping matrix K and the excitation are

described respectively as

M =

mT 0

0 mS

 , C =

 cT −cT

−cT cS + cT

 , K =

 kT −kT

−kT kT + kS

 , Z(t) = ẍb(t)

mT

mS

 ,

(5.2)

and X = [xT , xS ]T is the displacement vector relative to the base, xT is the relative

displacement of the TMD, and xS is concerned with the protected structure. Introducing

the state space vector YS = [xT , xS , ẋT , ẋS ]T, the original problem is converted into the

state space is

ẎS(t) = ASYS(t) + rZ ẍb(t), (5.3)

where rZ = [0, 0, 1, 1]T, and

AS =

 0 I

HK HC

 , (5.4)

HK = M−1K =

−ω2
T ω2

T

γω2
T −(ω2

S + γω2
T )

 , (5.5)

HC = M−1C =

−2ζTωT 2ζTωT

2γζTωT −(2ζSωS + 2γζTωT )

 . (5.6)

In the last three expressions, 0 and I are the zero and unit matrices with dimension

2× 2, and the structural parameters are defined as

ωT =

√
kT
mT

, ωS =

√
kS
mS

, ζT =
cT

2
√
mTkT

, ζS =
cS

2
√
mSkS

, γ =
mT

mS
. (5.7)
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The seismic acceleration ẍb(t) is modeled by the Kanai-Tajimi stationary stochastic

process [173]. The filter is considered as an elastically suspended mass with a natural

frequency ωf and damping ratio ζf . The acceleration ẍb(t) is expressed as

ẍf (t) + 2ζfωf ẋf (t) + ω2
fxf (t) = −w(t),

ẍb(t) = ẍf (t) + w(t) = −(2ζfωf ẋf (t) + ω2
fxf (t)), (5.8)

in which w(t) is a stationary Gaussian zero mean white noise process whose intensity is

S0. The global state space vector is introduced as

Y = [xT , xS , xf , ẋT , ẋS , ẋf ]T. (5.9)

The state space covariance matrix RYY in the stationary case is then obtained as the

solution of the Lyapunov equation [174], which is represented as an algebraic matrix

equation of size 6× 6,

ARYY + RYYAT + B = 0, (5.10)

where

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−ω2
T ω2

T ω2
f −2ζTωT 2ζTωT 2ζfωf

γω2
T −(ω2

S + γω2
T ) ω2

f 2γζTωT −(2ζSωS + 2γζTωT ) 2ζfωf

0 0 −ω2
f 0 0 −2ζfωf


, (5.11)

and the matrix B has all null elements except for the last one on the main diagonal,

[B]6,6 = 2πS0. In the same manner, the covariance matrix RY0Y0 of the unprotected

structure is obtained by solving the following Lyapunov equation

A0RY0Y0 + RY0Y0A
T
0 + B0 = 0, (5.12)

where the state space vector is

Y0 = [xS , xf , ẋS , ẋf ]T, (5.13)
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the system matrix is

A0 =


0 0 1 0

0 0 0 1

−ω2
S ω2

f −2ζSωS 2ζfωf

0 −ω2
S 0 −2ζfωf

 , (5.14)

and the 4× 4 matrix B0 has only one non-zero element as [B]4,4 = 2πS0.

Then we can get the root of the mean square of the displacement, σS and σ0
S , associated

with the protected structure and unprotected structure respectively, i.e.

σS =
√

[RYY]2,2, (5.15)

σ0
S =

√
[RY0Y0 ]1,1. (5.16)

The primary concept of the optimal design for the TMD is to find optimal TMD pa-

rameters to suppress the vibration as far as possible. Then the design variables are

d = [mT , kT , ζT ]T. Sometimes, researchers prefer to fix the mass ratio to control the

mass of the TMD. In this sense, the design variables are reduced to d = [kT , ζT ]T.

In CSDO, the optimization problem is constructed as un unconstraint one by minimiz-

ing the mean square response f(d) = σ2
S , based on which the analytical formula for the

optimal TMD parameters, also termed as the optimal frequency ratio Ωopt (or the opti-

mal frequency ωT,opt) and the optimal damping ratio ζT,opt, are given by the following

simple analytical expressions [164] by assuming ζS = 0 as

Ωopt =
ωT,opt

ωS
=

√
2− γ

2(γ + 1)2
, (5.17)

ζT,opt =

√
γ(3γ + 4)

2(γ + 1)(γ + 2)
, (5.18)

These expressions have been found to be accurate even for non-zero, but small values of

ζS . The optimal TMD parameters depend on the mass ratio γ only. Namely, when the

system is considered to be deterministic, and is with light damping, the optimal design

of the TMD can be obtained readily.

Keeping in mind that the optimum obtained by CSDO is under the hypothesis of sta-

tionary excitations, which in a way is reasonable. For earthquake loads, for example,
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the broadband assumption is usually well justified. Therefore, this assumption will be

throughout this chapter.

