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Résumé 

 
Cette thèse présente une extension de l'approche stochastique de l'atomisation 

primaire de type air assisté près d'un injecteur. Cette approche avait déjà été introduite 

dans les publications de Gorokhovski et al.  Dans le cadre de la simulation des 

grandes échelles, la zone d'atomisation primaire est simulée comme un corps immergé 

avec une structure stochastique. Ce dernier est défini par la simulation stochastique de 

la position et de la courbure de l'interface entre le liquide et le gaz. La simulation de la 

position de l'interface est basée sur l'hypothèse de symétrie d'échelle pour la 

fragmentation. La normale extérieure à l'interface est modélisée en supposant une 

relaxation statistique vers l'isotropie. Les statistiques de la force du corps immergé 

servent de conditions aux limites pour le champ de vitesse issu de la LES ainsi que 

pour la production  des gouttes de l'atomisation primaire. Celles-ci sont ensuite 

transportées par une approche lagrangienne. Les collisions entre les gouttes dans la 

zone d'atomisation primaire sont prises en compte par analogie avec l'approche 

standard de la théorie cinétique des gaz. Une fermeture est proposée pour la 

température statistique des gouttelettes. Cette approche est validée par des 

comparaisons avec les mesures expérimentales de la thèse de Hong. Les résultats 

numériques pour la vitesse  et de la taille des gouttes dans le spray à différentes 

distances du centre du jet et  de l'orifice de la buse sont relativement proches des 

résultats expérimentaux.   Différentes conditions d'entrée pour la vitesse sont testées 

et comparées aux résultats expérimentaux. Par ailleurs, le rôle spécifique de la zone 

de recirculation devant le dard liquide est soulignée par le battement du dard liquide 

et  la production de gouttelettes. 

 

Mots clés : écoulement diphasique,  atomisation, modèles stochastiques, force de 

corps immergé, simulation des grandes échelles, dispersion de gouttelettes , 

combustion interne, moteurs de fusée. 

 



Abstract 

 
This thesis introduced an extension to stochastic approach for simulation of air-blast 

atomization closely to injector. This approach was previously proposed in 

publications of Gorokhovski with his PHD students. Our extension of this approach is 

as follows. In the framework of LES approach, the contribution of primary 

atomization zone is simulated as an immersed solid body with stochastic structure. 

The last one is defined by stochastic simulation of position-and-curvature of interface 

between the liquid and the gas. As it was done previously in this approach, the 

simulation of the interface position was based on statistical universalities of 

fragmentation under scaling symmetry. Additionally to this, we simulate the outwards 

normal to the interface, assuming its stochastic relaxation to isotropy along with 

propagation of spray in the down-stream direction. In this approach, the statistics of 

immersed body force plays role of boundary condition for LES velocity field, as well 

as for production of primary blobs, which are then tracked in the Lagrangian way. In 

this thesis, the inter-particle collisions in the primary atomisation zone are accounted 

also by analogy with standard kinetic approach for the ideal gas. The closure is 

proposed for the statistical temperature of droplets. The approach was assessed by 

comparison with measurements of Hong in his PHD. The results of computation 

showed that predicted statistics of the velocity and of the size in the spray at different 

distances from the center plane, at different distances from the nozzle orifice, at 

different inlet conditions (different gas velocity at constant gas-to-liquid momentum 

ratio, different gas-to-liquid momentum ratio) are relatively close to measurements. 

Besides, the specific role of recirculation zone in front of the liquid core was 

emphasized in the flapping of the liquid core and in the droplets production.  

 

Keywords: two-phase flow, atomization, stochastic model, immersed body force, 

Large Eddy Simulation, droplet dispersion, internal combustion and rocket engines 
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Chapter 1

Introduction

1.1 Introduction to air-blast atomization: knowl-

edge from experiments and scales

In many propulsion power related applications, fuel or oxidizer, initially intro-

duced into combustion chamber as a continuous liquid jet, disintegrates into fil-

aments and drops due to interaction with the gas. The vapour issued from the

produced liquid fragments mixes with the turbulent gas flow and chemically re-

acts. If the produced spray is not well-atomized into small droplets, the mixing is

not perfect, and the combustion process is incomplete. This provokes the power

loss, an additional consumption of the fuel and increased formation of pollutions.

Therefore understanding of complex process of spray formation, closely region,

and its prediction is of great interest to engineers, and in general, to researchers

in the domain of fluid mechanics.

In air-craft and rocket engines, the liquid jet is atomized by a coflowing high-

speed jet of the gas. Such a type of breakup is referred to as air-blast atom-

ization (Chigier, 1991; Engelbert et al., 1995; Farago & Chigier, 1992; Lasheras

& Hopfinger, 2000; Villermaux, 2007; Eggers & Villermaux, 2008; Gorokhovski

& Herrmann, 2008). Our work is focused on simulation of spray formation and

dynamics controlled by air-blast atomization.

A typical configuration of air-blast atomizer in air-craft engine is shown in

Figure 1.1. In such injector, the liquid fuel is injected at low pressure, as a thin

1



1.1 Introduction to air-blast atomization: knowledge from
experiments and scales

annular liquid sheet. Two high speed airstreams co-flow along with the liquid

and transfer a large amount of kinetic energy. Because of such contact with the

gas-stream, the liquid sheet is sheared on either side. This leads to disintegration

of the liquid into ligaments, threads, and small droplets.

Figure 1.1: Atomization of annular liquid sheet in conditions of air-craft engine

(Lalo et al., 2006).

Figure 1.2 shows schematically such a type of atomization in the rocket-like

conditions. Here the central jet of liquid oxygen emerges at low velocity, and is

entrained into motion by high-speed stream of gaseous hydrogen. The sheared liq-

uid jet becomes wavy, with the following disruption into filaments, and stripping

of fine droplets by the high-speed gas motion.

Figure 1.2: Schematic of air-blast atomizer in conditions of rocket engine.

In both cases, it is seen that in close vicinity of injector, the liquid is not yet

fragmented. Usually this zone is called as liquid core. It is defined as the area

of flow in which the fraction mass of liquid is close to unity, and the liquid bulk

retains as maximum unbroken (Hopfinger, 2001). Many complex interactions

2
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1.1 Introduction to air-blast atomization: knowledge from
experiments and scales

appear at the periphery of the liquid core, leading to formation of filaments and

their detachment from the liquid core. Such a phase of the liquid core depletion is

called primary atomization. The fragments pinched off from the liquid core may

collide. Eventually, the collisions between fragments may cause their coalescence

or breakup. The fragments may be also stripped by the fast gas flow, producing

the small droplets. The phase of production of small droplets from the parent

liquid fragments is usually called as secondary atomization process. It is clear

that the smaller produced droplets are, the more intensive evaporation is, then the

better mixing between gaseous reactants is, and consequently the more efficient

combustion occurs. Schematically the spray combustion structure is given in

Figure 1.3.

GH 2

GH 2

LOX

Mixture

Secondary atomization
Primary atomization

Liquid core

Vapor front

Turbulent flame

Figure 1.3: Schematic of the spray combustion.

In view of the practical importance, the experimental and analytical studies

of air-blast atomization were performed in scientific groups of Hopfinger, Viller-

maux, Cartellier, Lasheras, with their Ph.D. students Rehab (1997; Rehab et al.,

1997), Raynal (1997), Marmottant (2001; Marmottant & Villermaux, 2004), Hong

(2003; Hong et al., 2002), Rayana (2007) and Varga (2002; Varga et al., 2003).

These and other experimental studies (see Engelbert et al., 1995, for example) es-

tablished a large number of dimensionless scaling parameters involved in primary

air-blast atomization. It certainly includes the Weber number:

We =
ρg(ug,0 − ul,0)

2Dl

2σ
(1.1)

3
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1.1 Introduction to air-blast atomization: knowledge from
experiments and scales

and the Reynolds numbers:

Rel =
ρlul,0Dl

µl

and Reg =
ug,0(Dg −Dl)

νg
(1.2)

Here ul,0 is the inlet velocity of liquid, ug,0 is the inlet velocity of the gas stream,

σ is the surface tension, Dl is the inlet diameter for the liquid jet, and Dg −Dl

is the inlet size of the coflowing gaseous jet. However, the significant parameters

are also the gas-to-liquid density, mass and dynamic pressure ratios: ρl/ρg, m =
ρgug,0(D2

g−D2
l
)

ρlul,0D
2
l

and M =
ρgu2

g,0

ρlu
2
l,0
. From these three parameters, the primary role was

attributed to the last one, namely to the momentum ratio (this parameter will

be emphasized in the present study, as well):

M =
ρgu

2
g,0

ρlu2
l,0

(1.3)

For example, the experimental correlations between averaged length L of the

liquid core and parameters (1.1)-(1.3) were proposed by expressions given in Table

1.1.

Table 1.1: Experimental correlations between averaged length of the liquid core

and parameters (1.1)-(1.3).

Experiment Gas Liquid Dl(mm) Dg(mm) Experimental Correlations

Eroglu

et al.

(1991)

air water 0.971 10.36 L
Dl

= 0.66(We
2
)−0.4Re0.6

Mayer &

Branam

(2004)

azote ethanol 2.2 10 L
Dl

= 1.7(ρg
ρl
)0.18 ln( Rel√

We
)− 0.16

Lasheras

et al.

(1998)

air water 3.8 5.6 L
Dl

= 6√
M

Inside the coaxial nozzle, the high-speed gas flow develops the boundary layer

on the rigid boundary of separation between two parallel flowing streams of the
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1.1 Introduction to air-blast atomization: knowledge from
experiments and scales

gas and the liquid. The non-dimensional thickness of the incoming boundary

layer

δg
Dg −Dl

(1.4)

was also defined as the very significant parameter; its contribution is described

hereafter. As an important parameter, one can also reference the Ohnesorge

number (Marmottant, 2001)

Oh =
µl√
ρlσDl

(1.5)

From the knowledge obtained in referenced above studies, the dominant mech-

anism of air-blast atomization is proposed. It is schematically shown in Figure

1.4.

Figure 1.4: Schematic of primary break-up mechanisms (Hong, 2003).

At the exit, the boundary layer interacts with the liquid jet and gives rise

to the Kelvin-Helmholtz instability on the free surface, resulting in longitudinal

waves. According to Raynal (1997), the most unstable longitudinal wavelength

λKH of the Kelvin-Helmholtz instability is controlled by the thickness of incoming

boundary layer, δg. At a high Weber number, Villermaux (1998) estimated:

λKH ≈ CKH(
ρl
ρg

)
1
2 δg (1.6)

where for coaxial air-blast atomizer, the parameter CKH = 2 (Marmottant, 2001).

Raynal (1997) used the Blasius expression for thickness of the boundary layer:

δg = Cδ
Dg−Dl

2
√

Reg
, and Reg = ug,0(Dg−Dl)

νg
is the Reynolds number. From measure-

ments, Marmottant (2001) has found that Cδ = 5.6.

5
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1.1 Introduction to air-blast atomization: knowledge from
experiments and scales

The evolution of Kelvin-Helmholtz instability, authors refer to as primary

instability phase. From other side, the issuing jet is subject to the large scale

instability of flow, and it gets flapping. Then the crests of primary instability

waves are exposed to the gas flow; those crests get accelerated. This leads to

the rapid evolution of the Rayleigh-Taylor instability in the transversal direction

(Varga, 2002; Hong, 2003). Arising of such type of instability authors refer to as

the secondary instability phase. The expression of most amplified wavelength of

the Rayleigh-Taylor instability is known from Chandrasekhar (1961):

λRT = 2π

√
3σ

ρla
(1.7)

where a denotes the acceleration of liquid.

The filaments of order λRT are fragmented by the fast motion of the gas,

producing primary drops of size:

r < λRT (1.8)

These drops may be subjected to the secondary atomization process, thereby

forming the spray. The described scenario is demonstrated in Figure 1.5 taken

from Rayana (2007).

Figure 1.5: Scenario of the primary atomization and secondary atomization pro-

cess ( Rayana, 2007).

In order to estimate from (1.7) the typical size of stripped droplet, propor-

tionally to λRT , Lasheras & Hopfinger (2000), Varga et al. (2003) proposed the

following scheme, Figure 1.6. The acceleration due to drag force acting on the

unit mass of the wave’s crest, which is exposed to the gas-stream by its interface

6
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1.1 Introduction to air-blast atomization: knowledge from
experiments and scales

An, is proposed to be a = 1
2

CDρg(ug,0−uc)2An

mn
, where CD is constant, and uc is the

convection velocity of the interface:

uc =

√
ρgug,0 +

√
ρlul,0√

ρg +
√
ρl

(1.9)

The expression (1.9) was given by Dimotakis (1986) from the equality of

dynamic pressures on ρg(ug − uc)
2 = ρl(uc − ul)

2. Then assuming that the mass

of filament is mn = ρlAnb where b is the initial thickness of the liquid layer.

Under the proposed mechanism in Figure 1.6, the initial thickness of the web

is going to destabilize the form of filaments is proportional to the wavelength

associated with the primary instability λKH , Hong (2003) proposed b = αnλKH

(αn is constant). Hong (2003) and Varga (2002) identified α with the experiments:

α = 0.1 with Varga (2002) and α = 0.04 with Hong (2003). Then transverse

instability wavelength was obtained:

λRT = 2π

√
3σ

ρla
= 2π(

6σαnδgCKH

ρgCd

)
1
2 (
ρl
ρg

)
1
4

1

ug,0 − ul,0

(1.10)

In fact, if the typical velocity of interface is assumed to be (1.9), this interface

moves at constant velocity without acceleration. This motivated (Gorokhovski

et al., 2009) to propose and to assess estimation of λRT differently from (1.10)

expression. Authors assumed that the wave crest with characteristic length λKH

is accelerated by the drag force F = 1
2
CDρg(ug,0 − ul,0)

2An. Then the kinetic

energy of the gas flow, which is transferred to the liquid element per unit time,

is F · ug,0. Writing the momentum of the liquid element as ρlul,0AnλKH , the

acceleration can be expressed as a =
1
2
CDρg(ug,0−ul,0)

2ug,0

ρlul,0λKH
, and λRT from (1.7) is

λRT = 2π(
6CKH

CD

)
1
2 (
ρl
ρg

)
1
4 δgWe

− 1
2

δg
(
ul,0

ug,0

)
1
2 (1.11)

where

Weδg =
ρg(ug,0 − ul,0)

2δg
σ

(1.12)

It might be noted that Hong (2003) observed significance of the injection

velocity of liquid on the size spray droplets; in expression (1.11), this velocity

appears explicitly.
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1.1 Introduction to air-blast atomization: knowledge from
experiments and scales

Figure 1.6: Schematic of a primary longitudinal wave exposed on the oncoming

gas flow in a coaxial liquid-gas jet (Varga, 2002; Hong, 2003).

As to the typical size of droplets in the far-field of spray, it is usually de-

termined by critical or maximum stable size, when the disruptive hydrodynamic

forces are balanced by the capillary forces:

rcr =
Wecrσ

ρgU2
rel

(1.13)

where Urel is the relative between liquid and gas velocity, and Wecr is the critical

Weber number, which can be taken equal to 6 over a large interval of Ohnesorge

numbers (Gel’fand et al., 1975; Pilch & Erdman, 1987). The question is how to

estimate Urel. Kolmogorov, in his article (Kolmogorov, 1941), proposed that a

drop in the turbulent flow is stretched up to the moment when this stretching

is of order of surface tension force. Then he estimated Urel from expression of

typical increment of the gas velocity in homogeneous stationary turbulence. If ε

is the viscous dissipation, his estimation was:

rcr =
1

2
(
Wecrσ

ρgε2/3
)3/5 (1.14)

These expressions do not account for the liquid density. At the same time,

a moving in turbulent flow droplet will respond to its turbulent stretching only

partially, due to its inertia. Gorokhovski (2001) used relation given in Kuznetsov

& Sabel’nikov (1990):
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1.2 Proposed approach for simulation and structure of the manuscript

〈U2
rel〉 ≈ ετst (1.15)

where τst is the Stokes time scale:

τst =
2ρlr

2

9ρgνg

1

1 + 0.15Re0p.687
(1.16)

Using this relation, Gorokhovski (2001) estimated:

rcr =
1

2
(
Wecr18νgσ

ερl
)1/3 (1.17)

Both relations are valid only if the mechanism of secondary atomization is

attributed to turbulence in the gas flow.

1.2 Proposed approach for simulation and struc-

ture of the manuscript

Evaluating the influence of all parameters in referenced in Section 1.1 for differ-

ent regimes of break-up, and in realistic operating conditions (high velocities and

pressures; strongly non-homogeneous 3D dense gas-liquid flow) is a difficult task

for experimentalists. The numerical modeling of primary airblast atomization

may provide a way of overcoming this problem. The question raised is: how to

model? There is a solid body of papers and books, where modelling gas flows

laden by dispersed solid particles or liquid droplets are described. The main nu-

merical approaches are well-known. They incorporate the governing equations

for the gas mixture, averaged in the framework of RANS or filtered in the frame-

work of LES, and completed by closure model for the turbulent viscosity. The

numerical integration of those equations is performed along with computation of

each individual trajectory of a particle, or of a parcel of particles. Coupling be-

tween phases, models for evaporation and combustion, for droplet dispersion and

collision, all such models are also included into simulation. However closely to

injector, where spray is in the phase of formation, the liquid phase is no more dis-

persed, and the remaining question is again: how to model? The choice of possible

way which could be known from the literature is limited. The first alternative

9



1.2 Proposed approach for simulation and structure of the manuscript

is to apply a DNS-like approach on the basis of integration of the Navier-Stokes

equations, with identification (capturing or tracking) of the gas-liquid interface

at each time step. In such a technique, the liquid fragments are pinched off, when

the progressively stretched filament becomes of order of the typical size of the

numerical cell. Having a close look on an elements of breakup (dynamics of a fila-

ment, a drop formation, a drop coalescence, evolution of primary instability), the

DNS-like approach may significantly help in understanding of processes involved.

However, when the Weber number is high, the computational expense associated

with resolution of length scales of breaking ligaments is very high. Hence appli-

cation of such approaches in practical conditions, in a whole domain of atomizing

spray, is limited by the Weber and the Reynolds numbers. Besides the problem

of the mass conservation during breakage process remains open. Another way is

to consider the primary atomization process in the framework of a single “fluid”,

controlled by turbulent mixing of a high-density jet with an ambient gas, in lines

of RANS approach. This approach does not require much of CPU time, and was

shown computationally efficient in practical applications. In the case of air-blast

atomization, the future studies may show the efficiency of this approach, despite

some reserve concerning application the gradient-like hypothesis in the framework

of this approach. The third way, may be the simplest one, is to integrate the gov-

erning equations for the gaseous phases by LES approach, simultaneously with

injection of round proliferating blobs (initially, of the nozzle exit diameter) into

computational domain. The model of primary blobs breakup may include the

main mechanism of primary atomization. We have chosen the forth way, which

is stochastic approach. In this approach, the main mechanism of primary atom-

ization is presumed, as a global parameter of the stochastic process. The liquid

distribution, the configuration of the liquid core and its curvature are resulted

from the stochastic modeling along with LES computation of turbulent gas flow.

