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General introduction 
 

The emergence of SPM followed the development of the nanotechnologies, for which a direct 

visualization or manipulation of surfaces and interfaces is essential. Nowadays, SPM techniques go on to be 

developed because they also offer the ability to obtain local information on the physical, chemical and 

mechanical properties of isolated nanostructures or surfaces. In comparison to other techniques, SPM and 

especially atomic force microscopy (AFM) provides extremely high lateral and vertical resolution that puts it 

out of competition with commonly used the scanning electron microscopy (SEM) and optical microscopy. In 

addition, AFM offers the opportunity to operate in vacuum, gas or liquid environment that makes it 

irreplaceable in such domains of applications as physics, biology, chemistry, medicine etc… 

A large variety of operation modes makes AFM technique easy adaptable to a wide range of samples 

under different experimental conditions. Generally, there are no special requirement for sample preparation 

and they can be scanned in their native environment in situ.  

Nowadays, many works are devoted to investigations of organic materials which may, in the nearest 

future, become an alternative to actually widely used inorganic materials in scientific and industrial 

applications. That's why there are more and more researches devoted to fundamental studies in organic and 

particularly biological materials with the wide use of ample opportunities of the atomic force microscopy.  

This thesis deals with various aspects of the application of AFM, for the characterization of organic 

semiconductors and DNA-based arrays, as promising candidates in organic electronics and biological 

applications. This work includes the question of the theoretical study of the optimal conditions for non-

destructive investigation of such samples in different environments. For this reason, we used the versatility 

of the AFM technique to explore the regime of the tip-surface interaction by controlling the dynamics of the 

dissipative processes, during scanning, on one example of a DNA chip. Moreover, we propose to use the 

AFM contact spectroscopy as an alternative method for the local study of the surface energy of organic thin 

films. Added to advanced methods of statistical image analysis, in reciprocal Fourier space, it provides an 

exhaustive description not only of the accessible surface of the sample but also of its inner structural 

properties. 

The particular design of the experimental liquid cell of our AFM makes it possible to perform a 

comparative study of the molecular assembling of DNA-based macromolecules in air and liquid media. This 

allows to compare the theoretically expected and experimentally observed results under controllable 

conditions at the molecular scale.  

 

This memory is organized in the following manner: 

In the first chapter we give a general introduction to Atomic Force Microscopy. The description of the 

principle together with a close look at the different operation modes allow to explain the physics of the 

processes responsible of the high accuracy and versatility of the AFM.  

In this chapter, it is also discussed on the different forces which inevitably involved in the imaging 

process and in a large extent, which are responsible for the image contrast. A peculiar attention is also given 
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to specificities of working in gas and liquid environments. Their respective advantages and fundamental 

limitations are also reviewed. 

A particular attention is focused on the practical application of the dynamic phase and amplitude 

spectroscopy. It provides a quantitative description of dissipative processes during AFM mapping and allows 

to prevent damages of fragile biological materials. For this purpose, a specific study of the AFM parameters 

is presented on a DNA chip substrate. 

Finally, an alternative method of statistical image analysis is described, which gives a more complete 

description of the surface in comparison with the conventional method of analysis. 

 

In the second chapter, we focus on the AFM study of the pentacene which is the most promising 

organic semiconductors among other organic compounds. In this chapter, we explain the structure an 

electronic properties of the pentacene, and then we perform the AFM study of the thickness-driven pentacene 

growth on two polymeric substrates, parylene and benzocyclobutene (BCB). Therefore, we discuss the 

morphology of the pentacene thin films by means of conventional methods of analysis which showed a 

nonlinear dependence of the pentacene grain sizes on the equivalent film thickness. Then, we perform the 

measurement of the pentacene surface energy in alternative to the drop sessile method, by the contact mode 

AFM spectroscopy.  

In this chapter, we also describe a power density method (PSD) to analyse obtained pentacene 

morphologies. Based on the transformation of AFM image in 2D reciprocal Fourier space represented as 1D 

graph (PSD curve) we show that an appropriate analysis of the experimental PSD curves together with 

determined pentacene surface energy, provides a complete description of both surface properties and the 

properties of the sample as a whole. 

Therefore, we propose the model of the pentacene growth, upon which the electrical performances of 

an experimental pentacene-based organic field effect transistor (OFET) are discussed.  

 

In the last third chapter we focus on the study of the possible assembling of DNA-based X1+X2, 

Y1+Y2 and X1+20 bases molecules. First of all, we discuss their hybridization and thermal stability by 

measuring experimentally the melting temperatures (TM) and comparing them with theoretically calculated 

values. Then, theoretically possible assembling of X1+X2, Y1+Y2 and X1+20bases molecules is also 

reviewed. Therefore, we describe AFM imaging of DNA-based samples deposited on chemically modified 

and non modified muscovite mica surface in air and in two liquids: Tris and HEPES. For AFM imaging in 

liquid, the goal was to study the influence of the ionic strength of both solutions on the molecular assembling 

and compare it with the molecular assembling in air. An interpretation was proposed.  

In addition, there are also three annexes which complement this manuscript. Annexe I is used in the 

second chapter and gives explanation of surface energy measurements with the drop sessile technique. 

Annexes II and III refer to the third chapter. Annexe II describes in detail the scheme of chemical synthesis 

of X1+X2, Y1+Y2 and X1+20bases molecules and gives their structural formulas. Annexe III provides an 

explanation of methods used for deducting of convolution effect of the AFM tip with a DNA molecule. 



  9 

 

Chapter I 

Atomic Force Microscopy 

 

 

I - Introduction  

 

I-1 Scanning probe microscopies among microscopies  

 

Scanning probe microscopy (SPM) includes a large family of microscopy techniques for the 

characterisation of surfaces at the micro and nano scale. The emergence of SPM followed the development 

of the nanotechnologies, for which a direct visualization or manipulation of surfaces or interfaces, at high 

resolution, is essential. Nowadays, SPM techniques go on to be developed because they also offer the ability 

to obtain local information on the physical chemical and mechanical properties of isolated nanostructures or 

surfaces.  

Before SPM, there were two means to observe surfaces or interfaces: with the optical microscope and 

its derivatives (confocal, fluorescent, phase microscopes) and the electronic microscope, specifically the 

scanning electron microscope (SEM) for surface observation. 

Optical microscopes present the advantage of a surface observation, in environmental media, air or liquids, 

on any surfaces provided that it is not totally transparent, (chemical and fluorescent dye are used to colour 

surface) [1]. However, the resolution of such microscopes is limited by the Rayleigh criteria to half the 

wave-length and then to hundreds nanometers. 

The SEM microscope uses an electron beam to probe the surface, this allows to reach subnanometric 

wave length and then a high resolution (de Broglie theory). However, due to aberration in the electrostatic 

lens system, the better value reached today is of 0.4nm [2]. This technique has a great field depth and is 

really appropriate to study nanostructures. 

However, a vacuum environment is necessary due to the small electron mean path and only conductive 

or semiconductive surfaces can be imaged because secondary electrons are emitted from the surface. Isolated 

surface must be previously prepared, recovered by a conductive layer. These limitations make it difficult to 

image biological systems in their physiological environment. One should notice that progress have been 

made and environmental SEM exists today [3]. 

In comparison to these microscopies, SPM and especially atomic force microscopy (AFM) offers the 

opportunity to observe surfaces in air and liquid environment such as an optical microscopy, with a high-

resolution similar to the one of the electron microscopy (SEM).  
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 Figure I-1 shows the principal characteristics of these different microscopical methods.  

 

 
 

Figure I-1. Comparison of most popular microscopical techniques [4] 

 

The fundamental principle of all scanning probe microscopes is to observe the so called near- field 

interactions that occur between a sharp tip and the surface of a sample. To form an image the tip with a 

curvature radius of few nanometres is swept across the surface, line by line, making a map of the 

interactions. During this scanning process, tunnelling current, interaction forces, electromagnetic waves or 

thermal flux can be monitored and directly used for the surface characterization. Since the invention of the 

first scanning tunnelling microscope (STM) by Gerd Binnig and Heinrich Rohrer [5], in 1982, SPM 

techniques were widely popularized and the number of investigations devoted to technical advances and 

applications has increased rapidly. Now, SPM instruments are commonly used in science of physics, 

chemistry, biology and related disciplines. This group of microscopies demonstrates the ability to perform 

experiments in vacuum, air and liquid in the range of temperatures from 4K to over 700K and the diverse 

range of phenomena can be studied including surface topography, measurements of adhesion and strength of 

individual chemical bonds, friction, electronic and vibrational properties, electric and magnetic properties, 

molecular manipulation, and many other phenomena from the micrometer down to the subnanometer scale. 
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I-2 History of the Atomic Force Microscopy 

 

I-2-1 From stylus profilometer to STM 

 

The operation principle of all SPMs is quite similar. This fact can be explained by a common 

archetypal instrument which has become an enabling tool for developing modern methods of SPM family. It 

is useful to follow the development of scanning probe microscopy by the beginning from the first prototypes 

to clearly understand the background of SPM techniques. 

 

Visualizing the morphology of a surface using a scanning probe is an old idea. In 1929, Schmaltz 

already invented the Stylus Profilometer [6]. This instrument had lot in common with the modern atomic 

force microscope (AFM) and can be mentioned as its first prototype. The operation principle was based on 

the detection of a light beam reflected on a moving probe. The probe was carefully brought into contact with 

a surface and moved across it. The projection of the light beam reflected by the probe was exposed on a 

photoemulsion. A magnified profile of the surface was obtained by the optical lever system. However, the 

scanning and detection systems were not enough isolated from external noise that strongly limited the 

resolution. 

The next step in scanning probe methods was realized by Young in 1971 [7, 8] when he created 

another type of profiler called “Topographiner”. This non-contact profiler is considered as the “father” of the 

scanning tunnelling microscope (STM). It already had implemented feedback loop to keep the working 

distance constant during the scanning of a conducting tip above a conducting sample. However, when the 

STM uses the direct tunnelling to feel the proximity of the surface, the topographiner operated in an emission 

regime. Such operation regime and the unsubstantial protection from acoustical and thermal noise were 

responsible to a relatively low resolution comparable to the one of the optical microscope. 

In addition, Young also performed spectroscopic measurements with his topographiner in direct 

tunnelling regime. He has already shown that the detected tunnelling current was in strong dependence on 

the tip-sample separation. However, no stable imaging was obtained under their experimental conditions [7].  

The situation drastically changed since the development of the first STM, which was able to realize the 

surface visualization in direct space, at a true atomic resolution [8, 9], in 1982. This fundamental 

achievement of G. Binnig and H. Rohrer was honoured by a Nobel prize in Physics in 1986.  

Unlike the previous prototypes, the STM could perform image scanning in a direct tunnelling regime 

by measuring the tunneling current present through the gap between a sharp tip and a conducting sample 

surface [10, 11]. The exponential dependence of the current on the distance is responsible of the high 

sensitivity of the instrument to variation in surface topography (actually electronic density of states). For 

example, a monoatomic step may cause a change in the tunnel current from 2 to 3 orders of magnitude [9]. 

That is why the question of stability during imaging was crucial. Fortunately, the solution has been found: 

this first STM was equipped by improved system of noise reduction, which used the effect of magnetic 

levitation [8]. The exponential decrease of the current towards distance implies that only the extremity of the 



  12 

tip apex is involved in the interaction. To reach atomic resolution, only one atom at the extremity of the tip 

contribute to the current and the tip-surface distance, typically of 1nm, should be controlled at less than 1pm. 

The tip surface distance can be reached thanks to piezoelectric ceramics actuators which allow displacements 

of tip and sample at a nanometric scale. The stability can be achieved when controlling displacement, 

external noise and vibration, electromagnetic perturbations and thermal drift. Thus, STM microscopes are 

placed in a faraday cage, on an anti-vibration table, and in an air-conditioned room. They are also 

symmetrically designed to compensate thermal drift.  

Unfortunately, few surfaces can be directly observed in air because of their oxidization. The presence 

of a faradic current, typically of 1 µA, makes the measurement more complex in liquids. Nowadays, the 

STM is dedicated to high resolution studies in UHV [8, 9]. 

  

   

I-2-2 Basis of Atomic force microscope 

 

In 1986, G.Binnig, C.Quate and C.Gerber invented the Atomic Force Microscope (AFM) [12] which 

made a breakthrough in the world of microscopy. Since then, the AFM was recognized as a powerful and 

versatile tool for nanometric scale objects characterization. The AFM allows to image the topography of a 

wide variety of materials, conducting and insulating, hard or smooth with a relative ease. 

The AFM principle is based on the interaction of a tip fixed to a microcantilever with a sample. 

A typical AFM configuration includes a microcantilever, a detection system, a sample positioner and a 

control system (Figure I-2).  

 
Figure I-2. Schematic representation of the AFM  

 

When the cantilever is close enough to the sample, according to the size of the tip (typical radius are 

around 10nm), surface forces appear on the nanometric scale. These forces are sufficient to cause a 

detectable signal in the system of detection. As a measure of the tip-sample interaction, the resonant 
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frequency or the deflection of the cantilever can be used. In most common cases, the cantilever movement is 

registered by an optical system which consists of a photodiode array that detects laser beam reflected from 

the top side of the cantilever. The control system governs the sample position according to the output signal 

of the photodiode.  

An AFM image is obtained by scanning line by line the sample surface. During the scanning, the 

sample position is adjusted to keep the output signal at the position corresponding to the reference deflection 

or the reference resonant frequency of the cantilever.  

 

 

 II - The different interaction forces  
 

The tip-sample interaction on which AFM is based involves different forces, attractive and repulsive, 

and of different intensities. All these forces exhibit different tip surface distance dependence. In external 

field-free experiments, the dominant forces are van der Waals, chemical forces, short-range repulsive 

interactions, adhesion and capillary forces. 

 

II-1 Van der Waals force 

 

The van der Waals force is a long-range type force which acts in all media whatever the chemical 

composition of the surface. This universality is induced by the nature of the van der Waals forces, they are 

due to the fluctuations of electrical dipole moment between atoms and/or molecules. More precisely, the van 

der Waals force is the sum of three different forces. Each is proportional to 1/r6, where r is the distance 

between atoms or molecules. Thus, the corresponding total potential is expressed as [13, 14]: 

 

( ) 6/ rCCCUUUU LDKLDKVdW ++=++=    (eq.1.1) 

 

where UK is the orientation or Keesom potential, UD is the induction or Debye potential and UL is the 

dispersion or London potential, and CK , CD , CL are corresponding constants . 

 

The first and second terms of (eq.1.1) are called Keesom and Debye energies, they manifest only in 

interaction between atoms or molecules with a permanent or an induced dipole, respectively. 

The third term is called the London energy, it manifests between all types of atoms and molecules [15], even 

the non polar. This London energy mostly contributes to the van der Waals force.  
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The attractive van der Waals force between atoms is proportional to 1/r6, where r is the distance. The 

empirical potential used to approximate the interaction between a pair of atoms or molecules is the Lennard-

Jones potential (Figure I-3) [13]: 
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where A is the Hamaker constant, C is the attractive interaction strength. 

 

The empirical constant ε represents the characteristic energy of interaction between molecules, namely 

the maximum energy of attraction between a pair of molecules. Characteristic diameter of the molecule σ, 

also called the collision diameter, is the distance between two atoms or molecules for φ(r) = 0. In this 

expression, only the r-6 term, the attractive term corresponds to the van der Waals or dispersive force.  

The r -12 term is the repulsive term and describes the Pauli repulsion at short ranges due to electron orbitals 

overlapping (Figure I-3): 

 

 

 

Figure I-3. Lennard-Jones potential with attractive and repulsive parts [13]. 

 

 Analytical expression for van der Waals force depends on several factors including geometry of 

interacting surfaces. In AFM, the tip-sample interaction should be considered as an interaction between 

macroscopic bodies rather than between individual atoms or molecules [13]. In this case, the interacting 

interface can by approximated by a sphere-plane geometry and the van der Waals force obtained using the 

Derjaguin’s approximation [16] is then expressed as: 
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26r

AR
FVdW −=       (eq.1.3) 

 

where A is the Hamaker constant, R the tip radius and r is the tip-sample separation.  

 

All physico-chemical information about interacting bodies is included in the Hamaker constant which is a 

measure of the strength of the van der Waals force. 

 

  For special applications, other long range forces are considered, electrostatic forces between a 

conductive tip and sample system and magnetic force between a magnetic tip and surface system. In this 

work, we do not consider these forces, they lead to specific SPM instruments devoted to the analyse of 

surface potential, conductance, doping effect or magnetic moment. 

 

 

II-2 Short-range forces and adhesion 

 

Short-range repulsive forces appear when the separation distance between two objects reaches the 

magnitude of the interatomic distance. It is the case when they are brought into mechanical contact. Some 

repulsive forces between molecules or atoms appear due to the Pauli or ionic repulsion. However, for 

microscopic contact areas consisting of large number of atoms, the effective force can be described without 

considering Pauli or ionic repulsion. This approach implies that the mechanical contact defo²rms interacting 

objects and that the deformation depends on the applied load (or force) and on the material properties. 

Analytical description of the relationship between deformation and applied force is provided by theories of 

continuum elasticity. 

Historically, the first model was proposed by Hertz in 1881 [17]. This model described the 

deformation without adhesion forces. Other widely used models such as Johnson-Kendall-Roberts (JKR) 

[18] and Derjaguin-Muller-Toporov (DMT) [19] take into account adhesion inside (JKR) or outside (DMT) 

the contact area.  

In the case of a spherical tip on a flat surface, these three theories give the following relations for the 

contact radius a, a deformation of the sample δ, an adhesion force Fa, a reduced Young Modulus Etot, a tip 

radius R and an applied load F. Here W is the thermodynamic work of adhesion. 
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– according to Hertz model: 
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– according to JKR model: 

 

 ( )3 2 RWF
E

R
a

tot

π+=  
( )

3 2

3/22

totRE

RWF πδ +=   RWFad π2=   (eq.1.5) 

 

– according to DMT model: 
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Typically, the Hertz theory can only by applied if the adhesion force Fad is significantly smaller than 

the maximum applied load F. The JKR model is suitable for describing the contact of soft samples with a 

large adhesion when a large tip is used. The DMT model can by used for stiff samples with a small adhesion 

in the case of small tips [20]. Even if these theories are only approximations, they have become standard 

contact models for AFM studies. 

More sophisticated analytical description of the interaction between surfaces has been proposed by 

Maugis [21]. The contact mechanics of two elastic bodies can be described by the relationship between stress 

(σij) and strain (εij) tensors, which for isotropic materials is established by the following equation: 

ijijllij Gεδηεσ +=      (eq.1.7) 

where η is the Lamé coefficient and G is the shear modulus. 

 

The (eq.1.7), at an equilibrium state, can be parameterized by the elasticity parameter λ, which 

compares the relative strength of the deformation and the effective range of the surface force: 

 

30 2
9

totWE

R

π
σλ =      (eq.1.8) 

where σ0 is the stress at the equilibrium spacing. 

 

As it is shown in the adhesion map of Greenwood and Johnson [22] (Figure I-4), the general solutions 

can be reduced to the Hertz model for λ=0, to the DMT model for small λ (λ < 0.1) and to the JKR model for 

large λ (λ > 5).  
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Figure I-4. Adhesion map of Greenwood and Johnson [22] 

 

The Maugis theory, experimentally verified by Lantz et al. [23], settled the dispute between the JKR and 

DMT models in the 1970s and is now recognized as the general theory fully describing the elastic 

deformation of samples. 

 

II-3 Capillary forces 

 

Under ambient conditions, in air, a meniscus or liquid bridge may form between tip and sample, due to 

capillary condensation around the contact (Figure I-5). This meniscus induces an attractive force, dependent 

on the distance, caused by the pressure difference between the liquid and surrounding vapor phases. 

 

 

Figure I-5. Schematic of a water meniscus between a plane and a sphere of radius R [4] 

 

The pressure difference is given by the Young-Laplace equation: 
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P γ       (eq.1.9) 

where γ is the surface tension of the liquid and R1 and R2 are the principal radii of curvature of the 

water meniscus.  

The analytical expression of the capillary force Fcap between tip and sample of plane-sphere geometry 

has been developed by O’Brien and Hermann [24]: 
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( )21 coscos2 θθπγ +=capF       (eq.1.10) 

 

where θ1 and θ2 are contact angles between surfaces of tip and sample, and the liquid. 

 

However, (eq.1.10) does not reflect any dependence of the capillary force on the relative humidity.  

A model including the influence of humidity, of the surface roughness, and also the time in the capillary 

force expression, was introduced by L. Bocquet and J. L. Barrat [25]: 
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dtFcap      (eq.1.11) 

where d is the effective distance taking into account geometry of the contact, P0/P is the relative 

humidity, and τ0 is a time constant of the order of the condensation time of one liquid layer. 

The authors of this model observed good agreements between their experimental results and their 

theoretical predictions. According to equations (1.10) and (1.11), meniscus forces are expected to increase 

for hydrophilic surfaces and decrease for hydrophobic surface. This was experimentally observed by many 

groups [26-29]. 

The calculations demonstrated that the capillary force is usually more long-ranged than the van der 

Waals force under moderate humidity conditions as shown in Figure I-6 [30]. 

 

 
Figure I-6. Comparison of van der Waals and capillary forces at different humidities for an hydrophilic tip with a radius 

of 20 nm interacting with an hydrophilic flat substrate [30] 

 

The relative contribution of several forces such as van der Waals, capillary and electrostatic forces has 

been experimentally studied by Ouyang et al. [31]. They performed adhesion measurements of an AFM tip 

on mica, graphite and MoS2 surfaces with relative humidity P0/P=50% and have found that the capillary 

force has the largest contribution, in all cases. 
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II-4 Forces in aqueous medium  

 

Forces acting between an AFM tip and a surface in an aqueous medium can be described by the DLVO 

theory (Derjaguin, Landau, Verwey and Overbeek). This theory is based on the assumption that interaction 

between two surfaces is governed by the van der Waals attraction and the electrostatic double-layer repulsion 

[32, 33].  

The origin of the van der Waals force has been already described. The electrostatic double-layer force 

appears due to the interaction between ions of the liquid and surface charges at interfaces. For example, if 

surfaces approach the concentration of ions between them increases providing a repulsion force [33]. For 

large separation distance this force decreases exponentially with the characteristic decay length known as the 

Debye length: 

∑
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D Zce

Tkεελ      (eq.1.12) 

 

where ε is the dielectric constant, ε0 is the electric permittivity of vacuum, kB is the Boltzmann 

constant, T is the temperature, e is the electron charge. Term ΣciZi
2 is the salt concentration and determines 

the Debye length λD. Here ci is the partial concentration of ions of higher valency Zi. 

 

The electrostatic double-layer force can be calculated using the common continuum theory based on 

the Debye and Hückel [34], and also the Gouy and Chapman [35, 36] theories.  

According to continuum theory, the force between an AFM tip and a surface can by calculated in 

assumption of following boundary conditions: firstly, during the approach, the surface charges are constant 

(constant charge) and secondly, the surface potentials are constant (constant potentials).  

For the tip with a parabolic shape that interacts with a flat surface in the constant potential conditions, 

the electrostatic double-layer force is given by [37, 38]: 
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where ψS and ψT are the surface and tip surface constant potentials, respectively. 

 

For the constant charge conditions, it gives [38, 39]: 
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where σS and σT are the surface and tip charge densities respectively. 
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These equations are valid in the case of low surface potentials ψS , ψT ≤ 50mV. In addition, both the tip 

radius and the separation distance must be larger than the Debye length (R >> λD, and D ≥ λD). 