5.3 RBRDO

In RBRDO, design makers aim to reduce variability of the random response with respect

to the protected structure, and meanwhile to make sure a small probability of failure

that the random response of the protected structure exceeds a prescribed threshold. To

realized the former target, the objective function (or the performance) is always based on

minimizing the mean square response (or the associated root) for deterministic structures

as is done in CSDO, or in the case of uncertain ones, on minimizing the expected valued

of the mean square response [171]. The latter is always involved in constraints. Namely,

RBRDO is actually a constraint optimization problem. For simplicity and clarity, the

RBRDO problem for deterministic structures is termed by RBRDO-I, and RBRDO-

II denotes the RBRDO problem for uncertain structures.

5.3.1 RBRDO-I

If the protected structure is assumed to be deterministic and subjected to stationary

excitations, the objective function can be defined in a dimensionless way as the ratio

between the root of the mean square of the protected structure σS and the unprotected

one σ0
S [172]. This definition represents a direct statistical index of vibration protection

effectiveness, which shows the protection effectiveness when its value is smaller than one.

Obviously, the smaller the value is, the better the effectiveness is. Then the optimization

problem is constructed as

minimize f(d) =
σS(d)

σ0
S

subject to PF (d) = P (g(d,Z) = xS,t −max|xS(d,Z)| ≤ 0) ≤ PF,t, (5.19)

where d is the design variable vector, Z represents the random variables in excitations,

PF is the first passage probability of failure with respect to the protected structure that

the maximum response max|xS(d, t)| exceeds the prescribed threshold xS,t in the time

interval [0, T ], and PF,t is the target probability of failure.
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Quantities like σS(d) and σ0
S (see Eq. (5.15) and Eq. (5.16) respectively) involved in

this optimization problem can be obtained easily. Thanks of the low DOF, PF is also

computationally tractable to calculate in the context of MCS. However, RBRDO will be

quite expensive if reliability analysis is nested in the optimization procedure. To tackle

this, the sequential strategy proposed in Chapter 4 is used to decouple reliability analysis

from the optimization loop and thereafter reduce the number of reliability analysis.

5.3.2 RBRDO-II

To consider uncertainties in both structure and excitation, in a simple way, three param-

eters are treated as uncertainties: the protected structure frequency ωS , the damping

ratio ζS and the mass ratio γ, which are caused by inaccurate measurements or degra-

dation varying with time.

Essentially, these aforementioned uncertainties are induced by the variability in the

mass mS , stiffness kS and the damping cS of the protected structure. Then it is pos-

sible to introduce the random vector which collects the following uncertain parameters

θ = [mS , kS , cS , ωf , ζf ]T, provided that the excitation parameters ωf and ζf are always

supposed to be uncertain.

For the same reason, if the probable changes in the TMD parameters are also consid-

ered, the uncertainties will be extended to θ = [mS , kS , cS ,mT , kT , cT , ωf , ζf ]T. For

convenience, cS and cT will be replaced by ζS and ζT .

Difficulties are brought on evaluating the root of the mean square by entering the pa-

rameter uncertainties, which cannot be obtained by Eq. (5.15) since it is based on the

classic vibration theory that none of uncertainties are considered in Eq. (5.11). If the

system is treated as deterministic system for each set of realizations θ̂ of θ, i.e. σS(d, θ̂)

can be calculated by Eq. (5.15), one can utilize the average of σS(d,θ) [171] to construct

the objective function. The associated Monte Carlo estimator is written as

E[σS(d,θ)] ≈
Nmc∑
k=1

σS(d,θ(k)), (5.20)
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where θ(k) is equivalent to θ̂. Then the optimization problem is finally described in a

dimensionless way as

minimize f(d) =
E[σS(d,θ)]

σ0
S

subject to PF (d) = P (g(d,Θ) = xS,t −max|xS(d,Θ)| ≤ 0) ≤ PF,t, (5.21)

in which Θ = {Z,θ} contains all uncertainties in both excitations and structures.

To obtain E[σS(d,θ)], Nmc Lyapunov equations (see Eq.(5.11) and Eq. (5.20)) have

to be solved repeatedly. This is usually not computationally efficient. Be aware that

E[σS(d,θ)] is the function of θ, the maximum dimension of which is 8. In this occasion,

E[σS(d,θ)] can be calculated by the PCE based MCS method proposed in Chapter 3.

Other computational issues are similar to those in Section 5.3.1.

5.4 Numerical examples

The purpose of the numerical study is twofold, i.e. demonstration of the effectiveness

of RBRDO for the TMD with respect to both deterministic and uncertain structures.

The protected structure has the characteristics: µmS = 100kg, µkS = 19460.25N/m,

µωS = 13.95rad/s, and the excitation parameters are described as µωf = 18.62rad/s as

well as µζf = 0.4. All the uncertainties of interest are assumed to be independent normal

variables. Other details will be specified in the following.