The region closely to injector is considered as an immersed porous body with the

stochastic structure. The immersed body force is introduced as an extra-force

acting on the gas flow. The filtered Navier-Stokes equations to be resolve are:

∂〈ui〉
∂t

=

{
−∂〈uiuj〉

∂xj
+ 1

ρg

∂〈σij〉
∂xj

, if Pl = 0

PlU̇Sni, if Pl 6= 0
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1.2 Proposed approach for simulation and structure of the manuscript

These equations contain three variables: (i) the probability to find the liquid

in the vicinity of injector Pl(~x, t) ; (ii) the local magnitude of interface acceleration

U̇S(~x, t); (iii) the outwards stochastic direction of interface ni(~x, t), which may be

associated with the instantaneous curvature. These variables need to be modeled.

The dispersed phase considered along with these equations is governed by the

following equation:

dvp,i
dt

=
〈ui〉 − vp,i

τst
− ∂

∂xi

(
Tp

mp

)

where vp,i is component of the liquid drop velocity averaged over inter-drop col-

lisions; Tp is the statistical temperature due to collisions (activated only in sub-

region 0 < Pl < 1), and τst is the expression of the Stokes time. The idea of

this approach was proposed in Gorokhovski (2010). The practical realization and

assessment of this approach by comparison with measurements represents the

objective of our present work.

The following structure of manuscript is as follows:

In Chapter 2, the main modern numerical approaches, developed for flows

with atomizing spray, are described. This Chapter is ended up by motivation

and formulation of the proposed approach.

In Chapter 3, the stochastic models, involved in this approach, are described

and tested.

Chapter 4 is devoted to assessment of numerical method and finite-difference

mesh, which was applied for simulation of turbulent gas flow.

Chapter 5 represents simulations with the inlet conditions of experiment of

Hong (2003), and contains assessment and discussion on obtained numerical re-

sults. The manuscript is ended by Conclusion.

Appendixes A-E contain information on the applied numerical scheme, on the

turbulence modeling, and on the Kelvin-Helmholtz and the Rayleigh-Taylor types

of instabilities.
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Chapter 2

Approaches for numerical

simulations of two-phase

immiscible flows with interface

Hereafter we will describe the main ideas in different approaches for numerical

simulations of two-phase immiscible flows with interface. This description is based

on two recent reviews (Gorokhovski, 2011; Gorokhovski & Herrmann, 2008).

2.1 Interfacial phenomena and conditions at the

boundary gas/liquid

2.1.1 Surface tension and Laplace pressure

When the liquid is in contact with the gas, it forms an interface layer. The

thickness of this layer is of order of typical radius of the intermolecular cohesion

(∼ 10−7 cm for simple molecules). In this layer, molecules interact not only with

molecules in the liquid but also with neighboring molecules in the gas, which leads

to difference in averaged free energy of molecules depending on proximity to the

interface layer. For the molecules inside the liquid bulk, forces from all directions

may cancel each other out, and the molecules may remain at near equilibrium.

The molecules that are at the surface are pulled into the liquid bulk. Therefore
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2.1 Interfacial phenomena and conditions at the boundary gas/liquid

the surface layer is under intensive agitation; the molecules at the surface are

continuously replaced through their motion into the bulk. The statistical result

of such molecular agitation is the surface tension, providing specific physical

properties of the interface layer, in difference with the interior of the liquid bulk.

Starting from the pioneer studies of Gibbs (1876), the interface layer is con-

sidered as a zero mass elastic membrane (similar to infinitely thin soap film) of

surface area Σ that resists stretching and has a tendency to contract. Along with

the volume V , the surface area Σ represents the new independent parameter in

thermodynamics of heterogeneous systems. The thermodynamic force related to

Σ is referred to as the surface tension σ. Its classical definition is as follows. The

work needed to increase Σ on dΣ during a process at constant temperature and

volume, and without chemical reactions, is:

δW = dFΣ = σdΣ (2.1)

where FΣ is the free energy. It is seen that σ characterizes equilibrium between

liquid and gas, and is defined by free energy available per unit surface area. An

equilibrium shape of the interface (at equal temperatures and chemical potentials

in both liquid and gas) is defined by the Laplace equation:

P (l) − P (g) = 2σk (2.2)

where P (l)−P (g) is the pressure imbalance between liquid and gas, usually referred

to as the interfacial pressure or the Laplace pressure, and k is the mean curvature

in the given point of interface.

The variation of the surface tension with increasing temperature is inversely

proportional to the absolute temperature:

(
dσ

dT
)Σ = −L

T
(2.3)

where L is the latent heat of formation of the unit surface. In classical thermody-

namics (Bazarov, 1964), it is shown by analogy with the Carnot cycle, in which

thin soap film was stretching first at the constant temperature, then stretched

adiabatically, and further this soap film was contracted first at the constant tem-

perature, and then adiabatically. More extended empirical correlations for σ can
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2.1 Interfacial phenomena and conditions at the boundary gas/liquid

be found in the literature (Vargaftik et al., 1996). In the following, we will use

the constant surface tension, and those extended correlations are not given in our

manuscript.

If the area of the interface is significant (formation of liquid drops in air,

or small gas bubbles in water), the effects of surface tension should be taken

into account. To this end, two interesting historical examples were described in

(Eggers & Villermaux, 2008). En 1508, Leonardo de Vinci considered a drop

formation from a narrow liquid column running down (as it takes place in the

case of a dripping faucet, for example). His reasoning was as follows. Falling

liquid is accelerating due to the gravity, and the mass conservation in the liquid

cylinder requires its retraction. Once the radius of liquid column is small enough,

the drop is pinched off. The question was: what is the length of the column, when

the drop is pinched off. If the final velocity at the moment of drops detachment

is v =
√
2gx, the radius of the column is h, and the flow rate is Q = πh2v, the

answer is: x = Q2

(πh2)22g
. Using for example the typical properties for the liquid

glass column, πh2 ≈ 10−5cm2, Q ≈ 1ml/s, the value of x becomes unrealistically

big: x = 105. The resolution of this paradox was given by Laplace in 1805, and

more precisely by Rayleigh theoretically and by Plateau (1873) (experimentally).

According to Laplace, the surface tension acts in two ways: effectively, it resists

to the column retraction, as an elastic membrane, but once the cylindrical shape

reached the critical radial curvature, the surface tension will drive this retraction,

and will prompt the drops formation. The Rayleigh theory shows that exponential

growth rate of the fastest-growing disturbance is given by

τR = (
ρlh

3
0

σ
)1/2 (2.4)

where h0 is the initial radius of the liquid column. It is seen that increasing

h0 accelerates the motion under surface tension. Rayleigh gives the wave-length

corresponding to τR is :

λ ≈ 2π

√
3σ

ρlg
∼ 4.5h0 (2.5)

which implies that the order of liquid column length, when the drop is pinched

off, is of few its initial radii.
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2.1 Interfacial phenomena and conditions at the boundary gas/liquid

2.1.2 Classical conditions at the interface

Let us consider now the boundary condition at the interface between two moving

media, liquid and gas. First, according to classical no-slip conditions, the viscous

fluid sticks to both sides of the interface. This implies that on the interface:

(ug,i − ul,i)ni = 0 (2.6)

where ni are components of the outwards unit normal, directed from the liquid

to the gas, and ui are components of the velocity in each of two media. Hereafter

a summation over the repeated indices is implied.

Second, since the surface tension is supposed to be constant, and the interface

is supposed to be of zero mass, the resultant traction force at the interface is

equivalent to the Laplace pressure (2.2) (Landau & Lifshitz, 2000):

nk(σ
(g)
ij − σ

(l)
ij ) = σkni (2.7)

where σij is the stress tensor at the interface:

σ
(l,g)
ij = −δijp

(l,g) + 2µ(l,g)S
(l,g)
ij (2.8)

and

Sij =
1

2
(
∂ui

∂xj

+
∂uj

∂xi

) (2.9)

is the strain rate tensor, p(l,g) and µ(l,g) are the pressure and the viscosity re-

spectively (either in the liquid or in the gas), δij is the Kronecker’s delta, and

curvature is defined by

k =
∂nj

∂xj

(2.10)

The condition (2.7) may be also written in the following form:

(2µlS
(l)
ij − 2µgS

(g)
ij )nj = (p(l) − p(g))ni + σkni (2.11)

It should be noted that with (2.6), only tangential to the interface components

of the strain rate tensor are involved into (2.11). Conditions (2.6), (2.11) are used
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in recent numerical approaches developed for numerical simulations of two-phase

immiscible flows with interface.

2.2 DNS Approaches

2.2.1 Immersed Boundary Formulation

Consider a viscous incompressible fluid fills by domain Ω containing an internal

elastic zero mass boundary Σ(t) that moves with the fluid and separates Ω into

two regions Ω1(t) and Ω2(t) (see Peskin, 1977, with details in Peskin, 2007).

Figure 2.1: A viscous incompressible fluid filled domain Ω with boundary φ(t).

The motion is governed by the Navier-Stokes equations with source term. This

source term represents density of surface tension force, which delta- concentrated

on the moving boundary:

ρ(
∂ui

∂t
+

∂uiuj

∂xj

) = − ∂p

∂xi

+ µ
∂2ui

∂xj∂xj

+ fi (2.12)

fi(~x, t) =

∫

Σ(t)

σk(~x′)ni(~x
′)δ(~x− ~x′)dΣ(~x′) (2.13)

∂uj

∂xj

= 0 (2.14)

Here δ(~x) is three-dimensional Dirac function, δ(~x) = δ(x1)δ(x2)δ(x3). Integrat-

ing (2.13) over an arbitrary domain Φ (d~x = dx1dx2dx3 is the element of volume

of integration) , one yields:
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2.2 DNS Approaches

∫

Φ

fi(~x, t)d~x =

∫

Σ(t)∩Φ
σk(~x′)ni(~x

′)dΣ(~x′) (2.15)

It is seen that in the framework of formulation (2.12)-(2.14), the total contri-

bution of surface tension force over an arbitrary domain Φ is defined by integration

of this force over the interface containing in the interior of Φ. Equations (2.12)-

(2.14) are equivalent to formulation from the book on Fluids Mechanics (Landau

& Lifshitz, 2000):

ρl(
∂ul,i

∂t
+

∂ul,iul,j

∂xj

) = − pl
∂xi

+ µl
∂2ul,i

∂xj∂xj

,
∂ul,j

∂xj

= 0, if ~x ∈ Ωl(t) (2.16)

ρg(
∂ug,i

∂t
+

∂ug,iug,j

∂xj

) = − pg
∂xi

+ µg
∂2ug,i

∂xj∂xj

,
∂ug,j

∂xj

= 0, if ~x ∈ Ωg(t) (2.17)

(ug,i − ul,i)ni = 0, if ~x ∈ Σ(t) (2.18)

(2µlS
(l)
ij − 2µgS

(g)
ij )nj = (p(l) − p(g))ni + σkni, if ~x ∈ Σ(t) (2.19)

In (2.16)-(2.17), we neglected the contribution of body forces. Following Pe-

skin (1977), the interface Σ(X(t), t) is a smooth function depending on positions

X(t) of material points (“markers”), which are located on the interface. These

particles are tracked by Eulerian velocity at the position of interface. For the

m-th sample point on the interface, it writes:

d ~Xm

dt
= ~u( ~Xm, t) =

∫

~x∈Ω
~u(~x, t)δ(~x− ~Xm)d~x (2.20)

Identification of free interface by tracking of massless Lagrangian particles

stands from the pioneer work “Markers and Cells” by Harlow & Welch (1965).

In this approach, the fluid domain is populated by particles which are tracking

by Eulerian velocity field. To maintain the uniform distribution of such particles

along with evolution of the flow represents a nontrivial task. To this end, Daly
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& Pracht. (1967) used particles only on the free boundary. This procedure was

strongly advanced by Tryggvason & Unverdi (1992) for the case of 3D flow.

When interfaces merge or breakup, the tracking procedure becomes compli-

cated. The Level Set Formulation avoids this problem. Before its description, we

rewrite (2.16)-(2.17) in the integral form (Smereka, 2003):

∫

Ω=Ω1+Ω2

ρ(
∂ui

∂t
+

∂uiuj

∂xj

)d~x =

∫

∂Ω

σijn
′
jdS −

∫

Σ(X(t),t)

(σl
ij − σg

ij)njdΣ (2.21)

where ∂Ω denotes the overall boundary of domain Ω, n′
j are components of the

outwards to ∂Ω normal vector, and the following definitions are used respectively

for components of velocity and stress tensor, as well as for density and viscosity:

ui =

{
ug,i, if ~x ∈ Ωg

ul,i, if ~x ∈ Ωl
(2.22)

σij =

{
σg,ij , if ~x ∈ Ωg

σl,ij, if ~x ∈ Ωl
(2.23)

ρ =

{
ρg, if ~x ∈ Ωg

ρl, if ~x ∈ Ωl
(2.24)

µ =

{
µg, if ~x ∈ Ωg

µl, if ~x ∈ Ωl
(2.25)

Using the divergence theorem, and accounting for (2.7), equation (2.21) takes

the following integral form:

∫

Ω=Ω1+Ω2

ρ(
∂ui

∂t
+

∂uiuj

∂xj

)d~x =

∫

Ω=Ω1+Ω2

∂σij

∂xj

d~x−
∫

Σ(X(t),t)

σknidΣ (2.26)

The advantage of (2.12) and (2.26) is that the boundary condition at inter-

face is included into equation of motion; while, again, the difficulty is related to

necessity of tracking procedure for definition of interface topology.

18



2.2 DNS Approaches

2.2.2 Level Set Formulation

In the Level Set Approach (Smereka, 2003; Sussman, 1994; Sussman et al., 1994;

Sussman et al., 1996; Sussman & Smereka, 1997 and Osher & Sethian, 1988) a

specific scalar field φ(~x, t) (Fig.2.2) is introduced in order to attribute interface

to the iso-surface of presumed scalar value (say zero, as in Fig.2.2):

Σ(t, ~x|φ(~x,t)=0) (2.27)

The outwards normal to the interface is defined by

~n =
∇φ

|∇φ|

∣∣∣∣
φ=0

(2.28)

Its link to curvature (2.10) is

k(φ) = ∇ · ~n = ∇ · ∇φ

|∇φ|

∣∣∣∣
φ=0

(2.29)

Figure 2.2: An illustration of the level set function in two-phase flow.

The scalar field φ(~x, t) is governed by the following transport equation:

∂φ(~x, t)

∂t
= −uj

∂φ

∂xj

(2.30)

By definition of the area element dΣ = |∇φ|δ(φ)d~x, and using the property

of the Dirac delta function (Landau & Lifshitz, 1975), equation (2.26) takes the

following local form:

ρ(
∂ui

∂t
+

∂uiuj

∂xj

) =
∂σij

∂xj

− σkδ(d)ni (2.31)
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where δ(d) = |∇φ|δ(φ), and d is the normal distance to the interface. So far

the interface (2.29) can be captured from (2.30), (2.31) instead of the tracking

procedure.

The recent developments of the Level Set Formulation and its applications to

modeling primary atomization, performed in scientific groups of Alain Berlemont

(CORIA laboratory) and Jean-Luc ESTIVALEZES (ONERA Toulouse) (Tanguy,

2004; Ménard et al., 2007; Trontin, 2009; Couderc, 2007), as well as in CTR of the

Stanford University, Herrmann & Gorokhovski (2008) and Desjardins & Pitsch

(2009) showed that Level Set Approach may help in describing the physics of

primary atomization. The close look on the dynamics of a filament, on a drop

formation and coalescence, on evolution of primary instability, allows to describe

the mechanism involved in the process. An example from Desjardins & Pitsch

(2009) of interface simulated under air-blast atomization, is illustrated in Figure

2.3. For comparison, the experimental visualization of Rayana (2007) is given on

the right-hand side of this Figure 2.3. In computation, the properties of both

fluids, including the surface tension coefficient, are those of water and air, with

the exception that the water density has been reduced to ρ = 50kg/m3 in order

to ensure numerical stability. As in the experiment, the momentum flux ratio is

set to M = 16, with a bulk air velocity of Ug = 20m/s and a bulk water velocity

of Ul = 0.7746m/s, for a height of the water layer of 10cm. It is seen that in

accordance with experimental observations the simulation predicts also the initial

Kelvin-Helmholtz instability, resulting in ligament formation.

However, when the Weber number is very large, the computational expense

associated with the resolution of all length scales is very high, and practical

application of Level Set type approaches to whole primary atomization process

is limited. There are also two fundamental problems which are needed to be

solved. The first one concerns the mass conservation at the breakage, since, in

principal, the last one takes place on unresolved scales, and after many breakups,

a significant liquid mass deficiency may appear. The second problem is numerical.

In general case, the norm of scalar gradient |∇φ| is continuously growing. This

makes difficult to handle equation (2.30) numerically in such a way that the

velocity field from Navier-Stokes equations remains not affected.
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2.2 DNS Approaches

Figure 2.3: Top view of the phase-interface in the shear layer flow. Flow direction

is from top to bottom; on the LHS: experimental visualization of Rayana (2007);

on the RHS: simulation by Desjardins & Pitsch (2009) using Level Set Approach.

2.2.3 Volume of Fluid (VOF) Formulation

The volume of fluid method (VOF) was first introduced by Hirt & Nichols (1981)

for incompressible two-phase flows. In the VOF method, a single set of momen-

tum equations is shared by the fluids, and the volume fraction of each of the fluids

Φ(Ω, t) is tracked throughout the domain, where Ω represents a computational

cell and t is time. Mixed cells will have a volume fraction Φ between 0 and 1 and

cells without interfaces (pure cells) will have a volume fraction equal to 0 or 1.

Figure 2.4 shows a typical volume fraction distribution.

Figure 2.4: An illustration of the volume fraction function in two-phase flow.

Similar to the level set function, the transport equation for volume fraction
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2.3 Phenomenological Models

function is given by

∂Φ

∂t
+

∂ujΦ

∂xj

= 0 (2.32)

The density and viscosity of the gas-liquid two-phase flow are considered as

functions of the liquid volume fraction, and densities and viscosities of both phases

(De Villiers et al., 2004; Gueyffier et al., 1999; Gao et al., 2003), given by

ρ = Φρl + (1− Φ)ρg (2.33)

µ = Φµl + (1− Φ)µg (2.34)

One major advantage of representing a free surface using volume fractions is

the fact that accurate algorithms for advecting the volume fraction function can

be developed so that mass is conserved while still maintaining a sharp represen-

tation of the interface (Sussman & Puckett, 2000). However, a disadvantage of

the VOF method is that it is difficult to compute accurate local normal vectors

and curvatures from volume fractions, because the spatial derivatives of volume

fraction function transition sharply in the neighborhood of the free surfaces. The

standard VOF method calculates the curvature by first modifying the volume

fractions in a special way. However, as Sussman noted, if one does not introduce

sufficient smoothing, the curvature of the surface will be highly oscillatory. If one

smoothes too much then the numerical algorithm smears curvature changes on

the free surface and this has the effect of making the curvature constant.