The choice of the appropriate boundary conditions depends on the surfaces, on the liquid and also on 

the approach speed. However, the constant potential conditions are more suitable with the so-called charge 

regulation model, in most cases [40]. According to this model, a surface charge appears due to the 

dissociation of ions from surface groups and consequently dependent on the potential. This is in agreement 

with experimental data for which the surface charge is often dependent on the pH of the solution and on the 

concentration of the ions. 

Despite several limitations, the DLVO theory provides a satisfactory description of the electric double-

layer force in aqueous solutions for monovalent salts at concentrations below 0.2M and potentials below 50-

80mV. For example, it is appropriate to describe pH-determined surface charge such as oxides, mica and 

biological macromolecules.  

This theory is not consistent to describe images in the case of a small separation between interacting 

surfaces. In fact, the finite size of ions is neglected and the distribution of their charge is considered as 

continuous. Between two hydrophilic surfaces separated by distances of 1-3nm, repulsive forces appear 

which are related to strong charge-dipole, dipole-dipole or H-bond interaction of these low energy surfaces 

with water. These forces are called hydration forces and they are measured for surfaces such as mica, 

alumina, DNA, proteins etc… demonstrating a short-range behaviour [13]. In contrast to the electrostatic 

double-layer force, increasing the ionic concentration provides increasing the strength of hydration forces 

and their range of actions becomes more extended. 

Interaction between two hydrophobic surfaces in water is characterized by the so-called hydrophobic 

force. This force has a decaying attractive character and is stronger than the van der Waals interaction, 

between solid surfaces [41, 42]. In many experiments, short- and long-range attraction components are 

observed. Short-range component is characterized by an exponential decay length of 2-6nm, whereas long-

range may reach 100nm [43, 44].  

Several theories have been proposed to explain the nature of the hydrophobic force. Acceptable 

agreement between theoretically predicted and experimental hydrophobic forces gives the so-called 

nanobubbles hypothesis. According to this theory, bubbles form bridges between the hydrophobic surfaces. 

However, it was shown that such mechanism occurs only in the long-range hydrophobic attraction [41]. 
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 III - The AFM principle  

 

The AFM is based on the detection of a tip-sample interaction force. To determine the interaction, the 

AFM measures the deflection or the resonant frequency of a cantilever in a static or a dynamic regime, 

respectively. In both cases, the probe deflection as well as the probe frequency response must be measured 

with sufficient accuracy to achieve the expected resolution.  

The interaction potential between the tip and the sample includes contributions from different forces 

described in details in previous section. These forces exhibit power law dependencies on the tip-sample 

separation. It is necessary to know which forces are involved in the interaction process to control them. 

However, the tip behavior is defined by the forces, but also by its shape and by the medium between tip and 

surface.  

 

III -1 The cantilever and the tip 

 

The probe is a key element of the AFM. It consists of a tip attached at the end of a flexible cantilever 

(Figure I-7) and its mechanical properties are greatly responsible for AFM performance. 

 

 

 

 

Figure I-7. An atomic force microscopy probe (rectangular cantilever) 

 

Commercial cantilevers are manufactured from a crystalline material, typically from silicon or silicon 

nitride. The tip is characterized by its shape as well as its electro-chemical and mechanical properties. The 

curvature radius of the tip is determinant for the resolution and the tip angle defined the probe aspect ratio 

i.e. the ability of the tip to precisely follow rough surfaces. The cantilever is characterized by its mechanical 

properties such as the spring constant k and the resonance frequency ν0, which can be calculated from the 

cantilever dimensions and material properties. 

The elastic deformation of the cantilever is used to measure the tip-sample interaction. According to 

the Hook’s law, the deflection z is approximately proportional to the applied force F: 

F=kz       (eq.1.15) 

where k is the stiffness of the cantilever. 
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For homogeneous rectangular cantilevers with a constant cross-section, the spring constant can be 

calculated using (eq. 1.16): 
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k ==       (eq.1.16) 

 

 where E is Young’s modulus, w, t and L are the cantilever width, thickness and length, respectively 

(Figure I-7). 

In practice, V-shaped cantilevers are also used (Figure I-8). According to Sader [45], such cantilevers 

are more mechanically stable and more sensitive to lateral force, and their spring constant can be expressed 

as: 
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where b is the distance between levers. 

 

 

 

Figure I-8. An atomic force microscopy probe (V-shaped cantilever) 

 

The stiffness of the cantilever determines its resonant frequency and sensitivity. According to the 

equation (1.15) a stiffer cantilever bends less for the same force and consequently has a reduced sensitivity. 

The movement of the cantilever in air or vacuum can be approximated by a point mass on a massless 

spring and then the resonant frequency can be expressed as [46]: 
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π
ν =       (eq.1.18) 

where m* is the effective mass. 

 

A high resonance frequency is responsible for the time resolution of an AFM or in the other words, 

high resonance frequency makes possible AFM scanning with higher velocity [47]. On the other hand, the 

resonance frequency should also be as high as possible to avoid the influence of external vibrations and noise 

[48]. 
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Usually, cantilevers are coated on the reflective side with a metallic layer to increase their reflectivity. 

This means that any variation of the temperature or chemical environment of the cantilever provokes a 

bending of the cantilever as for bimorph stacked materials. Slight difference in surface stresses leads to 

uncontrolled drift of the cantilever deflection which can confuse measurements [49]. To reduce the drift, 

optimal design of the cantilever should be chosen. In practice, it implies a compromise between dimensions 

and materials. The cantilever geometry can also play an important role depending on the application, for 

example V-shaped cantilevers are often chosen to increase lateral stability. 

 

 III-1-1 Calibration of the spring constant 

 

Nowadays, commercially available cantilevers are usually calibrated by manufacturer. However, exact 

values of the stiffness are often required for high precision measurements such as quantitative force 

experiments. 

As it was already shown (equations 1.16, 1.17), the spring constant can be calculated knowing material 

properties and geometry of the cantilever. However, real characteristics of the cantilever are not perfect. For 

example, the thickness is not homogeneous and Young’s modulus of a thin layer can differ from that of the 

bulk material [50]. Theoretically calculated spring constants are often different from experimentally 

determined ones [51, 52] and absolute values of the spring constant should be determined for quantitative 

measurements. 

The most popular methods to measure cantilever spring constant are the Cleveland method [53], the 

Sader method [54], the thermal noise method [55] and the method of calibration by using a reference 

cantilever [56]. 

The Cleveland method consists in adding a known mass at the end of the cantilever and measuring the 

resulting shift in the resonance frequency [53]. In the Sader method, the spring constant is determined by 

using the quality factor and the resonance frequency, when knowing the length and width of the cantilever 

[54]. In the approach proposed by Hutter and Bechhofer [55], the spring constant is calculated by measuring 

the intensity of the thermal noise induced by thermal fluctuations of the cantilever. The convenient way is to 

use an already calibrated cantilever as a reference to determine the unknown spring constant of a cantilever 

[56]. This method is relatively easy but it implies the calibration of the reference cantilever. These three 

methods give good precision in measurements but they imply some complexity in achievement. The 

Cleveland method requires to precisely determine the mass of the particle fixed to the cantilever. The Sader 

method is dependent on geometrical parameters, such as non constant thickness of the cantilever, for 

example. The thermal noise method is the most common used because it does not require any external 

manipulation with the cantilever. Nowadays, this method of the cantilever calibration is implemented in 

many commercial AFMs. 
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III-1-2 Cantilever deflection measurements 

 

Far from a surface, no force acts on the cantilever. The tip-sample interaction changes the cantilever 

position which can be measured. 

Historically, the first detection method was proposed by Binnig et al [12]. It consists in using STM 

probe for deflection measurements of the AFM cantilever. However, this approach was not widespread 

because of its limitation to conductive cantilevers, the high contamination sensitivity and its design 

complexity. For the measurements of small cantilever displacements, an optical interferometer can be used. 

This method provides a high accuracy in the cantilever deflection detection via the wave length [57, 58]. 

Deflection can directly be registered with piezoelectric cantilever. Such instrument does not require external 

detection mechanism, it is particularly useful for application with limited space [59]. 

The optical lever method is the commonly used approach for cantilever displacement measurements. 

Today, most of AFMs are implemented by this inexpensive technique. A collimated beam from a laser diode 

is focused at the end of the cantilever, on the top side, and the reflected light is registered by a position 

sensitive detector (PSD) (Figure I-9).  

 

 

 

Figure I-9. Optical lever detection technique 

 

The position of the reflected laser beam is usually detected by a four-segment photodetector, allowing 

the detection of the cantilever movement along vertical and horizontal directions. The bending of the 

cantilever leads to a shift of the laser spot which changes the signal on the segments proportionally to the 

cantilever deflection. A lateral shift is caused by the torsion of the cantilever in presence of a frictional force. 

In both cases, this system assures high sensitivity and sufficient stability, however the cantilever deflection 

should be relatively small in order to provide the detector operation in linear regime [60]. 

 

III-1-3 Resolution and limits of AFM  

 

Topographical AFM image is a 3-dimensional representation of the sample surface which therefore 

can be characterized by lateral and vertical resolution.  
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In most cases, the lateral resolution is determined by the tip characteristics, the tip-surface interaction 

and elastic properties of the sample. Real AFM tips have a finite curvature radius r and angle α, consequently 

the point of contact is not always at the apex of the tip. It leads to broadening effects which manifest by 

overestimated lateral dimensions of small surface features (Figure I-10) [61].  

 

 

  
 

Figure I-10. Influence of a finite tip size in AFM measurements.  

The scanning lines are different from the real profile of the feature [61]. 

 

For idealized tip and sample geometries, the imaging error can be obtained by geometrical 

construction. Scanning on a rectangular object of width w and height h by a tip with a curvature radius r ≥ h, 

produces a topographical image with an apparent width of the object of: 

 

222' hrhww −+=       (eq.1.19) 

 

When a cavity is scanned, the apparent depth is given by: 
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 The vertical resolution is mostly limited by thermal fluctuations. For the optical-lever detection 

system, the cantilever thermal noise can be estimated by the expression [62]: 
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4=       (eq.1.21) 

 

For example, for a temperature of T=295K and a cantilever spring constant k=40N/m, the thermal 

fluctuations are of the order of 0.01nm. It means that the AM-AFM may provide vertical resolution of 0.1nm 

or better [63]. 
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Albrecht et al. have shown that the uncertainty of the frequency caused by the thermal noise is given 

by the following relation [64]: 
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where B is the detection bandwidth, and A is the amplitude of the cantilever oscillation. 

 

The minimal force gradient that can be detected is 
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For low temperatures of the order of some Kelvins, eqs. (1.22) and (1.23) give δω ~ 1.0x10-3 s-1 and 

δFmin ~ 2.3x10-4 N/m. It is remarkable that the sensibility of the cantilever is inversely proportional to the 

oscillation amplitude. This (eq. (1.23)) shows that optimal conditions correspond to high quality factor, low 

temperature (thus in UHV, in FM-AFM at 4°K) [65].  

 

 III-2 Atomic Force Microscope operation modes 

 

The operating modes of an AFM are often defined as contact or non-contact (NCM) modes, in the 

literature. In contact mode, AFM operates in a regime of static force measurements in the repulsive part of 

the surface potential. Non-contact mode is defined by an operation in the attractive part of the potential. This 

regime provides a higher sensitivity in detecting small attractive forces and prevent the cantilever from 

jumping-to-contact (unless such regime is not set by the operator). Interaction regimes of both AFM modes 

are illustrated in Figure I-11. 

 

 

Figure I-11. Interaction regimes of different AFM modes [4] 
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 III-2-1 The contact mode 

  III-2-1- 1 Imaging 

 

In this operation mode, the tip is in continuous contact with a sample surface. At such small separation 

distances, the interaction potential has a strongly repulsive character resulting from the Pauli exclusion 

principle, when the electronic orbitals of tip and sample overlap. When the tip is scanned on the surface, the 

deflection of the cantilever changes with the topography of the sample, leading to a different value of the 

force. Thanks to the feedback loop, the tip surface distance is adjusted to maintain the applied force at a fixed 

setpoint value. The adjustment of the distance is performed by applying voltage on the Z piezo ceramic 

translator. Thus, an image is obtained by scanning the tip at a fixed applied force (setpoint). Variation of the 

tip-sample distance reflects the topography of the sample. For an analytical description, the cantilever is 

supposed to be placed horizontally along x-axis and the force acting on the probe is applied to the end of the 

cantilever in vertical direction. It is also assumed that the cantilever deflection is measured by optical lever 

method. 

When the probe is affected by the action of the tip-sample force, the cantilever bends and its deflection 

is detected by the optical lever. If the force acting on the cantilever changes during a period of time much 

slower that the period of resonant oscillations of the cantilever, then this force can be considered as a static 

force. In the static force regime, the elastic response of the cantilever, at a given position X, is related to its 

torque F(L-X) according to the following relation: 
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where I is the moment of inertia. 

 

Resolving this differential equation with the boundary conditions Z(X=0)=0 and dZ/dX(X=0)=0 for a 

rectangular cantilever gives: 
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where E is the Young’s modulus of the cantilever material. 

 

Usually, the laser beam is focused at the end of the cantilever i.e. X=L. Substituting it in eq.(1.25) and 

knowing that for rectangular cantilever I=wt3/12, the cantilever deflection can be expressed as: 
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here L, w and t are the length, width and thickness of the cantilever, respectively. 
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The inclination at the end of the cantilever (endslope) is then: 
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Hence, the deflection can be rewritten as: 
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The equation (1.28) demonstrates that the deflection measured with the optical lever technique is 

proportional to the inclination of the cantilever.  

For V-shaped cantilever, the expression is more complicated [66], however often it can be successfully 

approximated by rectangular geometry that is experimentally confirmed by Sasaki et al. [67]. During the 

scanning in the repulsive regime the interaction force between the tip and sample surface can be high 

enough. It means that the elastic deformation of the tip and the sample must be taken into account [68]. 

 

III-2-1-2  Force measurements 

 

Another important possibility to investigate the sample or tip properties is the study of interaction 

between tip and sample. Such measurement is known as force measurements or force spectroscopy. 

In a force spectroscopy experiment, the cantilever deflection is measured while the tip is approached 

and retracted from a surface by the piezoelectric translator (Figure I-12).  

 

 
 Figure I-12. Different steps of cantilever approach-retracting movement [63] 

  

The result of force measurements is the detection of the cantilever deflection as a function of the Z 

piezo position. In practice, the deflection is measured as a photodiode current IPSD and should be converted in 
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a force. It implies that the sensitivity of a “contact regime” curve should be determined, and that the 

cantilever should be calibrated. Then, the interaction force can be calculated according to the Hook’s law 

F=kZ, where k is the spring constant and Z is the deflection of the cantilever. The whole tip-sample distance 

D consists in the position of the piezo translator Zp and the deflection Z, so that D= Zp+Z.  

The graphical representation of the measured force F in function of the distance D is commonly called 

force-versus-distance curve or simply force-distance curve (Figure I-12).  

The conversion of the cantilever deflection into a force is crucial in force spectroscopy because it 

determines the correctness of measurements. However in practice, the previously described method may 

provide incorrect interpretation, when highly deformable samples are used or in case of strong repulsive 

force.  

For the force measurement, such parameters as the sensitivity and the zero-distance must be obtained 

directly from the experimental force-distance curve and not indirectly by independent methods.  

A force-distance curve consists of approaching and retracting parts and each part corresponds to two 

regimes: contact and non-contact regime (Figure I-13). 

 

 

  

Figure I-13. Schematic representation of a force-versus-distance curve 

 

When the approach begins, the cantilever is far from the sample and any force acts on the tip (in 

assumption that long-range forces can be neglected). The tip moves toward the sample, the tip-surface 

distance decreases and the deflection signal remains unchanged (Z=0 and distance D=Zp). This phase of 

approach corresponds to the non-contact zero force line which defines the zero deflection of the cantilever 

(part I in the Figure I-13). 

As the tip goes on approaching toward the sample, the gradient of the attractive force becomes 

sensitive to the surface. When its strength exceeds the spring constant (dFsurf /dD > k), the cantilever jumps 

from equilibrium state in contact with the surface (so called “jump-in” point), that corresponds to the part II 
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in the Figure I-13. This unstable regime is induced by capillary forces acting on the tip due to the presence of 

a water layer on the surface in ambient conditions [69]. 

From the “jump-in” point, the tip is in contact with the surface and its movement into the surface 

induces an increase of the load (linear on stiff surface). It corresponds to the contact part of the force-

distance curve (part III in the Figure I-13). The slope of the linearly increasing contact part corresponds to 

the sensitivity ∆IPSD/∆Zp. The cantilever deflection can be calculated from the detector signal according to the 

following relation: Z=IPSD/(∆IPSD/∆Zp). Then, the force can be obtained from the deflection by: F=kZ. 

Because the tip is in contact with the surface, the distance D=0, and then Zp=-Z.  

The contact regime of the retraction part corresponds to the situation when the cantilever is moved 

backward from the surface but the tip still remains in contact with the surface by an adhesion force (part IV 

in the Figure I-13). During retraction, the cantilever bends in the opposite direction compared to the one for 

the approach until the energy of the cantilever overcomes the adhesion force (also called the pull-off force) 

(part C in the Figure I-13). If the sample deformation can be ignored, this energy can be described as: 
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Then, the cantilever returns from the pull-off point, in the initial starting point passing by the non-

contact zero force line (part I in the Figure I-13). 

 

In real situation, all solid materials are deformable. It leads to a nonlinear dependence of the cantilever 

deflection on the applied force, during approach. It means that the indentation of the sample δ must be taken 

into account. In most cases, many materials are characterized by small indentation δ << Z and a change in 

applied force ∆F corresponds to a change in the cantilever deflection: ∆F ≈ k ∆Z. If the sample indentation 

can not be ignored, for example when indentation is caused by strong adhesion force, an appropriate model 

should be used for force-distance curve description [70]. 

The difference between approaching and retracting parts of the contact regime, the hysteresis, is usually due 

to plastic or viscoelastic deformation of the sample [71]. In the case of elastic deformation, lines of contact 

regime should have identical slope. 

The force spectroscopy is widely used for quantitative characterization of plastic and elastic properties 

of polymers [72, 73] and biological samples [74, 75] in ambient, gas or liquid media. 

Another information given by the AFM spectroscopy is the measurement of adhesion and van der 

Waals forces with a high resolution. Probing these forces offers the possibility to measure the surface energy 

of materials. It is the object of experimental works when the classical method of contact angle measurement 

is not efficient [76]. This is the case when the sample surface is not homogeneous, chemically reactive or 

unstable in the environment of the probing liquids and also when samples are small or patterned with 

microscopic domains [76]. 
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The original possibility to determine surface energy γ by AFM consists in determining the work of 

adhesion between the tip and the sample from experimental force distance curves knowing the radius of the 

cantilever tip [77]. 

During spectroscopy, the contact time between the tip and the sample is short (order of ms), 

consequently, the adhesion is only due to Van der Waals forces and the measurable work of adhesion 

represents the thermodynamic work of adhesion W0: 

 

γ20 =W      (eq.1.30) 

 

On the other hand, the tip-surface contact can be considered as a contact between a sphere and a plane 

with low deformation and low contact radius. Then, the DMT model (Derjaguin Muller Toporov) can be 

applied for an approximation of the thermodynamic work of adhesion [78].  

Experimental force-distance curves give the force necessary to separate the tip from the 

surface (during the pull-off – the adhesion force Fadh), then the DMT model relates this adhesion 

force Fadh to the thermodynamic work of adhesion as follow: 

 

Fadh=2̟RW0      (eq.1.31) 

 

where Fadh is the adhesion force and R the tip radius. 

 

The expression for the surface energy can be deduced by substituting eq. (1.30) into eq. (1.31): 

 

R

Fadh

π
γ

4
=      (eq.1.32) 

  

The cantilever bending during the separation obeys to the Hook’s law, thus the adhesion force 

between the tip and the sample is: 

 

ZkFadh ∆⋅=       (eq.1.33) 

 

where k is the cantilever spring constant and ∆Z is the cantilever bending (pull-off on force-distance 

curve during retraction). 

 

In several cases, measured surface energy differs from theoretically predicted values. This is 

because analyzed surfaces or more precisely tip-sample systems should be carefully approximated 

by appropriate elastic continuum models (described in details in section “Interaction forces in atomic 
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force microscopy”). For example, if the system is not quite correctly described by the DMT model, it 

may be possible to obtain better approximation with JKR model or vice versa. In addition, the origin 

of the difference between experimental and theoretical data can be related to tip geometry, non 

homogeneity, morphology and plastic deformation of the sample. However, in several cases the 

DMT and JKR theories lead to correct results, which are in good accordance with Maugis 

approximation [79, 80]. 

 

 III-2-2 Dynamic mode 

 

The AFM technique can be used in another mode: the dynamic mode. The idea of using an oscillating 

regime was first proposed by Martin et al [81]. The principle of AFM in dynamic mode is based on the 

dependence of the amplitude, the resonance frequency and the phase shift of the oscillating cantilever on the 

tip-surface interaction. Depending on the operation regime, some of these signals can be used as feed-back 

parameters to image the surface topography. The main advantage of dynamic force microscopy is the 

possibility to probe the sample surface without tip-surface mechanical contact i.e. in non-contact mode that 

is especially important for experiments with polymer and biological materials. AFM imaging in static mode 

(contact mode) of DNA molecules or of protein membranes was possible due to their relative rigidity and 

strong adsorption on the substrate. However, weakly attached single macromolecules were often damaged by 

the tip or pushed away. Non-destructive dynamic AFM modes have enabled high-resolution imaging of 

individual proteins [82, 83], polymers [84] and DNA [85] in air and liquids. 

The excited cantilever is usually considered as a point-mass spring and then the tip motion can be 

approximated by an equation of harmonic oscillator according to the Newton’s equation [86, 87]: 

 

)cos(0
0

2

2

tFF
dt

dz

Q

m
kz

dt

zd
m ts ωω +=++    (eq.1.34) 

 

Here F0 cos(ωt) is the external periodic excitation force with angular frequency ω; Q, ω0, m and k are 

quality factor, angular resonance frequency, mass and spring constant of the cantilever respectively; Fts is the 

tip-surface interaction force, respectively.  

The interaction force Fts contains long-range van der Vaals interactions, short-range repulsive 

interactions, adhesion and capillary forces, described in details in section “Interaction forces in atomic force 

microscopy”. 

The response of a cantilever to a periodic excitation can be obtained by solving eq. (1.34) [88]: 

 

)cos()( ϕω −= tAtz       (eq.1.35) 

 

where the oscillation amplitude A in function of the excitation frequency is expressed as: 
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The phase shift between the driving force and the cantilever response is then given by: 
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−
= Q

      (eq.1.37) 

 

The graphical representation of the cantilever response given by equations (1.36) and (1.37) is shown 

in Figure I-14. 

 

 
 

Figure I-14. Amplitude and phase responses of the cantilever to periodic excitation [89] 

 

According to the eq. (1.36), the cantilever oscillation amplitude depends on the magnitude of the 

exciting force F0, the discrepancy between the mechanical resonance frequency ω0 and the excitation 

frequency ω and the hydrodynamic damping Q. Q can be calculated by the thickness of the peak Q=∆ν/ν0. 

The tip-surface force Fts includes the elastic response and the effective resonance frequency of such 

harmonic oscillator depends on the gradient of the interaction force dFts/dz [63]: 

 

2/1
/








 −=
m

dzdFk ts
eω      (eq.1.38) 

 

According to the equation (1.36), a change in the effective resonance frequency ωe, provokes a shift of 

the whole resonance curve as it is shown in Figure I-15. 
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Figure I-15. Shift of the resonance curve under influence of tip-surface interaction gradient 

 

The dependence of the effective resonance frequency and consequently of the oscillating amplitude on 

the strength of the tip-surface interaction is the principle of the signal detection in dynamic atomic force 

microscopy. On this basis, two commonly used dynamic AFM modes have been developed for sample 

surface probing: Amplitude-Modulation AFM (AM-AFM) and Frequency-Modulation AFM (FM-AFM) 

modes. 