To show the ability of vibration control of the well designed TMD, two aspects are

considered: the performance represented by the objective function fopt = σS/σ
0
S or

fopt = E(σS)/σ0
S , and the probability of failure associated with the optimal design PF .

The former corresponds to the dispersion reduction of the random response, and the

latter presents the structural safety with respect to some prescribed threshold.

5.4.1 RBRDO-I versus CSDO

In this part, the effectiveness of RBRDO for deterministic structures (i.e. RBRDO-I)

is examined, and is demonstrated by comparing with CSDO. To carry out RBRDO-I,

the target probability of failure and the corresponding threshold must be defined first.
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5.4. Numerical examples

Although no reliability information is produced during CSDO, such information can

still be provided by the results of CSDO. One just needs to fix the TMD system with

respect to each set of optimal design provided by CSDO (see Eq. (5.17) and Eq. (5.18)),

depending on which the associated probability of failure under some prescribed threshold

can be obtained.
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Figure 5.2: Comparisons of optimal designs between CSDO and RBRDO-I for deter-
ministic structure with variation of the mass ratio γ under xS,t = 0.02m

Fig. 5.2 compares the optimal results provided by CSDO and RBRDO-I with respect to

three damping ratios of the protected structure, i.e. ζS = 0.02, 0.05, 0.10. The threshold

is chosen as xS,t = 0.02m. Obviously, the results provided by RBRDO-I and CSDO are

very close to each other. This implies that RBRDO-I is equivalent to CSDO, and that
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Figure 5.3: Comparisons of effectiveness between CSDO and RBRDO-I for determin-
istic structure with variation of the mass ratio γ under xS,t = 0.02m.

124



5.4. Numerical examples

the protected structure damping has little influence on the optimal designs obtained by

RBRDO-I or CSDO. The similar results has been observed in the work [125].

Little fluctuations of the optimal designs between CSDO and RBRDO-I shown in Fig.

5.2 are induced by final probabilities of failure provided by RBRDO-I that are not exactly

the same (actually smaller than the target ones) with those of CSDO corresponding to

the same ζS and γ. This is illustrated in Fig. 5.3a, from which we can also see that the

probabilities are apparently distinguished due to different levels of ζS , and meanwhile

the larger the ζS is, the smaller the probability of failure is. One conclusion is that the

level of ζS has significant influences on the level of probability of failure.

Seen from Fig. 5.3b, the variability of the response is reduced as all the ratios are less

than one. However, it appears that the smaller ζS is, the better the effectiveness is.

Actually, this is not true since the roots of the mean square of the unprotected structure

are different due to distinguished ζS , i.e. σ0
S = 0.0571, 0.0360, 0.0253 corresponding to

ζS = 0.02, 0.05, 0.10, respectively. More directly, the final roots are compared in Fig.

5.3c. Obviously, larger ζS is helpful to reduce the variability in the response.

Based on studies of the effects of ζS , the optimal designs of RBRDO-I are not sensitive

to the damping ratio of the protected structure ζS . However, the latter bring significant

influences on the effectiveness of the TMD. Quite often, large ζS leads to high reliability

and robustness. It is not difficult to image when ζS is random, changes of effectiveness

cannot be perceived directly since the optimal designs of CSDO are independent of ζS .

This implies uncertainties should be considered for more reliable or more robust designs.

In the above studies, we concentrate on the effects of ζS under unique threshold xS,t =

0.02m, which leads to large probabilities of failure even for γ = 0.1 (see Fig. 5.3a).

In these cases, the associated optimal designs of RBRDO-I are very close to those of

CSDO. However, there is a possibility that lower probabilities of failure may bring large

deviations between the results of CSDO and RBRDO-I. From this view, low level should

be taken into account. Generally, large thresholds signify high reliability. To this end,

the threshold is selected as xS,t = 0.03m.

Table 5.1 lists the final probabilities of failure computed by RBRDO-I, as well as the

target ones provided by CSDO. The final probabilities of failure in RBRDO-I are smaller
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Figure 5.4: Comparisons of effectiveness and optimal designs between CSDO and
RBRDO-I for deterministic structure with variation of the mass ratio γ under ζS = 0.02
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than those of CSDO, such that the former method gives a safer design. Note that these

results are obtained under ζS = 0.02.

Table 5.1: Probabilities of failure provided by CSDO and RBRDO-I associated with
xS,t = 0.03m and ζS = 0.02

Method
γ

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

CSDO 0.1871 0.0571 0.0209 0.0111 0.0059 0.0031 0.0020 0.0017 0.0013 0.0009
RBRDO-I 0.1819 0.0544 0.0202 0.0086 0.0047 0.0029 0.0017 0.0014 0.0012 0.0008

The performance fopt is also compared, which is illustrated in Fig. 5.4a. It is evident

that the dispersion reductions of RBRDO-I with respect to both thresholds xS,t = 0.02m

and xS,t = 0.03m are almost identical with the ones of CSDO. The same things can be

found from the optimal solutions ωT,opt and ζT,opt that are respectively depicted in Fig.