2.3 Phenomenological Models

The objective of phenomenological models is to represent the essential features

of spray formation, without consuming much of CPU time and memory. The

first category of phenomenological models comprises the conventional Lagrangian

models, which are widely-used in industrial numerical codes during last thirty

years.
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2.3.1 Drops Population models

In these models, along with integration of governing equations for the gaseous

phases, the round proliferating blobs (initially, of the nozzle exit diameter) are

injected into computational domain, and are tracked with exchange of mass, mo-

mentum, and energy between the spray and the gas. The gas flow is computed

either by RANS or by LES approaches. These numerical models have been suc-

cessful because they are computationally efficient and at the same time provide

reasonable agreements with experimental measurements, mostly in terms of pen-

etration and spray angle, and in limited cases, also in terms of drop size, number

density and their distributions. In these models, the presumed mechanisms of

the initial breakup of the liquid jet - surface instabilities (Beale & Reitz, 1999;

Habchi & Baritaud, 1997; Reitz, 1987; Patterson & Reitz, 1998), drop shedding

(Yi & Reitz, 2004), spontaneous breakup (Tanner, 2004), jet turbulence (Huh

& Gosman, 1991), cavitation (Arcoumanis et al., 1997; Arcoumanis & Gavaises,

1998; Kong et al., 1999) - are used in breakup of each tracking sphere. In practi-

cal conditions (high Weber or Reynolds numbers), each breakage is characterized

by infinite number of degrees of freedom, in such a way that resulting size of

each produced droplets may be predicted only at a certain probability. To this

end, in Gorokhovski (2001), it is proposed to simulate breakup in the framework

of the stochastic scenario. The “lack of memory” stochastic process was pro-

posed, which at large rate of spray formation leads to exponential distribution

of drops radius; this distribution was confirmed in measurements. Later on, in

Gorokhovski & Saveliev (2003) with coupling to RANS approach in the gas flow,

and in Apte et al. (2003) with coupling to LES approach in the gas flow, the

authors incorporated another stochastic process which was focused on statistical

universalities of breakup under scaling symmetry. The parameters of those imple-

mented stochastic processes stem from presumed physical mechanism of breakup.

Example of blobs distribution from Apte et al. (2003) is given in Figure 2.5.

Although the conventional models may predict the global parameters of spray

in practical conditions, and although these models do not require significant CPU

time and memory, as it is the case in DNS-type simulation, the liquid flow in these

models is mimicked by motion of round spheres. Closely to injector (red frame
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2.3 Phenomenological Models

Figure 2.5: Time evolution of spray in a nitrogen-filled closed cylindrical chamber

(Apte et al., 2003).
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2.3 Phenomenological Models

in Fig.2.5), such a statistical representation of liquid flow oversimplifies its real

complex dynamics and interactions with gas.

2.3.2 Eulerian Mixing model

Consider a high Reynolds (or Weber) number flow of two incompressible and ran-

domly interacting media. In this practical case, the definition of instantaneous

interface becomes a difficult task. One of the ways was proposed by Vallet et al.

(2001): primary atomization is described in the framework of a single “fluid”,

as turbulent mixing of a high-density jet with ambient gases. This was formal-

ized in lines of RANS approach as follows. Without surface tension effects, the

instantaneous equations of two-fluids flow is:

ρ(
∂ui

∂t
+

∂uiuj

∂xj

) =
∂σij

∂xj

(2.35)

∂ρ

∂t
+

∂ρuj

∂xj

= 0 (2.36)

From these equations, the ensemble-averaged equations can be generated by

the techniques, which were set down for suspensions and porous media in Saffman

(1971), Ludgren (1972), Joseph & Lundgren (1990). Introducing an indicator

function

Y (~x) =

{
0 if ~x ∈ Ωg

1 if ~x ∈ Ωl
(2.37)

the ensemble-averaged equations are:

∂ρỸ

∂t
+

∂ρỸ ũj

∂xj

= −
∂ρY ′′u

′′

j

∂xj

(2.38)

∂ρũi

∂t
+

∂ρũiũj

∂xj

= −
∂ρu

′′

i u
′′

j

∂xj

+
∂σij

∂xj

(2.39)

∂ρ

∂t
+

∂ρũj

∂xj

= 0 (2.40)
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where Ỹ is the local averaged mass fraction of the liquid, Y
′′
denotes the fluc-

tuation about Ỹ , ρ is the local mean density in two-fluid flow, ũi is the i − th

component of the local mass-averaged velocity in two-fluid flow, and u
′′

i denotes

the fluctuation about ũi. The gradient-type closure for dispersion of liquid is used

ρY ′′u
′′

j (Vallet et al., 2001). By using the techniques of algebraic stress modeling

(Rodi, 1976), the expressions for the Reynolds stress tensor ρu
′′

i u
′′

j , with contri-

bution of pressure-gradient drift fluxes due to the high density variation u
′′

j
∂P
∂xi

and Y ′′ ∂P
∂xi

, are proposed (see also Baev et al., 1987).

Additionally to (2.38)-(2.40), the scalar field Σ, presenting the mean amount

of interfacial surface per unit volume, was introduced in this approach. The

knowledge of local Σ is thought to estimate the mean radius of droplets r =

3ρỸ /ρlΣ at the given location. The universal form of transport equation of Σ is

presumed with terms of its mean convection, gradient-type diffusion, production

(stretching) and destruction (coalescence):

∂Σ

∂t
+

∂ũjΣ

∂xj

=
∂

∂xj

(DΣ
∂Σ

∂xj

) +
1

τprod
Σ− 1

τdestr
Σ

2
(2.41)

The production of Σ is addressed to the turbulent stretching; expressions of

turbulent time scale are used. In equilibrium, when turbulent stretching is bal-

anced by capillary forces, i.e. the critical Weber number is of order of unity,

it follows from (2.41) that further, in terms of the maximum stable radius req:
1

τdestr
= ρlreq

3τprodρỸ
. The model (2.38)-(2.41) naturally lends itself to the RANS codes

which are in widespread use. The potentials of this approach were shown in CO-

RIA laboratory, in the scientific group of F.X. Demoulin (Beau, 2006; and Lebas,

2007). In Wei (2007), it was mentioned that additional corrections were needed

for new constants in the proposed in Vallet et al. (2001) modifications into the

turbulence model. Despite a general reserve that the transport of Σ is modelled in

(2.24)-(2.25) by diffusion-like hypothesis; neglecting thereby the spatial grouping

effects of liquid elements, the Eulerian Mixing Approach was successfully used in

simulation of spray combustion in rocket-like conditions (Jay et al., 2006). This

is illustrated in Figure 2.6, in which the experimental visualisation of OH emis-

sions from Juniper et al. (2001) is compared with results of RANS computations
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of local combustion rate. Numerical results of computation of spray were not

reported in this study.

(a)

(b)

Figure 2.6: On the top: Mean light intensity radiated by OH-radicals in the

experimental flame (Juniper et al., 2001); On the bottom: Calculated in (Jay

et al., 2006) mean reaction rate plotted on the same scale of colors. Isocontours

of gaseous oxygen in the range [0.5, 0.8] with an increment of 0.05 and isocontour

of liquid oxygen mass fraction Ỹl = 0.5 (thickened line). The plots are restricted

to the initial 7cm.
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2.3 Phenomenological Models

2.3.3 Fragmentation Model and new proposal

Introduction

For introduction to this approach, let us start with the picture of slow crack

propagation in a sheet of paper (Måløy et al., 2006). A very complex fracturing,

with burst-like events, is seen over a broad range of individual cracks. In the

vicinity of each rupture, one can find as a small one as far as a big one. The

question is can we predict this deterministically? The answer is “probably no”,

it is a too difficult task. Due to interactions between multiple micro defects, each

crack is characterized by a huge number of degrees of freedom. Then it is natural

to abstract the essential features of this fracturing, and to model it as simple as

possible (situation is similar to turbulence at a high Reynolds number).

Figure 2.7: Instaneous picture of slow crack propagation in a sheet of paper

(Bonamy et al., 2008).

We think of experiment, in which we start at the same strain rate, wait the

same time in each trial, and record the length of appearing fingers. The question

raised is what is the probability to get a finger in between [r, r +∆r], and what
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2.3 Phenomenological Models

is the evolution of this probability with increasing “time” ? In fact, these ques-

tions define the simplest (“naive”) view on fragmentation: the fragmentation is

viewed as stochastic process with breaking, or splitting of a material into smaller

fragments (Sornette, 2000). This domain of modern physics plays an important

role in the study of a variety of physical, chemical, and geological processes, in-

cluding solid particle decomposition, network branching, materials degradation

such as fiber composites, rocks, concrete, polymers which are subject to an ex-

ternal load or compression. A dramatic example is the aging of present aircrafts

due to repeated loading in a corrosive environment. Examples of fragmentation

also include turbulence and atomization. The common property shared by those

examples is that each rupture is produced by a collective result of involved in

long-range forces. Higher the global parameter of fragmentation (shear rate for

the case of the crack propagation in paper) is, and weaker properties of a material

to resist to fragmentation are, then broader the spectrum of ruptures which can

be eventually produced at each location is.

In nature, the fragmentation emerges in relation with others physical pro-

cesses: flowing and elastic response. The next picture represents the air-blast

atomization (Lasheras et al., 1998) of liquid jet surrounded by a high-speed coax-

ial gas flow. Specifically for (d)-(h), it is seen that number of degrees of freedom

for each filament production is huge, and that the zone of primary atomization

is characterized by a complex network of threads, which can persist in the close

vicinity to the liquid bulk. Can DNS represent statistically such a complexity of

whole spray formation? Simulations in the future will answer.

However when the Weber number is high enough, the frequency of formation of

liquid branches and ligaments is relatively high. Then it is natural to introduce an

essential mechanism of breakup, as a global controlling parameter, and to model

this atomization stochastically by the following scenario: the issuing liquid jet

is subject to fragmentation under load of the momentum difference in the liquid

and the gas; the zone of primary atomization is viewed as zone of fragmentation

(Figure 2.9).

The approach proposed here is very simplified. We consider a flowing turbu-

lent connected media with an immersed composite body in the close vicinity of

air-blast atomizer. This immersed body is bordered by fragmentation zone, and
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Figure 2.8: Instantaneous photos of air-blast atomization in the liquid jet sur-

rounded by a high-speed coaxial gas flow. Photos correspond to different inlet

velocities for the gas and the liquid flow (Lasheras et al., 1998).
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Figure 2.9: A plane liquid jet surrounded by a high-speed gas-flow. Images from

ONERA (Trontin, 2009).

contains the connected (continuous) phase, and the not connected (dispersed)

phase. In the composite immersed body, two processes are assumed to be fast

comparing to the large (resolved) turbulent time-scale: it is the frequency of

filament network formation, and the frequency of collisions between detached liq-

uid elements. Another physical assumption is that the local acceleration in the

immersed composite body is controlled by its value on the interface. Then the

connected phase is assumed to be governed by the following filtered equations:

∂〈ui〉
∂t

=

{
−∂〈uiuj〉

∂xj
+ 1

ρg

∂〈σij〉
∂xj

, if Pl = 0

PlU̇Sni, if ~x ∈ Ωl

(2.42)

where brackets 〈...〉 denote filtering in terms of LES approach, thereby 〈ui〉 de-

notes the filtered velocity component, Pl(~x, t) is the probability to find the liquid

at the given point, U̇S(~x, t) is the acceleration value on the interface, and ni(~x, t)

is the component of unit vector of orientation. Three variables, Pl(~x, t), U̇S(~x, t)

and ni(~x, t) need to be modeled. The probability Pl(~x, t) is simulated in lines of

statistical universalities of fragmentation under scaling symmetry (Gorokhovski &

Saveliev, 2008), and is similar to approach proposed in Gorokhovski et al. (2009).

The surface orientation ni(~x, t) is simulated in the framework of the stochastic
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relaxation towards isotropy in the down-stream direction (Gorokhovski et al.,

2011). This is done by using the unit sphere on which the Brownian motion is

simulated. The expression for U̇S(~x, t) is based on the increment of the interface

convection velocity. The description and assessment of all those stochastic models

proposed is given in the next Chapter 3.

In fact, equation (2.42) can be written in the following discrete form:

〈ui〉n+1 − 〈ui〉n
∆t

= 〈RHSi〉+ 〈F 〉 (2.43)

where

〈RHSi〉 = −∂〈uiuj〉
∂xj

+
1

ρg

∂〈σij〉
∂xj

(2.44)

and

〈Fi〉 =
{

0, if Pl = 0

−〈RHSi〉+ PlU̇Sni, if Pl 6= 0
(2.45)

Then (2.43) resembles the well-known formulation of the immersed body force

method. Here the difference with this method is that the immersed body has

spatially random porous structure Pl(~x, t) simulated dynamically with the flow

evolution; thereby the velocity of the immersed body is not constant as in the

standard method.

The dispersed phase is assumed to be conditioned by 0 < Pl(~x, t) < 1, and

is described by liquid drops motion averaged over liquid/liquid collisions. Conse-

quently, the drops are tracked by:

dvp,i
dt

=
〈ui〉 − vp,i

τst
−∇ Tp

mp

, if Pl 6= 0 (2.46)

where vp is the drops velocity averaged over its collisions, Tp is the statistical

temperature of these collisions, and τst is the Stokes time. The model for the

statistical temperature Tp, as well as the expression for the Stokes time τst are

also given in Chapter 3. Out of the immersed body the drop tracking equation

takes the usual form:
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dvp,i
dt

=
〈ui〉 − vp,i

τst
, if Pl = 0 (2.47)

Assuming that blobs are stripped in the zone 0 < Pl(~x, t) < 1 , their size can

be sampled from the simulated spatial distribution ni(~x, t), namely by (
∂nj

∂xj
)−1.

However in this manuscript, we just presumed exponential distribution of size of

formed blobs, which are subject further to the secondary atomization.

Finally, (2.42) is simulated by standard LES approach with the Smagorinsky

closure for the eddy-viscosity. The assessments of our code in LES formulation

is given in Chapter 4. The main objective of this thesis is to realize and assess

formulations (2.43)-(2.46). The computations against measurements, as well as

discussion on obtained numerical results are given in Chapter 5. The manuscript

is ended up with Conclusion.
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Chapter 3

Stochastic model of spray

formation in close vicinity of the

air-blast atomizer

As it has been mentioned at the end of 2.3.3, the equations of connected phase

including composite immersed body are:

∂〈ui〉
∂t

=

{
−∂〈uiuj〉

∂xj
+ 1

ρg

∂〈σij〉
∂xj

, if Pl = 0

PlU̇Sni, if Pl 6= 0

These equations contain three variables: (i) the probability to find the liquid

in the vicinity of injector Pl(~x, t); (ii) the local magnitude of interface acceleration

U̇S(~x, t); (iii) its stochastic direction ni(~x, t); these variables need to be modeled;

two different stochastic processes defining Pl(~x, t) and ni(~x, t) are supposed to be

independent. This is done by stochastic simulation described hereafter in Sections

3.1-3.3.

Section 3.4 is devoted to formulation of dispersed (non-connected) phase in

the composite immersed body. The equations for this phase are:

dvp,i
dt

=
〈ui〉 − vp,i

τst
− ∂

∂xi

(
Tp

mp

)

in which vp,i is component of the liquid drop velocity averaged over inter-drop

collisions; Tp is the statistical temperature due to collisions (activated only in sub-
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region 0 < Pl < 1), and τst is the expression of the Stokes time. The structure of

Section 3.4 is as follows. First, the primary formation of dispersed phase is given

in Section 3.4.1: (i) position of primary blob in sub-region 0 < Pl < 1; (ii) its

size; and (iii) its initial direction. The latter is prescribed on the basis of obtained

distribution ni(~x, t). Then discussion on (2.46), on statistical temperature Tp and

on modified expression of the Stokes time are given in Sections 3.4.2 and 3.4.3,

respectively.

All those models constitute the stochastic model of spray formation in close

vicinity of the air-blast atomizer, which is coupled with LES in Chapter 4 in the

framework of the immersed body force approach.

3.1 Stochastic simulation of liquid distribution

Pl

3.1.1 Statistical universalities of fragmentation under scal-

ing symmetry; case of the constant breakup fre-

quency

It has long been observed that in a large variety of physical phenomena, where self-

similar processes take place, the logarithms of dynamical variables are normally

distributed. This holds for example for grain sizes in crust fragmentation (Razu-

movsky, 1940, Lomnitz, 1994). The theoretical explanation of the appearance of

the log-normal distribution in nature was first given by Kolmogorov (1941). A

simplified explanation is as follows. Suppose that we have a big rock which crum-

bles into sand. If the environmental stresses are the same whatever the size of

the rock, the probability that a given piece of rock is fragmented into mi smaller

rocks is independent of the stage of the fragmentation process. Therefore if we

start out with a single rock (m0 = 1), in the next stage we have m1 smaller rocks,

in the next stage each of these smaller rocks is fragmented into m2 still-smaller,

and so on. As mi are independent random variables, the number of grains at the

l ∼ th stage of fragmentation must be:
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lnNl =
l∑

i=1

lnmi (3.1)

Applying the central limit theorem, we have the normally distributed loga-

rithms. The grain sizes are inversely proportional to the number of grains Nl.

Hence the distribution of grain sizes with growing number of breakup events

obtains the log-normal shape:

f(r) =
1

r
√
2πσ2

e−
(ln r−〈ln r〉)2

2σ2 (3.2)

where r = rk
r0
, σ2 = 〈ln2 r〉 − 〈ln r〉2 and r0 is the reference scale.

For the following, it is necessary to note that in terms of scaling formulation,

Kolmogorov’s scenario states that each stage of break-up event reduces the typical

length of fragments,r ⇒ αr, by an independent random multiplier α, 0 ≤ α ≤ 1.

This process is referred to as fragmentation under scaling symmetry.

From one part, it is known that the central limit theorem requires finite second

moment when the number of realizations is infinite. From another part, it is also

known that the growing number of breakup events characterizes the discrete

model, although numerical schemes analysis shows that the continuous evolution

in time and the finite difference (discrete) one can give a significant difference

in the solution. An alternative to Kolmogorov’s discrete stochastic process is

described in Gorokhovski & Saveliev (2003) and Gorokhovski & Saveliev (2008).

In these papers, the analytical solution of the evolution equation for the size

distribution is analyzed at large times (i.e. high frequency of fragmentation)

without appealing to the central limit theorem. Briefly, their results are as follows.

In fragmentation under scaling symmetry, the kinetic evolution equation for the

normalized distribution function of size, f(r, t),
∫∞
0

f(r)dr, is

∂f(r)

∂t
= ν

∫ 1

0

1

α
f(

r

α
)q(α)dα− νf (3.3)

where q(α) is the probability that the radius of product fragment occurs within the

interval [αr1, (α+dα)r1] (
∫ 1

0
q(α)dα = 1) and ν is the breakup frequency assumed

here to be constant. In (3.3), the probability q(α)dα is, in principle, unknown

function, and since the solution of (3.3) requires knowledge of all moments of q(α),
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this equation appears to be useless. However at large times (i.e. high frequency

of fragmentation), Gorokhovski & Saveliev (2003) and Gorokhovski & Saveliev

(2008) showed that the solution f(r, t) depends solely on the first two logarithmic

moments, 〈lnα〉 and 〈ln2 α〉, and its expression is:

f(r, t) =
t→∞

1

r0

1√
2π〈ln2 α〉νt

exp(− 〈lnα〉2
2〈ln2 α〉νt) exp[−

(ln r
r0
)2

2〈ln2 α〉νt ](
r0
r
)
1− 〈lnα〉

〈ln2 α〉

(3.4)

This expression confirms the main result of Kolmogorov (1941) concerning

the log-normal asymptotic shape; it is called as the first statistical universality

with two parameters: the first and the second logarithmic moments of q(α).