In AM-AFM, the cantilever is excited at a constant frequency which is equal or close to its resonant 

frequency. The detection principle consists in measuring the change in the amplitude response ∆A caused by 

the shift in the resonant frequency ∆ω due to the tip-sample interaction (Figure I-15). Thanks to the feedback 

loop, the system reacts moving the Z piezo translator, to maintain the amplitude to its setpoint value. Once 

again, variations of the Z piezo movement acting on the tip surface separation are recorded, they reproduce 

the topographical change of the surface relief [90, 91]. In this mode, mechanical and physico-chemical 

information about the sample may be obtained by measuring the phase shift between the excitation signal 

and the cantilever oscillation [63]. 

In FM-AFM, the role played by frequency and amplitude are reversed towards the AM-AFM mode. 

The cantilever is excited at a constant amplitude which is equal or close to its resonant amplitude. This 

corresponds to a fixed setpoint frequency. The resonant frequency shift ∆ω towards the setpoint frequency is 

measured (Figure I-15) [92, 93]. The resulting image is formed by scanning the sample surface with a 

constant frequency shift. The FM-AFM mode allows to image in a real non contact mode at few nm from the 

surface, and is well-appropriate to high resolution imaging. It is often used in UHV and begins to be used in 

liquids [94]. The AM-AFM mode is appropriate to imaging in air and in liquids but not in UHV. In fact, the 

high quality factor Q in vacuum, requires a long relaxation time between two oscillations and then the 

scanning of a whole image in several hours. [95]. 

Generally, the AFM modes are named contact mode, non-contact and tapping mode. 

The contact-mode corresponds to the static mode, where the repulsive part of the surface potential is 

probed (contact region in Figure I-16). The non contact mode operates in the attractive part of the surface 
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potential (non contact region in Figure I-16) and is often associated to the FM-AFM mode. The Tapping or 

intermittent mode refers to the AM-AFM mode. In this last mode, the tip passes from attractive interaction to 

repulsive interaction during one oscillation cycle. This means that the interaction passes from one force to 

another one. In the AM-AFM, it can be difficult to distinguish non-contact and tapping modes and detailed 

understanding of tip-surface interaction is required [63, 96]. 

 

 

 

Figure I-16. AFM operation modes with respect to surface potential [4] 

 

The dynamic AFM modes (equations 1.34-1.38) are described above in assumption that the vibrating 

cantilever can be considered as a harmonic oscillator. The harmonic approach implies that the tip-surface 

interaction induces a shift in the resonant frequency. However, Garcia et al. showed [63] that tip-surface 

interaction is also related to an energy transfer. In addition, the force gradient was assumed to be smaller 

than the cantilever spring constant and independent of the separation. In most experiments, harmonic 

approximation is not suitable and non-linear dynamic effects appear in the tip motion of dynamic AFM [97]. 

In its basis, dynamic tip-surface interaction is characterized by non-linear attractive and repulsive 

forces that give rise to coexistence of two stable oscillation states in AM-AFM [63].  

The numerical solution of eq. (1.34) shows that, in certain conditions, the tip motion is described by 

two different solutions, called a low (L) and high (H) amplitude solutions: 

 

    )cos( )()(0)( HLHLHL tAZZ ϕω −+=     (eq.1.39) 

 

The oscillation state (low or high amplitude solution) is determined by initial conditions (z, dz/dt, ωt) if 

tip-sample separation and external excitation force parameters (F0 and ω) are constant. 

The existence of single or double stable oscillation state is defined by sample properties and 

parameters such as the cantilever spring constant and the free oscillation amplitude. For example, low elastic 

modulus of the sample or large excitation force reduce the difference between the two stable states, in most 

cases, and both L and H branches merge into a single branch [63]. 
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The transition from one to another state is characterized by a hysteresis loop on the amplitude versus 

distance curve (the spectroscopic signature of the AM-AFM mode) (Figure I-17). 

 

 
Figure I-17. Hysteresis loop of transitions between L and H oscillation states [63] 

 

Figure I-17 presents two transitions at different values of the tip-surface separation. During the 

approach of the tip toward the sample, an L-H transition occurs (point A in Figure I-17) and an H-L 

transition occurs during the retraction of the tip (point B in Figure I-17). The step-like transition between the 

L and H branches implies that for a chosen setpoint amplitude Asp corresponding to the hysteresis position 

then the AFM operation is possible for two different tip-sample separations. Consequently, imaging occurs 

in the L or H state, or in an unstable regime characterized by the switching between the two branches. Then, 

the choice of all the parameters, working frequency, free oscillation amplitude, setpoint amplitude, is crucial 

to perform images in a stable regime [63]. An example will be given in paragraph IV. 

Another important ability of dynamic AFM is the simultaneous imaging of topography and sample-

related properties. As it was shown (eq. 1.37), the phase shift of excited cantilever is related to tip-sample 

interaction force. However, there are several contributions to phase shift related to material properties such 

as adhesive, elastic and viscoelastic properties of the sample [98]. Therefore, AM-AFM offers a powerful 

method for probing sample properties through measuring phase response of the interaction with the surface 

cantilever.  

 

L 

H 
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III-2-3 AFM in liquids  

 

In previous sections, AFM experiments have been discussed in ambient conditions, in air. However, in 

some cases such as for biological or chemical applications, imaging in a liquid media is preferred. AFM in 

aqueous buffers is crucial to obtain the morphology of biomolecules in physiological conditions or to study 

chemical and biological reactions in situ [84]. Furthermore, working in liquids eliminates the meniscus and 

then the capillary forces and can allow to image using short-range chemical forces [99, 100], even with 

atomic resolution in some cases. 

Despite this, performing dynamic AFM experiments in liquids is complex and images are difficult to 

interpret. The dynamic behaviour of the cantilever in a liquid is more complicated than in air or vacuum. The 

liquid induces a high hydrodynamic damping of the cantilever which manifests by a significant decrease of 

the cantilever quality factor Q. Typically, Q range between 1to 20 instead of 10-500 in air and 104-108 in 

vacuum. On the other hand, the resonant spectrum of the cantilever is characterized by several resonant 

peaks that makes difficult the choice of the driving frequency. These numerous peaks are due to acoustical 

vibrations and also to the coupling of normal vibration modes of the cantilever [63]. Figure I-18 presents a 

comparison of the resonant peaks in air, vacuum and liquids. The hydrodynamic effects induce an increase in 

the effective mass of the cantilever leading to the shift of the peak to the low frequencies (according to eq. 

1.38) [54].  

In other words, surrounding liquid with higher viscosity leads to lower resonant frequency of the 

cantilever [101, 102].  

 
Figure I-18. Comparison of noise power spectra in vacuum, air and water [66] 

 

To understand the tip dynamics in liquid, one should solve the equation of the cantilever motion in a 

fluid which is not a trivial task. The model, proposed by Sader [102, 103] and Scherer [104] includes contact 

of the liquid with the cantilever that increases its effective mass. It also considers the effect of the fluid 

motion excited by external driving force, around the cantilever. The proposed equation is expressed as: 
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where w(x,t) is the transverse displacement of the cantilever; E, I, µ are the Young’s modulus, moment 

of inertia and the mass per unit of length of the cantilever respectively. The coefficient a0 describes the 

hydrodynamic damping of the cantilever in the liquid. The term F(x, t) includes all forces per unit of length 

acting on the tip. This model also describes the coupling of the oscillation modes of the cantilever. 

 

 

 IV - Illustration of the AM-AFM mode: a DNA – array  study 

 

The AM-AFM mode is currently used to observe soft materials such as biological molecules deposited on 

stiff substrates, because images are relatively easy to obtain even by non- AFM specialist. Moreover, phase 

imaging can be a versatile tool to characterize compositional contrast variations at the nanoscale, especially 

on soft materials. Phase shifts are related to the dissipated energy per oscillation [105] and provide 

information on AFM tip-sample localized interactions. Phase shift imaging was usually applied on 

heterogeneous materials, to map mechanical properties such as local viscoelasticity or adhesion [106-108]. 

However, the complexity of the tip-sample interaction with a non linear behaviour of the oscillating 

cantilever movement makes it difficult to relate the phase shift imaging to material properties [109]. Before 

imaging, the experimental parameters (free amplitude, amplitude ratio, cantilever characteristics) should be 

well–defined. In that sense, acquisition of amplitude or phase versus distance curves allows to determine the 

conditions for a good stability of the cantilever and to get a better knowledge of the interaction nature. 

Several studies try to establish the relationship between the quality of the image and the nature of the 

interaction (mostly attractive or repulsive). They also try to link the phase image to mechanical properties of 

the surface. In most cases, force spectroscopy is performed on model substrates, phase imaging on 

multiblock polymers.  

This study is related to a DNA-array devoted to biological applications, which is a more complicated 

system with a thin layer of organic, and then, soft material (few nanometers) on a hard silicon substrate. In a 

previous work, it was shown that, DNA molecules hybridized on a DNA array could be imaged and that the 

hybridized region along the molecule could be distinguished (2nm high) from the single non hybridized part 

(1nm) [110]. This was possible by imaging in the AM-AFM mode with appropriate experimental conditions, 

in particular with a well defined amplitude ratio Asp/A0 ~ 90%, where Asp and A0 are the feedback amplitude 

or setpoint amplitude value at which imaging is performed, and the free amplitude value when the cantilever 

is far from the surface where no interaction occurs, respectively. 

Herein, we study the effect of reducing the setpoint amplitude, at a fixed free amplitude and working 

frequency, on topographic height and phase shift AFM images and amplitude-phase curves. Our objective is 

to link experimental conditions to expected informations: high resolution topographic imaging of DNA, 

better understanding interaction dissipative processes involved in DNA breaking on our DNA system. 
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IV-1 Experiment  

 

The sample chosen for this study was a biosensor composed of 25-base oligonucleotides covalently 

bonded to an oxidized silicon surface by means of a silane molecule layer. This entity was used as a DNA-

array and was previously described [110]. On this bio-system, each oligonucleotide acts as a probe molecule 

with which a long DNA strand target can hybridize. In a previous work, we showed that isolated hybridized 

DNA molecules lying on an oligo-probe carpet can be observed. 

The experiment was carried out on a Smena A AFM (NT-MDT, Russia) operating in air at room 

temperature and at a relative humidity of 40%. The cantilevers used had nominal spring constants of 

approximately 4.5 Nm-1, resonance frequencies around 150 kHz (149.626 kHz) and quality factors between 

350 and 375. The exciting phase signal was adjusted to obtain phase lags around 90° at the resonance 

frequency. The drive frequency was slightly below (∆ν= - 66Hz) the resonance frequency (ν=149.56 kHz). 

 This value is close enough to the resonant frequency to consider thereafter a dynamic behaviour of the 

system in the case of resonant excitation but slightly below to force the system to immediately “jump” into 

the tapping state and avoid a path to a non contact regime. [111]. 

The setpoint value Asp was first adjusted at 91.3% of the free amplitude Afree = 22.9 nm ± 0.3nm to 

achieve a stable feedback. Then, Asp is reduced to successive lower values up to 3.1%. For each setpoint 

value, topographical height and phase shifts images were recorded at a line frequency of 1.8Hz (512x512 

pixels). Each image was preceded by spectroscopic measurements: amplitude and phase shift curves. They 

were obtained by approaching the tip towards the sample from a distance with negligible tip-sample 

interaction to the distance corresponding to the setpoint amplitude chosen when imaging. Amplitude and 

phase shifts were recorded on a reduced distance to limit contact with surface and then tip contamination or 

surface modification before imaging. For the same reasons, curves and images were successively performed 

from lower interaction 91.3%, to higher interaction 3.1%.  
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IV-2 Discussion of experimental results 

 

IV-2-1 The surface 

 

Figure I-19 shows simultaneously acquired topographical and phase images focussed on a 500 nm x 

500 nm area where one DNA target molecule had hybridized with one DNA probe molecule [110]. The 

target is lying on the surface extending over the entire imaged zone, with probe molecules also visible on the 

background. Each probe corresponds to a small island of around 20 nm in diameter. The islands size is 

higher than expected due to the well-known tip radius dilation effect [112, 113].  

These images were performed with the Asp/Afree ratio of 91.3%. We observe a clear and noise-free 

topographic image in Figure I-19a, and a phase image in Figure I-19a’ that presents a low phase shift 

contrast ∆ϕ of 7.76°. According to literature, we assume that these images are obtained in a light contact 

intermittent mode of operation, (the setpoint amplitude was chosen in the upper part of the low branch). On 

the phase image, the low contrast is linked to a weak interaction with the surface and includes only 

topographic information [114]. To obtain a significant phase contrast, the tip should be in strong interaction 

with the surface. Then, the phase shift is related to mechanical properties [115].  

Ratio values around 90% correspond to optimal values for height images on this system. They allow to 

obtain optimum topographical information and then a clear interpretation of structures. Stars on Figure I-19a 

depict the location where spectroscopic measurements were performed for each ratio. 

 

 

Figure I-19. Topography (a) and Phase (a´) AFM images with the Asp/Afree ratio of 91.3%. 

Spectroscopy points are marked by stars “*”.  

 

 

 

*  

*  

*  

a a  ́
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IV-2-2 Amplitude versus distance and phase versus distance curves 

 

Figure I-20 presents the spectroscopic curves performed before each image. The curves are plotted 

between two limits which correspond to the free amplitude and a value slightly below the setpoint amplitude. 

The curves corresponding to the ratio of 91.3% (images on Figure I-19) was not plotted because Asp and Afree 

are too close and the curves are not really significant. The first curves correspond to a ratio of 34.9% and 

then the ratio was progressively decreased for the following curves up to 3.1%. We, deliberately, chose to 

successively realize the analysis from a high amplitude ratio, corresponding to a weak interaction, to a low 

amplitude ratio, corresponding to a strong interaction. Thus, we limit the contact of the tip with the surface 

and then the degradation of the sample and the contamination of the tip before the acquisition of images at 

each setpoint.  

All the spectroscopic curves were carried out at the same place on the sample. They were recorded on 

three different points: on the DNA molecule, on the chip and on the structure at the right bottom of the 

image. These points are depicted by stars in Figure I-19. Similar characteristics were obtained on these three 

points and thus only the one performed on the DNA strand was reported. 

 

Figure I-20 allows to follow the evolution of the curves, for both amplitude and phase versus tip-

sample distance. These characteristics are representative of the non linear dynamic response of the cantilever 

with 4 different parts: 

- A first gradual decrease of the phase and amplitude values versus the distance corresponding to the 

low branch, (mostly attractive interaction regime) from Figures I-20a, I-20b. Some noise appears on the 

phase curve near the setpoint value (Figures I-20a’ – I-20b’). 

- A levelling of transition region between the two branches is observed for the amplitude, in Figure I-

20c. It corresponds to a moderate fall and a sign inversion of the slope for the phase, in Figure I-20c’. 

- A second gradual decrease of the amplitude along the high branch (mostly repulsive interaction 

regime) in Figures I-20d – I-20f and a sharp rise of the phase slope in Figures I-20d’ – I-20f’. 

- Finally, the amplitude carries on its decrease in Figure I-20g and the phase slope reaches a plateau 

beyond the setpoint value, in Figure I-20g’. All the setpoint values corresponding to the different curves 

were reported by dots on these last curves.  
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Figure I-20. Amplitude-vs-distance (a-g) and Phase-vs-distance (a´-g´) spectroscopic curves 

Asp/Afree = 29.2% SP=5 

 

Asp/Afree = 22.6% SP=4 

 

Asp/Afree = 11.7% SP=2 

 

Asp/Afree = 9.1% SP=1.5 
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IV-2-3 Topographic and phase shift images 

 
 

For a specific ratio, both topographic and phase images were performed after spectroscopic curves. All 

the images were done on the same area. In order to ease comparison, the original images have been clipped 

(Figure I-21).  

The Asp/Afree ratio is successively decreased from 34.9% to 3.1%. Before 34.9%, no particular 

evolution of the images was observed. They looked similar to the topographic image for a ratio of 91.3% 

presented in Figure I-19.  

 Images in Figures I-21a, I-21b and I-21c were acquired at 34.9%, 22.6% and 11.7% respectively, 

which correspond to the bottom of the low branch on the amplitude versus distance curve (Figures I-20a – I-

20c). Compared to Figure I-21a, they appear noisy at some places. The noise manifests also on the phase 

shift images (Figures I-21a’ – I-21c’), at exactly the same location of the corresponding height images, i.e., 

close to the main features (for example: along the DNA strand). On the phase images, the colour full scale 

∆ϕ extends nearly to the total range of 173.2°, 184.5° and 166.5° for Figure I-21b’ and Figure I-21c’, 

respectively. This noise is representative of instability of the tip during scanning. As the tip locally touches 

the surface, on the elevated features, the phase drastically changed, jumping from repulsive to attractive 

mode. It appeared in our fixed experimental conditions, because the feedback loop which tries to keep the 

amplitude constant, responds by re- retracting the probe from the sample, in order to increase the suddenly 

decreased amplitude to the fixed setpoint value. This instability is also visible on the phase curves (Figures I-

20a’– I-20c’), and may correspond to the entry in the zone where the two branches coexist. Lee et al [116] 

have shown that for large free oscillation amplitude, the coexistence of different solutions gives rise to the 

presence of two stable states and one bistable state. The phase more sensitive to the repulsive region is noisy 

for these setpoint amplitudes (Figures I-20a’ – I-20c’). The fact that line breaks were observed, at the same 

places, on both images, height and phase, indicates that the amplitude and the phase are not independent. 

This phase contrast may be related to phase jumps due to competition between the attractive and repulsive 

forces and is not due to dissipation [108]. In a remarkable review article, Giessibl estimated that instability 

can occur when the product of k and A reaches a value of roughly 100nN [117]. In our study, this optimal 

value is attained with our fixed parameters and can explain these break lines on the image. Obviously, this 

instability can be avoided by choosing appropriate values of k and A. 

 

Figure I-21d was acquired at the transition region between low and high branches for an Asp/Afree of 

9.1%. On the topographic image, characteristic fringes show up around the main features whereas the phase 

image is particularly well-contrasted (∆ϕ =147.1°) and faithfully reflects the sample features (Figure I-21d’). 

However, there is a phase inversion on the probe islands: they appear as phase “holes” in Figs I-21a-c and 

phase “hills” in Figure I-21d. Such observations – fringes and phase inversion – are well-described in 

literature at the transition region [105, 106]. 
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Figure I-21. Topographic (a-g) and Phase shift (a’-g’) images 

 

The probe islands have only little topography on top and have a height smaller than the level shift. In 

that case, the contrast may be reversed, called “reversal contrast”. This phenomenon does not appear on the 

higher DNA features because their heights are globally higher than the level shift [105].  

After this turning point, images were acquired in the high branch, mostly repulsive region, with ratio 

of 5.7%, 4.7%, and 3.1%, respectively (Figures I-21e-g). The system recovered its stability, the noise 

previously observed in Figures I-21a- I-21c disappeared. Relatively high quality topographic images are 

obtained without reaching the quality of the 91.3% ratio one. The phase images are still representative of the 
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surface but with a lower contrast than the one measured in Figure I-21d’ (∆ϕ = 87.3°, 80.7° and 83°, for 

Figures I-21e’-I-21g’ respectively).  

Note that, a too great amplitude reduction could induce the breaking of the DNA strand by the tip as 

shown in Figure I-21f. However, the tip could still image the surface without broadening features or inducing 

noise as can be seen in the following image for a ratio as low as 3.1% (Figure I-21g). We only observed the 

displacement of the disrupted part of the DNA. On the high branch, the tip is touching the surface once each 

oscillation cycle. The time spent in contact with the surface increases with the decreasing of Asp/Afree ratio 

and is maximal on the largest and elevated part of the DNA where the breaking occurred.  

 

IV-3 The dissipative energy 

 
As the Asp/Afree ratio evolves from 91.3% to 3.1%, we observe large variations in the phase shift 

images, with a maximal contrast for a ratio of 9.1%, in Figure I-21. Different theoretical as experimental 

studies [107, 108] have established a relationship between the phase shift of the tip motion and the energy 

dissipated by the tip-surface forces. In these studies, the average energy supplied to the cantilever per period 

is considered equal to the average energies dissipated either via hydrodynamic viscous interactions with the 

environment (Emed.) or by inelastic interactions at the tip-sample interface (Edis.). According to the references 

[108] it leads to the following expression:  
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It shows that phase shifts are exclusively associated to inelastic processes (Asp/Afree = constant) in 

amplitude modulation AFM. For ω = ω0, the previous equation can be rewritten in a more compact form:  
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In Figure I-22, the dissipative energy curve is deduced by applying equation (1.42) to the data 

presented in Figure I-20g’. 
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Dissipation energy
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Figure I-22. Dissipation energy calculated for Asp/Afree ratios from 91.3% to 3.1% 

 

The particular ratios at which images were performed are depicted by black dots. This curve is in 

agreement with those presented by Garcia et al [118]. The area enclosed by the loop represents the 

dissipation. This shape is due to competitive effects [118]: 

- The increase of energy dissipated in the sample when the amplitude ratio decreases from one unit to 

0.5 because the interaction is increased. 

- A reduction of the dissipated energy when the tip–surface separation decreases. A reduction of the 

tip-surface distance will imply a reduction of the force–distance area enclosed by approaching curves. Thus, 

in our specific experimental conditions, the maximal value of the dissipative energy, ~ 33eV per cycle, 

corresponds to A/A0 ratio of 50%. Curiously, the optimal height image and the optimal phase image were 

obtained for amplitude ratio 91.3% and 9.1 % respectively, corresponding to roughly the same dissipation 

energy of 11eV.  

 

Garcia et al [118] performed study of dynamic dissipation on samples with well known mechanical 

properties. It allows to associate characters of energy dissipation which determine the curve shape to tip-

sample interaction regime and mechanical properties of the sample. They used silicon surface and 

polystyrene in polybutadiene matrix. Simulated (solid line) and experimental (circles) curves shown in 

Figure I-23a correspond to silicon surface when there is not mechanical contact between tip and surface. The 

curves in Figure I-23b were also measured on silicon surface where there are surface energy hysteresis and 

long-range interfacial interactions. The dissipation curve shown in Figure I-23c is made on polystyrene 

surface and present a quite similar symmetry as the curve in Figure I-23a. As it can be seen, the dissipation 

processes may considerably differ even on the same surface of silicon (Figures I-23a, b). This can be 

explained by different tip-sample interaction regimes: long-range attractive regime in the case of Figure I-

23a and the transition between attractive and repulsive regimes of interaction for the Figure I-23b. However, 

obviously different mechanical properties of silicon and polystyrene are not visible on quite similar curves in 

Figures I-23a and I-23c [14]. 
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Figure I-23. Energy dissipation curves with their respective derivative curves obtained for silicon surface 

(images a, d; b, e) and polystyrene in polybutadiene matrix (images c, f) [118] 

 

Actually, these curves in I-23a and I-23c correspond to two different interactions: long-range and 

viscoelastic interactions respectively. This was determined thanks to the identification method proposed by 

Garcia et al [118] which consists in the calculation of the derivative of measured dissipation energies. As it 

can be seen in Figures I-23d, e and f, the derivative unambiguously distinguishes each dissipative process. 

In order to determine which interaction regime is responsible for dissipation processes in our 

experimental system, the derivative of the curve presented in Figure I-22 was calculated using algorithm that 

takes eight adjacent points. The derivative of dissipated energy δEdiss/δ(A/A0) is plotted versus the amplitude 

ratio A/A0 and represented in Figure I-24. 