5.4b and Fig. 5.4c. We can then conclude that RBRDO-I is equivalent to CSDO as long

as they own the same probabilistic constraint, i.e PF,t and the associated xS,t.

In addition, an important property should be stressed: regardless of other conditions,

large mass ratio γ is liable to reduce both of the probability of failure PF and the

performance fopt, which would be helpful for the TMD design for uncertain structures.

5.4.2 RBRDO-II versus CSDO

Effects of parameter uncertainties are investigated first, which are shown by comparisons

of the probabilities of failure under the optimal designs obtained by CSDO. Namely,

optimal designs of the uncertain structures are obtained by CSDO in the mean sense.

Parameter uncertainties θ will be studied under two cases. One is related to Case

1, θ = [mS , kS , cS , ωf , ζf ]T with COV= 5%, and the other is connected with Case 2,

θ = [mS , kS , cS ,mT , kT , cT , ωf , ζf ]T with COV= 5%. The design variables are chosen as

d = [mT , kT , ζT ]T for Case 1, and d = [µmT , µkT , µζT ]T for Case 2.

Comparisons of the probabilities of failure under each set of optimal designs with respect

to CSDO are shown in Fig. 5.5. The damping ratio of the protected structure is chosen

as ζS = 0.02, and the threshold is xS,t = 0.02m. It is observed that Case 2 corresponds

to the largest probabilities of failure which means the higher level of the uncertainties,

the lower the reliability is. For uncertain structures, if one wants to pursue the same

reliability with deterministic structures, the obtained designs by CSDO are not optimal

127



5. Application of RBRDO on passive vibration control: optimal design of TMD

0.02 0.04 0.06 0.08 0.1
0.2

0.4

0.6

0.8

1

γ

P
F

 

 

CSDO
Case 1
Case 2

Figure 5.5: Comparisons of probabilities of failure with variation of the mass ratio γ
under threshold xS,t = 0.02m and ζS = 0.02 with/without uncertainties

any more and new ones must be searched. Next, we will use RBRDO-II to realize

optimal designs under parameter uncertainties.

Take the probabilities of failure of the deterministic structure as the target probabilities

of failure (see the red solid line in Fig. 5.5), the values of which are calculated under

each set of optimal designs provided by CSDO, i.e. each optimal set is obtained by

fixing the mass ratio γ. In CSDO, if the mass ratio γ is fixed, all the other quantities

are determined. That is, one target probability of failure is correlated with one fixed

mass ratio γ. Accordingly, the compared studies (i.e. in Fig. 5.6 and Fig. 5.7) will

be also shown based on the mass ratio γ, which actually represents the different levels

of probability of failure provided by CSDO. For convenience and distinction, the mass

ratio in CSDO is denoted as γ, while in RBRDO-II it is represented as the nominal value

γN = µmT /µmS .

Fig. 5.6a compares the final probabilities of failure obtained by RBRDO-II with respect

to Case 1 and Case 2 and the target ones supplied by CSDO, respectively. Results

show that RBRDO-II can achieve the target by adapting parameters of the TMD. The

associated performance fopt is schematically described in Fig. 5.6b. It is found that the

variability obtained by RBRDO-II is always smaller than the one of CSDO, regardless

of the level of uncertainties.

From Fig. 5.6, we can conclude that the effectiveness of vibration control of new designs

of RBRDO-II is improved and RBRDO-II is a powerful tool for the TMD design under
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parameter uncertainties. For one thing, new designs achieve the same target reliability

with CSDO in consideration of parameter uncertainties. For another, the performance

is better than CSDO.
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Figure 5.6: Comparisons of effectiveness between CSDO and RBRDO-II with varia-
tion of the mass ratio γ for uncertain structure under xS,t = 0.02m and ζS = 0.02

In Fig. 5.7a, the associated optimal mass ratios γN = µmT /µmS of RBRDO-II are found

to be greater than those of CSDO. This is not occasional since increasing the mass ratio

is helpful to obtain high reliability which has been demonstrated in Section 5.4.1.

The corresponding optimal frequency and the damping ratio are given in Fig. 5.7b and

Fig. 5.7c. There is no monotonic increasing or decreasing relation with variation of the

mass ratio γ (i.e. the target probability of failure). However, optimal values of these
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Figure 5.7: Comparisons of optimal designs between CSDO and RBRDO-II with
variation of the mass ratio γ for uncertain structure under xS,t = 0.02m and ζS = 0.02.
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two quantities are all close to the values of CSDO. This property is very important for

the TMD design when considering structural uncertainties. Roughly speaking, under

the same probability of failure with respect to the same threshold, one can capture

the optimal designs of uncertain structures by setting the optimal frequencies and the

damping ratio of the TMD around the associated values provided by CSDO, and by

keeping the mass greater than the one in CSDO.