Simultaneously, equation (3.4) shows that by further increasing of time, the “log-

normal” multiplier in equation (3.4), exp[− ln( r
r0
)2/2〈ln2 α〉νt], tends to unity, and

the long-time limit particle-size distribution is determined by power law with one

universal parameter, 〈lnα〉/〈ln2 α〉:

f(r, t) =
t→∞

1

r0

1√
2π〈ln2 α〉νt

exp[−
(ln r

r0
)2

2〈ln2 α〉νt ](
r0
r
)
1− 〈lnα〉

〈ln2 α〉 (3.5)

This shows a stronger universality (fractals) at latest stages of the breakup

under scaling symmetry, with a single parameter lnα/ ln2 α, as the fractal dimen-

sion:

f(r, t) ∼
t→∞

(
1

r
)
1− 〈lnα〉

〈ln2 α〉 (3.6)

It was also shown that at large times, equation (3.3) reduces exactly to the

Fokker-Planck equation:

∂f(r)

∂(νt)
= −〈lnα〉 ∂

∂r
(rf) +

〈ln2 α〉
2!

∂

∂r
[r

∂

∂r
(rf)] (3.7)

in which ln2 α/ lnα represents a typical length scale proportional to the lower

cut-off scale of fragmentation under scaling symmetry:

〈ln2 α〉
〈lnα〉 = ln(

r∗
r0
) (3.8)
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3.1 Stochastic simulation of liquid distribution Pl

This scale should be presumed from the physics of fragmentation, and it plays

the role of the global parameter in the stochastic process. In Gorokhovski et al.

(2009), the following stochastic equation corresponding to (3.7) was derived in

the Itô interpretation:

dr

r
= [〈lnα〉+ 〈ln2 α〉

2
]νdt+

√
ν〈ln2 α〉

2
dW (t) (3.9)

where dW (t) is the Wiener process and [dW (t)]2 = 2dt.

3.1.2 Method of floating stochastic particles; determina-

tion of Pl

This method of simulation of the liquid core simulation was proposed in Gorokhovski

et al. (2009).

injected stochastic particle is moving along X at the velocity

and is changing randomly its Y-position:

instantaneous thickness with scaling symmetry:

Figure 3.1: Schematic of floating stochastic particles method.

The schematic is presented in Figure 3.1, in which the main assumptions are:

1. At each time, simultaneously with computation of flow in the gas, the liquid

non-depleted jet has random geometrical configuration. Each geometrical

configuration is determined by spatial trajectory of specific floating stochas-

tic particles with zero mass.

2. At different times, the random configurations of liquid non-depleted jet

represent an ensemble of independent realizations in space. The floating
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3.1 Stochastic simulation of liquid distribution Pl

stochastic particles are injected one after another (Figure 3.1); each particle

proceeds its own path, which ends up after a length of time referred to as life

time of particle. The last one is determined from the dimension analyses.

It is assumed that the overall time of the primary air-blast atomization is

controlled by three physical values. They include the difference in dynamic

pressures in inlet gas and liquid flows, |ρgu2
g,0−ρlu

2
l,0|/2, the inertia of the jet

characterized by ρl , and the initial diameter of the jet, Dl. The combination

of these three values gives:

τ−1
l =

√
|ρgu2

g,0 − ρlu2
l,0|

2ρl

1

Dl

=
ul,0

Dl

√
|M − 1|

2
(3.10)

where ug,0 is the inlet gas velocity, ul,0 is the inlet liquid velocity, and

M =
ρgu2

g,0

ρlu
2
l,0
.

After passage of its life time, the stochastic particle is removed from com-

putational domain. The repack procedure is such that rate of particles

injection is equal to the rate of their removal.

3. In the down-stream direction x , each stochastic particle is moving with

constant axial velocity equal to the convection velocity, given in Introduc-

tion.

us =

√
ρgug +

√
ρlul√

ρg +
√
ρl

(3.11)

4. Observing vertical ordinates rS,x of a given floating stochastic particle at

different axial positions, we assume that rS,x is modified in a step by step

manner by a cascade process in which the vertical position rS,x+ul,0∆t is

produced from the upstream position rS,x by multiplication by a random

independent variable α, 0 ≤ α ≤ 1:

rS,x+ul,0∆t = rS,xe
lnα (3.12)

Then the stochastic equation (3.9) may be used, which has the following

form:
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3.1 Stochastic simulation of liquid distribution Pl

rS,x+ul,0∆t − rS,x

rS,x
= [〈lnα〉+ 〈ln2 α〉

2
]
∆t

τl
+

√
〈ln2 α〉
2τl

dW (3.13)

with rS,x=0 = Dl/2.

5. During the particle motion, each position indicates the cell containing the

instantaneous interface, separating the liquid non-depleted domain from the

gas. This is illustrated in Figure 3.2.

From ensemble of particles trajectory, the probability of each high of “green”

column can be computed. If ξ(~x, t) is the parametric function characterizing

the liquid core interface, then the one-point distribution of the liquid core

interface may be characterized by averaged of characteristic function of a

small interval dξ (associated here with size of the mesh cell):

Pl(~x, t) = 〈δ(ξ(~x, t)− rS)dξ〉 (3.14)

6. The spray around the non-depleted liquid core is assumed to be thin (the

droplet around are assumed to be with negligible volume, but with signif-

icant mass in comparison to the gas). Thereby the computed distribution

Pl(~x, t) is attributed to all the liquid around the injector, and the position of

blobs to be formed in the near-injector region may be sampled from Pl(~x, t).

3.1.3 Choice of global parameter 〈ln2 α〉/〈lnα〉 ; examples

of simulation

As it has been described in Chapter 1, the experimental observations in Varga

(2002), Hong (2003) and Rayana (2007) suggest the following mechanism. Exiting

from the nozzle, the boundary layer interacts with the liquid jet and gives rise

to the Kelvin-Helmholtz instability on the free surface (λKH). Exposed to the

gas flow, the crests of produced longitudinal waves are accelerated. This leads

to rapid evolution of the Rayleigh-Taylor instability in the transversal direction

(λRT ); then the filaments are stripped from the liquid core. Then according to

(3.8), it is assumed:
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3.1 Stochastic simulation of liquid distribution Pl

Figure 3.2: Schematic of simulation of the liquid core configuration.

〈ln2 α〉
〈lnα〉 = ln(

λRT

λKH

) (3.15)

where expressions for λKH and λRT were introduced in Chapter 1. Namely,

λKH ≈ CKH

√
ρl
ρg

δg; δg = Cδ
Dg −Dl

2
√

Reg
; Reg =

ug,0(Dg −Dl)

νg

with constants established in experimental studies: CKH = 2 and Cδ = 5.6

for plane jet were matched in measurements of (Marmottant, 2001), Cd has an

average value 2 in (Varga et al., 2003).

λRT = 2π(
6CKH

Cd

)
1
2 (
ρl
ρg

)
1
4 δgWe

− 1
2

δg
(
ul,0

ug,0

)
1
2

The model (3.13), (3.15) requires one adjustable constant:

〈lnα〉 = const ln(
λRT

λKH

) (3.16)

which was taken equal to 0.03 in Jouanguy (2007), Gorokhovski et al. (2009) for

all performed computations. This value is also kept in all our computations.

In Chapter 5 of this manuscript, we will compare our simulation with exper-

imental observations of Hong (2003). Examples of sample path of particles ac-

cording to (3.10), (3.11), (3.13), (3.14), (3.16), with condition from Hong (2003),

and ug,0 = 60m/s, ul,0 = 0.52m/s, are presented in Figure 3.3.
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Figure 3.3: Trajectories of different stochastic particles in the condition ug,0 =

60m/s, ul,0 = 0.52m/s.

The illustration of distribution of liquid closely to injector Pl, which corre-

sponds to this case (ug,0 = 60m/s, ul,0 = 0.52m/s) is given in next figure, Figure

3.4. It is seen that although our simulation is based on very simple (“toy”) as-

sumptions, the simulated distribution of liquid closely to injector follows physical

intuition.

Demonstration that (3.10), (3.11), (3.13), (3.15) gives also qualitative agree-

ment with others measurements is given in Jouanguy (2007) and Gorokhovski

et al. (2009). We reproduced their simulation of the liquid core length in Figure

3.5. In the experiment, this length was determined as the length in the down-

stream direction when the liquid jet rests entirely connected to its injection. In

simulation, this length was identified with axial distance from the nozzle where

the probability of finding of the non-fragmented liquid is equal to Pl = 0.95.

It is seen that the stochastic simulation reproduced qualitatively the measure-

ments: with increasing of M , the intact core length is rapidly decreasing, but

for M > 100 , this dependency becomes weak.

We would like to add also to this Section the following remark. In Jouanguy
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3.1 Stochastic simulation of liquid distribution Pl

Figure 3.4: Simulation of the liquid distribution closely to injector in the condition

ug,0 = 60m/s, ul,0 = 0.52m/s (Hong, 2003).

Figure 3.5: Comparison between measured and computed length of the liquid

core (Jouanguy, 2007)
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3.2 Stochastic model for local outwards normal of interface

(2007) and Gorokhovski et al. (2009), the distribution Pl(~x, t) = 〈δ(ξ(~x, t)−rS)dξ〉
was used in order to change the velocity field computed by LES through 〈~ug|l〉 =
~ug(1 − Pl) + ~ul,0Pl, and to use the modified velocity field solely for tracking of

formed droplets: d~ud

dt
= (〈~ug|l〉−~ud)/τp, in which ~ud is the drops velocity and τp is

the Stokes time. In the present work, the distribution Pl(~x, t) = 〈δ(ξ(~x, t)−rS)dξ〉
will be used in definition of immersed body force, in the framework of integration

of the filtered Navier-Stokes equations in form of (2.42).

The next step is to simulate the components of local unit normal ni , which

is associated with instantaneous curvature of interface. This direction will be

used not only for the immersed body force in the above equation but also for

simulation of initial direction of produced blobs; thereby the spray angle may be

simulated. The following Section describes simulation of ni.

3.2 Stochastic model for local outwards normal

of interface

To each injected flowing stochastic particle, introduced above in Section 3.1.2, we

prescribe the direction. This direction is assumed to be random. Its stochastic

behavior is emulated by Brownian random walk on the surface of a unit radius

sphere. So far, each flowing stochastic particle is surrounded by unit radius

sphere, moving with particle, and characterized by Brownian motion of the unit

radius-vector. The physical hypotheses behind this is as follows: the orientation of

each flowing particle relaxes stochastically from stream-wise/span-wise alignment

(with random azimuth) to full isotropy. In other words, it is assumed that at

last stages of the jet depletion, its interface is strongly corrugated, such that its

curvature may be approximated by a homogeneous distribution. The diffusion

coefficient of such a stochastic relaxation of ni to isotropy is inversely proportional

to the life time of the particle given by (3.10). In realization of this stochastic

process, we used the recent work of Zamansky et al. (2010).

The schematic representation is given in Figure 3.6. As indicated in this

figure, the orientation vector ni is determined by longitude φ and latitude θ:
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3.2 Stochastic model for local outwards normal of interface

Figure 3.6: Unit sphere on which the Brownian motion is simulated; definition of

angles φ and θ.

ni =





nx = cos(θ) cos(φ)
ny = sin(θ)
nz = cos(θ) sin(φ)

(3.17)

where −π ≤ φ ≤ π characterizes orientation in the streamwise-spanwise (x, z)

plane, and −π/2 ≤ θ ≤ π/2 defines orientation relatively to the normal-to-wall

direction (θ = 0 and θ = ±π/2 correspond to the direction, which are parallel

to the x and y coordinates). The schematic representation is given in Figure

3.6. If φ and θ are random, their PDF’s corresponding to full isotropy, have the

following forms, respectively.

Pisotropic(φ) = 1/2π (3.18)

Pisotropic(θ) =
| cos(θ)|

2
(3.19)

The mean value for both distributions is zero, and computation of variance yields:

< φ2 >isotropic =

∫ π

−π

φ2Pisotropic(φ)dφ =
π2

3
(3.20)

< θ2 >isotropic =

∫ π/2

−π/2

θ2Pisotropic(θ)dθ =
π2

4
− 2 (3.21)
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3.2 Stochastic model for local outwards normal of interface

Once the unit sphere moves from one point in space to another with the

flowing particle, the evolution of the unit vector ni is defined by the following

stochastic process:

{
γ = 2DdW
0 ≤ β < 2π

(3.22)

where γ is the path length between two successive positions on the sphere and

β is the initial direction from one point to another point. β is chosen randomly

from the uniform distribution. D is a diffusion coefficient and dW is the standard

Wiener process. The rules of this random walk are given by geodesic calculus





θk+1 = sin−1(sin θk cos γ + cos θk sin γ cos β)
φk+1 = φk + arg(ξ)
ℜ(ξ) = sin β sin γ cos θk
ℑ(ξ) = cos γ − sin θk sin θk+1

(3.23)

where θk and φk are two angles corresponding to the node k, and ξ is a complex

number, with real and imaginary part ℜ(ξ) and ℑ(ξ), respectively.
Approaching the life-time along with motion of particle in down-stream, the

diffusive equilibrium is attained as a final state, which corresponds to the isotropic

PDFs:

{
Pθ → Pisotropic(θ)
Pφ → Pisotropic(φ)

(3.24)

Figure 3.7 shows one realization of Brownian motion on unit sphere, along with

displacement of a floating stochastic particle. The diffusion coefficient D controls

the relaxation rate toward isotropy. We compared different diffusion coefficients,

as shown in Figures 3.8 and 3.9. It is seen that variance of angles is growing with

time (equivalent to growing down-stream position) up to statistically stationary

values, which correspond to (3.20) and (3.21). Hereafter in computations, we

chose the diffusion coefficient as inversely proportional to the particle life-time

(3.10).

In Figure 3.10, a single sample path of stochastic flowing particle is shown

with simulation of stochastic outwards normal of interface; its trajectory defines

the instantaneous liquid core boundary; its angle defines instantaneous outward

normal; Inlet parameters: ug,0 = 60m/s, ul,0 = 0.52m/s.
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3.2 Stochastic model for local outwards normal of interface

Figure 3.7: Example of sample path on unit sphere; this Brownian trajectory

evolves along with displacement of floating stochastic particle (Zamansky et al.,

2010).
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Figure 3.8: Evolution of the variance of φ. Comparison with different diffusion

coefficient D.
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3.2 Stochastic model for local outwards normal of interface
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coefficient D.
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Figure 3.10: Single sample path of stochastic particle with stochastic outwards

normal of interface.
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3.3 Model for the magnitude of local acceleration U̇s

3.3 Model for the magnitude of local accelera-

tion U̇s

In the connected phase of immersed composite body, i.e. in the sub-region with

Pl 6= 0, the instantaneous local acceleration may be either the local acceleration

of liquid, if a given point is visited by the liquid, or the local acceleration of gas,

if this point is visited by the gas, or the local acceleration of the interface, if the

given point is visited by the interface. The last acceleration is dominant: the

liquid/gas interaction controls the flow dynamics closely to injector. To this end,

in discrete form of (2.42).

Let us assume that

U̇sni =
un+1
s ni − 〈ui〉n

∆t
(3.25)

where un+1
s ni denotes the interface velocity. Then in the sub-region with 0 <

Pl < 1, the above equations are reduced to 〈ui〉n+1 = (1− Pl)〈ui〉n + Plu
n+1
s ; , if

Pl = 1 then 〈ui〉n+1 = un+1
s ni. In this study, the interface velocity is taken to be

constant, and to be equal to the convection velocity (3.11):

3.4 Model of the dispersed (disconnected) phase

3.4.1 Primary liquid blob formation in 0 < Pl < 1; defini-

tion of size and starting angle

Using simulated distribution Pl(~x, t) = 〈δ(ξ(~x, t) − rS)dξ〉, the next step is to

sample drop’s location in 0 < Pl < 1. Along with this position, each formed blob

need to prescribe its size and initial direction. The last one will control the spray

angle. In this study, the size is sampled from the presumed negative exponential

distribution function. Such a distribution emerges usually in random processes,

when the probability of finding the parent liquid element becomes proportional

to the probability of finding of product droplets: f(r1 + r2) ≈ f(r1)f(r2); this

functional equation is satisfied if and only if f(r) is exponential. Since according

to experimental observation, the drops are stripped from ligaments, which are
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3.4 Model of the dispersed (disconnected) phase

raised from Rayleigh-Taylor instability, this distribution is normalized by λRT

according to (1.11). We have:

f(r) =
1

λRT

exp(− r

λRT

) (3.26)

The moments of (3.26) are defined by 〈rm〉f = λm
RT · m!(m = 0, 1, 2...). The

sampling of drops is organized in such a way that the injected liquid mass is

continuously conserved in drops produced by (3.26). This is done by the following

procedure.

Supposing a distribution g(r) in such a way that g(r)dr is the probability that

a particle has drops with radii in the range (r, r+dr). g(r) should be proportional

to the mass distribution r3f(r) and the number of drops per particle f(r)/g(r)

should be proportional to 1/r3. Then the drop-size distribution can be obtained

where the values of g(r) are largest. The total droplet mass associated with

each particle should be constant, which is determined by dividing the input total

spray mass to be injected by the input total number of parcels to be injected.

As we selected radius values randomly with the distribution g(r), we first find

the cumulative distribution h(r) associated with g(r), and then apply the inverse

of h(r) to random numbers uniformly distributed in the interval (0, 1). If XX

is a random number in the interval (0, 1), after finding the value of n for which

h(n− 1) ≤ XX ≤ h(n), we could get the corresponding drop radius.

To each drop sampled in 0 < Pl < 1, with size governed by (3.26), one needs

to prescribe its initial direction. Then the initial spray angle will represent the

statistics of initial directions of formed primary blobs. It is worth to remind that

the initial spray angle is an important and easily measurable parameter of the

spray, In Villermaux (1998) and Lasheras & Hopfinger (2000), the measurement

of the spray angle under air-blast atomization is generalized by the following

expression:

θ ≈ [45◦ − 1

2
arctan(

M
1
2

6
)] (3.27)

in which M = ρgu
2
g,0/ρlu

2
l,0. In our simulations, we assumed that primary drops

are stripped from the interface characterized by simulated outwards normal vec-

tor n. The procedure is as follows. Similar to Villermaux (1998), at the moment
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3.4 Model of the dispersed (disconnected) phase

when the drop is pinched off, the “so- called” entrainment velocity is character-

ized by equality of momentum fluxes in the liquid and the gas. Additionally in

our simulation, the direction of the entrainment velocity is introduced, and it is

defined by n. Using input parameters in expression of the entrainment velocity,

we have:

ue = ul,0

√
ρl
ρg

n (3.28)

Hence tangent of the initial spray angle may be given by the ratio of the

entrainment velocity (3.28) and the convection velocity (3.11):

tan θ = ny

ul,0

√
ρl/ρg

us

(3.29)
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Figure 3.11: Single sample path of stochastic particle; with typical initial angle

from (3.29). Inlet parameters:ug,0 = 60m/s, ul,0 = 0.52m/s.