 

Figure I-24. The derivative of the dissipation energy corresponding to curve shown in Fig. I-22 

 

As one can see, the derivative curve in Figure I-24 looks similar to the curve in Figure I-23f. 

Consequently, it can be concluded that the dynamic dissipation process of our system is mostly defined by a 

viscoelastic tip-sample interaction. However, the derivative in Figure I-23f corresponds to a polystyrene 
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sample which can be broadly considered as a perfect sample with given properties. In our experiment, 

dynamic measurements were performed on a sample composed of some hybridized DNA strands lying on a 

DNA single strand layer covalently bonded to a silicon surface by means of a silane layer. Then, these 

conditions are far from ideal model conditions. During one cycle, the tip interacts with a smooth layer (DNA 

and silane) and can reach the stiff material (silicon).This fact is responsible of the second local minimum in 

the experimental derivative curve at around A/A0 ~ 14% (Figure I-24). Under this point, the change of the 

dissipation energy δEdiss/δ(A/A0) begins to increase again until the moment when the DNA strand break. 

Namely, this increase which corresponds to A/A0 ratios from 11.7% to 3.1% can be explained by the fact that 

under A/A0 ~ 14% the increase of tip-sample interaction force (decrease of A/A0) leads to a larger DNA 

indentation. This provokes a larger plastic deformation and consequently, larger dissipation losses. This 

ultimately causes the rupture of the DNA molecule for a A/A0 below 4.7%. 

The derivative of the dissipation energy (Figure I-24) explains why the breaking of the molecule did 

not arise for the maximal energy of 33eV but for a value of 6 eV more than five times lower (Figure I-22). 

The reason is that around A/A0 = 50% (which corresponds to maximal energy of 33eV) the energy losses 

δEdiss per one oscillation cycle are not significant (δEdiss/δ(A/A0) ~ 0). However, for A/A0 = 4% (which 

corresponds to maximal energy of 6eV, the energy losses become considerable (δEdiss/δ(A/A0) ~ 60). 

Since the sample can appreciably be deformed during repulsive tapping, it is interesting to see if any 

compression of the DNA can be observed, when decreasing the A/A0 ratio. A dependence has been observed 

by Round et al [119] in particular demonstrating a decrease of DNA height from 1nm to 0.46nm for DNA 

adsorbed on mica.  

In Figure I-25, we reported the DNA height measured at three different locations (on hybridized 

zones).  
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Figure I-25. Measured DNA heights as a function of setpoint value. b) experimental sample, zones of 

measurements are marked by arrows; b) measured heights in corresponding zones  

In our case, there is almost no difference in the observed height of the structures on the left and on the 

right from the central part which corresponds to hybridized zone of two DNA molecules. The reason is 

probably due to the fact that the substrate material and the DNA structure are deformed equally much. One 

should remember that the hybridized DNA is lying on a DNA- silane layer and not directly on a stiff 

50nm left  Center  
50nm right  

a) b) 
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substrate such as silicon or mica. However, the central part (marked as “center” in Figure I-25a) is affected 

by increased load for corresponding A/A0 ratios from 91.3% to 4.7%. This deformation corresponds to 33% 

in comparison to initial height of 6.74nm (decrease from 6.74 nm to 4.5nm). For the A/A0 = 3.1% the 

hybridized zone was almost totally broken and that is because for this ratio only the heights of single DNA 

strands (“left” and “right” markers in Figure I-25b) were measured. It is worth to note that the measured 

heights in Figure I-25b (it relates more to the central and located on the right zones) are larger than 2nm. 

This indicates that the hybridized zone involves more than 1 double-stranded DNA molecules. 

IV-4 Conclusion 

 

We have studied the dependence of the phase shift on the tip-surface separation, interaction regime, 

cantilever properties and excitation force. Phase shift data depend on the sign of the average value of the 

interaction force. Consequently, they can be used to characterize the interaction regime controlling the tip 

motion. Using intermediate oscillation amplitudes, and relatively soft cantilevers, we showed that, the system 

could present instabilities that induce noise on the images and contrast artifacts. This noise is present on a 

large part of the high branch. The setpoint amplitude should be chosen carefully towards the free amplitude 

to obtain noiseless height image and characteristic phase image. As expected, a setpoint close to the free 

amplitude gives the optimal height image, and close to the phase slope change gives the optimal phase 

image. We also showed that the phase shift images are not always correlated to energy dissipation. In fact, 

the energy dissipation is very low in our system of DNA strands lying on a DNA chip, and the maximal 

phase contrast is obtained for a setpoint corresponding to the start of the low branch where the repulsive 

interaction appeared.  

We demonstrated that by converting phase shifts into the dissipation energy it is possible to follow the 

dynamics of dissipation processes during scanning, and from the derivative of dissipation energy, 

information about the tip-surface interaction regime. Compositional contrast of images is illustrated by 

imaging conjugated molecular islands deposited on silicon surfaces. Because the maximum in the energy 

dissipation curves is about 30eV per cycle, material contrast may be achieved without introducing 

irreversible tip-surface modifications. 
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 V - Statistical analysis of the AFM images 
 

 Scanning probe microscopy such as STM or AFM give information of the surface topography and this 

information have to be quantify by parameters. Surface roughness is one of the most important characteristic 

of a surface and plays an important role in the functional performance of many engineering components. The 

importance of the relationship between surface microstructure of a thin film and its functionality will be 

discussed for pentacene based OFETs in Chapter 2. 

The term “topography” represents all spatial structure of irregularities that exist on a surface. The 

roughness consists of the closely spaced peaks and valleys with a typical roughness height and a typical 

roughness spacing. Roughness is usually produced by the basic forming process of a surface and, therefore, 

has characteristic structure related to this process. Often, the terms surface roughness, surface topography 

and surface texture can be used interchangeably. Usually, if we talk about topography we principally refer to 

the roughness itself. 

 

In general, surface topographies are highly complex and statistical by nature, because the 

characterization of such a surface requires a statistical description. 

Surface roughness can be described by variety of techniques based on different physical principles of 

measurements. In addition, measured data may be processed and presented by various ways. There are 

basically two general methods of description: 

- Parameters that quantify some aspects of the surface statistic with a single number (such as root 

mean square RMS roughness), 

- Surface statistical functions (such as power spectral density PSD). 

  

Many of these statistical parameters and functions have been developed previously for the characterization of 

random processes.  

 

V-1 Surface statistical parameters 

 
Roughness is often described as the variation of heights in regards to a reference surface plane. A 

convenient way of describing the roughness is in terms of profile height h(x, y) in each point of coordinates x 

and y of the surface. 

The roughness of surfaces carried out with AFM is often expressed by commonly used statistical 

parameters such as peak-to-valley roughness (Rpv), average roughness (Ra) and RMS roughness σ (Rq), which 

represents the root-mean-square deviation of the height of a surface relative to its mean value. For a digitized 

image of NxM pixels with a given height h, in each point xn and yn , these parameters are defined as follow: 
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minmax hhRpv −=      (eq.1.44) 
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where h  is the average height defined as  
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Parameters aR  and qR  are both useful for describing the average height of the surface profile and are 

widely used for general morphology control. 

 

However, these statistical representations provide information only on the vertical deviation of the 

roughness profile and do not take into account the lateral distribution of the surface features. In general, these 

parameters are insensitive to small changes in profile geometry and also to intrinsic properties of the profile. 

In these cases, the information about roughness properties is represented by a single number and can not be 

considered as complete. For example, two images of different surface morphologies may exhibit exactly the 

same RMS values [120, 121]. 

 

 

V-2 Surface statistical Function:PSD 

 

V-2-1 General description  

 

Both vertical and lateral information can be reached by spectral and correlation techniques based on 

Fourier transformation. In particular, a more complete description can be provided by the power spectral 

density (PSD) of the surface topography. PSD function performs decomposition of the surface profile into its 

spatial wavelengths and allows comparison of roughness data taken over various spatial frequency ranges. 

Such methodology also offers a representation of the direct space periodicity and roughness amplitude. In 
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this way, PSD functions contain information about two general aspects of the surface roughness such as the 

variations of height from a mean plane, and the lateral distance over which this variation occurs [122]. 

Therefore, PSD describes a surface much better than the RMS roughness. 

 

To determine the power spectral density of the surface roughness, the variations of height h(x,y) in real 

space of AFM image can be transformed in reciprocal frequency space by the Fourier transform (FT) [123]: 
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where L is the scan size, N is the number of pixels per line, kx and ky are the reciprocal position vectors for 

each point in real space.  

Then, the two-dimensional power spectral density of the Fourier transform of the topography h(x,y) is 

defined as 
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However, this two-dimensional information is complex and for the interpretation of the measurements 

difficult to reach [124]. In order to facilitate the analysis concepts, we will take into account only the surface 

profiles measured along the AFM fast-scan direction. This goal can be reached by extracting a 1D magnitude 

of the 2D transform. As a result 1D PSD can be plotted in function of the spatial frequencies: 
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This one-dimensional spectral analysis provides a good representative description of the overall 

surface roughness. 

 

 

Another useful representation of the 2D reciprocal space is the radial PSD (rPSD). In the rPSD 

description, the angular average of the 2D power spectrum is taken, using the radius, kθ. In the reciprocal 

space, kθ is the spatial frequency, normalized by the number of pixels used to define the radius. The resulting 

1D PSD is expressed as a function of radial frequencies kθ (eq. 1.51): 

 

2

2 ),(
1

)( yx kkF
L

kPSD =θ     (eq.1.51) 

where 222
yx kkk +=θ . 



  54 

The radial PSD (eq. 1.51) is a more rigorous tool for the analysis of anisotropic surfaces than the two-

dimensional PSD because it takes into account the correlation heights for all angles and not only one 

direction (eq. 1.49) [125]. 

As it was mentioned above, real surface roughness is random and statistically disordered [126]. A 

surface profile can be considered as a superposition of spatial waves with increasing frequencies in regard to 

the multi-scale nature of roughness. In terms of fractal geometry, it has been demonstrated recently that the 

fractal geometry and scaling concepts can describe the rough surface morphology [127, 128]. The surface 

morphology at different scales is believed to be self-similar and related in the fractal geometry, or in another 

words, the symmetry of the surface is unchanged at different scales. The ability of fractal analyses to extract 

many different types of information from measured textures compared to common, conventional analyses 

makes this approach very useful in describing surface characteristics of thin films. Several studies have 

demonstrated that the complexity of thin film morphology were fractal in nature, and can be characterized 

quantitatively by the fractal strengths and their dimensions as well [127, 128]. 

Therefore, the PSD is useful for studying the strength of various periodic components in the surface 

profile. 

The PSD spectra calculated from AFM images include roughness values in a limited bandwidth of 

spatial frequencies. This range is determined by length scale and sampling rate in general case. It also can be 

additionally restricted by the influence of measurements artefacts.  

The spatial frequency range lies between the inverse image size (1/L) and the high-frequency limit fmax 

= N/(2L) (the Nyquist frequency), where N is the number of pixels per scan line. 

Figure I-26 presents a typical PSD spectrum of a thin film deposited on a bulk substrate. 

All power spectra exhibit three distinct regions, represented as parts I, II and III.  

– The region I includes the low spatial frequencies which correspond to a nearly constant value of the 

roughness. This low-frequency plateau means an absence of correlation (it does not change with the scale) 

and indicates an absence of any characteristic length. 

– The next region II involves intermediate frequencies. For this high-frequency range the PSD is 

strongly frequency dependent and represents the power-law decay. This region characterizes the mechanism 

of surface formation and indicates the surface self-affine behaviour [129]. 

– The region III corresponds to the highest frequencies of the spectrum. This range of spatial 

frequencies correlates with physical dimensions of the AFM tip. Therefore, the convolution of the tip and 

surface features occurs and consequently, PSD is highly affected by AFM tip artefacts and can not be 

considered for further surface analysis.  



  55 

 
Figure I-26. Typical PSD spectrum of a thin film deposited on a bulk substrate.  

 

Consequently, we can summarize that the experimental PSD curves are constant at low frequencies and 

exhibit an exponential dependence at high frequencies. This statistical function is well adapted to 

characterize the roughness of polycrystalline films with self-affine properties and will be used in chapter 2 

for the study of the pentacene growth on two isolating polymers. 

The scaling laws can be applied to describe the surface topography [130]. 

 

     (eq.1.52) 

 

where K and A are constants, γ is the roughness related exponent and ξ is the correlation length. 

 

The transition between the low-frequency plateau and the high-frequency self-affine region (transition 

between regions A and B) is related to some spatial frequency ftransition that determines the characteristic length 

( ξ ). The characteristic length ( ξ ) is defined as the correlation length and can be calculated as the inverse of 

the transition frequency between two regions ( ξ=1/ftransition ).  

The correlation length represents the minimum distance between two points at the surface which are 

not affected by each other. In another words, the correlation length corresponds to the mean distance 

between two grains in the case of nanocrystalline films. In case of dense surface features, the parameter (ξ) 

defines the mean grain diameter. Therefore, in general case, the correlation length describes transitions 

between physical processes involved in the surface evolution. 

The classical way to calculate the correlation length consists in determining the transition frequency 

ftransition in the intersection point of the two fitting curves of regions A and B in the PSD spectra. 

The slope ( γ ) of the region II is related to the scaling exponent of the surface. This scaling exponent 

(α) describes the processes controlling the surface morphology during the growth and the mechanism 
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responsible for the films deposition [130, 131]. Firstly, the scaling approach was introduced for studying 

self-assembled surfaces. In such surfaces, the PSD can be described by power-law function PSD(f)≈ γ−f , 

where γ = 2(1+α), for distances inferior to the correlation length ( ξ ). This power-low decay indicates a self-

affine behaviour, i.e., the RMS roughness σ ≈  Lα. 

In order to determine the slope of the high-frequency region II, the exponential part of the PSD was 

fitted using the expression (1.52), which gives for asymptotic range ( f → ∞ ): 

 

γ−= KffPSD )(      (eq.1.53) 

 

The scaling exponent is equal to 1 (α = 1) if a single slope is selected, which in most cases corresponds 

to circular shapes of grains. If the grains are not regular (not circular), the slope is not uniform and α 

becomes smaller than 1 (α < 1).  

However, a real sample is composed of the superposition of surface profiles which results in the 

superposition of Fourier transformations. Consequently, in the frequency domain, the influence of some 

dominant sample characteristics can be separated. One can consider two dominant characteristics: the 

substrate surface and the superstructure of the film [132].  

The separation of each contribution is strongly affected by the magnitude of the difference between 

film features and substrate which is determined by a relation between the corresponding correlation lengths 

(ξ) (as shown in Figure I-27)  

    

a) b) 

Figure I-27. Superposition in blue of the PSD of the thin film (black) and the substrate (red) a) ξ1, ξ2 corresponds 

to the correlation length of substrate and thin-film respectively (adapted from [13]). 

 

Figure I-27a shows that if the correlation length of the substrate is ten times higher than the correlation 

length of the thin-film, a well-defined separation of each contribution can be observed. However, real 

surfaces usually exhibit a graded superposition with unapparent separation region that is the case for a 

correlation length ratio of 3 in Figure I-27b.  

 



  57 

In general, the direct application of the k-correlation model gives an approximation of the sum of the 

pure film PSD and the substrate PSD [133] and consequently only effective parameters of sample roughness 

can be obtained.  

In order to describe all surface roughness contributions, the analytical models should include the 

mathematical terms describing the properties of the substrate, pure film and superstructures (aggregates). 

 

 

V-2-2 Analytical description of PSD 

 

However, to interpret an experimental PSD function more qualitatively, an appropriate analytical 

approach is highly essential. Several models have been introduced to describe the specificities of surface 

morphologies. Basically, these models consist of approximation functions (or their combinations) of an 

experimental PSD curve and their using is often limited by some specific application areas. 

For example, one of the wide used models appropriate for PSD of a thin film is the sum of Henkel 

transforms of Gaussian and exponential autocorrelation functions [134-136]. However, this model is not 

efficient for large spatial frequencies range.  

In order to describe the PSD over a large spatial frequency bandwidth, the model should take into 

account the roughness contribution from all features of the surface.  

 In this study, we will focus on three analytical models which will be used to fit the experimental PSD 

curves:  

- the k-correlation model (PSDABC). 

- the fractal analytical model (PSDfractal), 

- the superstructures (PSDsh) 

 

 

 V-2-2-1 The k-correlation model 

 

 The PSD function of a random rough surface can be conveniently characterized over a large length 

scale by the k-correlation model, also called the ABC model [137]. In fact, it gives an appropriate analytical 

description of the PSD of a pure film by its functional parameters A, B and C. In this model, the PSD 

function is described as follow: 
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where A, B, C are the functional parameters. 
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A is the magnitude at low spatial frequency, which relates to the height of the rough surface.  

B determines the position of the ‘knee’, which is related to correlation length representing the mean 

grain size.  

C is the inverse slope at high spatial frequency range, which gives the nature of the roughness and can 

be related to different growth mechanisms [138] ( Figure I-28). 

Typically, C=1 relates to a viscous flow 

C=2 to an evaporation and condensation mechanism 

C=3 to bulk diffusion, and finally 

C=4 to surface diffusion. 

 

 

 

Figure I-28. Fitting of PSD function by the k-correlation model: 

 identification of the 3 functional parameters A, B, C 

 

In addition, intrinsic roughness parameters σABC and τABC which represent respectively the equivalent 

RMS roughness and the correlation length can be calculated from the functional parameters using the 

following equations: 
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The σABC value can be compared to the RMS roughness value calculated on the whole image in the 

direct space. This would allow the comparison of different methods of measuring of the same morphological 

parameter. The correlation length τABC gives a more precise description of the features size than the simple 

expression of B in this model. 
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V-2-2-2 The fractal model 

 

Most of deposition processes (including chemical and physical vapour deposition CVD and PVD) are 

random in nature, that produces not perfectly packed and disordered thin film surfaces. The appropriate 

methods of analysis of such complex surfaces make it possible to relate their structure with morphology 

evolution. One of the more effective methods is the analysis of fractal geometry of rough surface 

morphology, which takes into account its scaling concepts and elements of symmetry. For surfaces with 

fractal geometry, the symmetry means that thin film morphology at different scales is characterized by self-

affinity [139]. Thin film morphology can be quantitatively characterized by fractal strengths and fractal 

dimensions that allow to obtain many useful information about the thin film structure. It makes this approach 

very suitable comparing to common conventional analyses.  

 

The PSD of the substrates generally follows a fractal model which can be described by the inversed 

power law [140]: 

 

1),,( += νν
f

K
KfPSDfractal      (eq.1.56) 

 

where f is the spatial frequency, K is the spectral strength and ν is the spectral index.  

 

The fractal dimension Df can be obtained from the assumption that the substrate is self-affine (that is 

the case for the majority of substrates [140]) and is given by: 
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To determine the fractal components, the high-frequency region (region II) of the PSD curves 

(Figure I-26) were fitted with the PSDfractal model given by eq. (1.56). 

 

 

The fractal dimension takes into account the substrate influence and provides the information about the 

relative amounts of the surface irregularities at different scales.  

Three fractal dimension values are significant [139]: 

– The marginal fractal which corresponds to Df = 2 ; 

– The brownian fractal: Df = 2.5; 

– The extreme fractal: Df = 3. 
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More precisely, the fractal dimensions Df = 2 (ν=2) and Df = 3 (ν=0) correspond to three dimensional 

thin film growth. Both marginal and extreme fractal geometries can be explained by the modified ballistic 

deposition model which takes into account the thin film sticking probability factor (The ballistic deposition 

model is the model of low-temperature thin film growth. This model considers that particles randomly fall on 

initially flat surface and thus they became part of the substrate [141]. The sticking probability defines the 

probability of each deposited particle to stick to the surface in the point of first contact). Namely, the case of 

Df = 2 corresponds to flat surfaces with low sticking probability, whereas the Df = 3 is associated with high 

sticking probability factor [141]. The case of Df = 2.5 (ν=1) indicates the presence of Brownian fractals in 

surface morphology and is related to strong dependence of microstructure nature on deposition parameters 

[139]. 

 

V-2-2-3 The superstructure model 

 

The real experimental thin films are often characterized by the formation of superstructures 

(aggregates) on the surface. Such complexity of the sample morphology manifests by the presence of local 

maxima in the low-frequency region of the PSD curve. However, all the above models are monotonically 

decreasing functions of spatial frequency and can not explain these additional morphological features. 

To characterize the superstructures on the surface the superstructure PSD model, PSDsh can be used. 

This model is a Gaussian function with its peak shifted to a non-zero spatial frequency [142, 143]: 

 

])(exp[),,;( 22222
shshshshshshshsh ffffPSD −−= τπτπστσ    (eq.1.58) 

 

More precisely, the superstructure model corresponds to a Gaussian function multiplied by a cosine, 

the frequency of which corresponds to the spatial frequency fsh of the superstructures on the surface. This 

frequency is determined as the shift of the PSD maximum to the frequency fsh (from this implies the origin of 

model name PSDsh i.e. “sh” – “shift”). The other model parameters τsh and σsh are related to size and height of 

the superstructures respectively.  

 An example of fitting an experimental PSD curve with the superstructure model, in comparison with 

already discussed approaches (fractal and ABC-model), is shown in Figure I-29.  
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Figure I-29. Fitting of a PSD curve by the superstructure model together with fractal and ABC-models [143] 

 

Most of the thin-films obtained by deposition from vapor phase are usually characterized by the 

presence of more than one local maximum in the low-frequency range of PSD curve. Each of these peaks is 

related to superstructures with different τsh and σsh. Inaccessible to the k-correlation and fractal models 

(chapters V-2-2-1 and V-2-2-2), the mean superstructure size τsh and height σsh can be calculated through the 

fitting of experimental PSD curve by a Gaussian function with a shifted peak (eq. 1.58). 

 

VI - Conclusion  
 

Information that can be achieved from experimental AFM images depends on method used for their 

analysis. Commonly used methods of surface analysis give information on sample properties in normal to its 

surface direction. However, described in PSD-method gives access to the surface properties in two 

dimensions i.e. in vertical and lateral directions.  

The application of this method to AFM images is possible thanks to their high spatial resolution. It 

allows their transformation into 2D reciprocal Fourier space and then representation in 1D graph (PSD 

curve). Analysis of experimental PSD-curves was performed with fractal and nonlinear parametrical models 

which provides exhaustive information not only on the accessible surface of the sample but also on its inner 

structural properties. 

Actually, the fractal model describes self-affine properties of the surface providing its fractal 

dimension which is for example related to mechanism of deposition for thin films obtained by CVD method. 

Whereas k-correlation (or ABC) and superstructures models provide information about growth mechanisms 

of thin films and give quantitative description of vertical and lateral dimensions of the surface features and 

their aggregates. 

All these methods complete each other and provide exhaustive description not only of the accessible 

surface of the sample but also of its inner structural properties. 

τsh 

τsh 
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Chapter II 

 

AFM studies of pentacene thin films for organic field 

effect transistors 

 

 
 

I - Organic Thin Film Field effect Transistors 
 

I-1 History of Organic semiconductors  

 

After the invention of the first transistor, in 1947, by John Bardeen and Walter Brattain, inorganic 

semiconductors such as Si or Ge became the dominant materials in electronics. This led to the replacement 

of vacuum tube based electronics by solid state devices that initiated the development of semiconductor 

microelectronics, especially at the end of the 20th Century.  

Nowadays, in the first decade of the 21st Century we are contemporaries of a new breakthrough in 

electronics that has become possible due to the understanding of a new class of materials generally named as 

organic semiconductors. The progress in this field has been driven by the perspective of their application in 

large area flexible displays and light sources, low cost printed circuits and plastic solar cells [1] (Figure II-1).  