Note that in the above investigations, the target probabilities of failure are provided by

CSDO for comparative purposes, and they are relatively large and different from each

other with distinguished mass ratio. In the following studies, uniquely smaller values

independent from CSDO will be chosen to show more general cases. All the parameters

are considered to be random, i.e. θ = [mS , kS , ζS ,mT , kT , ζT , ωf , ζf ]T. The associated

COV is 10%, which is characterized as Case 3.

For practical applications, the mass of the TMD is usually not very large, i.e. γ ≤ 10%.

In this sense, the mass is usually pre-fixed according to the mass ratio γ = µMT
/µMS

.

As well known, the frequency of the TMD plays a significant role in vibration control.

To show effects of uncertainties on the optimal frequency ωT,opt, we will fix the the

damping ratio with three levels µζT = 0.05, 0.10, 0.20. Then, only the mean value of

the stiffness µKT is seen as the design variable. The target probability of failure is

PF,t = 0.01 with the displacement threshold xS,t = 0.07m and the damping ratio of the

protected structure is µζS = 0.1. In these circumstances, the optimal frequency ωT,opt

of the TMD are compared in Fig. 5.8.

0.02 0.04 0.06 0.08 0.1
11.5

12

12.5

13

13.5

14

14.5

γ

ω
T

,o
pt

 

 

CSDO
RBRDO−II: Case 3, ζ

T
=0.05

RBRDO−II: Case 3, ζ
T
=0.10

RBRDO−II: Case 3, ζ
T
=0.20

Figure 5.8: Comparisons of optimal frequency ωT,opt with variation of the mass ratio γ
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From Fig. 5.8, almost all the optimal frequencies are smaller than those of CSDO.

To this end, reduction of the TMD frequency is useful to suppress the vibration. For

each damping level the optimal frequency trends to be decreased, but not monotonic.

The reason is that the final probabilities of failure corresponding to these designs are

all smaller than PF,t = 0.01 but not the same. It is found that optimal frequencies

corresponding to each fixed damping ratio under the same mass ratio are somehow close

to each other. From this sense, the optimal frequencies are not very sensitive to the

TMD damping ratio.
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Figure 5.9: Comparisons of the performance fopt with variation of the mass ratio γ
under the target probability of failure PF,t = 0.01 related to the threshold xS,t = 0.07m.

The associated performance is described in Fig. 5.9. The effectiveness of variability

reduction becomes better as the mass ratio increases. This is identical with the results

obtained by CSDO shown in Fig. 5.4a. After γ = 0.05 especially, the larger the damping

is, the more reduction can be observed. A possible conclusion is that the large damping

of the TMD is valuable for the robust design. In summary, under the same target

probability of failure associated with the same threshold, different ζT brings not much

influence on the optimal frequencies ωT,opt, while large ζT is useful to improve the quality.

The studies mentioned above are only related to PF,t = 0.01 and xS,t = 0.07m. Depend-

ing on these simulations, the effects of the threshold are not clear. To this end, besides

xS,t = 0.07m, another two thresholds xS,t = 0.05m and xS,t = 0.06m are also concerned.

The target probability of failure is set as PF,t = 0.005. As the new reliability level is

difficult to achieve when γ < 0.05, the relations in these two figures are described from
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Figure 5.10: Comparisons of optimal frequency ωT,opt with variation of the mass ratio
γ under the target probability of failure PF,t = 0.005 and the fixed damping µζT = 0.1.

γ = 0.05 to γ = 0.1. Fig. 5.10 and Fig. 5.11 give the optimal solutions of the optimal

frequencies and the performances under these new circumstances.
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Figure 5.11: Comparison of the performance fopt with variation of the mass ratio γ
under the target probability of failure PF,t = 0.005 and the fixed damping µζT = 0.1.

In Fig. 5.10, to achieve the target probability of failure, the smallest frequencies of the

TMD are required corresponding to the smallest threshold xS,t = 0.05m. Whereas in

this case, the largest standard deviation is obtained (see Fig. 5.11). This situation is not

occasional according to the study in Section 2.4.3.2. It is found that smaller mean value

of the random response usually corresponds to larger standard deviation of the random

response. In the framework of RBRDO for the TMD, the objective is to minimize the

standard deviation but the mean. However, the latter is somehow equivalent to the
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threshold in reliability analysis. This is why when the smallest threshold is connected

with the largest standard deviation compared with the other larger ones. We can see

again that large mass ratios are useful to reduce the variability of the random response,

no matter what threshold is applied.

Table 5.2: Sequential strategy of RBRDO for the TMD

Sub-optimization µmT µkT µζT fopt PF

0? 5.0000 1000.0 0.0500 1.6223 1.45E − 2
1 5.5032 1003.6 0.0418 1.5731 −??
2 5.9537 903.25 0.0462 2.1750 −
3 6.5499 812.93 0.0516 1.1908 −
4 7.1633 889.07 0.0530 0.8261 9.90E − 4
? stands for the start point;
?? denotes the sub-optimization is not converged.