Figure 3.11 shows a single sample path of stochastic flowing particle with sim-

ulation of direction for produced primary blob according to (3.29). As in Figure

3.10, its trajectory defines the instantaneous liquid core boundary. The statistics

51

Chapter3/Chapter3Figs/EPS/TrajectoryOneSprayangle.eps


3.4 Model of the dispersed (disconnected) phase

of angle from ensemble of such particles will give the direction distribution at a

given control volume. From this distribution, the direction is defined for drop,

which has been produced in this control volume. The inlet parameters for shown

in this figure particle are: ug,0 = 60m/s, ul,0 = 0.52m/s.

So far the size r , the angle θ , and the position in 0 < Pl < 1 are prescribed

to each formed primary blob. Their motion equation is described by equations

in next Section.

3.4.2 Motion equation of sampled primary blobs; micro-

dynamics averaged over inter- drops collisions

Closely to air-blast injector, the flow dynamics is strongly characterized by col-

lisions between liquid elements (Hopfinger, 2001). Therefore it is necessary to

take into account these collisions in the near-to-injector dynamics. However the

collision process between liquid fragments in the near-to-injector region is too

complicated. Hence it would be interesting to account for such collisions, but in

effective, say “outflank” way. Such a way, was proposed in (Chtab & Gorokhovski,

2007). We use here this approach. In this approach, the collisions between par-

ticles are viewed as a multiple process, with frequency large enough in order to

assume collisions to be isotropic in the sense of classical kinetic approach (Landau

& Lifshitz, 2000). Namely, the particle velocity correlation is identified by the

particle temperature of ordinary statistical mechanics. Instead of tracking real

particles with jumping trajectories due to collisions, the approach of (Chtab &

Gorokhovski, 2007) proposed to track hypothetical particles along smoothed tra-

jectories, which are controlled by the motion equation averaged over inter-particle

collisions. The statistics of hypothetical and real particles become similar if the

collision frequency is very high. Starting by consideration of turbulent two-phase

flow, as a system of interacting fluid and solid particles, the following equation

was derived:

dvp,i
dt

= − ∂

∂xi

(
Tp

mp

) +
1

np

∫
vp,iIp,gd

3vp,i (3.30)

in which vp,i is the instantaneous component of the liquid drop velocity, while vp,i

is component of the liquid drop velocity but averaged over inter-drop collisions;
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3.4 Model of the dispersed (disconnected) phase

mp = ρl
4
3
πr3 is the particle mass (known when size is sampled from (3.26), Tp

is the statistical temperature due to collisions, and Ip,g is the collision operator

characterizing collisions between solid and fluid particles. Instead of a particle

in (Chtab & Gorokhovski, 2007), let us use (3.30) for a drop, which has been

formed closely to injector. The last term in (3.30), we approximate by the Stokes

relaxation. In our case, it writes:

dvp,i
dt

=

{
− ∂

∂xi
( Tp

mp
) +

〈ui〉−vp,i
τst

, if Pl 6= 0
〈ui〉−vp,i

τst
, if Pl = 0

(3.31)

We need to closure (3.31) by expressions for statistical temperature Tp

mp
, and

for the Stokes time τst. The classical expression for the Stokes time is (see Clift

et al., 1978, for example):

τst =
2ρlr

2

9ρgνg

1

1 + 0.15Re0p.687
(3.32)

where Rep is the Reynolds number of drop. The expression for Tp

mp
is given in

next Section.

3.4.3 Expression for statistical temperature of drop

The statistical temperature (per unit mass of drop) Tp

mp
may be approximated by

kinetic energy of relative liquid-to-gas motion:

Tp

mp

= U2
rel (3.33)

Two physical variables are assumed to control this energy. The first one is the

dissipation of kinetic energy of the gas flow, which is taken here from the resolved

velocity field:

ε =
1

2
νg(

∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)2 (3.34)

It is seen that this variable will significantly contribute due to velocity gra-

dients introduced by the composite immersed body force. The second variable

represents the typical time of drop drag, in which its inertia is accounted; this
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3.5 Secondary atomization modeling

time-scale is the Stokes time τst. Hence the estimation of kinetic energy in the

relative liquid-to-gas motion is proposed to be as:

U2
rel = ετst (3.35)

and

Tp

mp

=
1

2
νg(

∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)2τst (3.36)

Another simple closure is known from Zaichik et al. (2003), Zaichik & Alipchenkov

(2003), Reeks (1977), Wang & Stock (1993) for the statistically homogeneous and

stationary turbulent field laden by heavy particles:

Tp

mp

= u2
TL

TL + τst
(3.37)

in which u2 is the averaged kinetic energy, and TL is the Lagrangian turbulent

time-scale. In terms of LES, the averaged kinetic energy may be approximated

by local sub-grid kinetic energy, as u2 ∼ (
νeff
∆

)2, where νeff = νg + νtur is the

effective viscosity, with the Smagorinsky viscosity νtur, and the width of filter ∆ ,

and the turbulent time scale is given by the strain rate norm TL ∼ |Sij|−1. Then

a rough estimation of (3.36) may be written in the following form:

Tp

mp

= (
νeff
∆

)2
1

1 + τst|Sij|
(3.38)

In Chapter 5, we will compare the application of (3.36) and (3.38) in the

framework of (3.31).

3.5 Secondary atomization modeling

Two models of secondary atomization are traditional. One is referred to as Tay-

lor analogy breakup (TAB) (O’Rourke & Amsden, 1987), another is referred to

as WAVE (Reitz, 1987) model. The TAB model (O’Rourke & Amsden, 1987)

is based on the Taylor (1963) analogy between oscillating/distorting droplet and

a spring-mass system, in which the spring force, external force and dampening
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3.5 Secondary atomization modeling

Figure 3.12: Schematic of stochastic modeling of secondary atomization.

are associated to surface tension, aerodynamic forces, and drop viscosity, re-

spectively. Breakup is assumed to occur when the oscillations exceed a critical

value. Finally, energy conservation is used to determine the fragment sizes after

breakup within presumed χ-squared distribution. In the WAVE model (Reitz,

1987), new droplets are formed proportionally to the growth rate of the fastest

wave instability on the parent blobs surface. Both models are deterministic, with

“single-scale” production of new droplets. In this study we use the stochastic

model of secondary breakup proposed in Gorokhovski (2001), Apte et al. (2003)

and Gorokhovski & Saveliev (2003). Schematically, this model is illustrated in

Figure 3.12. Each parent blobs is characterized by Dirac peak in terms of size

distribution. During typical breakup time, this peak evolves in the space of size

according to Fokker-Planck differential equation (3.7). For normalized distribu-

tion of radius, f(r; t), the solution to (3.7) is given in Gorokhovski & Saveliev

(2003)

f(r, t) =
1

r

∫ ∞

0

1√
2π〈ln2 α〉νt

exp[
−(ln(r0/r) + 〈lnα〉νt)2

2〈ln2 α〉 νt]f0(r0)dr0 (3.39)

where f0(r0) is the initial distribution of droplet radius before breakup. If f0(x) =

δ(r0 − r), this solution, at νt = 1, has the following form:

f(r;
t

τbu = 1
) =

1√
2π〈ln2 α〉

exp[−
(ln r

r0
− 〈lnα〉)2

2〈ln2 α〉 ] (3.40)
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3.5 Secondary atomization modeling

From (3.40) new droplets are sampled after passage of breakup time, with such

number of parcels that the mass in parent and produced droplets is conserved.

The breakup model is activated whenever radius of parent drop is greater than

critical radius r > rcr, which was described in Introduction. The choice of breakup

time was taken by dimensional analysis. Three typical variables may control this

typical time: the surface tension, the liquid density, and the viscous dissipation

rate. From these three variables, only one combination is:

τbu = const(
σ2

ρ2l ε
3
)
1
5 (3.41)

where the constant is supposed to 1.
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Chapter 4

Numerical Methods and Mesh

Resolution

In this chapter, the details of numerical procedure for LES are provided. Three

approaches for turbulence modeling are introduced briefly in Appendix B. Funda-

mental steps involved in deriving LES equations are SGS modeling and filtering.

Some issues with filtering are also explained in Appendix B. Some turbulent

scales in Appendix C.

4.1 Numerical Methods

4.1.1 Spatial Integration Method

The numerical method was developed by Stanley et al. (2002) to perform direct

numerical simulation of a plane jet. It is based on their earlier studies and is

summarized below. The spatial derivatives are computed using a non-uniform

fourth-order compact scheme based on the uniform scheme of Lele (1992). The

idea of compact schemes is to approximate the derivatives not only from the

values at neighboring points but also from the derivatives at neighboring points.

Details on compact scheme on uniform meshes and on non-uniform meshes can

be found in Appendix D.
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4.1 Numerical Methods

4.1.2 Time Integration Method

The fourth-order Runge-Kutta scheme of Carpenter et al. (1993) is used for the

time integration of the convective terms. It is a five-stage scheme for which the

fifth stage is added to improve the stability. To save computational time, the

viscous terms are advanced using a first-order scheme. It is implemented by

advancing the Euler terms using the fourth-order Runge-Kutta scheme and then

evaluating and advancing the viscous terms in time using a first-order scheme.

4.1.3 Boundary conditions

Non-reflecting boundary conditions to take into account all the information pass-

ing inward and outward across the boundaries while minimizing spurious reflec-

tions have been proposed by Thompson (1987) and Giles (1990).

At the inflow boundary, the time variation of the incoming characteristic

variables is specified while the equation for the outgoing characteristic variable is

solved using internal biased derivatives. This approach allows the proper specifi-

cation of the incoming characteristic waves at this boundary.

Moreover, to isolate the interior of the domain from the effects of the boundary

conditions, a buffer zone based on the approach of Hu (1996) is used on the non-

reflecting boundaries. The buffer zone is a numerical construct that consists of

a stretched grid with additional nodes placed around the computational domain

where exponential damping terms are added to the governing equations.

For the outflow as well as the upper and lower sidewall boundaries, the non-

reflecting conditions of Thompson (1987), based on the characteristic equations,

are used. These boundary conditions are allowed to switch between inflow and

outflow at each point depending on the instantaneous local normal velocity. The

corner points are treated as non-reflecting in planes 45 degrees from the adjacent

boundaries. At the non-reflecting outflow points an additional pressure correction

term, proposed by Rudy & Strikwerda (1980), is used to maintain the pressure

near a specified free-stream pressure.

Periodic boundary conditions are used in the z direction.
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4.2 Gas inflow condition

4.2 Gas inflow condition

The longitudinal mean velocity profile at the inflow is a top-hat profile with

smooth edges. A hyperbolic tangent profile is used:

U =
U1 + U2

2
+

U1 + U2

2
tanh(

y

2θ
) (4.1)

where θ is the momentum thickness. U1 designates the longitudinal velocity in

the middle of the jet and U2 is the co-flow velocity. The co-flow velocity is small,

U2/∆U = 0.1, so that, for the streamwise distances considered here, the evolution

is similar to that of a jet with no co-flow. The mean lateral velocity is initialized

as V = 0 while the density and the pressure are uniform.

A broadband forcing representative of isotropic turbulence is utilized at the

inflow. The three-dimensional energy spectra of the velocity fluctuations at the

inflow is

E(k) =
k4

16
exp[−2(−k/k0)

2] (4.2)

where the peak frequency k0 is set to the most unstable mode for the hyperbolic

tangent shear layer. The lateral shape, across the jet, is such that the fluctuation

intensity peaks in the shear layers on either side of the jet.

4.2.1 Computation conditions

The summary of conditions used for the simulations are presented in the Table

4.1. To compare the results with experiment (Hong, 2003),the computational

conditions are: the gas jet width is Dg = 0.04m while the injected liquid width

is Dl = 0.02m. The Reynolds number for the jet, Re0g based on the gas jet width

and the injected velocity of gas ug,0 is Re0g = ug,0Dg/νg. The Reynolds number

based on the initial shear layer momentum thickness is Reθ = 150.

The composition of the gas phase is that of a standard air. The liquid injected

is water. The boundary conditions that are of a serious concern in LES are dealt

here with by using a closed domain. Initially the gas phase is stationary with

a low, residual level of turbulence. The turbulence generation throughout the
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4.3 Mesh resolution for LES

Table 4.1: Computational Conditions

Injected Velocity

of Gas (m/s)

Injected Velocity

of Liquid (m/s)
M =

ρgu2
g,0

ρlu
2
l,0

Case 1 60 0.52 16

Case 2 20 0.17 16

Case 3 30 0.26 16

Case 4 40 0.34 16

Case 5 50 0.43 16

Case 6 70 0.61 16

Case 7 80 0.69 16

Case 8 90 0.78 16

simulation can then be attributed exclusively to the injection of the liquid and

subsequent two-phase interactions.

4.3 Mesh resolution for LES

For large eddy simulations, the computational grid must be chosen such that the

separation of the resolved and the subgrid-scales occurs in the inertial subrange

of the energy spectrum. Accordingly, the smallest grid size has been chosen to

be one order of magnitude larger than that of the smallest scales (Kolmogorov

scale). According to (C.6) and ǫ estimated as Standard k − ǫ Model:

ǫ = [
Cµ

Prǫ(Cǫ2 − Cǫ1)
]
1
2

k
3
2

(Dg −Dl)
(4.3)

k =
3

2
u′2 (4.4)

where u′ is 0.05, the constants are Cµ = 0.09, Prǫ = 1.3, Cǫ1 = 1.44 and Cǫ2 =

1.92, Kolmogorov scale η is approximately 0.002. The smallest grid length in the

computational domain was chosen to be 0.066 in the y direction.

In reality we do not used either very coarse or very dense meshing because of

the following reasons:
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4.3 Mesh resolution for LES

• Coarse mesh is unable to capture important turbulent structures and causes

the subgrid model to account for too high a percentage of the turbulent

kinetic energy of the flow.

• Very dense mesh is reserved for DNS simulations and in this region benefits

of LES clearly vanish.

A 96×121×16 computational grid (Figure 4.1 and 4.2) has been constructed.

The physical domain has the following dimensions: Lx = 7, Ly = 15 and Lz = 2.

All the meshes have been nondimensionalized by the liquid jet width Dg. These

dimensions do not include the additional buffer zones at the jet exit and sides.

In the x direction, the grid is relatively fine between 0 and 1 with hx = 0.066 in

order to have adequate numerical resolution of the inflow region. Between x = 2

to x = 7 the grid is uniform with a grid spacing hx = 0.25 and a short transition

zone between x = 1 and x = 2. In the y direction, it is uniform in the center of

the jet from y = 7.5 to y = 8.5, where y = 7.5 represents the center of the jet,

with a grid spacing hy = 0.066 in order to solve the initial shear layer and then

is slightly stretched until the side buffer zones. The mesh is mirrored across the

centerline of the domain. In the z direction, the mesh is uniform with hz = 0.25.

4.3.1 Grid Sensitivity

The grid sensitivity of the LES results can be estimated from solutions on a

sequence of refined grids. The grid described above and three other fine grids are

taken account. For the fine grid ‘96× 245× 16’, the minimum gridlength for the

fine grid in the y direction of the flow field is half that for the grids ‘96×121×16’,

and in the region of y = 7.5 to y = 8.5 with hy = 0.033. The fine grid 96×245×32’

has the same grids number in the y direction as ‘96× 245× 16’, but 2 times for

the z direction. The last grids ‘133× 245× 32’ is based on ‘96× 245× 32’ and 2

times of the grid number between x = 0 and x = 1, hx = 0.033.

In Figures 4.3 - 4.6, the solutions on various grids for the average and RMS of

the gas velocity along the y coordinate in the far-field downstream are compared.

It is observed that the jet spreads with distance along the stream-wise direction.

It is also observed that jet tends to become symmetric as the distance from the
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4.3 Mesh resolution for LES

Figure 4.1: Computational grid on a x− y section.

Figure 4.2: Computational grid on a x− z section.
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4.3 Mesh resolution for LES

jet source increases and the spreading rate is depressed in the outer portion of

the jet. The RMS profiles have peaks where the averages have large gradients.

Compared to the ‘96×121×16’ grids, it can be seen that with the refinement of

mesh, the improvement in the prediction by refining the mesh is not big whereas

leading to increase computational times.
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Figure 4.3: Mean u velocity of gas at different sections.

63

Chapter4/Chapter4Figs/EPS/Umean.eps


4.3 Mesh resolution for LES
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4.3 Mesh resolution for LES
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4.3 Mesh resolution for LES
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66

Chapter4/Chapter4Figs/EPS/Vrms.eps


Chapter 5

Assessment and simulation of

spray formation and flow closely

to air-blast atomization

This Chapter represents our results of numerical integration of equations (2.42)

and (2.46) which were closed by stochastic models described in Chapter 3: (3.9)-

(3.15), (3.22), (3.25). The assessment of numerical results is given by comparison

of simulation with experimental study from Hong (2003) (experimental setup and

inlet conditions are given in Chapter 1. The numerical method is described in

Chapter 4, and essentially, in Appendix.

5.1 Setup of experimental system of Hong (2003)

In this section, the experimental system used to simulate the spray formation

and flow closely to air-blast atomization is presented. The experimental results

mentioned in this thesis are from the plane jet experiment by Hong (2003).

The scheme of the plane jet is as Figure 5.1. The injector includes one planar

convergent nozzle that produces the liquid jet in the lower part of the facility, and

the other converging nozzle, located above the first one, and which generates a gas

jet. In the experiments, the lower part is supplied with water, the flow velocity,

ul, can vary between 0.1 to 1m/s. The upper part is supplied with air, the flow

velocity, ug, can be modulated from 10 to 100m/s. Both outputs are elongated
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5.1 Setup of experimental system of Hong (2003)

rectangle 100mm wide. The jets are of the same height H = 10mm, which means

the outlet of liquid is Dl = 0.02m and the outlet of gas is Dg = 0.04m. The plate

separator has a thickness of less than 0.1mm at its end. Moreover, beyond the

exit of the jets, a strong horizontal plate is located in the lower zone of the liquid

jet. The origin of the abscissa x corresponds to the output section of the injector,

and height y is counted from the lower horizontal plate. The Reynolds number

based on thickness of canal, Rel =
ρlulDl

µl
, has order of 103∼4. The Weber number,

We =
ρgu2

gDl

σ
, varies from 33 to 3300. The Froude number (Fr = ul

gH
) calculated

with the velocity interfacial ui ≈
√
ρg/ρlug(1 + 1/

√
M) (M is the momentum

ratio M = ρgu
2
g/ρlu

2
l ) and the wave amplitude δ is ≫ 1.