 

 

 

Figure II-1. Different applications of organic semiconductors 
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The organic materials were firstly discovered and studied for their fluorescence properties when Stokes 

discovered this phenomenon in 1852. The intensive study of charge-carrier phenomena in organic crystals 

started with the experimental works on dark conductivity of phtalocyanines, in the late 1940s [2]. At the 

same time, the first prototypes of organic semiconductor diodes were made in anthracene crystals [2]. More 

intensively in the 1960s, the basic processes involved in charge carrier and optical excitation of the 

molecular crystals were investigated [3, 4]. These organic electroluminescent diodes were made in crystals 

of some hundred micrometers to several millimeters in thickness and thus, needed a high operating voltage. 

Moreover, no satisfying operating stability was achieved. Until recently, these difficulties prevented the 

practical use of these early devices. 

The first successful applications of conducting polymers for conducting coatings [5] or photoreceptors 

in electrophotography [6] were realized in the 1970s. It became possible due to achievements in the synthesis 

and to the controlled doping of conjugated polymers. 

In the 1980s, a fresh boost of organic semiconductor electronics was given by the first successful 

fabrication of organic thin film transistor (OTFT) [7-9] and the creation of high-performance 

electroluminescent diodes from conjugated polymers [10] and the elaboration of vacuum-evaporated 

molecular films [11]. Recently, organic semiconductor materials have displayed their potential as a new class 

of materials opening low-cost/disposable applications in microelectronics and optoelectronics [12]. Today, 

organic light-emitting devices (OLEDs) have progressed rapidly; they have commercial applications 

incorporating OLED displays, due to efforts of academic and industrial researches. Further applications of 

organic semiconductors as organic photovoltaic cells (OPVCs) or circuits based on organic field-effect 

transistors (OFETs) are expected in the near future. 

 

 

I-2 Basic properties of organic semiconductors 

 

The fundamental difference between organic and inorganic semiconductors is in the nature of their 

crystal bonds. In comparison to covalently bonded inorganic semiconductors such as GaAs or Si, the solid 

state of organic molecular crystals is possible due to van der Waals bonds. These intermolecular forces are 

significantly weaker than covalent bonds, they provoke weak delocalization of electronic wave-functions 

between molecules and directly affect charge carrier transport and optical properties. 

Molecules of organic semiconductors consist in neighboring carbon atoms linked to each other by 

single and double bonds. As shown in Figure II-2, pz-orbitals of sp2-hybridized carbon atoms orient 

perpendicularly to the backbone plane. As the distance between carbons is close enough, the overlap of 

neighboring pz-orbitals is possible and leads to the creation of the so-called π bonds. These π bonds, 

constituted of delocalized electrons are present above and bellow the backbone plane. 

 



  69 

 
Figure II-2. π-bonding in ethene as an example for the simplest conjugated π-electron system  

 

In comparison to the σ bonds which constitute the backbone of the molecules, the π bonds are much 

weaker. That is because the electrons from pz-orbitals have a high probability to be delocalized along the 

overlapped π-orbitals. This delocalization is responsible of the optoelectronic properties of organic 

semiconductor materials. Strictly speaking, the electronic properties of a molecule depend on the conjugation 

length and on the presence of donor-acceptor groups [13]. 

In organic semiconductors, interaction between molecules occurs thanks to the delocalization of 

electronic states in the molecule and to a good inter-molecular orbital overlapping. In other words, sufficient 

structural ordering defines the formation of extended electronic states and consequently governs charge 

transport properties of organic semiconductors.  

Molecules involving π-conjugations have in their pz-orbitals unpaired electrons that form bonding and 

anti-bonding levels, also called highest occupied molecular level (HOMO) and lowest unoccupied molecular 

level (LUMO). Unlike traditional inorganic semiconductors, organic materials exhibit natural p-type or n-

type conducting behaviours with dominating hole or electron carriers, respectively. They don’t need to be 

doped by the addition of doping impurities. The charge transport for semiconductors with high HOMO levels 

exhibit p-type conductivity and n-type conductivity occurs through low LUMO levels [14]. 

Organic semiconductors can be divided in two major classes: low molecular weight semiconductors 

(short chain oligomers) and high molecular weight semiconductors (long chain polymers) [15].  

Typical p-type semiconductors can be categorized, according to their molecular structure, as follow 

[13]: 

-  acenes such as picene, tetracene, rubrene, pentacene etc… 

-  heterocyclic oligomers such as thiophene, phenylene, polythiophenes, phenanthrene etc…  

-  tetrathiafulvalenes (TTFs) such as naphthalene-fused derivatives, quinoxaline containing TTF, 

benzene and thiophene-fused derivatives, pyrrol-fused TTFs … 

Some molecular structures are presented on Figure II-3.  
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Picene   Thiophene    Naphthalene-fused 

 

 

   

Tetracene   Phenylene    Quinoxaline containing TTF 

 

 

         

 

Rubrene  Polythiophenes    Benzene and thiophene-fused 

 

  

Pentacene   Phenanthrene    Pyrrol-fused 

 

a)    b)    c) 

 

Figure II-3. Examples of p-type organic semiconductors: a) acenes, b) heterocyclic oligomers, 

 c) tetrathiafulvalenes [13] 

 

The highest mobilities of oligomers do not exceed the values of 0.50 – 0.60 cm2/Vs [16, 17] and the 

tetrathiafulvalenes mobilities are reported to be of around 0.40 cm2/Vs [18, 19]. However, acenes present 

hole mobilities between 1.6 – 3.0 cm2/Vs [20, 21], that is greater than the mobility of amorphous silicon 

(~1cm2Vs-1). The best mobility is obtained with the crystalline pentacene for which measured mobilies range 

between 0.3 and 12.3 cm2/Vs [22, 23]. 

 

N-type semiconductors are not fully developed and their performances are lower comparing to those 

of p-type organic semiconductors [13]. Some typical n-type semiconductors are shown in Figure II-4. 
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      Perylenediimides      Perfluoronated pentacene            Fullerene 

 

   

 

 

 

Figure II-4. Examples of n-type organic semiconductors [13] 

 

Perylenediimides are known as ones of the famous n-type semiconductors and the highest electron 

mobility of 0.6 cm2/Vs was achieved on their octyl derivative [24]. 

One possibility to create n-type semiconductor consists in introducing electron acceptor groups to p-

type semiconductors. By such a method, perfluoronated pentacene was obtained, with a charge mobility of 

0.11 cm2/Vs under high vacuum conditions [25]. Novel n-type compounds are fullerenes. C60 has a high 

electron affinity and presents a mobility of 0.56 cm2/Vs [26]. The highest electron mobility among n-type 

semiconductors is 1.83 cm2/Vs [27]. It was reported for bisthiazole derivative of compound with 

trifluoromethylphenyl groups.  

  

Both p- and n-type organic semiconductors consisting of small molecules such as acenes or oligomers 

tend to arrange into a π-π stacking (like rubrene) or a herringbone (like pentacene) systems when they are 

deposited by vacuum evaporation. Molecular arrangement occurs through Van der Waals intermolecular 

forces that induced a high ordered packing and consequently a high charge carrier mobility [28-30]. On the 

other hand, molecular ordering of polymer-based organic semiconductors (like polythiophenes) is less 

efficient, that is related to cross-linking between molecules during polymerization process. It results in a 

significantly lower mobility comparing to short conjugated oligomers [31]. Thienothiophene-containing 

polymer showed a mobility of 0.6 cm2 /Vs, which is the highest among FETs polymers [17]. 

The electrical performance of organic semiconductors, typically determined by high charge mobility, 

has been significantly improved by researches in materials and processes. A wide range of organic materials 

has been explored, from semiconducting polymers such as polythiophene and polyacetylene, to short 

conjugated oligomers such as tetracene and pentacene [32].  

 

Bisthiazole 
 

Thiophene oligomers with perfluorohexyl groups 
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 I - 3 OTFT operation principle  

 

I-3-1 The structure of the transistor  

 

Field effect transistor is an electronic device that uses electric field to govern a current in the channel 

of a semiconductor. Organic field effect transistors have a similar configuration as inorganic thin film 

transistors. The FET principle was firstly proposed by Lilienfeld in 1925, when he patented a device similar 

to a field effect transistor [33]. 

There are two general configurations in OTFTs: the top-contact bottom gate (TB) and the bottom-contact 

bottom gate (BB) [34]. The BB transistor geometry is frequently used although OTFTs with TB geometry 

demonstrate higher electrical characteristics [35]. 

Typical geometry of the TB OTFT is illustrated in Figure II-5. The conductive channel is placed 

between the source and drain electrodes and is separated from the gate electrode by an insulator layer. In the 

channel, the density of charge carriers can be modulated by the applied gate voltage across the insulator. The 

basic operating regimes will be described for the p-type OTFT. 

 

 

 

Figure II-5. Schematic representation of a top-contact bottom gate OTFT 

 

If the electrical field induced by the gate voltage is higher than the electrical field induced by the drain 

voltage (Vg >> Vd), a gradual channel approximation would be considered. Then an analytical approach can 

by applied for the description of the OTFT operation [36, 37]. 

In the working regime, the source electrode is grounded (Vs=0V) and voltages are applied to the gate 

and the drain electrodes, leading to a gate voltage (Vg) between gate and source and a source-drain voltage 

(Vsd).  

Applying a negative voltage to the gate electrode and a zero bias to the drain electrode  (Vs = Vd = 0, Vg 

< 0) provides the accumulation of a high density of positive charge carriers (holes) at the interface between 

the semiconductor and the insulator leading to an electrical charge noted ( q ): 

 

   gi VCq ⋅=     (eq.2.1) 

 

where q is the induced charge density and Ci is the capacitance per unit area. 



  73 

Due to the natural presence of structural defects and chemical impurities, some of the accumulated 

carriers are trapped and do not contribute to the current until the applied voltage Vg exceeds a certain offset 

called threshold voltage (Vt). As a result, Vg is reduced to the effective gate voltage (Vg - Vt) and the charge 

density qc which contributed to the current is given by: 

 

( )tgic VVCq −=     (eq.2.2) 

 

In the assumption that a small negative bias Vd is applied (Vd < 0, Vd > (Vg - Vt)), the linear gradient of 

charge in the channel produces a current flow which is proportional to the source-drain voltage (Vsd). The 

applied drain voltage Vd produces the variation of the potential difference between the gate and the channel. 

Therefore, the charge density changes along the transistor channel in:  

 

   ( )( )xVVVCq tgic −−=     (eq.2.3) 

 

Assuming that only the charge carriers induced by Vg participate to the current (Id), that flows in the 

transistor channel, Id can be expressed as: 

 

xcd EWµqI =      (eq.2.4) 

 

Where W is the channel width, µ is the charge carrier mobility and Ex is the electric field between 

source and drain contacts. 

Taking into account that 
dx

dV
Ex =  and substituting eq. 2.3 into eq. 2.4 the latter can be presented as: 

 

dVxVVVWµCdxI tgid ))(( −−=    (eq.2.5) 

 

Integrating eq. (2.5) gives the relation for Id : 

 






 −−= 2

2

1
)( sdsdtgid VVVVµC

L

W
I    (eq.2.6) 

 

(at the source contact x = 0 and V(x) = 0, at the drain contact x = L and V(x) = Vsd , Vsd = Vd when the 

source electrode is grounded).    
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The second term in eq. (2.6) can be neglected because )( tgsd VVV −<< , then eq. (2.6) can be 

rewritten as:  

    sdtgid VVVµC
L

W
I )( −=     (eq.2.7) 

 

This equation describes the “linear regime” of the transistor operation. In this case, the channel 

resistance is low and the transistor operates in the linear regime up to the point Vd ~ (Vg - Vt).  

As soon as gate voltage reaches the value Vd ≈ (Vg - Vt), the depletion region appears inside the 

channel. This depletion region is formed near the drain contact by electric potential that exceeds the 

threshold value (Vt). Therefore, just a limited current can flow through the saturated region. If drain voltage 

continues to decrease (Vd < (Vg - Vt)), the depletion region expanses toward the source electrode, although the 

current flow does not increase. Such behaviour describes the “saturation regime” of the transistor operation. 

 This mode can be described by eq. (2.7) in assumption that )( tgsd VVV −> , therefore Vsd is replaced 

by (Vg - Vt) leading to: 

 

2)(
2 tgid VVµC
L

W
I −=     (eq.2.8) 

 

Obtained relations (2.7) and (2.8) are valid if the insulator thickness d is much smaller than the 

channel length L, and the charge mobility µ is not field-dependent. The operation principle for n-type OFET 

is similar, but the gate voltage is inverted [38]. 

 

 

I-3-2 The field-effect mobility 

 

The charge carrier mobility of an OTFT can be obtained by measuring the current-voltage (I-V) 

characteristics in the linear or saturation regime of the transistor operation [39]. 

In order to calculated the field-effect mobility in the linear regime, the (I-V) characteristics can be 

extracted by maintaining Vg = const or Vsd = const. In other words, eq. (2.7) must be derived with respect to 

Vg or Vsd : 

 

sdlini

constVg

d
m VµC

L

W

V

I
g

sd

=














∂
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=

   (eq.2.9) 
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  (eq.2.10) 
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Expressions of mg and dg  channel transconductivity and conductivity are respectively obtained. The 

value of mg  is calculated from the linear part of the transfer curve. Extracted from eq. (2.9), the mobility can 

be presented as: 

 

sdi
mlin VCW

L
gµ

1⋅=       (eq.2.11) 

 

And eq. (2.10) gives: 

 

)(

1

tgi
dlin VVCW

L
gµ

−
⋅=     (eq.2.12) 

 

 

Equation (2.11) is more general than eq. (2.12) because it is also valid for gate-voltage-dependent 

field-effect mobility. In addition, the value of Vt should be determined to describe the charge transfer in eq. 

(2.12) 

 In the saturation regime, field-effect mobility can be directly derived from eq. (2.8): 

 

2, )(

12

tgi
satdsat VVCW

L
Iµ

−
⋅=     (eq.2.13) 

 

Where µsat and Id,sat are field-effect mobility and drain source-current in the saturation regime, 

respectively. Here, the value of Id,sat is obtained from (I-V) characteristics in saturation regime for a given Vg. 

 Another way to determine µsat is by deriving eq. (2.8) with respect to Vg: 

 

)(

1
)( ,

tgig

satd
gsat VVCW

L

V

I
Vµ

−
⋅

∂
∂

=     (eq.2.14) 

Where derivative 
g

satd

V

I

∂
∂ ,  is experimentally determined from the transfer curve in saturation regime. 

For different organic semiconductors, typical values of field-effect mobility vary from 10-6 cm2/Vs to 

20 cm2/Vs [1, 23, 40]. 

Due to their relatively low charge carrier mobility, OTFTs can not be used in high switching 

electronics. However, the main advantage of organic FETs over inorganic FETs is their compatibility with 

light-weight plastic substrates. In addition, organic semiconductors have a low processing temperature 

whereas higher temperatures are required for Si-based FETs fabrication [41]. These advantages make them 

very competitive towards traditional thin film transistors for applications, especially requiring low cost large 

area coverage [1]. 
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I-3-3 The gate dielectric 

 

A crucial criterion in the fabrication of organic TFTs is the choice of the gate dielectric material. Until 

now, the best electrical performance has been reported for OTFTs processed on high-quality inorganic gate 

dielectrics, such as ion-beam sputtered silicon dioxide SiO2 [42 - 44], chemically vapor deposited silicon 

nitride Si3N4 [45 - 47], radio-frequency sputtered aluminium oxide Al2O3 [48] and silicon dioxide thermally 

grown on single-crystalline silicon [49]. The ability to process inexpensive and disposable organic TFTs 

induces the necessity to use alternative gate dielectrics and low-cost fabrication methods. For large area 

applications, the use of inorganic dielectrics grown at high temperatures is not of particular interest. For 

example, thermally grown SiO2 has a high breakdown voltage, a low gate leakage and a high quality 

interface. However, it is not suitable for flexible polymer substrates, because it requires high processing 

temperatures (800º - 1200ºC) that destroy the polymer. Then, several requirements are expected for new 

materials to replace inorganic dielectrics such as low dielectric constant (k < 2.5), thermal stability (400°C or 

higher), electrical insulating behaviour, high mechanical strength and good adhesion to neighboring layers. 

These strict requirements eliminate several candidates such as porous silica and carbon-based materials. 

Several organic dielectrics have been studied so far, including polyvinyl phenol (PVP), polyimide, poly 

methyl methacrylate (PPMA) etc… Among appropriate candidates, the solution-processable polymers and 

the self assembled monolayers (as a buffer gate dielectric and semiconductor film) show great promise for 

the growth of pentacene thin film in transistor fabrication. In addition, these materials can be easily deposited 

by spin coating, spray coating or printing rather than by vacuum deposition [50]. 
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II - Experimental System: Pentacene-based thin film transistor  

 

II-1 Choice of polymers  

 

Pentacene is known to be one of the most promising candidate in organic electronic applications 

because of its high field-effect mobility comparable to that of amorphous silicon [51, 52]. Nonetheless, the 

difficulty to determine and control key properties of the organic layer, such as structure, morphology, and 

interfaces, is a major factor restricting its electronic applications.  

The further progress in pentacene based electronic devices requires the creation of high-ordered and 

large size molecular crystals [53]. As it has been shown, OTFTs charge mobility is very sensitive to 

crystalline properties of thin film, i.e. to the grain size [54, 55], defect density [56] and crystal polymorph 

[57, 58]. However, the pentacene film quality can be modulated by two ways: changing the deposition 

parameters (deposition rate, controlling the energy of incident molecules) [59, 61] and varying the substrate 

properties (substrate temperature and surface chemistry) [62-67]. 

In order to improve pentacene growth, hydrophobic polymers can be used as substrates to favour a 

better packing of pentacene molecules. Furthermore, it was reported that the hydrophobic dielectric layers 

have a tendency to give higher field-effect mobility for both amorphous polymer semiconductors and 

crystalline organic semiconductors [68]. One of the largest carrier mobility reported for pentacene-based 

OTFT with a polymer gate dielectric (cross-linked polyvinylphenol and a polyvinylphenol-based copolymer) 

is more than 3cm²/Vs [41].  

The goal of this work is to study growth mechanisms of the pentacene thin films deposited onto two 

dielectric polymers: parylene and benzocyclobutene (BCB). 

 

II-1-1 Crystalline structure of pentacene 

 

The creation of the first pentacene based thin film field effect transistor by Horowitz et al., in 1992 

[38], stimulated intensive studies of pentacene thin film growth and pentacene based electronic devices. 

Presently, pentacene is considered as a research model for the fundamental studies of semiconducting 

oligomers.   

Pentacene is a p-type organic semiconductor: its molecule (C22H14) consists of five fused benzene rings 

and presents a planar configuration (Figure II-6), its energy gap between HOMO and LUMO levels is 2.6eV 

[69]. 

  

 

 

 

Figure II-6: Structure of the pentacene molecule (C22H14) 
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It was shown that a pentacene monolayer has crystalline structure [70] (Figure II-7). Two main 

crystalline phases of pentacene are known to sublimate in pentacene layers in vacuum: thin-film phase and 

bulk phase. 

 

 

 

Figure II-7. Crystalline structures of pentacene thin films [70] 

 

In the thin film phase, pentacene has an orthorhombic crystal structure [70, 71] whereas the bulk phase 

shows a triclinic structure [72]. In both cases, pentacene molecules are arranged in an herringbone 

configuration due to the interaction between π-orbitals which favours face-to-face π-stacking of molecules 

and the quadrupolar interaction which governs edge-to-face packing [73, 74]. 

The morphology of pentacene films is characterized by inter-layer spacing of 1.54 nm for thin film 

phase and 1.44 nm for bulk phases. Experimental results show that the thin-film phase favours the charge 

carrier transport with respect to the bulk phase. This can be explained by a better overlap of π-orbitals at the 

grain boundaries [75]. Moreover, it has been shown that, thin film and bulk structure can coexist in the early 

pentacene nucleation period [76]. In fact, the formation of pentacene polymorphs is dependent on factors 

such as the nature of the substrate surface, the substrate temperature and the thin film thickness [77- 80]. 

 

 

  II-1-2 Charge carrier transport in pentacene-based OTFT 

 

The charge carrier transport in organic semiconductors depends on the degree of molecular order and 

is based on two mechanisms: band or hopping transport [32].  

 In the band transport, the charge carriers are described by a Bloch formalism and their motion is 

represented as the propagation of delocalized plane waves [81]. In this case, the charge carrier mobility is µ 

>> 1cm2Vs-1 and the temperature dependence obeys to a law: µ~T-n, n >1. 

 In the hopping mechanism, the charge carrier transport occurs by hopping between localized states 

[82].  
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The temperature dependence of the mobility follows a Boltzmann law and is described as µ ~ exp(-E/kT).  

In that case, the mobility is µ < 1cm2/Vs. Band transport manifests in highly purified and highly ordered 

organic molecular crystals, constituted of small molecules. For oligomers, achievable charge mobility can 

reach the values of 400cm2Vs-1  at low temperatures [83, 84].  

In the case of conjugated polymers, the film structure is disordered and carrier transport is possible 

by charge hopping from site to site. In such structures, the hopping is phonon-assisted and the charge 

mobility increases with temperature, but mobility remains relatively low (µ < 1cm2/Vs) [85, 86].  

According to reported data for pentacene-based OTFTs [18, 87], the values of field-effect mobility 

are in intermediate range (µ ~ 1-3 cm2/Vs) because the charge transport mechanism can not be strongly 

determined (can be related to both hopping and band transport). In addition, Nelson et al. [88] have shown 

that the temperature dependence of charge mobility in pentacene films is not reproducible and varies from 

sample to sample even if OTFTs were fabricated under the same conditions. Furthermore, they also noticed 

that, the charge mobilities have demonstrated temperature independent behaviours, in some experiments. 

The charge mobility in organic semiconductors is strongly depended on molecular ordering and thus 

can be improved by the quality of the thin film structure. Especially, spatial orientation of the pentacene 

molecules is directly affected by the chemical properties of the substrate on which they are deposited. On a 

chemical inert surface, pentacene molecules normally present a standing-up orientation [89, 90]. In the 

contrary, the standing-up orientation changes to a lying-down orientation, in the case of chemically reactive 

surfaces such as cleaned silicon surface [91, 92] or metallic surfaces like Au or Cu, due to the presence of 

unsaturated bonds [93, 94].  

Substrate dependent arrangement of pentacene films and resulting electrical performances were studied 

experimentally and are schematically represented in Figure II-8 [1]. Figure II-8 shows that highly ordered 

structure and increased intermolecular packing, significantly favour OTFTs electrical performances [95- 97]. 

 

(a)     (b)        (c)  

Figure II-8. Dependence of field-effect mobility of pentacene on thin film structural order [1] 

(a) X-ray diffraction graphs, corresponding structural models (b) and mobilities (c) 
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Another important factor that affects pentacene film growth is the roughness of a dielectric surface. 

The increased roughness of the gate dielectric provokes dramatically decreasing of pentacene grain size and 

results in the decrease of carrier mobility. It was shown that the hole mobility decreased from 0.49 cm²/Vs to 

0.11 cm²/Vs when the dielectric roughness increased from 0.24 to 1.15 nm in pentacene based OTFTs with 

SiO2 gate dielectrics. In another work, it decreased from 0.31 to 0.02 cm²/Vs with a roughness increase from 

0.2 to 1.5 nm [98, 99]. 

Therefore, the properties of the interface between the pentacene active layer and the gate dielectric 

play a very important role in determining the molecular orientation, the adsorption probability, the surface 

diffusivity and consequently the OFETs charge mobility.  