At last, we consider the a RBRDO problem with Case 3 under the target probability

is PF,t = 0.001 corresponding to the threshold xS,t = 0.06m. This procedure is realized

by the sequential strategy, the whole procedure of which is described in Table 5.2.

Comparing the reliability and the performance in conjunction with the initial condition

and the optimal design, it is found that: 1) the final frequency of the TMD is smaller

than the initial one, i.e 11.14rad/s vs 13.14rad/s; 2) the mass ratio is increased since

this property is useful to reduce the mean square.

5.5 Summary

Due to the uncertainties involved in both structures and excitations, CSDO is not appro-

priate for random structures since the uncertainties in structures can bring bad influences

of the control ability of the TMD. Therefore, in this chapter, RBRDO is applied to de-

sign the TMD for uncertain structures. In RBRDO, not only the quality of the protected

structure is considered, but also the safety is taken into account. The former connected

with the design objective robustness is quantified by the mean value of the mean square

response; the latter is realized by achieving a low probability of failure corresponding to

some prescribed threshold.

Compared with CSDO, numerical results demonstrated that RBRDO-I is equivalent to

CSDO as long as they own the same probabilistic constraint, i.e PF,t and the associ-

ated xS,t. Furthermore, the effectiveness of vibration control of the TMD designed by
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5.5. Summary

RBRDO-II is improved because the same target reliability with CSDO is achieved by

taking parameter uncertainties into account. For uncertain structures, some properties

related to the performance fopt, by studying a SDOF system, are concluded as follows:

• More variability reduction with respect to the random response will be realized as

the mass ratio increases.

• Large damping ratios ζT and ζS are helpful to reduce fopt.

• To achieve the same target probability of failure PF,t, the smaller the associated

threshold xS,t is, the larger the the structural performance fopt is, and vise versa.
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Chapter 6

Conclusion

6.1 Conclusions

In this dissertation, we study the design optimization for random structural systems un-

der stochastic excitations in the framework of RBRDO, in which both quality and safety

are regarded. From the view of safety, reliability analysis is required to ensure a low

probability of failure corresponding to the response exceeding a prescribed threshold.

With respect to quality, the concept of robustness is applied, which aims at reduc-

ing the performance sensitivity to uncertainties. In an extended scope, RBDO is also

involved. Two main aspects have been considered to make RBRDO mathematically

robust and computationally efficient: advanced methods for UA and sequential formula-

tions of RBRDO which decouple both reliability analysis and moment evaluations from

the optimization procedure.

6.1.1 PCE based MCS method for UA

A PCE based MCS method is developed to carry out UA, which connects with not

only reliability analysis for design feasibility robustness but also moment evaluations for

design objective robustness. In this method, the PCE is applied to approximate the

random response so that large quantities of structural analyses are avoided, leading to

the enhanced efficiency.

However, implementations of the PCE are always confined to random dynamic responses

due to the curse of high dimensionality induced by the stochastic excitations. Therefore,

we use the convolution form to compute the dynamic response, in which the PCE is

applied to approximate the modal properties so that the dimension of uncertainties is

reduced since only structural random parameters are considered.
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6. Conclusion

Case studies exhibit that the proposed method has the capability to cope with UA

for both static and dynamic problems with relatively large COV, e.g. 10%, and with

small probability of failure, e.g. 10−4 or 10−5. It is found that this method can achieve

reasonable accuracy and greater efficiency compared with direct MCS. Depending on

the case studies, at least the 2nd order PCE is necessary.

6.1.2 Modal intermixing problem

As the PCE based method is associated with modal analysis and MCS, the modal

intermixing problem is also regarded since it is always encountered within MCS sampling.

Investigations show that the modal intermixing is aroused by the large dispersion of

random structural parameters. To correctly capture the uncertainties in the modal

content by analyzing the modal scatter observed in MCS, it is indispensable to avoid

this problem. Namely, the modal behaviors of random models should agree with those

of the mean model as far as possible.

For this purpose, the MAC factor is used to quantify the modal intermixing between

some random mode and the corresponding mean mode. And thereafter, based on the

concept of worst case, a univariable based method is proposed to check which parameter

leads to this problem and to avert it by reducing the COV. Although the variance (i.e.

COV) is not easy to fix or control, the small one fulfills the practical applications, from

the view of generating positive samples and grasping the consistently inherent properties

of random models with the mean model. Based on simulations, it is found that when

the COV of random structural parameters is not greater than 10%, there is no sever

modal intermixing.