Figure 5.1: The scheme of the plane jet (Hong, 2003).

In a first series of tests, it was to access the evolution of speeds and drop

sizes as a function of air velocity in the primary atomization zone. For this, the

measuring point was kept fixed, at x/Dl = 1.5 and y/Dl = 0.5 (that is to say,

right to the end of the liquid nozzle), and ug has ranged from 20 to 90m/s while

maintaining the ratio of quantities of constant motion (M = 16).

A second series of tests was conducted to measure the two-phase field, and

appreciate the spatial evolution of various quantities in the area near the injectors.

These measurements were made over a hundred positions for a gas velocity ug =

60m/smaintainingM constant (M = 16). The space extends scans of x/Dl = 0.5
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5.2 Flow field and droplets in the vicinity of the injector

to 5 and y/Dl = 0.5 to 1 depending on the downstream distance. The areas near

the dividing wall y/Dl ≤ 0.5 have not been examined because the latter leads to

the formation of a continuous liquid film that is not representative of a situation

coaxial atomization.

5.2 Flow field and droplets in the vicinity of the

injector

For the same set of input conditions (ug,0 = 60m/s, ul,0 = 0.52m/s, which

correspond to momentum ratio M = 16), two snapshots of filtered velocity field

in the gas flow and spatial distribution of droplets position-and-size are shown

in Figures 5.2 and 5.3. The impact of liquid core on the gas flow, as a flapping

zone of dragged gas flow, the recirculation zone in front of the liquid core, and

the large spectrum of produced droplets, from 10µm to 200µm, at each spray

position, is seen in this figure. It is also seen that the gas flow is characterized

by strong velocity gradients around the liquid core, and by large scale vortical

structures in the down-stream zone beyond the liquid core. It is seen that the

region closely to injector is populated mostly by large liquid elements (drops

in our simulation), along with the presence of mist of small stripped droplets.

Such properties were emphasized in experimental observations of Hong (2003).

For higher magnitude of the momentum ratio, M = ρgu
2
g,0/ρlu

2
l,0, M = 70 and

M = 220 (same inlet gas-stream velocity, but different inlet velocity of the liquid),

two snapshots of filtered velocity field in the gas flow and of spatial distribution

of droplets position-and-size are shown in Figures 5.4 to 5.5. On can observe

that with increasing momentum ratio M , the computed flow is characterized

by less steepened velocity gradients around simulated liquid core, despite the

increasing difference in inlet velocities between the gas and the liquid. This

implies the stronger drag of the gas flow, with stronger cross-flow exchange of

momentum, simulating more intensive atomization process. In our model, the

increasing momentum ratio leads to more intensive impact of the immersed body

force: with increasing M , the region of Pl(s, t) 6= 0 is getting shortened, U̇s

becomes higher, and in the down-stream direction, ni(~x, t) is characterized by
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5.3 Assesment of Mean Sauter diameter and mean kinetic energy of
droplet; different axial positions and distances from the center-plane

faster relaxation to isotropy. Besides those observation, Figures 5.2 - 5.5, shows

production of smaller droplets closely to injector with increasing momentum ratio

M . Consequently with increasing momentum ratio M , finer-grained droplets are

easy entrained into vertical motion in front of the liquid core: formation of “milky

way” filaments is seen in Figures 5.4 and 5.5 when the momentum ratioM is high:

M = 70 and M = 220.

5.3 Assesment of Mean Sauter diameter and mean

kinetic energy of droplet; different axial po-

sitions and distances from the center-plane

Here we assess our statistics of droplet diameter and velocity in the near-field of

the spray, 0 < x/Dl < 5. Three different expressions for the drops statistical

temperature (3.36) and (3.38), as well as standard approach with Lagrangian

tracking without accounting for collisions, were used in computation. In the Fig-

ures 5.6 to 5.9, “simplified collision I” is corresponding to the fomula (3.36) and

“simplified collision II” is corresponding to (3.38). For these three approaches,

the mean Sauter diameter d32, and the mean kinetic energy
√
u2
p + v2p + w2

p are

compared with measurements of Hong (2003) at different center-plane positions

x from injector, and for each down-stream position, at different distances from

the center-plane: y/Dl = 0.5; 0.75; 1. First, Figures 5.6 and 5.7 give this compar-

ison, against measurements (Hong, 2003), using experimental expression (3.27),

θ ≈ [45◦ − 0.5 arctan(M
1
2

6
)], for primary formed blobs: this initial angle was ran-

domly sampled in the range 0◦ < θ < [45◦ − 0.5 arctan(M
1
2

6
)]. Figure 5.6 shows

the mean kinetic energy of droplets, and Figure 5.7 shows the mean Sauter di-

ameter. In Figure 5.6, it is seen that accounting for collisions in motion of blobs

in the composite immersed body region may improve fairly the prediction of the

drop kinetic energy along with evolution of spray closely to injector. This is

seen specifically for y/Dl = 1 , when expression (3.38) is used for the statistical

temperature of droplets. The same conclusion may be made for prediction of

the mean Sauter diameter, when collisions in the blob’s dynamics are accounted.

Figure 5.7 shows this comparison for the mean Sauter diameter of numerically
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5.3 Assesment of Mean Sauter diameter and mean kinetic energy of
droplet; different axial positions and distances from the center-plane
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Figure 5.2: Snapshot of the droplet’s position-and-size distribution, and the fil-

tered velocity field in the gas flow. Inlet parameters: ug,0 = 60m/s, ul,0 =

0.52m/s, corresponding to M = 16.
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5.3 Assesment of Mean Sauter diameter and mean kinetic energy of
droplet; different axial positions and distances from the center-plane

x/Dl

y/
D

l

0 2 4 6 8 10 12 14-4

-2

0

2

4

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

-0.1

ug/ug
0

x/Dl

y/
D

l

0 2 4 6 8 10 12 14-4

-2

0

2

4

190
180
170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10

r (µm)

Figure 5.3: Snapshot of the droplet’s position-and-size distribution, and the fil-

tered velocity field in the gas flow. Inlet parameters: ug,0 = 60m/s, ul,0 =

0.52m/s, corresponding to M = 16.

72

Chapter5/Chapter5Figs/EPS/GasfieldDroplet2.eps


5.3 Assesment of Mean Sauter diameter and mean kinetic energy of
droplet; different axial positions and distances from the center-plane

Figure 5.4: Snapshot of the filtered velocity field in the gas flow and the droplet’s

position-and-size distribution, M = 70.
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5.3 Assesment of Mean Sauter diameter and mean kinetic energy of
droplet; different axial positions and distances from the center-plane

Figure 5.5: Snapshot of the filtered velocity field in the gas flow and the droplet’s

position-and-size distribution, M = 220.
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5.3 Assesment of Mean Sauter diameter and mean kinetic energy of
droplet; different axial positions and distances from the center-plane

produced droplets. It is seen that although along the line y/Dl = 0.5 , predic-

tions may underestimate measurements of diameter on approximately 50µm, the

predictions along y/Dl = 0.75 and y/Dl = 1 are fairly good, if expression (3.38)

is used for the statistical temperature of droplets. Next comparison concerns the

same case but with simulated initial angle for primary formed blobs instead of

its presumed value from (3.27); the angle is given now directly from simulation

of local outwards normal ni(~x, t) by using (3.29), tan θ = ny
ul,0

√
ρl/ρg

us
. Figure 5.8

shows the mean kinetic energy of droplets, and Figure 5.9 shows the mean Sauter

diameter. Comparing the mean kinetic energy of droplets in Figure 5.8, it is

seen again that approach of “smoothed” micro-dynamics of blobs allows explicit

improving of numerical predictions by both formulation of the drops statistical

temperature, by (3.36) and (3.38). Making use (3.38), the better prediction is

clearly seen for all experimental points: y/Dl = 0.5; 0.75; 1. Comparing the

mean Sauter diameter in Figure 5.9, here again the prediction for y/Dl = 0.5 is

not very good, except 3 < x/Dl < 5 with (3.36). However along y/Dl = 0.75 and

y/Dl = 1, the numerical results are close to measurements. One may conclude,

that the composite immersed body approach, with stochastic models introduced

in Chapter 3, allow to predict the typical size and velocity statistics of liquid

relatively well in the near-to-injector region. The better prediction is obtained

when (3.38) is used, and the initial spray angle is simulated by (3.29). Figures

5.10 and 5.11 confirm this conclusion. In 5.10, the mean diameter d10 is com-

pared with measurements of Hong (2003), at y/Dl = 1.5 and y/Dl = 0.5, for

different inlet velocities of the gas-stream, and for such injection velocities that

the momentum ratio M holds the same magnitude: M = 16. Surprisingly, al-

though the approach proposed is very simplified, and previous comparison was

less successful namely on y/Dl = 0.5, it is seen that starting with significant

gas-stream velocities ug,0 > 40m/s, the mean diameter is still relatively well pre-

dicted. The qualitative agreement with measurements is also seen for the mean

Sauter diameter, shown in Figure 5.11. Both diameters, d10 and d32, are decreas-

ing significantly with increasing the inlet gas velocity, while the momentum ratio

M holds the same magnitude.
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5.3 Assesment of Mean Sauter diameter and mean kinetic energy of
droplet; different axial positions and distances from the center-plane
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Figure 5.6: Comparison of velocity of droplets (presumed spray angle) with mea-

surements (Hong, 2003) at different height’s along the spray. Inlet parameters:

ug,0 = 60m/s, ul,0 = 0.52m/s.
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Figure 5.7: Comparison of mean Sauter diameter of produced droplets (presumed

spray angle) with measurements (Hong, 2003) at different height’s along the spray.

Inlet parameters: ug,0 = 60m/s, ul,0 = 0.52m/s.
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Figure 5.8: Comparison of velocity of droplets (simulated spray angle) with mea-

surements (Hong, 2003) at different height’s along the spray. Inlet parameters:

ug,0 = 60m/s, ul,0 = 0.52m/s.
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Figure 5.9: Comparison of mean Sauter diameter of produced droplets (simulated

spray angle) with measurements (Hong, 2003) at different height’s along the spray.

Inlet parameters: ug,0 = 60m/s, ul,0 = 0.52m/s.
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Figure 5.10: Comparison of mean diameter d10 at x/Dl = 1.5 and y/Dl = 0.5

(M = 16) with measurements (Hong, 2003).
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Figure 5.11: Comparison of mean Sauter diameter d32 at x/Dl = 1.5 and y/Dl =

0.5 (M = 16) with measurements (Hong, 2003).
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5.4 Velocity profiles in the gas flow

5.3.1 Spray angle

The statistics of drop position and size allow computing spatial distribution of

mean liquid volume fraction in the dispersed medium. The marginal level of this

distribution sayXl = 0.05 may characterize the mean initial spray angle, resulting

from simulation of initial orientation of primary produced blobs. Illustration is

given in Figures 5.12 and 5.13 for two different values of the momentum ratio

M : M = 220 and M = 1200. The gas velocity was taken the same for both

momentum ratios and equal to 130m/s, while the liquid inlet velocity was changed

according to the presumed magnitude of M . Angles calculated with the help of

experimental expression (3.27), θ ≈ [45◦ − 0.5 arctan(M
1
2

6
)], and by our model

(3.29), tan θ = ny
ul,0

√
ρl/ρg

us
, are indicated as well in these figures. The values are

listed in Table 5.1. These values and simulations in figures show that increasing

the momentum ratio leads to decreasing of the initial spray angle. This was

observed experimentally in Lasheras & Hopfinger (2000), and Mansour & Chigier

(1991). One would expect an inverse tendency in simulation of the initial spray

angle: higher magnitude of M may result in stronger dispersion of detached

drops, and thereby in bigger initial spray angle. However with higher magnitude

of M , the liquid core becomes shorter. Then since drops are dragged by the high-

speed stream, the opening angle of the spray is getting more confined by the gas

flow. As illustration in Figure 5.14, we also compare measurements of the mean

Sauter diameters by Hong 2003 with two computations: one using simulated

angle (3.29), another one using sampling from experimental expression (3.27) for

presumed initial angle. Both computations are based on expression (3.38) for

statistical temperature of the drop. The results by presumed from experiment

expression give slightly better agreement with measurement, although by both

methods of initial spray angle simulation, the mean Sauter diameter is relatively

well predicted.

5.4 Velocity profiles in the gas flow

In Figures 5.15 and 5.16 the profiles of mean filtered velocity and of its variance are

plotted at different section for two different momentum ratio, M = ρgu
2
g,0/ρlu

2
l,0,
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5.4 Velocity profiles in the gas flow

Figure 5.12: Comparison of spray angle with the expression (Lasheras & Hopfin-

ger, 2000) (M = 220).

Figure 5.13: Comparison of spray angle with the expression (Lasheras & Hopfin-

ger, 2000) (M = 1200).

Table 5.1: Spray angle obtained by the expressions and simulation.

ug(m/s) ul(m/s) M θ (3.27) θ̄(simulation)

130 0.3 220 11.01 8.53

130 0.13 1200 4.91 5.49
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5.4 Velocity profiles in the gas flow
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Figure 5.14: Comparison with measurements (Hong, 2003) of mean Sauter

diameter of produced droplets; simulated and presumed initial spray angle;

ug,0 = 60m/s, ul,0 = 0.52m/s.
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5.5 Conclusions

M = 70 and M = 220 (same inlet gas-stream velocity, but different inlet veloc-

ity of the liquid). As it was mentioned in observation in Figures 5.2 to 5.5, it

is seen in Figures 5.15 and 5.16 that with increasing momentum ratio M , the

computed flow is characterized by larger gas flow jet around the liquid core and

decreasing of the mean maximum of velocity (less steepened velocity gradients).

This implies that greater M corresponds to stronger drag of the gas flow, with

stronger cross-flow exchange of momentum, thereby simulating more intensive

atomization process. This leads also slightly lower level of turbulent velocity

fluctuation energy, when the momentum ratio is increased. One can also observe

that displayed profiles may be not smooth (see x/Dl = 2; 4), as it would be in

the case of one-phase jet flow. Such a “non-regularity” of the velocity profile, at

x/Dl = 2 and x/Dl = 4, is difficult to interpret physically because of too complex

interactions between phases in the considered flow. From other side, insufficiency

of performed statistics, or numerical oscillations, may be the reason. This should

be verified in the future work.

5.5 Conclusions

The main results of our simulations in this Chapter are as follows:

• The composite immersed body method (2.42) and (2.46) combined with

stochastic models described in Chapter 3: (3.9)-(3.15), (3.22), (3.25) was

assessed by comparison with measurements of Hong (2003) in his PhD. The

results presented in Figures 5.6-5.11, 5.14 showed that stochastic models for

liquid distribution closely to injector, and for the stochastic normal to in-

terface, along with introduction of effective collision model (3.36) in motion

of detached blobs, allow to predict relatively well statistics of velocity and

size in the spray, as well as its initial opening angle.

• The simulation of flow in the vicinity of injector showed clearly the impact

of liquid core on the gas flow, as a flapping zone of a dragged gas flow,

with recirculation zone in front of the liquid core, with strong velocity gra-

dients around the liquid core, and with large-scale vortical structures in the
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Figure 5.15: Comparison of mean velocity of gas umean at different sections be-

tween M = 70 and M = 220.
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Figure 5.16: Comparison of root mean square velocity of gas urms at different

sections between M = 70 and M = 220.
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5.5 Conclusions

down-stream zone beyond the liquid core. The large spectrum of produced

droplets, from 10µm to 200µm, is obtained at each spray position.

• With increasing the momentum ratio, M = ρgu
2
g,0/ρlu

2
l,0, the region closely

to injector is populated mostly by smaller liquid elements (drops in our

simulation). With increasing the momentum ratio M , the computed flow

is characterized by larger jet flow, with less steepened velocity gradients

around simulated liquid core. This implies that increased momentum ratio

leads to stronger drag of the gas flow, with stronger cross-flow exchange

of momentum, thereby simulating more intensive atomization process in

model proposed.

• It was shown that with increasing the momentum ratio M , the initial spray

angle may be reduced due shortening, in mean, the liquid core.
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Chapter 6

Conclusion

In view of practical importance, this work is devoted to numerical simulation of

spray formation in the vicinity of air-blast atomizer in conditions of experimental

study performed in LEGI Grenoble during PHD of Hong (2003). The modern

numerical approaches developed for two-phase flow simulation are described in

Chapter 2. In this work, the numerical approach is new. This approach was

described in Chapter 3, realized and assessed in Chapter 4 and Chapter 5. This

approach is based on stochastic simulation, in which global parameters are pre-

sumed from the main physics of breakup suggested by experimental studies.

I. The main ideas of this approach are as follows.

In the close vicinity of air-blast atomizer, we consider a flowing turbulent

connected media, with an immersed composite body. This immersed body is

bordered by the fragmentation zone, and contains the connected (continuous)

phase, and the not connected (dispersed) phase. In the composite immersed body,

two processes are assumed to be fast comparing to the large (resolved) turbulent

time-scale: it is the frequency of filament network formation, and the frequency of

collisions between detached liquid elements. Another physical assumption is that

the local acceleration/deceleration in the immersed composite body is controlled

by its value on the interface. Then the connected phase is assumed to be governed

by the filtered LES equations with the immerse body force:

〈ui〉n+1 − 〈ui〉n
∆t

= 〈RHSi〉+ 〈F 〉; ∂〈uj〉
∂xj

= 0
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Here 〈RHSi〉 = −∂〈uiuj〉
∂xj

+ 1
ρg

∂〈σij〉
∂xj

, and

〈Fi〉 =
{

0, if Pl = 0

−〈RHSi〉+ PlU̇Sni, if Pl 6= 0

Three unknown variables are: (i) the probability to find the liquid in the

vicinity of injector Pl(~x, t) ; (ii) the outwards stochastic direction of interface

ni(~x, t), which may be associated with the instantaneous curvature; (iii) the local

magnitude of interface acceleration U̇S(~x, t). The following stochastic models are

proposed for modeling of those variables:

1. probability to find the liquid in the vicinity of injector Pl(~x, t) is linked to

the random configuration of the liquid core, and is simulated by spatial tra-

jectories of specifically introduced stochastic particles. These particles are

injected from the inlet orifice and are moving with the liquid flow, chang-

ing randomly their vertical position. The stochastic process is based on

assumption that due to a high Weber number, the exiting continuous liq-

uid jet is depleted in the framework of statistical universalities of a cascade

fragmentation under scaling symmetry. The parameters of the stochastic

process have been determined according to observations from Lasheras’s,

Hopfinger’s and Villermaux’s scientific groups.

2. to each injected flowing stochastic particle, we prescribe the outwards ran-

dom direction of interface ni(~x, t). Its stochastic behavior is emulated by

Brownian random walk on the surface of a unit radius sphere. The orienta-

tion of each flowing particle relaxes stochastically from streamwise/spanwise

alignment (with random azimuth) to full isotropy. The diffusion coefficient

of such a stochastic relaxation to isotropy is supposed to be inversely propor-

tional to the life time of each injected particle, introduced from dimensional

analysis, including dynamic pressures in inlet gas and liquid flows, the in-

ertia of the jet characterized by liquid density, and the initial diameter of

the jet.