 

II-1-3 The gate polymers: parylene and benzocyclobutene 

 

In our study, we focussed on parylene (poly-p-xylylene) and BCB (divinyltetramethyldisiloxane-bis or 

benzocyclobutene) (Figure II-9). 

 

 

 

 

a) b) 

 

Figure II-9. Molecular structure of parylene-C (a) and benzocyclobutene (BCB) (b) 

 

There are many types of parylene including parylene-D, parylene-N and parylene-C. However, Yasuda 

et al have reported that, the best FET performances were obtained when parylene-C has been used as a gate 

dielectric [100]. Gas phase polymerization makes parylene layers absolutely uniform and conformal on all 

surfaces. Another experimental results show improvement of the OFETs operating performance when a thin 

parylene dielectric layer has been introduced between the SiO2 and the pentacene active layer [101]. 

On the other hand, the molecules of BCB constitute thin and defect-free films by simple solution 

casting. Knipp et al. have reported the use of benzocyclobutene as gate dielectric to fabricate pentacene FETs 

with charge mobilities and on/off ratios similar to those obtained using inorganic dielectrics [102]. Namely, 

on thermal oxide and silicon nitride the mobilities are of 0.2 - 0.6 cm2/(Vs) and on/off ratio larger than 108. 

Whereas for transistor with BCB gate the mobility and the on/off ratio are of 0.3 cm2/(Vs) and 107, 

respectively [102]. 

Both parylene-C and BCB are hydrophobic in polymerized state and possess most of the required gate 

dielectric properties: high mechanical strength, thermal stability and good electrical insulation [103, 104]. 

They have very close dielectric constants (k = 3.10 for parylene and k = 2.65 for BCB [105, 106]) which can 

Cl

H2C CH2

n
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be comparable with that of SiO2 as a reference (k = 3.9). Higher dielectric constant induces higher 

capacitance and consequently higher electric field at the surface of the dielectric. This dependence strongly 

affects charge mobility because a stronger electric field increases the carrier concentration at the surface 

[107]. 

Furthermore, they present high electrical insulation characteristics, even for thin layers. That is very 

important, not only for passivation in organic electronic devices, but also, for the gate dielectric of organic 

field effect transistors [108 - 110]. This makes parylene and BCB layers extremely suitable in technologies 

requiring high quality dielectric coatings. 

 

 

II-2 Samples preparation 

 

The detailed description of the sample preparation is presented in the PhD manuscript of Karim Diallo 

[111]. 

Pentacene thin films were deposited by Vacuum Evaporation method at 70ºC and with velocities 

between 0.2 and 0.4 Ǻ/s to favour a better organisation of the molecules. Thermally sublimated pentacene 

molecules are adsorbed on chemical inert surfaces through van der Waals force interaction [98]. After 

adsorption, the pentacene molecules aggregate into the solid condensed phase via the surface diffusion. 

Further molecule ordering is determined by surface chemistry and roughness of the dielectric [99]. 

Both parylene and BCB were deposited on a cleaned glass surface through CVD and spin coating 

techniques as shown in Figure II-10. 

 

 

     

a)      b)  

  

Figure II-10. Deposition of gate dielectrics: a) parylene by CVD, b) BCB by spin coating 

 

The Parylene deposition followed three stages: first, the powder was vaporized in an oven with a 

temperature maintained at 175ºC and a pressure of 0.1 Torr. This leads to the formation of dimers. Then, 

dimers were crashed into monomers, in a second oven at 690ºC and a pressure of 0.5 Torr. During the last 

step, the monomers of parylene were condensed and polymerised on the substrate in the deposition chamber, 

at ambient temperature (25ºC).  
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Deposition of the benzocyclobutene was performed from a liquid phase by a spreading method. At the 

beginning, the substrate was covered by an adhesion promoter (Dow Chemical, AP3000) at 500 rpm during 

5s, then at 3500 rpm during 5s. After that, the solution of BCB T1100 (1:1) was deposited at 500 rpm during 

5s, then 3500 rpm during 30s. BCB was polymerised by an annealing process during 72h at 170°C in air.  

Thicknesses of 690 nm for parylene and 500 nm for BCB were experimentally determined as more 

accurate in previous studies and were chosen for all the experiments [111]. 

 

 

II-3 Atomic Force Microscopy experimental conditions  

  

Both static (contact) and dynamic (non or intermittent contact) modes have been employed in order to 

determine the most appropriate operating mode for pentacene films studying (cf Chapter I).  

The AFM system used in these studies was a Solver P-7 (stand alone Smena-B) scanning probe 

microscope, designed by NT-MDT company, Russia and a DI (Veeco) microscope. Samples scanning was 

performed with cantilevers Nanosensors PPP-contact (k = 0.002N/m) and Nanosensors SSS-NCLR (k = 

0.3N/m) for static and dynamic modes, in order to obtain high sensitivity or high Q-factor, respectively. 

Scanning rate was 1Hz for both modes. 

As a test sample, we used the pentacene thin film, with a 30 nm thickness, deposited on BCB. 

 

II-3-1 Contact mode  

 

The cantilever deflection was measured by the intensity of the reflected laser beam on the 

photodetector (in pA). When the tip reached the surface, the intensity varied from -450 pA to -200pA 

(setpoint value), leading to an applied tip-surface interaction force corresponding to an intensity of 250pA. 

The resulting image presented on Figure II-11a, is rather noisy: several line jumps can be seen and the 

pentacene surface appears blurred with not well contrasted morphological details. This noise is 

representative of a large contact pressure induced by a large applied force and /or a sharp probing tip.  

To improve the resolution and avoid pentacene surface damages, the lowest tip-sample interaction 

force should be applied. The minimal force value at which the scanning in contact mode can still be realized 

was determined by the force spectroscopy method.  

 

The principle is based on the analysis of the force-distance curve, namely on its “backward” part. 

Figure II-12 presents the characteristic obtained on the same surface, with the tip (red curve – approach, blue 

curve – retract). At the start of the cycle, a large distance separates the fixed part of the cantilever and the 

sample (around 130 nm ) and the cantilever is not deflected (I). The cantilever and the tip are moved close to 

the sample, at a constant velocity. Once the force acting on the tip exceeds the stiffness of the cantilever, the 

tip jumps into contact to the sample surface (II) leading to a deflection of the cantilever. If the movement of 
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the cantilever towards the sample goes on, the cantilever deflection reverses (red curve) until a pre-set 

maximum load on the tip is reached (III). At this point, the cantilever is moved away from the surface (blue 

curve) and the tip and sample are separated. Interactions between the tip and sample cause the tip to remain 

attached to the surface as the cantilever retracts, until a “snap out” point where the tip detaches from the 

surface (IV).  

 

       

a)       b)            

 

Figure II-11. Pentacene 30nm on BCB. Contact mode images 2x2µm 

 

Once the cycle of data acquisition is completed, the DFL axis (deflection of the cantilever (DFL) is 

proportional to the interaction force see Chapter I) is correctly scaled relative to the non deflected cantilever 

position. It makes possible to determine a deflection value when the cantilever is just “snap out” from the 

pentacene surface. This value represents the limit of the influence of adhesion forces on the tip. In other 

words, contact AFM imaging is impossible when tip-surface interaction force (setpoint value) is less than 

this adhesion limit value. 

 

 

   

 

Figure II-12. Typical force-distance curve 

86,8nm 

0,0nm 

104,6nm 

0,0nm 
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The “snap out” for 30nm pentacene film, corresponds to a DFL = -285pA that was determined from 

force-distance curves presented on Figure II-12. So, the adhesion limit is 165pA if we take into account the 

initial deflection DFL0 = - 0.45nA. 

 

Scanning in contact mode with an applied load force equal to the adhesion limit value, leads to an 

image without defects (Figure II-11b). This soft contact regime induces low surface deformation and 

provides a better visibility of nano-scale patterned pentacene shapes. This analysis demonstrates the ability 

of AFM contact mode for studying polymers surface morphology and pentacene surfaces, in particular.  

 

 

II-3-2 Dynamic mode  

 

We used AFM dynamic mode (amplitude modulation), in order to confront the performances of both 

dynamic and static modes applied to the same type of pentacene surfaces. The scanning of the sample was 

realized using rectangular cantilever with spring constant of 22N/m and tip radius of 10nm. The most 

appropriated value of the free oscillation amplitude has been found experimentally and was determined to be 

around 15 nm at the resonance frequency of 150-160kHz. 

Typical high quality images presented in Figure II-13, demonstrate the advantages of the dynamic mode over 

the contact mode. As the tip touches the sample surface just one time per oscillation period, the dissipated 

energy is much lower than when the tip is constantly close to the surface as in the contact mode. This fact 

makes possible the accurate reproducing of exact pentacene morphology. The high resolution image of 

heights (Figure II-13a) excludes any possible artifact and has a better contrast on the characteristic edges of 

pentacene than the best image of pentacene in contact mode (Figure II-11b). 

 

 

     

a)      b)        c) 

 

Figure II-13. Pentacene on BCB (30nm thick). Dynamic mode, AM-AFM images on a2x2µm2 area 

a) height image, b)amplitude image, c) phase image 
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Furthermore, during the same scanning cycle, amplitude and phase signals can be collected. The 

amplitude image (Figure II-13b), presents a more detailed surface structure than the height image (Figure II-

13a) because it is not affected by the large surface height difference. Hence, this data is helpful for observing 

the detailed structure of a surface with a complex topography. The phase image from the scanned sample 

(Figure II-13c) can also be obtained in parallel with the height image. At fixed oscillating amplitude, the 

phase signal is derived from the phase shift between the excited cantilever and the input drive signal. Phase 

imaging is an efficient tool that can complete morphological data with information about the structure and 

the chemical composition of the surface on the nanometer scale. 

So, even if it was shown that under specific conditions, the contact mode can be suitable for pentacene 

surface morphology studies, the dynamic mode will be used in the whole following experiences, because it 

offers a better noise-free high resolution imaging. 

 

 II-3-3 Surface energy measured by AFM Spectroscopy  

 

An original mean to determine the surface energy γ consists in using the atomic force microscope. The 

work of adhesion between tip and sample can be deduced from experimental force distance curves [112], 

knowing the tip radius value.  

During the spectroscopic measurement, the contact time between tip and sample is short (order of ms), 

consequently the adhesion is only due to Van der Waals forces and the measured work of adhesion 

represents the thermodynamic work of adhesion W0: 

 

γ20 =W     (eq 2.15) 

    

In addition, the tip-surface contact can be considered as a contact between a sphere and a plane with 

low deformation and low contact radius. Then, the DMT model (Derjaguin Muller Toporov) can be applied 

for approximation of the thermodynamic work of adhesion [113] ( Cf chapter I).  

The DMT model relates this adhesion force Fadh to the thermodynamic work of adhesion as 

follow: 

 

Fadh=2̟RW0       (eq 2.16) 

 

where Fadh is the separation force and R is the tip radius. 

 

The expression for surface energy can be deduced by substituting eq. (2.15) into eq.(2.16): 

 

R

Fadh

π
γ

4
=      (eq 2.17) 
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 From experimental force-distance curves, the adhesion force Fadh can be deduced. It 

corresponds to the force needed to separate tip and surface and it is related to the cantilever 

bending by the Hook’s law: 

 

ZkFadh ∆⋅=             (eq 2.18) 

 

where k is the cantilever spring constant and ∆Z is the cantilever bending on the “snap out” 

point of the curve ( point IV on Figure II-12).  

 

Measurements of adhesion forces were performed using AFM force spectroscopy technique in contact 

mode in air. In our study, we used cantilevers with tip radius of R=10nm and spring constant of k = 0.3N/m, 

these parameters allow to avoid the sticky effect in our experimental conditions. On the curve, the Fadh is 

given in pA, one should realize a curve on a hard surface (Silicon for example) and determine the slope. The 

curve gives the value of the spring constant in pA/nm: k(pA/nm)=∆y/∆x. Knowing the value of k in nN/nm 

one can obtain the value of Fadh in nN:  

 

Fadh [nN] = ∆y [pA] x k [nN/nm] / k [pA/nm]  (eq. 2.19) 

 

For example, for the backward curve shown in Figure II-12, the value of the “snap-out” is ∆Y = 0.688-

0.482 = 0.206nA, which corresponds to the piezo displacement ∆Z = 173-80 = 93nm. According to eq.2.19, 

the corresponding adhesion force with k = 0.3N/m, k(pA/nm) = 0.206/93 and Fadh = 0.206[pA] · 0.3 [N/m] / 

(0.206/93) [pA/nm] = 27.9 nN. 

In the contact mode spectroscopy, the cantilever tip penetrates in the layer of water adsorbed on the 

surface. As a result, the measured adhesion force represents the sum of the capillary force between water 

adsorbed on the tip and sample surfaces, and the adhesion force due to the Van der Waals interaction. Then, 

the total force of adhesion is expressed as follows: 

capVdWadh FFF +=      (eq. 2.20) 

The strength of the capillary force is determined by the meniscus between the two surfaces and 

depends on their geometry. In our experiments, interacting surfaces can be considered as sphere-plane 

contact. In this case, the capillary force, given by Israelachvili [114], is expressed as: 

 

θγπθθγπ cos4)cos(cos2 21 RRFcap =+=   (eq. 2.21) 

 

where R is the tip curvature, γ is the surface energy of the liquid, θ1 and θ2 are water contact angles 

(if non-identical) and θ is water contact angle for symmetric drop. 
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III - AFM study of the pentacene growth  

 

III-1 AFM imaging  

 

III-1-1 The dielectric surfaces  

 

First of all, the morphologies of the gate dielectric surfaces were studied. Figure II-14 presents typical 

AFM images of both dielectric surfaces, the parylene (Figure II-14a) and the BCB (Figure II-14b). Images 

are representative of a 2x2µm2 area with a RMS (Root mean square) value of 3.47nm on the parylene and 

0.42nm on the BCB. 

 This difference in the RMS roughness relates to different structure specificities of each surface. In the 

BCB case, we observe a flat and homogeneous surface with a “peak to valley” value ∆ZBCB = 4.39nm. In the 

parylene case, the surface is rougher and presents an island-like morphology with ∆ZPar = 28.1nm. Both 

∆ZBCB and ∆ZPar are approximately proportional to their RMS-values that indicate a good homogeneity of the 

observed films. The difference in the roughness between the two dielectric surfaces leads to different initial 

conditions for the pentacene growth. 

 

                         
Figure II-14. AM-AFM Images of the (a) parylene-C (thickness 630nm; RMS=3,47nm) and (b) BCB (thickness 500nm; 

RMS=0,42nm) surfaces. Scan area: 2 x 2µm2 

 

III-1-2 The pentacene films  

 

           III-1-2-1 A grain structure  

 

Pentacene films were deposited onto the gate dielectrics over a large scale range of equivalent 

thicknesses: 6, 10, 15, 20, 30, 35, 40 and 60 nm. The objective was to explore the pentacene growth 

evolution from early initial stages to well formed surface structures. Figure II-15 and Figure II-16 illustrate 

the evolution of the growth for some specific thicknesses on both BCB and parylene substrates on a 

10x10µm2, and 2x2µm2 scan areas, respectively. 

a) 

28,1nm 

0,0nm 

4,39nm 

0,0nm a) b) 
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Figure II-15. Height AM-AFM images of pentacene surface for different pentacene thicknesses deposited on the 

parylene (a) and on the BCB (b) surfaces. Scan area: 10x10µm2.  

 

 

h=6nm ∆Z=83.6nm RMS=8.7nm h=10nm ∆Z=45.6nm RMS=6.4nm h=15nm ∆Z=62.0nm RMS=7.0nm h=20nm ∆Z=78.3nm RMS=6.4nm 

h=30nm ∆Z=62.5nm RMS=8.1nm h=35nm ∆Z=74.0nm RMS=8.5nm h=40nm ∆Z=64.3nm RMS=6.7nm h=60nm ∆Z=63.8nm RMS=8.6nm 

h=6nm ∆Z=48.2nm RMS=5.6nm h=10nm ∆Z=28.3nm RMS=3.6nm h=15nm ∆Z=29nm RMS=3.8nm h=20nm ∆Z=44.6nm RMS=4.9nm 

h=30nm ∆Z=45.9nm RMS=5.6nm h=35nm ∆Z=62.8nm RMS=6.6nm h=40nm ∆Z=44.3nm RMS=6.4nm h=60nm ∆Z=48.6nm RMS=7.2nm 

a) 

b) 
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Figure II-16. AFM images representative of a 2 x 2 µm2, for some selected thicknesses of pentacene deposited on 

(a) parylene and (b) BCB. 

h=0nm ∆Z=28.3nm RMS=3.47nm h=6nm ∆Z=30.06nm RMS=4.43nm 

h=15nm ∆Z=47.6nm RMS=7.77nm h=30nm ∆Z=55.1nm RMS=7.88nm h=60nm ∆Z=51.3nm RMS=8.60nm 

h=0nm ∆Z=4.39nm RMS=0.42nm h=6nm ∆Z=41.8nm RMS=5.25nm h=10nm ∆Z=24.2nm RMS=3.51nm 

h=15nm ∆Z=26.6nm RMS=3.69nm h=30nm ∆Z=42.7nm RMS=5.38nm h=60nm ∆Z=45.0nm RMS=7.28nm 

a) 

b) 

h=10nm ∆Z=50.1nm RMS=6.33nm 
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Clearly, three general specificities can be seen among them: 

1) A change in size of the grains with increasing the pentacene film thickness for both substrates  

2) A different type of structuration before and after the thickness of 15nm for both substrates BCB and 

Parylene;  

3) A sharp distinction in size and shape of the grains between layers deposited on the different 

dielectrics 

 

From 6nm to 15nm pentacene equivalent thicknesses, a lateral growth of the islands with an evolution 

in shape is observed. The characteristic evolution of pentacene-on-BCB growth manifests by a shape 

transition of the islands from random shape at 6nm to compact pyramidal shape at 15nm. Otherwise, the 

pentacene-on-parylene growth begins from early small initial islands that form a quasi-layer at 6nm, difficult 

to separate from the parylene surface, and transforms to compact bulk shapes at 15nm ( Figure II-16). 

The film at10nm corresponds to an intermediate stage of semiconductor growth: deposited islands are 

larger and better developed than at 6nm but they are not already so compactly packed than at 15nm. The 

dielectric substrate is visible at some places (Figures II-15, II-16). Analysis of this first three films shows that 

the equivalent thickness of 15nm corresponds to a certain quantity of pentacene matter for which a new 

mode of surface growth begins. At this critical mass, the islands are well packed and their lateral growth can 

be limited by the close presence of the boundaries of neighbouring islands. Further increasing of coverage 

just induces an island size evolution with any significant changes in lateral shape: between 15nm and 60nm 

thicknesses, pentacene-on-BCB exhibits pyramidal structures and pentacene-on-parylene presented bulk-like 

shapes (Figures II-15, II-16).  

 

 III-1-2-2 Terraces in the grains  

 

 Distinctions between pentacene-on-BCB and pentacene-on-parylene, can be observed not only in 

grains shape. As an illustration, let’s focus on one of the pentacene films with an equivalent thickness of 

60nm. Figure II-17 shows AFM topography and amplitude error images of the pentacene surface on both 

substrates. Error images have a higher spatial resolution than topographic images (it represents a differential 

of the topography image, since it accentuates sharp turning points in the sample topography (high frequency 

information) at the expense of smooth slowly undulating areas (low frequency information)). On BCB, all 

islands have rectilinear accurate boundaries and grow narrowing to the peak that gives them a pyramid-like 

shape. Each pyramid is composed of a terrace stacking less and less larger in the vertical direction. The 

islands on parylene are smaller and present bulk-like shape with rounded boundaries. The islands have a 

granular rounded structure and they are not terminated by the presence of a single clear-defined peak. 

Basically, these bulks consist of small fragments of pentacene layer at least not well-ordered.  

The surface structure of the islands is followed by performing cross sections on several images.  

On typical images of Figure II-17, cross sections were realized and the black (red) line on each image 

represents one typical cross section.  
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 For pentacene-on-parylene, islands are presented with an irregular shape structure (Figure II-17e). The 

cross sections show a step height which approximately relates to two or three molecule lengths (3.42 nm and 

4.54 nm ± 0.13). In achieved experiment, it was shown by RDS that molecules tilt differently on PMMA and 

Ta2O5 [115]. 

 

 

 

 

 

 

                                                                                

  

                               

 

 

 

 

 

 

Figure II-17. Grain structure of Pentacene (thickness 60nm) on (a, b) Parylene and on (c, d) BCB. Topography (a, c) 

and error (b, d) images of 1x1µm. Cross sections (e) black and red lines on the images (a, b) and (f) black line on the 

images (c, d). 

 

Besides, for pentacene-on-BCB, the height of each terrace step is about 1.4nm ± 0.07 that 

approximately corresponds to the length of the pentacene molecule (Figure II-17f). Moreover, judging from 

the continuity of the terraces borders and the homogeneity of the large edges, we can establish that each 

terrace corresponds to a pentacene monomolecular layer. Then, the pyramidal islands are composed of flat 

homogenous monolayers of standing up pentacene molecules, deposited vertically one to each other.  

According to the deviation standard error in the measurement, it is impossible to conclude on a 

possible tilt of the pentacene molecule on the terraces. However, it is clear that the shape of the islands for 

the low coverage influences the mean height of the terraces, one monolayer for pentacene on BCB and 2 or 3 

monolayers for pentacene on parylene. 

a) b) c) d) 

e) f) 

3,42nm  

4,54nm  

1,47nm 

1,42nm  

1,38nm  
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III-2 Statistical grain analysis  

 

The knowledge of the structural composition of pentacene islands, their geometry and their ordering 

allows us to understand how the pentacene films form. In order to study the influence of film thicknesses on 

these parameters, a statistical analysis of the geometrical size of the islands was performed. 

 

III-2-1 Width and height of grains  

 

The RMS distribution of the grain heights represents quantitative information about the surface 

irregularity. Figure II-18 shows the roughness of the pentacene films surfaces for all deposited thicknesses.  

 

 

 

 

 

 

 

 

 

 

 

Figure II-18. RMS distribution of Pentacene islands heights deposed on BCB and Parylene 

(for an area of 10 µm x 10µm) 

 

By comparing data on Figure II-18, we can establish two general tendencies:  

    1) the RMS values of pentacene surface on BCB and parylene (RMS Pen/BCB and RMS Pen/Par) present 

two peaks for the same film thicknesses for 6nm and 30nm (30 - 35nm for parylene). 

    2) the RMS Pen/Par values are greater than the corresponding RMS Pen/BCB excepted for the 30nm 

pentacene thickness. 

The similarity between the RMS values of both samples for 6nm and 30nm can be explained in the 

following way. The thickness of 6nm pentacene relates to a situation where the islands on both BCB and 

Parylene substrates are not already connected. Consequently, the RMS was calculated for the real island 

heights – between a substrate surface (bottom of island) and top of island.  

At the same time, RMS calculations for the following stages of growth (thicknesses greater than 10nm) 

can be performed just for accessible surface of pentacene. In other words, beginning at 15nm film thickness, 

the islands are well-packed and the lowest point of deposed layer corresponds to the level of border 

juxtapositions. In this case, the substrate surface is well covered and is not accessible to the SPM probe. 
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Despite the case at 6nm, RMS values could then be compared for higher coverages and the increase at 30nm 

for both substrates is significant of a roughening of the surface for this peculiar thickness. 

 To interpret this behaviour, RMS analysis can be completed by additional statistical investigations 

necessary to define the size and volume occupied by the islands. In order to establish the variation of the 

islands lateral dimensions, calculation of grains size distribution was performed. RMS, grain sizes and grain 

volumes were calculated with Gwyddion modular program for SPM data visualization and analysis [116]. 