6.1.3 Sequential RBRDO

The sequential formulation of RBRDO is developed. The main advantages of this for-

mulation are to improve efficiency, and to overcome the non-convergence problem en-

countered in nested MCS based RBRDO. Different from conventional sequential strategy

that mainly aims to decouple the reliability analysis from the optimization procedure, we

also concentrate on making the moment evaluations independent from the optimization

procedure for computational purposes.
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6.1. Conclusions

To realize the sequential RBRDO, locally ”first-order” exponential approximation around

the current design is implemented to construct the equivalently deterministic objective

functions and probabilistic constraints. The associated coefficients can be evaluated by

the LSM. However, the efficiency is always challenged by high dimension of the design

variables. Hence, the auxiliary distribution based reliability sensitivity analysis and the

PCE based moment sensitivity analysis are developed to calculate the associated coeffi-

cients within one reliability analysis and one moment evaluation procedure, respectively.

Since the sequential RBRDO is an approximation of the original problem, some respects

must be taken into account:

1. Adaptive bounds. According to significant discontinuities in probability of failure

due to design changes, the local approximation concept is applied. In this sense,

the optimum is supposed to be located in the subdomain (or bounds) of the current

design point. Note that more accurate results can be obtained in a relatively small

subdomain. To make the approximation available, the controlling coefficients are

recommended as 0 < δL
i ≤ δR

i ≤ 10% depending on numerical investigations.

2. Start point. In spite of that the relatively small bound is helpful to guarantee the

accuracy, however if the start point is very far from the optimum, low convergence

problems arise, or even worse no convergence is achieved. To this end, the start

point is chosen in the failure regions whose probability of failure is close to the

target one. The details of the problems or engineering experiences would be useful

to choose such a start point.

3. Enhanced convergent condition. Stated again, the sequential formulation is ac-

tually an approximation of the original problem. There is a possibility that the

optimal designs obtained by the equivalent deterministic optimization might not

satisfy the real probabilistic constraints, even if the sub-optimization-procedure is

converged. In this sense, it is necessary to execute the reliability analysis after

each sub-optimization-procedure to check if the current design is the desired one,

although this aggravates somehow the computational expense.
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6. Conclusion

6.1.4 Application of RBRDO on the design optimization of the TMD

The main contribution of this part is to apply RBRDO on passive vibration control,

i.e. the design optimization of the TMD. Unlike CSDO, this framework can consider

uncertainties in both parameters and excitations. Minimization of the mean square of

the response is retained in objective function, which aims to reduce the variability of

the random response. Reliability analysis is involved in the probability constraints not

only to obtain high reliability but also to control the amplitude of the random response

by setting some prescribed threshold. Numerical simulations demonstrate that RBRDO

is a powerful tool in the design optimization of the TMD for both deterministic and

uncertain structures by studying a SDOF system. This method can be readily extended

to MDOF system. Some properties related to the performance fopt, are concluded as

follows:

• More variability reduction with respect to the random response will be realized as

the mass ratio increases.

• Large damping ratios ζT and ζS are helpful to reduce fopt.

• To achieve the same target probability of failure PF,t, the smaller the associated

threshold xS,t is, the larger the structural performance fopt is, and the vise versa.

6.2 Future work

• In this dissertation, the uncertainty is assumed as the aleatory type. In real

engineering, probabilistic characteristics of design variables may not be available.

In this sense, other theories, such as fuzzy set theory, evidence theory and convex

model, can be used. Under these theories, how to apply the concepts of reliability,

robustness, or the equivalence is worth to be studied.

• The PCE based MCS method is raised to quantify the uncertainties. Note that this

method can deal with high dimensionally dynamic problem induced by the stochas-

tic excitations, provided that the structures are linear. For nonlinear structures

however, this method may not be well suited. Although linearization techniques

can be used to convert nonlinear problems into linear problems, sometimes strong
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6.2. Future work

nonlinearity cannot be ignored. To this end, extension of this method should be

considered in the future.

• In this work, RBRDO is applied on simple structures. It would be interesting to

use it to solve more complex systems, such as the buildings with multi-TMD to

overcome the mistuned problems, and mechatronic systems, including mechanical

as well as electronic hardware and software.

• The current technology for RBRDO has one limitation. That is, current RBRDO

just considers component reliability. Even if each component satisfies the reliability

target, the whole system may not satisfy the reliability target. Thus, system level

RBRDO should be considered in the future.
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the frequency response functions of uncertain structural systems. Computers &

Structures, 87(5-6):332–341, 2009.

155



Bibliography

[151] R.J. Allemang. The modal assurance criterion–twenty years of use and abuse.

Sound and Vibration, 37(8):14–23, 2003.

[152] J. Kanda and B. Ellingwood. Formulation of load factors based on optimum

reliability. Structural Safety, 9(3):197–210, 1991.

[153] H.A. Jensen. Structural optimization of linear dynamical systems under stochastic

excitation: a moving reliability database approach. Computer methods in applied

mechanics and engineering, 194(12-16):1757–1778, 2005.

[154] M.A. Valdebenito and G.I. Schuëller. Efficient strategies for reliability-based op-

timization involving non-linear, dynamical structures. Computers & Structures,

2010.