3. local magnitude of interface acceleration U̇S(~x, t) is computed by the lo-

cal increment of the gaseous velocity relatively to the interface convection

velocity, controlled here by inlet conditions.
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In sub-region 0 < Pl < 1, the primary blobs are sampled. These primary blobs

constitute the dispersed phase. The mass is conserved from the inlet mass-flow

to the global mass in dispersed phase. The motion equation for each primary

drop is:

dvp,i
dt

=

{
− ∂

∂xi
( Tp

mp
) +

〈ui〉−vp,i
τst

if Pl 6= 0
〈ui〉−vp,i

τst
if Pl = 0

in which vp,i is the instantaneous component of the liquid drop velocity, while

vp,i is component of the liquid drop velocity but averaged over inter-drop colli-

sions, Tp is the statistical temperature due to collisions. Several models for Tp

were assessed. Two different stochastic processes defining Pl(~x, t) and ni(~x, t) are

supposed to be independent. The following model was retained:

Tp

mp

=
1

2
νg(

∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)2τst (6.1)

where τst is the Stokes time, mp is the drop mass, and νg is the viscosity in the

gas.

The composite immersed body method combined with stochastic models was

assessed by comparison with measurements of Hong (2003). The results showed

that statistics of the velocity and of the size in the spray at different distances from

the center plane, at different distances from the nozzle orifice, at different inlet

conditions (different gas velocity at constant momentum ratio M = ρgu
2
g,0/ρlu

2
l,0,

different momentum ratio M) have been predicted surprisingly well. The follow-

ing observations are reported.

• The simulation of flow in the vicinity of injector showed clearly the impact

of liquid core on the gas flow, as a flapping zone of a dragged gas flow,

with recirculation zone in front of the liquid core, with strong velocity gra-

dients around the liquid core, and with large-scale vortical structures in the

down-stream zone beyond the liquid core. The large spectrum of produced

droplets, from 10µm to 200µm, is obtained at each spray position.
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• With increasing the momentum ratio, M , the region closely to injector is

populated mostly by smaller liquid elements (droplets in our simulation).

With increasing the momentum ratio , the computed flow is characterized

by larger zone of jet flow, with less steepened velocity gradients around

simulated liquid core. This implies that increased momentum ratio leads

to stronger drag of the gas flow, with stronger cross-flow exchange of mo-

mentum, thereby simulating more intensive atomization process in model

proposed.

• It was also shown that with increasing the momentum ratio M , the initial

spray angle may be reduced due shortening, in mean, the liquid core.
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Appendix A

Kelvin-Helmholtz and

Rayleigh-Taylor Instabilities

Most of the proposed models are based on instability analysis. The correspond-

ing wave length is related to the drop diameter. Many successful descriptions

were obtained with these methods, among them the most famous example is the

fragmentation of a round liquid jet at low speed, known as the Rayleigh-Plateau

instability (Plateau, 1873; Rayleigh, 1878). Various works repeat instability the-

ory applied to fluid mechanics such as Chandrasekhar (1961).

In the case of a liquid / gas flow, it is assumed that there is a shift infinitesimal

of the liquid / gas interface in the form:

η = η0 exp(iωt− ikz) (A.1)

In this expression, η0 is the amplitude of the initial disturbance. The quantities

ω and k are complex and are defined by

k = k + iki

ω = ω + iωi (A.2)

The real parts are characteristic of the instabilities. k is the wave number and

can be connected to the wavelength λ with λ = 2π/k and ω is the pulse that
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can be related to the frequency f . The imaginary parts describe the growth of

disturbances for spatial ki and for temporal wi.

The infinitesimal displacement of the interface generates pressure disturbances

and speed. These disturbances are analyzed in the form of waves characterized

by k and ω. Depending on the chosen configuration, the movement equations can

be written by introducing the infinitesimal perturbation for each variables. For

example, if the speed is denoted u, it is expressed as:

u = U + δu

δu = δu0 exp(iωt− ikz) (A.3)

This provides a so called “dispersion relation” between k and ω . According

to boundary conditions and configuration of the problem, this relationship takes

different forms. For example, when it involves the surface tension, we use the

Laplace relationship expressed on a surface dS by:

dP = σ(
1

R1

+
1

R2

) (A.4)

where R1 and R2 are the two principal radius of curvature of the surface dS and

dP is the difference in pressure on the interface.

There are so many ways to perform the stability analysis: either by studying

the spatial growth of the disturbance, either by studying its growth time.

In many cases, it is not possible to consider that droplets are directly obtained

through the first instability. To complete the description, subsequent instabilities

have to be considered. According to the initial conditions of the problem, the

dispersion equation takes different forms. This leads to instability of different

types. For example, if δρ = 0, it is called Kelvin-Helmholtz instability due to

the relative motion in the same fluid. In case δu = 0, it is called Rayleigh-Taylor

instability induced by the difference in mass volume between the two fluids or

acceleration of one relative to another.

According to Chandrasekhar (1961), expanding the liquid-gas interfacial dis-

turbance in Fourier modes as ξ ∼ exp(ikx− iωt), the dispersion relation, neglect-

ing gravity (high-Froude-number limit), is
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(ρl + ρg)
ω

k
= ρlul + ρgug ±

√
(ρl + ρg)σk − ρlρg(ug − ul)2 (A.5)

where σ stands for the surface tension of the liquid, ρl and ρg are the densities of

liquid and gas, respectively, and ug, ul are the velocities of gas and liquid.

The flow is unstable when ωi > 0. There are several limiting cases:

Kelvin-Helmholtz instability

When ∆ρ 6= 0, neglecting gravity and surface tension, σ = 0 and g = 0, the

growth rate (A.6) is always positive regardless of the wavenumber kr. The system

is unstable since ∆u = ug − ul is large.

ωi = kr

√
ρgρl(ug − ul)

ρg + ρl
∼ kr

√
ρg
ρl
(ug − ul) ρg ≪ ρl (A.6)

Isodensity flow

Neglecting gravity and surface tension, ∆ρ = 0, g = 0 and σ = 0, the system

is unstable with temporal growth rate:

ωi = kr
ug − ul

2
(A.7)

Flows with different densities,considering gravity but neglecting

sufrace tension

Neglecting only the surface tension effects, ∆ρ 6= 0, σ = 0 and g 6= 0, the

system is unstable for wavelengths less than 2π/kmin, with kmin given by:

kmin =
g(ρ2l − ρ2g)

ρlρg(ul + ug)2
(A.8)

and the growth rate is

ωi = kr

√
ρgρl

ρg + ρl
(ug − ul) (A.9)

Flows with different densities, surface tension and considering grav-

ity

In this situation, ∆ρ 6= 0, σ 6= 0 and g 6= 0, the system is unstable when the

wavelength is bigger than 2π/kmax, kmax is given by:
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kmax =
ρlρg(ul + ug)

2

σ(ρl − ρg)
(A.10)

Taking into account the gravity and surface tension, the system is stable as

the difference of velocities ∆u = ug − ul is small:

∆u2 ≤ 2g

kc

ρ2l − ρ2g
ρlρg

(A.11)

and the wave number kc corresponding to the smallest difference of velocities ∆u

is as follows:

kc =
g(ρl − ρg)

σ
(A.12)

The classic linear stability analysis of the Rayleigh-Taylor problem, including

the effects of surface tension (Chandrasekhar, 1961), yields the following expres-

sion for the wave with the maximal growth rate:

λRT = 2π

√
3σ

ρla
(A.13)

where a is the acceleration of the liquid tongues.
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Appendix B

Turbulence Modeling

Turbulent flows are governed by the Navier-Stokes equations. When the Reynolds

number increases, the size of the small scales decreases. That brings up a problem.

To solve the entire spectrum of turbulent scales, increasing Reynolds number

requires computer power, proportional to the Reynolds number. Due to the wide

range of scales in turbulent flows, averaging methods may be necessary if the

computer power is insufficient. In the following, three different approaches are

discussed.

B.1 Direct Numerical Simulation

In DNS, all the scales of the flow are resolved on spatial and temporal meshes

and hence there is no need using any kind of closure approximation or turbulence

model. The information obtained by such simulations is enormous and has led to

understanding the turbulence physics and modeling issues with greater insight.

However, the Kolmogorov length- and time scales are resolved and that implies

that the numerical (spatial) resolution is higher than that of the Kolmogorov

length scale. The number of computational nodes N can be estimated by N ∼
(l/η)3 ∼ Re

9/4
T . Further, since the time step size is proportional to the cell size (for

equal Courant number), the required number of time steps also scales as Re
3/4
T .

Thus, the computation time scales asRe3T . It is now possible to perform the Direct

Numerical Simulation (DNS) of simple turbulent flows at moderate Reynolds

numbers. The computational requirements for DNS of complex turbulent flows

96



B.2 Reynolds-Averaged Navier-Stokes Approach

at high Reynolds number are beyond the capabilities of supercomputers. In

applications related to air-blast atomization, the Reynolds number is clearly too

high for DNS. Moreover, most of the energy is contained in a few low wavenumber

or frequency modes. Therefore, it is beneficial from computation cost as well as

engineering point of view to resolve only the energy containing low wavenumbers

or frequencies.

B.2 Reynolds-Averaged Navier-Stokes Approach

In the Reynolds-averaged Navier-Stokes (RANS) approach, the governing equa-

tions are a priori time- or ensemble-averaged. This has the advantage that time-

averaged solutions can be computed fast. Since turbulence length scales are not

resolved, the grid resolution is given by the length scales of the mean flow. As

the governing equations are averaged, dynamic phenomena on time scales which

are on the same order as turbulence time scales cannot be computed. Averag-

ing also brings about the closure problem. New terms appear in the averaged

momentum equations. The principal term, the Reynolds stresses τij , arises from

Reynolds-averaging the convective terms (B.1).

τij = −u′
iu

′
j (B.1)

The correlations of fluctuation velocities are unknown and have to be closed.

These models, as a rule, lack resolution information. The Navier-Stokes equations

are not recovered as the resolution in space approaches zero. Hence, RANS mod-

eling must be classified as a model, and not as an approximation. A widespread

closure hypothesis is Boussinesqs hypothesis, an assumed analogy between molec-

ular diffusion and turbulent diffusion. The viscosity is argued to depend on

turbulence time scales and length scales which are computed from the solution

of additional transport equations, e.g. for the turbulent kinetic energy and its

dissipation rate. The Boussinesq hypothesis is not accurate for certain kind of

flow, e.g. flow with streamline curvature, anisotropy, flow separation, unfavorable

pressure gradient, system rotation (Wilcox, 1993).

97



B.3 Large Eddy Simulation

For two-phases flows in air-blast atomization, one important deficiency of

RANS models is that they are already conceptually not able to capture dynamic

phenomena on turbulence time scales as time-averaged equations are solved.

B.3 Large Eddy Simulation

Direct Numerical Simulation of turbulent flows are inefficient and prohibitively

expensive since a significant amount of computational resources is expended at

capturing the small scale motions which contain negligible amount of turbulent

kinetic energy. RANS modeling has several shortcomings. Large Eddy Simulation

(LES) of turbulent flows is an approach intermediate to DNS and RANS and

increasingly used as a tool for studying the dynamics of turbulence in engineering

flows. In LES, the large scales that are dependent on the boundary conditions

and contains most of the kinetic energy of the flow are simulated. The small

scales or SubGrid Scales (SGS) are expected to be more universal and isotropic

in nature. Since, the small scales are problem independent and contain small

fraction of energy, modeling these scales would yield more universal and accurate

turbulence models. To achieve decomposition in terms of resolved fields and

subgrid fields, one generally applies a spatial filtering operation.

It was shown among others by Apte et al. (2003) that LES can be very promis-

ing in spray computation area. Very good agreement with experimental data re-

garding spray tip penetration was achieved. Study regarding turbulent mixing in

diesel spray using LES by Kimura et al. (2004) also showed good agreement with

experiment. One of the most useful publications concerning abilities of the LES

model is by Sone & Menon (2003). In their work, LES scheme was implemented

into the KIVA code along with sophisticated linear eddy model to account for

subgrid mixing. Again, encouraging results were obtained. The field of the evap-

orated fuel was significantly less diffused than the one predicted by the reference

RANS simulation. Although the work concentrated on spark ignition engines

and the formulation was non-reacting, it nevertheless showed LES as a promising

method for simulation of complex flows.

LES of turbulent flow can be split into four conceptual steps (Pope, 2000):
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B.3 Large Eddy Simulation

1. Spatial Filtering

2. Obtaining the filtered Navier-Stokes equations

3. Modeling the unresolved motions

4. Numerical solution

B.3.1 Spatial Filtering

At large Reynolds numbers, the turbulent flow might be visualized as a mean flow

field superposed by fluctuations of different wavenumbers. Since the flow field can

be expressed as the sum of contributions from fluctuations at all wavenumbers,

large eddy motions can be defined to be the contributions from wavenumbers

below a certain cut-off in the inertial subrange (‘low-pass filtering’). This is

accomplished through Spatial Filtering. Velocity can be decomposed between a

spatially filtered contribution (denoted using an overbar) and a fluctuation about

the spatially filtered value (denoted using a prime). For example,

ui = ūi + u′
i (B.2)

For a field φ(x) defined in the domain (−∞,∞), the filtered value is defined

as (Ghosal & Moin, 1995):

φ̃(x0, t) =

∫ ∞

−∞
G(x− x0)φ(x, t)dx (B.3)

where G is the filter function satisfying the following properties:

1. G(−x) = G(x);

2.
∫ +∞
−∞ G(x)dx = 1.0;

3. G(x) → 0 as |x| → ∞ sufficiently fast so that all moments
∫ +∞
−∞ xndx(n ≥ 0)

exist;

4. G(x) is localized (in some suitably defined sense) in (−1
2
, 1
2
).

Three classical filters discussed most in existing literature are:
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B.3 Large Eddy Simulation

• Box or Top-Hat Filter

G(x) =





1
∆

if |x| ≤ ∆
2

0 otherwise
(B.4)

• Gaussian Filter

G(x) =

√
6

π∆
exp(−6x2

∆2
) (B.5)

• Sharp Spectral Filter

G(x) =
sin(πx/∆)

πx
(B.6)

Further discussion on various types of filters, and their performance is provided

in (Pope, 2000; Piomelli, 1999; Germano, 1992).

B.3.2 Filtered Navier-Stokes Equations

In the LES procedure, after operation of filtering with function G(x) (B.3)(In

this thesis, the top-hat filter with a filter width ∆ = 2h is used.), the numerical

scheme is then responsible for solution of the filtered Navier-Stokes equations

(2.42), with the unknown terms closed by subgrid modeling.

B.3.3 Subgrid Scale Models

The unresolved or subgrid scales affect the dynamics of the resolved flow filed

through the subgrid stress (SGS) tensor qij. Usually the numerical grid is the

only filter (an implicit filter), and hence the term SGS is appropriate. As in the

RANS framework, a closure hypothesis has to be introduced. The modeling of

the SGS tensor in the filtered equations and appropriate treatment of the source

terms in the governing equations represent the most challenging and important

task for LES. As the Reynolds number increases, the fraction of the total field

that is unresolved also increases, the model is required to represent a larger range

of turbulence scales, and the accuracy of a simulation becomes more sensitive to

the quality of the SGS model.
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B.3 Large Eddy Simulation

Smagorinsky Model

The Smagorinsky model (Smagorinsky, 1963) is an eddy-viscosity type model

given by:

qij −
1

3
qllδij = −C2

s∆
2|S|Sij with |S|2 = 1

2
SpqSpq (B.7a)

Sij =
1

2
(
∂ui

∂xj

+
∂uj

∂xi

)− 1

3

∂ul

∂xl

δij (B.7b)

Sij is the deviatoric part of the rate of strain tensor. The constant Cs depends on

the particular flow and different values have been proposed. Although simple, the

Smagorinsky model is known to be excessively dissipative in transitional flows as

well as flows with strong coherent structures and to have poor correlation with

the exact subgrid stress tensor in a priori studies. The gradient of the term,

qllδij/3, is absorbed in the pressure gradient for incompressible flows.

Dynamic Smagorinsky Model

Dynamic Smagorinsky Model which has been used in this thesis is a modifica-

tion of the Smagorinsky model. It has been proposed by Germano et al. (1991) to

correct the excessive dissipation of this model and avoid ad hoc flow-dependent

changes to the coefficient. The square of the constant C2
s is replaced by a coef-

ficient Cd which is dynamically computed and depends on the local structure of

the flow. The Smagorinsky eddy-viscosity formulation is retained:

qll −
1

3
qllδij = −Cd∆

2|S|Sij (B.8)

In order to compute Cd, a test filter, denoted by a hat and corresponding

to a filter width larger than that of the LES, is introduced. The consecutive ˆ̄∆

application of these two filters defines a filter with a filter width of κ∆. For the

top-hat filter, the optimum value κ =
√
5, which corresponds to a test filter width

of 2∆, was found in a recent study of the mixing layer (Vreman et al., 1996) The

dynamic constant is calculated with a least squares approach according to:

Cd =
< MijLij >

< MijMij >
(B.9a)

Lij = ̂̄uiūj − ̂̄ui ̂̄uj (B.9b)
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B.3 Large Eddy Simulation

Mij = −(κ∆)2|Ŝ|Ŝij +∆2̂|S|Sij (B.9c)

To prevent numerical instability caused by negative values of Cd, the numer-

ator and denominator are averaged in the homogeneous directions. The constant

Cd is artificially set to zero during the few instances when it is still negative.
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Appendix C

Turbulence Scales

Turbulent flows are characterized by a wide range of length scales due to eddies of

different sizes. These characteristic scales interact in complex ways, governed by

the Navier-Stokes equations. The energy spectrum (Figure C.1) shows the distri-

bution of kinetic energy over the wavenumber of these eddies for a fully developed

turbulent flow. The various wavenumbers in the energy spectrum can be divided

with respect to their sizes. The large-scale eddies are driven by characteristic

velocity and length scales of the flow field, and hence are heavily influenced in

character by the details of the flow field. The spatial scales of the largest eddies

are limited by the flow geometry (diameter of a tube, the thickness of the bound-

ary layer, the thickness of a jet ...). Those large eddies contain most of the kinetic

energy. The other part of the spectrum can be subdivided into inertial subrange

and dissipation subrange, depending on whether inertial or dissipative effects are

dominant. The dimension of the smallest eddies is typically related to viscous

dissipation of kinetic energy into thermal energy of molecules. The smaller eddies

make up the universal equilibrium range which is according to Kolmogorov (Kol-

mogorov, 1941) hypotheses statistically similar or universal for all high Reynolds

number flows. In the view of the energy cascade, energy is continuously trans-

fered from large to small eddies where it is dissipated. The inertial range is in

equilibrium as the energy transfer from large to small eddies is thought to be

independent of the scale of the eddy, i.e. the energy flux from the large eddies

equals the energy flux to the small eddies for any particular eddy size in this

range. It follows that there exist a range of length scales that are much larger
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than the smallest scales, but small in comparison to the largest scales. In this

zone, the statistics of motion are unaffected by the details of the flow field (unlike

the large-scale motions) and the coefficient of viscosity (unlike the small-scale

motions). They only depend on the dissipation of energy ǫ that determines the

energy transfer across these scales (Kolmogorov, 1941). The energy of motions

in the Inertial Subrange is shown in Figure C.1 and can be expressed as (C.1)

where k is the wavenumber associated with a length scale in this range, and E(k)

is the turbulent kinetic energy at that length scale.