Grain size and volume calculations were performed by using the segmentation algorithm implemented in 

Gwyddion. This algorithm is based on surface area triangulation scheme and an example of it application is 

shown in Figure II-19 (c) and (d) for pentacene 30nm thickness on BCB. More precisely, knowing the pixel 

dimension it becomes possible to calculate the size and volume for each one marked by a mask area (blue 

color on Fig. 19(d) ), that corresponds to the shape of a grain. 

 

 

 

 

 

 

 

  

 

  

 

Figure II-19. Distribution of the grain size (a) and grain volume (b) of Pentacene deposed on BCB and Parylene. 

Figures (c) and (d) represent an example of application of segmentation algorithm (Gwyddion) for pentacene 30nm on 

BCB (10µm x 10µm). Figure II-(c) – before segmentation (without mask),  

and Figure II-(d) – after segmentation (with blue color mask). 
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The results of the analysis are obtained for both pentacene-on-BCB and pentacene-on-Parylene films 

for each coverage and are presented on Figure II-19a. We can see that the pentacene islands on BCB are 

noticeably larger than on parylene. This difference in size is especially expressed for 30nm of the film 

thickness both on BCB and Parylene. In addition, the size distribution presents the same evolution than the 

RMS distribution: an increase from 6nm to 30nm followed by a decrease from 30nm to 60nm. 

 This size parameter is not sufficient to give a complete information about a shape structure so the total 

volume covered by the islands was also evaluated (Figure II-19b). The peak at 30 nm is not so marked than 

for the grain size distribution, a maximal volume value is obtained for coverage of 30nm and 40nm for 

pentacene on parylene and for a coverage of 35 nm for pentacene on BCB. 

In addition, the grain volume distribution is often inversed compared to the grain size distribution at 30 

nm. In another words, it means that the largest pyramids on BCB occupy a smaller total volume than the 

small islands on parylene for the majority of thicknesses. This seems to indicate that the growth follows 

more a 3D mode on parylene than on BCB. 

 

 

III-2-2 The PSD analysis 

  

In order to complete the grain size analysis, PSD spectra were measured on typical images of 10µm 

x10µm for coverage from 15 to 60nm on both systems. The theory of the PSD spectra has been developed in 

details, in chapter I. The PSD analysis was performed on our AFM images to quantify both the evolution of 

the average grain size and the surface roughness as a function of the thickness of the films and also to 

provide information on the growth mechanism.  

 Figure II-20 presents topographic AFM images over 10 x 10µm2 scanned areas for a 40nm thickness 

and their respective PSD spectra for both systems. The bandwidth of the spatial frequencies extends between 

the minimal and the maximal spatial frequencies. 

 Because the length scale (L) is 10µm, the minimal spatial frequency is given by fmin=1/10µm=0.1µm-1 

and the maximal spatial frequency by fmax = 1/(2∆) = (25.6µm-1)/2 = 12.8 µm-1, where ∆ is the sampling rate, 

given by: ∆ = 10µm/256= 39nm.  

 As mentioned in chapter I, all power spectra exhibit three distinct regions, represented as parts I, II 

and III. 

– The region I includes the low spatial frequencies with a k < 107 m-1 for pentacene on parylene and a k 

< 7.106 m-1 for pentacene on BCB which correspond to a nearly constant value of the roughness σPSD 

(magnitude of PSD). This low-frequency plateau means an absence of correlation (it does not change with 

the scale) and indicates an absence of any characteristic length. 

– The region II involves intermediate frequencies between approximately 107m-1 and 6·107m-1. For this 

high-frequency range the PSD is strongly frequency dependent and represents the power-law decay. This 

region characterizes the mechanism of surface formation and indicates the surface self-affine behaviour 

[117]. 
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– The region III corresponds to the highest frequencies of the spectra (k > 6.107m-1). As we mentioned 

in chapter I, the PSD in this region is tip size dependent and should not be taken into account. 

 

    

  

a) b) 

Figure II-20. Topographic image and typical PSD spectra of the pentacene 

deposited on parylene (a) and BCB (b) for a coverage of 40 nm 

 

 

 

a)       b) 

Figure II-21. PSD spectra of the pentacene films deposited on parylene a) and BCB b) 

 

Figure II-21 shows in details two sets of PSD spectra for different thicknesses of pentacene upon both 

substrates, reflecting different stages of the surface morphologies formation.  

I II III  I II III  
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a)      b) 

Figure II-22. Calculation of PSD magnitude R0 for low spatial frequencies region using linear fitting  

 

For region I, the magnitude of the PSD spectra R0 increases from 15nm up to the 30 – 35nm and then 

starts to decrease, for pentacene on parylene. Such behaviour is less pronounced for pentacene on BCB. The 

plateau heights (R0) were measured using the linear fitting of the low spatial frequencies region I of spectra 

as shown in Figure II-22a. However, this fitting is not really appropriate because we can see that the PSD 

magnitude is not at a constant value in region I on experimental curves (Figure II-21). The PSD magnitude 

increases with the frequency in this region. The slope is more pronounced for the 30nm thickness, it means 

that small features (contributing to higher PSD magnitude near ftransition) are more numerous than large 

features (contributing to lower PSD magnitude in the region I). 

Table 1 summarizes the PSD magnitudes R0 identified from experimental curves in Figure II-21, in 

comparison with RMS roughness σ which corresponds to the integral of the PSD curve, theoretically. R0 is a 

peculiar parameter corresponding to the low frequency, thus the large features.  

These two parameters could not be compared directly but they present the same evolution trend toward 

thickness for our experimental systems (table 1). This means that large features mostly govern the total 

roughness. These results are in a good agreement with the evolution of values of the RMS roughness σ (eq. 3 

for Rq) which were previously calculated over the same sample areas. 

 

 pentacene on parylene pentacene on BCB 

film thickness, (nm) σ, (nm) R0, (m
3) σ, (nm) R0, (m

3) 

15 7.80± 0.93 1.71x10-24± 4.5x10-26 4.03± 0.05 0.91x10-25± 5.8x10-26 

20 6.20± 0.49 1.63x10-24± 5.0x10-26 4.71± 0.08 1.06x10-24± 3.9x10-26 

30 8.32± 0.28 2.27x10-24± 1.1x10-25 9.96± 0.37 1.39x10-24± 9.6x10-26 

35 8.07± 0.25 2.22x10-24± 7.2x10-26 6.26± 0.15 1.76x10-24± 1.5x10-25 

40 7.43± 0.06 1.75x10-24± 4.0x10-26 6.09± 0.12 1.95x10-24± 7.8x10-26 

60 7.11± 0.72 1.47x10-24± 4.2x10-26 8.03± 0.14 3.35x10-24± 1.9x10-25 

 

Table 1. PSD magnitudes R0 obtained from the PSD curves (Figure II-2) 

and RMS roughness σ corresponding to Figure II-21. 

R0 
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The classical way to calculate the correlation length consists in determining the transition frequency 

ftransition in the intersection point of the two fitting curves of regions I and II in the PSD spectra (Figure II-22 a, 

b). Such an approach gives the order of magnitude of ftransition about 107m-1, for the experimental PSD curves, 

in Figure II-20, which corresponds to a mean grain diameter ξ ~ 100nm. But the real grain size varies 

between 360-508nm for pentacene on parylene and between 504-866nm for pentacene on BCB (Figure II-19 

a). So, this method does not provide a complete description of a whole grain but is just sensitive to the details 

of the high spatial scales. Another approach that provides more adequate grain description will be discussed 

below. 

In order to determine the slope of the high-frequency region II the exponential part of PSD was fitted 

using the expression (9) (see Figure II-22b), which gives for asymptotic range ( f → ∞ ): 

 

 PSD(f) = K γ−f      (eq 2.22) 

 

Resulting values of the slope ( γ ) are reported in the table 2 with related values of scaling exponent ( α ). 

where γ = 2(1+α), for distances inferior to the correlation length ( ξ ) (Figure II-25 b). 

 

 pentacene on parylene pentacene on BCB 

film thickness, (nm) γ α γ α 

15 2.94± 0.10 0.47 2.66± 0.11 0.33 

20 3.07± 0.06 0.49 2.88± 0.07 0.43 

30 3.14± 0.12 0.91 2.95± 0.12 0.49 

35 3.27± 0.07 0.89 3.05± 0.08 0.54 

40 3.15± 0.07 0.58 2.82± 0.14 0.46 

60 3.13± 0.10 0.56 2.69± 0.09 0.34 

 

Table 2. PSD slope ( γ ) and scaling exponent ( α ) 

 

The calculated α for both pentacene on parylene and on BCB exhibit nonlinear evolution: the scaling 

exponents increase up to their maximum values at 30-35nm and then decrease for higher coverages. It means 

that grains become more circular or compact at these thicknesses. The pentacene grown on parylene showed 

a grain morphology approaching the ideal circular shape (α=1) with a related α of 0.91 and 0.89, for 

thicknesses of 30nm and 35nm, respectively. For pentacene on BCB, the same increase of the α value is 

observed at the same thicknesses. However, the values reached are not high enough to reveal a particular 

change in the grains shape (respectively 0.49 and 0.54). 

 Using the fractal model, we can calculate the spectral strength (K) the spectral index (ν) parameters 

and the fractal dimension Df. Values are reported in Table 3. 
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 pentacene on parylene pentacene on BCB 

film thickness, (nm) K ν Df K ν Df 

15 4.04x10-3 1.94± 0.10 2.49 1.49x10-6 1.66± 0,11 2.42 

20 6.32x10-3 1.98± 0.07 2.50 8.22x10-5 1.86± 0,11 2.47 

30 2.67x10-2 2.81± 0.19 2.70 2.34x10-4 1.98± 0,09 2.50 

35 1.74x10-1 2.78± 0.08 2.69 1.28x10-3 2.08± 0,16 2.52 

40 2.15x10-2 2.16± 0.15 2.54 4.33x10-5 1.92± 0,09 2.48 

60 1.45x10-2 2.12± 0.06 2.53 5.44x10-6 1.67± 0,10 2.42 

 

Table 3. Fractal contribution components (PSDfractal): spectral strength (K), spectral index (ν) and  

fractal dimension Df 

 

The fractal dimension takes into account the substrate influence and provides the information about the 

relative amounts of the surface irregularities at different scales.  

In our case, it means that it can be influenced by the parylene or BCB surface, respectively. Table 3 

shows that all Df values are around ~ 2.5, which indicates the presence of Brownian fractals in surface 

morphology and is related to a strong dependence of the microstructural nature of pentacene surfaces on the 

deposition parameters. One can notice that the Df values for pentacene on parylene are slightly larger than 

the corresponding values for pentacene on BCB, meaning a higher sticking probability of pentacene 

molecules while deposition on the parylene than on the BCB (see paragraph V-2-2-2 for more details). The 

maximal fractal dimensions are obtained for film thicknesses of 30 and 35nm in both cases, that can be 

explained by an increase of the sticking probability for these coverages. The fractal strength K is stronger for 

pentacene on parylene surfaces than on BCB that can be related to the respective roughness of the surfaces..  

Using the k correlation model, we can extract the 3 functional parameters A, B, C. They are presented 

in Table 4. 

 

 pentacene on parylene pentacene on BCB 

film 

thickness, 

(nm) 

A (m3) B (m-1) C A (m3) B (m-1) C 

15 2.34x10-24 3.51x107 3.14 1.04x10-24 1.38x107 1.26 

20 1.99x10-24 5.63x107 2.12 1.24x10-24 9.47x106 1.64 

30 2.25x10-24 4.99x107 2.54 1.31x10-24 1.03x107 1.43 

35 2.89x10-24 5.67x107 2.53 2.60x10-24 1.07x107 1.52 

40 1.60x10-24 4.44x107 2.63 2.13x10-24 9.22x106 2.03 

60 2.90x10-24 3.75x107 2.85 4.24x10-24 1.55x107 1.38 

 

Table 4. Parameters of k-correlation model for PSD plots of pentacene films 
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The A parameter has the same physical sense than R0 but they are calculated differently. Obtained values for 

A and R0 look similar (tables 1 and 3). The inverse value of the parameter B represents the mean grain size. 

According to ABC-model, the maximum grain sizes of 1/Bparylene = 1/3.51x107 = 28.49nm (for thickness of 

15nm) and 1/BBCB = 1/1.03x107 = 108.46nm (for thickness of 30nm). However, these values are not in 

agreement with the mean size of the grains measured on Figure II-19 a): 508nm for pentacene on parylene 

and 866nm for pentacene on BCB. These lower values of 28.49nm (on parylene) and 108.46nm (on BCB) 

are due to the high sensitivity of the k-correlation model to small morphological features. In fact, this 

measurement allows to identify a subjacent structure inside the grains, which can be related to size of small 

terrasses on the top of grains (see Figure II-17 b, d). 

Values of the C parameter are in the interval between 2.12 to 3.14 for pentacene on parylene and 

between 1.26 to 2.03 for pentacene on BCB. It was shown in Chapter I that these values inform to the growth 

mechanisms. In our study, it means that the growth of the pentacene films on parylene begins by an 

evaporation and condensation mechanism (C = 2) and evoluates in a bulk diffusion mechanism (C = 3) for 

thicknesses higher than 30nm. For the pentacene on BCB, the growth begins by a viscous flow mode until a 

thickness of 35nm and changes in an evaporation and condensation mechanism for higher thicknesses. 

 In addition, the equivalent RMS roughness σABC and the correlation length τABC can also be calculated 

and are reported in Table 5.  

 

 pentacene on parylene pentacene on BCB 

film thickness, 

(nm) 
σABC (nm) τABC (nm) σABC (nm) τABC (nm) 

15 0.57 239.88 4.32 46.96 

20 1.18 64.31 2.06 192.16 

30 0.94 109.21 2.82 110.84 

35 1.22 95.30 3.75 133.03 

40 0.69 132.19 2.08 353.40 

60 0.74 184.92 8.11 63.94 

 

Table 5. Intrinsic contribution components σABC and τABC (equivalent RMS roughness and correlation length) 

 

For both substrates, σABC values are lower than those calculated from root-mean-square deviation of the 

height (σ values in Table 1). Unfortunately, the general trend of a singular value for 30 or 35 nm thicknesses 

is not observed. This can be explained by the fact that the expression of σABC implies a well-defined value of 

the A parameter, thus in our spectra, we don’t have a uniform plateau but a decaying function toward lower 

frequencies. This induces a high uncertainty on the A value and then on the σABC. 

 

The k-correlation model is more suitable in the domain of spatial frequencies corresponding to the B 

and C parameters. Then the correlation length τABC describes more precisely the size of the features. τABC 

values are larger than B-values, however they are still smaller than real grains size. This can be interpreted 
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by the fact that the position of the “knee” describes a structure corresponding to the irregularities of the grain 

surface.  

 

 Applying the superstructure model, gives parameters presented in table 6. The parameters τsh1 and τsh2 

correspond to the size of aggregates and single grains with their respective height parameters σsh1 and σsh2. 

This model is appropriate to our system, because the deposition rate of pentacene was constant and the 

formation of aggregates has been influenced by the variation of the film thickness (see Chapter I). 

 

 pentacene on parylene pentacene on BCB 

film 

thickness, 

(nm) 

τsh1,nm σsh1,nm τsh2,nm σsh2,nm τsh1, µm σsh1, nm τsh2, nm σsh2 

15 780.78± 82 2.47± 0.17 285.23± 11 3.91± 0.08 1.27± 0.14 1.46± 0.10 386.31± 45 2.54± 0.19 

20 813.58± 99 2.54± 0.21 296.56± 19 4.19± 0.19 1.39± 0.16 1.41± 0.10 410.89± 34 3.89± 0.22 

30 1100± 110 2.09± 0.13 292.66± 6.2 4.35± 0.06 1.56± 0.21 1.44± 0.13 511.96± 41 3.01± 0.17 

35 831.7± 40 2.98± 0.09 292.40± 11 4.34± 0.08 1.35± 0.14 1.97± 0.14 428.89± 28 3.77± 0.16 

40 672.72± 61 2.51± 0.17 360.95± 14 3.51± 0.08 1.18± 0.12 2.17± 0.16 502.90± 29 3.58± 0.13 

60 596.55± 41 2.40± 0.11 201.90± 5.5 4.36± 0.08 1.03± 0.12 3.28± 0.25 399.70± 12 5.28± 0.09 

 

Table 6. Superstructure contribution components (PSDsh). Parameters τsh1 and τsh2 describe mean size of aggregates 

(superstructures) and grains respectively with their height parameters σsh1 and σsh2 

 

Figure II-23 shows an AFM image of both systems for a 40nm thickness; Morphological features 

(grains and aggregates of grains) are reported with their characteristic parameters τsh1 and τsh2 for pentacene 

deposited on parylene (Figure II-23a) and on BCB (Figure II-23b). The mean sizes of aggregates are 

described by the τsh1 parameter. Inside the aggregates, smaller grains are presented with a mean size 

described by the τsh2 parameter. On the image, blue contours surround aggregates with their constituent grains 

and scale bares represent the real values of τsh1 and τsh2.  

These two kinds of grains, small and large are easy to observe on the pentacene on BCB surface 

(Figure II-23b), they correspond to the two size τsh1 and τsh2. For the pentacene on parylene the τsh1 parameter 

describes the size of large grains composed by the small ones characterized by the τsh2 parameter 

(aggregates).  
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a)       b) 

Figure II-23. Correspondence between aggregate sizes and grain size on AFM images 10µm x 10µm for a 

 40nm thickness deposited on parylene (a) and BCB (b) 

 

Table 3 shows that aggregate and grain sizes, τsh1 and τsh , are both 60% smaller for pentacene on 

parylene than for pentacene on BCB. It is in agreement with results obtained by the segmentation method 

(Figure II-19 (c), (d)). 

For more convenience, the τsh1 and τsh2 values are presented in Figure II-24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II-24. Grain and aggregate sizes, τsh1 and τsh2 obtained with the superstructure PSDsh model  
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As shown in Figure II-24, the variation of film thickness has caused the formation of superstructures 

with sizes ranging from 596nm to 1100nm, for pentacene on parylene. More precisely, by increasing the film 

thickness, the size of this superstructure increases from 780nm to a maximal value of 1100nm for a thickness 

of 30nm and then decreases progressively to a value of 596nm. At the same time, the τsh2 parameter 

characteristic of the grain size remains around the same value of 288 +/– 50.7nm independently from the 

deposited thickness.  

The same behaviour is also observed for the pentacene on BCB system. The superstructure size 

evolves from a τsh1 value of 1.27µm to 1.56 µm for a 30 nm thickness and then falls linearly down to 

1.03µm. Similarly, the τsh2 parameter remains around a value of 440 +/– 54.1nm, for all thicknesses. 

 

An important conclusion is that the size evolution of the aggregates is not due to an evolution of the 

size of the grains that form them but is mostly influenced by the quantity of these grains. 

On both substrates, the height parameters σsh1 and σsh2 reflect the relation between superstructure and 

grain heights for different film thicknesses but not their absolute values. For both substrates, calculation of 

the height parameters lead to σsh2>σsh1. This means that individual grains are higher than their aggregates. 

This erroneous result can be understood by the shape of the PSD curve at low frequency, a decreasing 

tendency (Figure II-21). Consequently, lower spatial frequencies representative of aggregates (larger 

features), have lower PSD magnitude values, leading to lower heights than smaller grains. It means that σsh1 

and σsh2 absolute values can not be compared directly between them.  

 

The surface analysis of the morphological structure during growth was done by classical parameters 

measurements and by using the PSD spectral method with different models. Several informations were 

obtained and particularly, the specificity of the 30-35 nm thickness was demonstrated by many parameters. 

According to the k-correlation model, this thickness corresponds to an evolution in the growth mechanisms: 

rrom evaporation and condensation modes to a bulk diffusion mode, for pentacene on parylene, and from a 

viscous flow to an evaporation condensation mode for pentacene on BCB.  

The α value shows that a more regular shape of the grains is obtained at this thickness, it tends to a 

circular shape for pentacene on parylene. Three different feature sizes were identified, the terrace length 

around 30nm and 100nm for pentacene on parylene and on BCB respectively, given by the B parameter, the 

grain size and the superstructure, aggregate, size obtained by the superstructure model. It was shown that the 

grain size is roughly constant during growth and that the aggregates enlarge by adding grains reaching the 

largest size for the 30nm thickness. 

 

The surface analysis is not sufficient to answer to the issue “Why is there a specific 30nm thickness?” 

We should take into account, surface energy considerations, and experimental conditions of the film 

deposition. 
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III - 3 Surface free energy of pentacene: one of the driving factors in films 

patterning 

 

Hence, we can establish two general stages in pentacene film growth: one is substrate-induced and the 

other one is a thickness-driven stage. 

Substrate-induced pentacene growth mode can be explained by the dependence of the diffusion length 

of the deposited molecules on the roughness and the free energy of the surfaces.  

To interpret the mechanism driving the enhancement of the pentacene grains size, we propose to 

follow the pentacene surface free energies for corresponding thicknesses 15nm, 30nm and 40nm. 

 

III-3-1 Contact-angle measurements  

 

The surface energies for different pentacene samples were calculated by measuring contact angles with 

various test liquids. Two types of contact angle-meters were used: a PG-3 Measuring Head (FIBRO System 

AB, Sweden) and a GBX Instrumentation Scientifique (France). 

First experiments were realized with the PG-3 Measuring Head at a temperature T = 23-24°C and a 

relative humidity of 33%. The algorithm ASTM D5946 (Standard Test Method for Corona-Treated Polymer 

Films using Water Contact Angle Measurements) allows to perform free surface energy calculations and 

only requires deionised water (copyright ASTM International)In our calculation, we will take the value of 

γ=72.8 mJ/m2 for the surface tension of the deionised water [114] 

The liquid deposition was realized in automatic regimes with microsyringe that pulled the liquid into 

the teflon capillary to prevent the wetting of the liquid. The volume of the water drop was 1.5µl that 

provided stable conditions of deposition. However, a relaxation after deposition was observed when the drop 

was brought in contact with the surface. The relaxation process was studied in dynamic regime of contact 

angle measurements. Results showed that a stabilization time of 60s is necessary to obtain a stable geometry 

of the water drop (Figure II-25).  

 

   

 

Figure II-25. Liquid drop (distilled water) deposition with the PG-3 Measuring Head on pentacene surface 
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After the instrument calibration, the contact angle measurements were realized with five equivalent 

drops for each pentacene sample. Each measurement was started 60s after the drop deposition. The contact 

angle measurements were performed for pentacene on parylene and on BCB with equivalent thicknesses of 

15, 30 and 40nm. Experimental angles and their corresponding pentacene surface energies are shown in 

Table 7. 