[155] S.K. Au. Reliability-based design sensitivity by efficient simulation. Computers &

structures, 83(14):1048–1061, 2005.

[156] Y.T. Wu. Computational methods for efficient structural reliability and reliability

sensitivity analysis. AIAA journal, 32(8):1717–1723, 1994.

[157] Y.T. Wu and S. Mohanty. Variable screening and ranking using sampling-based

sensitivity measures. Reliability Engineering & System Safety, 91(6):634–647,

2006.

[158] D. Padmanabhan, H. Agarwal, J.E. Renaud, and S.M. Batill. A study using monte

carlo simulation for failure probability calculation in reliability-based optimization.

Optimization and Engineering, 7(3):297–316, 2006.

[159] R.J. McNamara. Tuned mass dampers for buildings. Journal of the Structural

Division, 103(9):1785–1798, 1977.

[160] K. Kwok. Damping increase in building with tuned mass damper. Journal of

Engineering Mechanics, 110(11):1645–1649, 1984.

[161] M.P. Singh, S. Singh, and L.M. Moreschi. Tuned mass dampers for response control

of torsional buildings. Earthquake engineering & structural dynamics, 31(4):749–

769, 2002.

[162] J.M. Ueng, C.C. Lin, and J.F. Wang. Practical design issues of tuned mass dampers

for torsionally coupled buildings under earthquake loadings. The Structural Design

of Tall and Special Buildings, 17(1):133–165, 2008.

156



Bibliography

[163] J.P. den Hartog. Mechanical vibrations. London: MacGraw-Hill Publishing Com-

pany, Ltd, 1956.

[164] G.B. Warburton and E.O. Ayorinde. Optimum absorber parameters for simple

systems. Earthquake Engineering & Structural Dynamics, 8(3):197–217, 1980.

[165] G.B. Warburton. Optimum absorber parameters for various combinations of re-

sponse and excitation parameters. Earthquake Engineering & Structural Dynam-

ics, 10(3):381–401, 1982.

[166] Y. Fujino and M. Abe. Design formulas for tuned mass dampers based on a pertur-

bation technique. Earthquake engineering & structural dynamics, 22(10):833–854,

1993.

[167] C. Li and Y. Liu. Optimum multiple tuned mass dampers for structures under

the ground acceleration based on the uniform distribution of system parameters.

Earthquake engineering & structural dynamics, 32(5):671–690, 2003.

[168] A.Y.T. Leung, H. Zhang, C.C. Cheng, and Y.Y. Lee. Particle swarm optimization

of tmd by non-stationary base excitation during earthquake. Earthquake Engi-

neering & Structural Dynamics, 37(9):1223–1246, 2008.

[169] G.C. Marano, R. Greco, and S. Sgobba. A comparison between different robust

optimum design approaches: Application to tuned mass dampers. Probabilistic

Engineering Mechanics, 25(1):108–118, 2010.

[170] T. Igusa and AD Kiureghian. Response of uncertain systems to stochastic excita-

tion. Journal of engineering mechanics, 114(5):812–832, 1988.

[171] H. Jensen, M. Setareh, and R. Peek. Tmds for vibration control of systems with

uncertain properties. Journal of Structural Engineering, 118(12):3285–3296, 1992.

[172] G.C. Marano, S. Sgobba, R. Greco, and M. Mezzina. Robust optimum design of

tuned mass dampers devices in random vibrations mitigation. Journal of Sound

and Vibration, 313(3-5):472–492, 2008.

[173] H. Tajimi. A statistical method of determining the maximum response of a building

structure during an earthquake. In Proc. 2d World Conf. Earthquake Eng. Tokyo

and Kyoto, volume 2, pages 781–798, 1960.

157



Bibliography

[174] L.D. Lutes and S. Sarkani. Stochastic analysis of structural and mechanical vibra-

tions. Prentice Hall, 1997.

158



Appendix A

Publications of this Ph.D work

[1]. H. Yu, F. Gillot and M. Ichchou. A polynomial chaos expansion based reliability

method for linear random structures. To Advances in Structural Engineering, under

review.

[2]. H. Yu, F. Gillot and M. Ichchou. Reliability based robust design optimization for

tuned mass damper in passive vibration control of deterministic/uncertain structures.

To Journal of Sound and Vibration, under review.

[3]. H. Yu, F. Gillot, A. Moshine, and M. Ichchou. A simple method able to deal

with time-dependent reliability problems in dynamic systems. IV European Congress

on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering,

Paris, France, 16-21 May, 2010, Palais des Congrès.

[4]. H. Yu, F. Gillot and M. Ichchou. Hermite polynomial chaos expansion method for

stochastic frequency response estimation considering modal intermixing. 3rd Interna-

tional Conference Methods in Structural Dynamical & Earthquake Engineering, Corfu,

Greece, 26-28 May 2011.

[5]. A. Mohsine, F. Gillot, H. Yu, M. Ichchou. Optimisation fiabiliste: État limite
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