E(k) ∝ ǫ2/3k−5/3 (C.1)

Two important ranges of scales have emerged in the discussion about turbu-

lence: the integral scales and the Kolmogorov scales. The largest eddies are of

the size of the integral length scale, and the smallest eddies are of the size of the

Kolmogorov length scales.

The mean distance for which the velocity fluctuations are correlated gives an

estimate for the integral length scales. The autocorrelation function Ru′u′ is:

Ru′u′(r, x) =
u′(x)u′(x+ r)

u′(x)u′(x)
(C.2)

where u′(x) is the velocity fluctuation at point x, u′(x+ r) is the velocity fluctua-

tion at a distance r from x. The overbar represents a time-average. The integral

length scales l0 can be estimated as:

l0 =

∫ ∞

0

Ru′u′(r)dr (C.3)

The autocorrelation function and an estimate for the integral length scale are

plotted in Figure C.2. The integral velocity scale u′
0 can be estimated as the

RMS of u. The integral time scale τ0 is then:

τ0 =
l0
u′
0

(C.4)

A turbulence Reynolds number ReT is defined based on the integral scales:

ReT =
u′
0l0
ν

(C.5)
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Figure C.1: Energy Spectrum in a turbulent flow.

Figure C.2: Autocorrelation Function over the distance.
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The integral length and velocity scales are on the same order of magnitude as the

characteristic length and velocity scales of the particular problem (or somewhat

less), and therefore the turbulence Reynolds number ReT is large if the Reynolds

number is large.

The smallest scales are the Kolmogorov scales. According to Kolmogorovs

first hypothesis, if the turbulence Reynolds number is large, they only depend on

dissipation ǫ and viscosity ν. The dimensions of ǫ and ν are m2s−3 and m2s−1.

The only possible combinations which have the dimensions of length, time, and

velocity are, respectively:

η ∼ (
ν3

ǫ
)
1
4 (C.6a)

τη ∼ (
ν

ǫ
)
1
2 (C.6b)

uη ∼ (νǫ)
1
4 (C.6c)

They represent the Kolmogorov length scale η, the Kolmogorov time scale τη,

and the Kolmogorov velocity scale uη. It follows immediately that the Reynolds

number based on the Kolmogorov scales is on the order of unity:

Reη =
uηη

ν
∼ 1 (C.7)
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Appendix D

Compact Schemes

D.1 Compact scheme on uniform meshes

Lele (1992) proposed a generalization of the classical Pade schemes. The schemes

discussed in Lele (1992) represent a family of high-order finite difference compact

schemes, which can be used not only for the evaluation of derivatives, but also for

filtering and interpolation applications. Algorithms based on such schemes can

provide numerical solutions with spectral-like resolution and very low numerical

dissipation.

Consider a one-dimensional mesh with node coordinates xi, where 1 ≤ i ≤ N

is the node index, and a function with given values φi = φ(xi) at the nodes. A

uniform mesh with equal nodes spacings h = xi − xi−1 will first be considered. A

sixth-order tridiagonal approximation φ′
i of the first derivative (

dφ
dx
)xi

can then be

obtained:

1

3
φ′
i−1 + φ′

i +
1

3
φ′
i+1 =

14

9

φi+1 − φi−1

2h
+

1

9

φi+2 − φi−2

4h
(D.1)

Similarly, a sixth-order tridiagonal approximation φ′′
i of the second derivative

(d
2φ

dx2 )xi
is given by

2

11
φ′′
i−1 + φ′′

i +
2

11
φ′′
i+1 =

12

11

φi+1 − 2φi + φi−1

h2
+

3

11

φi+2 − 2φi + φi−2

4h2
(D.2)

For non-periodic boundary problems, non-centered boundary schemes are re-

quired at points close to the boundaries, i.e. at nodes 1, 2, N1 and N . Classical
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D.2 Compact scheme on non-uniform meshes

fourth-order Pade schemes and third-order compact relations can be used respec-

tively, at nodes 2 and N1 and at nodes 1 and N for both derivatives. In practice,

the boundary formulation at nodes 1 and 2 for the first derivative is given by:

i = 1, φ1′+ 2φ′
2 =

1

h
(−5

2
φ1 + 2φ2 +

1

2
φ3) (D.3a)

i = 2,
1

4
φ′
1 + φ′

2 +
1

4
φ′
3 =

3

4h
(φ3 − φ1) (D.3b)

with similar relations at nodes N1 and N ; while the boundary formulation for

the second derivative is taken under the form:

i = 1, φ′′
1 + 11φ′′

2 =
1

h2
(13φ1 − 27φ2 + 15φ3 − φ4) (D.4a)

i = 2,
1

10
φ′′
1 + φ′′

2 +
1

10
φ′′
3 =

6

5h2
(φ3 − 2φ2 + φ1) (D.4b)

with similar relations at nodes N1 and N .

D.2 Compact scheme on non-uniform meshes

The main constraint imposed is that the obtained scheme for non-uniform meshes

must reduce exactly to the scheme for uniform meshes, in the case of a uniformly

spaced grid.

For an irregular mesh, the approximation to the first derivative may be rewrit-

ten in a more general way

αiφ
′
i−2 + φ′

i + βiφ
′
i+1 = Aiφi+1 +Biφi−1 + Ciφi+2 +Diφi−2 + Eiφi (D.5)

where the coefficients αi, βi, Ai, Bi, Ci, Di and Ei are functions of the non-

uniform mesh spacings hk = xk − xk−1. Following Lele (1992), relations between

the former coefficients can be derived by matching the Taylor series of various

orders. All derivatives are linearly independent. The leading-order truncation

error of the resulting scheme is determined by the first unmatched coefficient in

the Taylor series. Here, the following relations are obtained:
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D.2 Compact scheme on non-uniform meshes

Ai + Bi + Ci +Di + Ei = 0 (order0)

hi+1Ai − hiBi + (hi+2 + hi+1)Ci − (hi + hi−1)Di = 1 + αi + βi (order1)

h2
i+1Ai + h2

iBi + (hi+2 + hi+1)
2Ci + (hi + hi−1)

2Di =
2!

1!
(hi+1βi − hiαi) (order2)

h3
i+1Ai − h3

iBi + (hi+2 + hi+1)
3Ci − (hi + hi−1)

3Di =
3!

2!
(h2

i+1βi − h2
iαi) (order3)

h4
i+1Ai + h4

iBi + (hi+2 + hi+1)
4Ci + (hi + hi−1)

4Di =
4!

3!
(h3

i+1βi − h3
iαi) (order4)

h5
i+1Ai − h5

iBi + (hi+2 + hi+1)
5Ci − (hi + hi−1)

5Di =
5!

4!
(h4

i+1βi − h4
iαi) (order5)

h6
i+1Ai + h6

iBi + (hi+2 + hi+1)
6Ci + (hi + hi−1)

6Di =
6!

5!
(h5

i+1βi − h5
iαi) (order6)

(D.6)

For non-periodic boundaries, Equation (D.5) can no longer be applied to

points close to the boundary, so that boundary schemes at nodes 1, 2, N1 and N

are required. The first derivative at boundary point i = 1 is calculated from:

φ′
1 + αφ′

2 = Aφ1 + Bφ2 + Cφ3 (D.7)

This relation can formally be third-order. A solution in terms of α, A, B and C

is shown in Appendix F. At boundary point i = 2, the first derivative is obtained

from the relation:

αφ′
1 + φ′

2 + βφ′
3 = Aφ1 +Bφ2 + Cφ3 (D.8)

This relation can formally be fourth-order. The solution coefficients are shown

in Appendix F.

Similarly, the approximation to the second derivative is rewritten under the

form:

αiφ
′′
i−2 + φ′′

i + βiφ
′′
i+1 = Aiφi+1 + Biφi−1 + Ciφi+2 +Diφi−2 + Eiφi (D.9)

Matching the Taylor series coefficients, the second set of unknowns αi, βi, Ai, Bi,

Ci, Di and Ei are the solution of the system:
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D.2 Compact scheme on non-uniform meshes

Ai +Bi + Ci +Di + Ei = 0 (order0)

hi+1Ai − hiBi + (hi+2 + hi+1)Ci − (hi + hi−1)Di = 0 (order1)

h2
i+1Ai + h2

iBi + (hi+2 + hi+1)
2Ci + (hi + hi−1)

2Di =
2!

0!
(1 + βi + αi + βi) (order2)

h3
i+1Ai − h3

iBi + (hi+2 + hi+1)
3Ci − (hi + hi−1)

3Di =
3!

1!
(hi+1βi − hiαi) (order3)

h4
i+1Ai + h4

iBi + (hi+2 + hi+1)
4Ci + (hi + hi−1)

4Di =
4!

2!
(h2

i+1βi − h2
iαi) (order4)

h5
i+1Ai − h5

iBi + (hi+2 + hi+1)
5Ci − (hi + hi−1)

5Di =
5!

3!
(h3

i+1βi − h3
iαi) (order5)

h6
i+1Ai + h6

iBi + (hi+2 + hi+1)
6Ci + (hi + hi−1)

6Di =
6!

4!
(h4

i+1βi − h4
iαi) (order6)

(D.10)

Here, it was decided to limit this thesis to a third-order scheme. The general

solution shown in Appendix E is given in terms of a linear system of the five

first equations in (D.10), where Ai, Bi, Ci, Di and Ei are the unknowns. As in

the first derivative case, the parameters αi and βi are considered constants, equal

to their value for uniform meshes, i.e. αi = βi = 2/11. The final scheme for

the second derivative will reduce exactly to the scheme given by Equation (D.2),

for uniformly spaced grids. The leading truncation error term for the second

derivative approximation can formally be written as:

ǫ1 = [h5
i+1Ai − h5

iBi + (hi+2 + hi+1)
5Ci − (hi + hi−1)

5Di −
5!

3!
(h4

i+1βi − h4
iαi)]

φ
(V )
i

5!
(D.11)

and is of order O(h3
i ).

For non-periodic boundaries, Equation (D.9) is no longer valid at nodes 1, 2,

N1 and N . The second derivative at boundary point i = 1 is then calculated

from:

φ′
1 + αφ′

2 = Aφ1 + Bφ2 + Cφ3 +Dφ4 (D.12)

If α is considered a parameter, this relation can formally be second-order. Solu-

tions for A, B, C, D are shown in Appendix F. At boundary point i = 2, the

second derivative is obtained from the relation:
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D.2 Compact scheme on non-uniform meshes

αφ′
1 + φ′

2 + βφ′
3 = Aφ1 + Bφ2 + Cφ3 +Dφ4 (D.13)

If α and β are considered parameters, this relation can formally be second-order.

Solutions for A, B, C, D are shown in Appendix F. In this thesis, in order to

damp the high wave number spurious oscillations created at the boundaries, a

fourth-order nonuniform compact filter is applied to the field at each iteration.

The solution is then given in terms of a linear system of the first five equations

in (D.6), where Ai, Bi, Ci, Di and Ei are the unknowns. This leads to the gen-

eral expressions shown in Appendix E. In these expressions, the right-hand side

parameters αi and βi are considered constants, equal to their value for uniform

meshes, i.e. αi = βi = 1/3. For grids where the spacing does not vary smoothly,

fourth-order accuracy will still be obtained. The leading truncation error term

can formally be written as:

ǫ1 = [h5
i+1Ai − h5

iBi + (hi+2 + hi+1)
5Ci − (hi + hi−1)

5Di −
5!

4!
(h4

i+1βi − h4
iαi)]

φ
(V )
i

5!
(D.14)

and is of the order O(h4
i ). The parameter α of the filter is optimized in order

to keep the influence of the filter as weak as possible and is set equal to 0.4983.

The value α = 0.5 corresponds to no filtering. The resulting scheme has overall

fourth-order spatial accuracy on stretched grids.
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Appendix E

Approximation of Derivatives

The general solution for fourth-order, first derivative scheme on non-uniform

meshes, with αi and βi parameters, is given by:

Ai =




hi−1hihi+1 + h2
ihi+1 + hi−1hihi+2 + h2

ihi+2 − hi−1h
2
iαi − hi−1hihi+1αi

−hi−1hihi+2αi − hi−1hihi+1βi − h2
ihi+1βi − hi−1h

2
i+1βi − 2hih

2
i+1βi − h3

i+1βi

hi−1hihi+2βi + h2
ihi+2βi+ 2hi−1hi+1hi+2βi + 4hihi+1hi+2βi + 3h2

i+1hi+2βi




hi+1(hi + hi+1)(hi−1 + hi + hi+1)hi+2

(E.1)

Bi =



−hi−1h

2
i+1 − hih

2
i+1 − hi−1hi+1hi+2 − hihi+1hi+2 − 3hi−1h

2
iαi − 4hi−1hihi+1αi

h3
iαi + 2h2

ihi+1αi − hi−1h
2
i+1αi + hih

2
i+1αi − 2hi−1hihi+2αi − hi−1hi+1hi+2αi

h2
ihi+2αi + hihi+1hi+2αi + hi−1hi+1hi+2βi + hihi+1hi+2βi + h2

i+1hi+2βi




hi−1hi(hi + hi+1)(hi + hi+1 + hi+2)
(E.2)

Ci =

[
−hi−1hihi+1 − h2

ihi+1 + hi−1h
2
iαi + hi−1hihi+1αi + hi−1hihi+1βi + h2

ihi+1βi

hi−1h
2
i+1βi + 2hih

2
i+1βi + h3

i+1βi

]

hi+2(hi+1 + hi+2)(hi + hi+1 + hi+2)(hi−1 + hi + hi+1 + hi+2)
(E.3)

Di =

[
hih

2
i+1 + hihi+1hi+2 − h3

iαi − 2h2
ihi+1αi − hih

2
i+1αi − h2

ihi+2αi − hihi+1hi+2αi

−hihi+1hi+2βi − h2
i+1hi+2βi

]

hi−1(hi−1 + hi)(hi−1 + hi + hi+1)(hi−1 + hi + hi+1 + hi+2)
(E.4)
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Ei = −(Ai +Bi + Ci +Di) (E.5)

For the first derivative, it is noticed that Ai, Bi, Ci, Di and Ei are of the order

O(1/hi).

The general solution for third-order second derivative, with αi and βi param-

eters, is given by:

Ai =

2×



−hi−1hi − h2

i + hi−1hi+1 + 2hihi+1 + hi−1hi+2 + 2hihi+2 + 2hi−1hiαi − h2
iαi

hi−1hi+1αi − hihi+1αi + hi−1hi+2αi − hihi+2αi − hi−1hiβi − h2
iβi

−2hi−1hi+1βi − 4hihi+1βi − 3h2
i+1βi + hi−1hi+2βi + 2hihi+2βi + 3hi+1hi+2βi




hi+1hi+2(hi + hi+1)(hi−1 + hi + hi+1)
(E.6)

Bi =

2×




2hi−1hi+1 + 2hihi+1 − h2
i+1 + hi−1hi+2 + hihi+2 − hi+1hi+2 + 2hi−1hi+1αi

−3h2
iαi + 3hi−1hiαi − 4hihi+1αi − h2

i+1αi + hi−1hi+2αi − 2hihi+2αi − hihi+1βi

−hi−1hi+1βi − hi+1hi+2αi − h2
i+1βi + hi−1hi+2βi + hihi+2βi + 2hi+1hi+2βi




hi−1hi(hi + hi+1)(hi + hi+1 + hi+2)
(E.7)

Ci =

2×
[
hi−1hi + h2

i − hi−1hi+1 − 2hihi+1 − 2hi−1hiαi + h2
iαi − hi−1hi+1αi

hihi+1αi + hi−1hiβi + h2
iβi + 2hi−1hi+1βi + 4hihi+1βi + 3h2

i+1βi

]

hi+2(hi+1 + hi+2)(hi + hi+1 + hi+2)(hi−1 + hi + hi+1 + hi+2)
(E.8)

Di =

2×
[
−2hihi+1 + h2

i+1 − hihi+2 + hi+1hi+2 + 3h2
iαi + 4hihi+1αi + h2

i+1αi

2hihi+2αi + hi+1hi+2αi + hihi+1αi + h2
i+1βi − hihi+2βi − 2hi+1hi+2βi

]

hi−1(hi−1 + hi)(hi−1 + hi + hi+1)(hi−1 + hi + hi+1 + hi+2)
(E.9)

Ei = −(Ai +Bi + Ci +Di) (E.10)

For the second derivative, it is noted that Ai, Bi, Ci, Di and Ei are proportional

to O(1/h2
i ).

For non-periodic boundaries, the above formule are no longer valid for points

close to the boundaries. Non-centered approximations of lower-order developed

in Appendix F must be applied instead.
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Appendix F

Boundary Scheme for

Non-uniform Meshes

The first derivative at boundary point i = 1 is calculated from Equation (D.7).

Equalizing the Taylor series coefficients up to third-order leads to a linear system

of equations, from which α, A, B and C at i = 1 can be obtained:

A = − 3h2 + 2h3

h2(h2 + h3)

B =
(h2 + h3)(2h3 − h2)

h2h2
3

C =
h2
2

h2
3(h2 + h3)

α =
h2 + h3

h3

(F.1)

At boundary point i = 2, a fourth-order matching in Equation (D.8) gives
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A = −2h2
3(2h2 + h3)

h2(h2 + h3)3

B =
2(h3 − h2)

h2h3

C =
2h2

2(h2 + 2h3)

h3(h2 + h3)3

α =
h2
3

(h2 + h3)2

β =
h2
2

(h2 + h3)2
(F.2)

The second derivative at boundary point i = 1 is calculated from Equation

(D.12). Equalizing the Taylor series coefficients up to second-order leads to a

linear system of equations, from which A, B, C and D at i = 1 can be obtained:

A =
2(3h2 + 2h3 + h4 + 2h3α + h4α)

h2(h2 + h3)(h2 + h3 + h4

B = −2(2h2 + 2h3 + h4 − h2α + 2h3α + h4α)

h2h3(h3 + h4)

C =
2(2h2 + h3 + h4 − h2α + h3α + h4α)

h3(h2 + h3)h4

D = − 2(2h2 + h3 − h2α + h3α)

h4(h3 + h4)(h2 + h3 + h4)
(F.3)

At boundary point i = 2, a second-order matching in Equation (D.13) gives

A =
2(2h3 + h4 + 3h2α + 2h3α + h4α− h3β + h4β)

h2(h2 + h3)(h2 + h3 + h4)

B =
2(2h3 − h2 + h4 + 2h2α + 2h3α + h4α− h2β − h3β + h4β)

h2h3(h3 + h4)

C =
2(−h2 + h3 + h4 − 2h2α + h3α + h4α− h2β − 2h3β + h4β)

D =
2(h2 − h3 − 2h2α− h3α + h2β + 2h3β)

h4(h3 + h4)(h2 + h3 + h4)
(F.4)
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