 

P15Par   P30Par   P40Par   P15BCB   P30BCB   P40BCB   

θ ° 

γs 

mJ/m² θ ° 

γs 

mJ/m² θ ° 

γs 

mJ/m² θ ° 

γs 

mJ/m² θ ° 

γs 

mJ/m² θ ° 

γs 

mJ/m² 

78.9 36.5 73 38.6 74.2 38.2 71.5 39.2 76.7 37.3 75.5 37.7 

80 36.1 68.6 40.2 78.1 36.8 75.1 37.9 80.2 36 74.9 38 

78.8 36.5 68.5 40.3 74.2 38.2 75.3 37.8 80.8 35.8 63.7 42 

70 39.7 61.9 42.7 64.9 41.6 72.8 38.7 79.6 36.3 57.9 44.1 

76.6 37.3 70.4 39.4 68.6 40.2 70.1 39.7 80.8 35.8 62.2 42.6 

< θ > <γs> <θ> <γs> <θ> <γs> <θ> <γs> <θ> <γs> <θ> <γs> 

76.86 37.22 68.48 40.24 72.00 39.00 72.96 38.66 79.62 36.24 66.84 40.88 

 

Table 7. θ° – water contact angle, γs – surface free energy of pentacene on parylene (blue columns) 

 and on BCB (orange columns) 

 

Figure II-26 presents the average values of the pentacene surface energies γs for both substrates. The 

variation of the surface energy towards thickness is not really marked. We can observe that both systems 

reach their extremum for the 30nm thickness: a maximal value for pentacene on parylene, γs Pen30/Par = 

40.24mJ/m², and a minimal value for pentacene on BCB, γs Pen30/BCB = 36.24mJ/m². Because these values are 

largely dispersed, this variation seems to be not really significant. 
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Figure II-26. Pentacene surface free energy as a function of pentacene film thickness 

 calculated using the model ASTM D5946.  
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  Therefore, a second set of experiments was performed using different liquids: formamide (surface 

tension γ = 58.2 mJ/m²), diiodomethane (γ = 50.8 mJ/m²) and ethyleneglycol (γ = 47.7 mJ/m²) [118]. They 

were realized with the GBX Instrumentation Scientifique at a temperature T = 22-23°C and a relative 

humidity of 40%. Surface free energy was calculated by the integrated software using the Owens & Wendt 

model and the average values of the contact angle (See Annexe I): 

 

 P15Par P30Par P40Par P15BCB P30BCB P40BCB 

 θ ° θ ° θ ° θ ° θ ° θ ° 

Diiodomethane 37.4 40.2 41.2 34.7 36.8 38.1 

 37.5 39.2 40.5 33.8 36.8 40.7 

 37.5 38.6 40.5 31.4 36.3 40.7 

Average 37.4± 0.34 39.2± 0.86 41.2± 0.50 33.8± 1.73 36.8± 1.14 40.7± 1.56 

Ethyleneglycol 60.3 58.3 58 51.9 55.8 52.2 

 60.5 58.8 58 51.7 55.3 49.8 

 60 59.2 58.9 51 55.2 52.7 

Average 60.3± 0.84 58.8± 0.50 58± 1.55 51± 0.89 54.1± 1.18 49.9± 1.54 

Formamide 42.3 45.1 53.2 40 32 53.6 

 43.8 44.9 53.3 40.3 29.9 52.6 

 43.3 44.1 53.8 39.5 29.8 49.8 

Average 43.3± 0.71 44.9± 0.80 53.2± 0.95 40± 0.40 29.9± 1.26 52.6± 2.17 

γs mJ/m² 

Total 43.4± 2.08 42.6± 2.04 40.8± 1.96 45.7± 2.15 45,7± 2.15 41.7± 1.96 

 

 

Table 8.Contact angles θ° of diiodomethane, ethyleneglycol and formamide and corresponding pentacene 

surface free energies γs (measured with the GBX Instrumentation Scientifique) 

 

Contact angles presented in Table 8, for all liquids, were measured in a dynamic mode. The stable 

part of the relaxation period was used to calculate the free energy. Each liquid was deposed 3 times upon the 

pentacene samples.  

As we can see on Figure II-27, the pentacene free energy gradually decreases from γs Pen15/Par = 

43.4mJ/m2 to γs Pen40/Par = 40.8mJ/m2 in case of pentacene on parylene and from γs Pen15/BCB = 45.7mJ/m2 to     

γs Pen40/BCB = 41.7mJ/m2 in the case of pentacene on BCB. No extreme values for the thickness of 30nm were 

observed. Furthermore, the obtained free energy values are greater than those calculated by the ASTM 

D5946 model. 
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Figure II-27. Pentacene surface free energy as a function of pentacene film thickness 

 calculated using the model of Owens and Wendt (see in annexe 1) 

 

Hence, it is difficult to interpret these results according to the different free energy values obtained 

for identical samples. The analysis with three liquids is more convenient for hydrophobic surfaces like 

pentacene. However, we did not observe large variation of the surface energy towards thickness. In fact, the 

contact angle method is an efficient technique for investigating the surface energy flat, homogeneous and 

chemically inert surfaces. Uncertainties on surface energy appear for small sample surfaces or patterned 

surfaces with microscopic domains [119].  

 

It seems that the contact angle technique is not enough sensitive to make a difference between 

various thicknesses of pentacene and both substrates. The drop size is larger than the superstructure observed 

on the pentacene and only global measurements are obtained. 

 

III-3-2 AFM spectroscopy  

 

An alternative method consists in performing the surface free energy measurements using force 

spectroscopy in the contact mode AFM. The objective is to obtain direct and local information on the 

pentacene surface properties by the measurement of adhesion forces. 

 

This method consists in performing force-distance curves at some point of the surface [112]. To obtain 

sufficient set of measured data, several force-distance curves are required. However, measurements at the 

same place may provoke damages of the sample or contamination of the cantilever tip. It may introduce 

significant inaccuracy in experimentally measured results. For this reason, spectroscopic data were collected 

from well predefined areas of corresponding pentacene surfaces. This approach also allows to avoid the 

influence of a bad positioning of the tip on the surface i.e. positioning in contaminated zones or in zones with 

structural defects. 
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Each scanned area represents a square grid of 10x10 points corresponding to a 200x200nm area 

(Figure II-28). Thus, the distance between neighboring nodes of the grid is 20nm, which is larger than the 

typical diameter of the tip (Rtip = 10nm). By this way, the pentacene surface was probed just one time, on 

points separated by a step of 20nm. The grid size of 10x10 points was chosen experimentally and was a good 

compromise between the necessary number of measurements and the time needed to perform measurements 

of the whole grid. In this experiment, the duration of one cycle of force-distance measurement was 1s. 

Increasing the grid dimension increases (more than 100 points), induces a raise of the total time of data 

acquisition. Thus, the thermal drift becomes significant and already indented areas can be repeatedly 

rescanned.  

 
Figure II-28. Adhesion measurements by grid scanning method  

(AFM image 2x2µm of pentacene 35nm deposited on BCB) 

 

Each pentacene sample was scanned at three different places, as shown on the example in Figure II-

28. The grids were located on different grains, in such way that one grid covered the surface of only one 

grain.  

The same samples that have already been studied by AFM were analysed. Unfortunately, the 

samples corresponding to the thicknesses of 15nm and 40nm were contaminated by the contact angle 

measurements. Then, for this AFM spectroscopy experiment, samples corresponding to 20, 30 and 35nm 

thicknesses were analysed. We deliberately chose to remain on exactly the same deposition conditions.  

On each point, a spectroscopic curve was done such as the one in Figure II-29. The Fadh value (in 

pA) was calculated by NOVA (NT-MDT) software and was presented with the other one in a diagram of 100 

500nm 
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points. Diagrams from grid 1 to grid 3 are presented in Figure II-29 (a). In order to show the dispersion of the 

Fadh, histograms were presented in Figure II-30b. 

Figure II-29 and 30 present raw data measured on the pentacene surface of 35nm thickness on BCB, 

described by the AFM image in Figure II-28. 

 

 
Figure II-29. Measurements of the displacement ∆Z on the backward part of the force-distance curve 

 for pentacene 35nm on BCB. 

 
Grid 1 

  

Grid 2 

 
Grid 3 

   a)       b) 

Figure II-30. Diagrams (a) and histograms (b) of raw data of adhesion forces for pentacene 35nm on BCB on the 3 

different places of the surface. 

-482pA 

-688pA 



  109 

Adhesion forces were calculated from histograms of achieved data. As shown in Figure II-30 b), the 

number of points of the scanning grid (number of force-distance cycles) is enough to obtain clearly 

pronounced peaks which correspond to adhesion between the tip and surface during separation (300 points). 

The three grids show that the Fadh corresponding to 200pA is statistically the most probable (70%, 80%, 62% 

on grids 1, 2, 3 respectively). Histograms give cantilever deflection values in “pA”, knowing the spring 

constant of the cantilever, 0.3N/m, and using equations 2.18 and 2.19, one can obtain the adhesion force 

value in nanoNewtons. 

With the assumption that the force acting on the cantilever is a linear function of the piezo 

displacement, the adhesion force can be calculated according to the Hook’s law using displacement ∆Z 

corresponding to the “snap-out ” value on the backward curve (Figure II-29).  

Calculated adhesion forces Fadh of pentacene (eq. 2.18) and corresponding surface energies (eq. 2.17) 

are presented in Table 9. 

 

 P20Par P30Par P35Par P20BCB P30BCB P35BCB 

Fadh nN 9.44± 0.47 6.84± 0.72 12.98± 1.19 11.45± 1.19 10.84± 0.71 13.65± 2.60 

γ mJ/m² 75.12± 2.62 54.46± 3.43 103.30± 7.44 91.12± 7.26 86.31± 4.25 108.68± 16.67 

 

Table 9. Adhesion forces Fadh of pentacene with corresponding surface energies γ 

 

For technical reasons, the AFM spectroscopic measurements were performed in air at a temperature 

of 24°C and a relative humidity of 33%. Under these conditions, the contribution of the capillary forces 

should be taken into account. The capillarity can be neglected only if relative humidity is below 20%. In this 

case, a water meniscus can not be formed between the tip and the surface [121, 122].  

In the contact mode spectroscopy, the cantilever tip penetrates in the layer of water adsorbed on the 

surface. As a result, the measured adhesion force represents the sum of the capillary force between water 

adsorbed on the tip and sample surfaces, and the adhesion force due to the Van der Waals interaction.  

For capillary estimation, we used the average contact angle values obtained for both systems in 

deionised water (table 7). These mean values are: θparylene = 72.45° for pentacene on parylene and 

θBCB=73.14° for pentacene on BCB. For a water surface energy of γ = 72.6mJ/m2 and a tip curvature of 

R=10nm, capillary forces Fcap, roughly around 2.75nN and 2.64nN, were calculated for pentacene on 

parylene and pentacene on BCB, respectively. Thus, the adhesion force only due to the Van der Waals 

interaction can be expressed as FVdW = Fadh – Fcap, and the corresponding surface energy γVdW takes the 

following form: 

  

R

FF capadh
VdW π

γ
4

−
=       (eq. 2.23) 
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Figure II-31. Van der Waals contribution to the pentacene surface energy γVdW after correction of the capillary 

effect 

 

Figure II-31 presents the γVdW pentacene surface energy. The comparison of the surface energy 

values with and without the capillary contribution is important (Esurf in Table 9 and γVdW in Figure II-31). For 

a 30nm pentacene thickness, the value decreases from 54 mJ/m2 to 33 mJ/m2 for pentacene on parylene, and 

from 86 to 65 mJ/m2, for pentacene on BCB. The contribution of the capillary force to the total energy is 

around 26%, thus not negligible. However, even after the correction of the capillarity effect the surface 

energy measured by AFM is globally higher than the one measured by contact angle method. The difference 

can be explained by the presence of two models representative of the contact area of drops on micro-

patterned surfaces as shown in Figure II-32 [123]: 

- A Wenzel regime, where the solid/liquid interface exactly follows the solid roughness 

- An air-pocket (AP) or Cassie regime, where air patches are confined below the drop. 

 

 

 

Figure II-32. Regimes of contact: a) Wenzel and b) aire-pocket regimes 

 

Hydrophobic pentacene surface in contact with polar liquids (such as water or formamide) is 

favourable to an air-pocket contact regime. In that case, only a part of the force acting on the drop is 

measured, leading to undervalued surface energy values. 
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 In addition, transitions from Wenzel to air-pocket regime and from air-pocket to Wenzel regime are 

possible indicating that a metastable state of deposited drop may occur [124]. Such transitions from stable to 

metastable drop states (and vice versa) can dramatically change the contact angles leading to a large 

divergence of measured contact angles on pentacene.  

These spectroscopic measurements are qualitatively different from those obtained by the contact 

angle method. They are obtained by a local probe, in situ, and represent a direct method of measurements. 

One can see that the surface energies measured for pentacene on both substrates (parylene and BCB) show a 

similar dependence on the pentacene thickness. For all film thicknesses, the surface energy of pentacene on 

BCB is higher than of the energy of pentacene on parylene. The same tendency has also been observed using 

contact angle method (Table 8, Figure II-27). This is in good agreement with our results of morphological 

analysis: pentacene on the BCB exhibits a well ordered molecular crystal structure whereas on the parylene it 

is more disordered (Figure II-11). Disorder implies a decrease in the surface energy. It is important to note 

that for both substrates, the surface energy reaches its minimal value for the pentacene thickness of 30nm. 

Taking into account that the surface energy of pentacene 35nm is higher than those of the pentacene 20nm, 

we can assume that pentacene thickness of 30nm seems to be a critical thickness between different crystal 

organizations.  

 

Based on these results, it can be concluded that the contact angle measurement technique is not 

applicable to patterned heterogeneous solid surfaces, like pentacene. In addition, the interfacial tension 

between a surface and a liquid can not be easily deduced from contact angle measurements [125]. In 

comparison with the AFM approach, the contact angle technique provides “average” properties of 

heterogeneous surfaces, whereas the AFM, probing at local scale, is able to identify the discrete nature of 

such surfaces at microscopic and submicroscopic levels allowing a direct surface characterization. 
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IV - Discussion 

 

 IV-1 the growth mechanisms and the critical thickness 

 

  The growth of pentacene on parylene and BCB followed from equivalent thicknesses of 6nm to 

60nm was studied by AFM. AFM images and their grain analysis, contact angle and AFM spectroscopy 

measurements, have revealed several information about the growth mechanism of pentacene and the 

resulting morphology on both substrates.  

  The growth manifests by the presence of grains which grow laterally and vertically and are 

connected to each other at a thickness of 30 nm (Figures II-15-II-16). The size of the grains on parylene 

varies from 780nm to a maximal value of 1100nm for a thickness of 30nm and then decreases progressively 

to a value of 596nm. On BCB, it increases from 1.27µm to 1.56 µm for a 30nm thickness and then decreases 

to 1.03µm. Their shape is also different,  bulk-like shape on parylene and pyramidal structure on BCB.  

 As the deposition process of pentacene on the two substrates was identical, it was shown that the 

nature of the substrate influences the size of the grains, even for high coverage. The morphology of the film 

at early growth stages (6-15nm) is directly influenced by substrate properties. However, following growth 

for thicknesses between 15 and 60nm is also dependent on the initial growth at 6 nm and then on the 

substrate even if the substrate is totally covered, at this thickness. 

Difference in the size and the shape of grains, for the same equivalent thickness of pentacene, can be 

explained by the difference in chemical and physical properties of these insulators. More precisely, the free 

energy and the roughness of the substrate are responsible of two phenomena: 

- the distribution of the first deposited pentacene molecules on the surface  

- the length of the free motion of the molecules during initial stages of the grain formation. This 

mode of thin film growth is also called Diffusion Limited Growth (DLG) [79].   

The influence of the insulator surface on the initial pentacene growth can be clearly seen on Figure II-33. 

These AFM images show the morphology of the pentacene film for an equivalent thickness of 6nm.  

     - 3D small rounded grains are formed yet, on parylene. 

     - Well- separated 2D pentacene islands are visible on BCB.  

 

The study of the surface energy by contact angle measurements has shown that the variation in energy, 

between the two substrates, are not significant. Thus, the main parameter which influence the size and shape 

of the grains, is the roughness of the substrate. On AFM images of 2 x 2µm2, a RMS of 3.47nm and a RMS 

of 0.42nm are obtained on parylene and BCB, respectively. This difference, more than 8 times higher for 

parylene than for BCB is determinant in the initial growth. Reduction in grain size of an organic 

semiconductor with increasing of roughness of the dielectric was reported [54, 55]. For rougher dielectrics, 

the film exhibits a distinctly reduced crystal size [64, 68]. 
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For pentacene on parylene, it seems that the growth begins from small rounded grains which cover 

the rough surface of parylene, they coalesce in more or less rounded grains of around 300 nm at a 10nm 

coverage. These grains are always present on images independently of the coverage beyond this thickness. 

Their size corresponds to the τsh2 value of 288 ± 51nm calculated by the superstructure model. 

We assume that the deposition of the pentacene on parylene is a 3D growth mode, droplets of 

pentacene adsorb on the parylene, and they grow laterally, reach their maximum size of around 300nm and 

join to each other forming a larger superstructure for the thickness of 30nm. Beyond 30nm, they go on 

growing vertically, maintaining their 300nm size, they appear more separated to each other because of their 

vertical extension. 

It is clear on the images (Figure II-16) that the grains are closer to each other for the thickness 30nm. 

It corresponds to the highest value of the superstructure parameter τsh1 = 1100±110nm (τsh1 corresponds to 

mean size of aggregated grains) and the lowest value of the surface energy measured by AFM (55 mJ/m2 or 

33 mJ/m2 without capillarity), thus the best organization on the surface. 

 

 

Figure II-33. Pentacene 6nm deposited (a) (b) on parylene (RMS=6.75nm) and (c) (d) on BCB (RMS=6.01nm) 

Topography AFM images of 5x5µm2 on (a), (c) and 2x2µm2 on (b), (d). 

 

 

a) 

 

b) 

 

c) 

 

d) 
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According to the k-correlation model, the growth mechanism of pentacene on parylene begins by an 

evaporation – condensation phase (the droplets forming 3D grains) and changes to bulk diffusion from 30nm 

(the vertical growth). 3D grain formation in the early deposits is not in favor of the creation of large 

monomolecular terraces. That’s why, multimolecular layers are observed (Figure II-17). 

For pentacene on BCB, the growth is different. Well-separated 2D pentacene islands are visible on 

BCB for a thickness of 6 nm. On some islands, a second, third or forth layers begin to grow. One can notice 

that these supplementary layers never grow in the center of the island; they need a step edge to form and 

extend. In this growth mode, there is some kind of competition between the deposition of species on BCB 

and on pentacene. In both cases, molecules seem to diffuse on the surface and stop at a step edge of 

pentacene: on the bottom or on the top. This suggests that the interaction pentacene /pentacene is favored 

over the interaction pentacene / BCB. The islands grow laterally and extend vertically through a stack of 

successive terraces of monolayer height, which decrease in size gradually as one approaches the summit. 

This pyramidal shape reaches its maximal width for the thickness of 30nm. It corresponds to the maximal 

value of the τsh1 parameter 1.56±0.26 µm and the minimal value of the surface energy calculated with the 

AFM measurements (86 mJ/m2 or 65 mJ/m2 without capillarity). 

Close relationship of pentacene morphology with the substrate properties was also revealed by the 

fractal model. The fractal strength was determined to be stronger for pentacene films on the parylene than on 

the BCB, indicating larger roughness of parylene in comparison with BCB. In the same time, the fractal 

dimension corresponds to Brownian fractal structure of pentacene morphology. In the framework of 

modified ballistic deposition model, it means that pentacene molecules during deposition are not in strong 

interaction with the substrate and have some probability to move. This probability (sticking probability) is 

strongly dependent on the microstructural nature of substrates and the deposition conditions. Really, the 

mean fractal dimension of pentacene on parylene of 2.6±0.09 is slightly higher than those on BCB which is 

of 2.47±0.04. That is because the probability of free motion of the pentacene molecules on BCB is higher 

than on parylene which is one of the factors responsible for more regular pentacene grain structure on BCB. 

 

 

 IV-2 Pentacene molecular organization 

 

More precisely, pentacene morphologies are related to the structure of pentacene molecular crystals. 

So, the relationship between pentacene growth mechanisms, microstructural film characteristic and as a 

result OTFT performance could be understood. 

It was already shown by X-ray diffraction (XRD) method that evaporated pentacene thin films exhibit 

two different phases – “thin film” and “bulk” phases, which are characterized by d-spacing 1.54 and 1.45nm, 

respectively [126]. The dominant pentacene film phase depends on film deposition parameters such as 

substrate temperature and deposition rate, and for certain grain conditions there is a critical film thickness dc 

which separates these two phases [126, 127]. The thin-film phase normally takes a place for faster growth 

rates, at lower growth temperatures, and for smaller film thicknesses compared to the bulk-phase. 
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Drummy and Martin reported [126] that the critical thickness dc where transition from thin-film to bulk 

phase mode occurs is related to interfacial surface energy mismatches. These mismatches related to the 

difference between the pentacene surface energy and the bulk energies of the two different phases.  

For the thin-film phase, pentacene has an orthorhombic crystal structure [128, 129] and bulk phase is 

characterized by a triclinic crystal structure [127].  

In the same work [126], the authors have performed the thermodynamic calculations of the surface 

energy for these two pentacene polymorphs. According to reported data, surface energy for triclinic phase is 

of 76mJm-2 and 38 mJm-2 for orthorhombic phase. These theoretical predictions are in good agreement with 

the results determined by AFM. In fact, for pentacene on parylene, the surface energy values are 81.4 mJm-2 

(pentacene 35nm) and 32.6 mJm-2 (pentacene 30nm) as it is shown in Figure II-31. For the pentacene on 

BCB, the higher values of surface energy are induced by other mechanisms of thin film growth (Table 4). 

Our experimental results are in many ways similar to data reported by Cheng et al. [129], where the 

pentacene films were deposited on two types of dielectric substrates – SiO2 and polymeric dielectrics 

(polyimide and polymethylmethacrylate). They observed a thickness-dependent evolution of polymorphs of 

pentacene thin-films with a transition from orthorhombic thin-film phases to triclinic bulk phase.  

As it was discussed above, the transition from orthorhombic to triclinic phases for pentacene growth 

on BCB and parylene occur with respect to film thicknesses close to 30-35nm, for pentacene on BCB and 

parylene. In the work of Cheng et al., the authors observed a polymorph transition for the thickness of 16nm, 

on both polymeric substrates and 30nm on Si02 [129]. However, their proposed growth model [129] is 

relevant for a description of the thickness-dependent morphology evolution of pentacene on our systems 

(Figure II-34):  

 

 

Figure II-34. Thickness-driven pentacene thin-film polymorphs [129] 

 

The pentacene molecules have a tendency to stand vertically on a flat surface forming the 

orthorhombic crystalline structure, on both polymeric substrates. Further increasing of film thickness leads to 

a pentacene growth on a gradually formed surface of grain hillsides. This causes an additional inclination of 

the pentacene molecules and as a result the thin film phase and triclinic bulk phase are formed at higher film 



  116 

thicknesses. This effect is more marked for the pentacene on BCB, because the substrate is flatter and the 

first deposited pentacene molecules line up next to each other. For pentacene on parylene, an ordering of the 

first deposited molecules on the substrate is not as obvious. It is possible that the triclinic bulk phase is 

present since the first deposits. 

 

 

IV-3 Critical thickness and mobility of charges  

  

In order to follow the thickness-dependent carrier transport properties of pentacene films, three series 

of electrical characteristics were performed, for the thicknesses of 30nm, 60nm and 100nm. Measurements 

were realized for a top-gate OTFT with a BCB gate dielectric [111]. 

     

 
Figure II-35. Output characteristics of pentacene/BCB top gate transistors; a) (-ID)1/2  vs. gate voltage,  

b) drain current vs. gate voltage with switch on/of characteristics. Adapted from [111] 

a) 

b) 
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Figure II-(385 a) presents the pentacene hole mobility versus applied gate voltage with a saturation of 

the drain voltage VD at -80V. The mobility decreases from µ = 3.1x10-2 cm²/Vs, for the thickness of 30nm 

down to µ = 0.61x10-2 cm²/Vs, for 100nm. Similar tendency was obtained for Ion/Ioff characteristics (Figure 

II-35 b). The OTFT speed performance decreases from Ion/Ioff = 1.2x105, for 30nm, to Ion/Ioff = 4.33x104, for 

100nm [111]. 

Hence, the best electrical performances were obtained for pentacene thickness of 30nm, which 

corresponds to the thickness of the film with the largest grain size. Thickness-driven carrier properties can be 

explained by the dependence of pentacene mobility on the crystal polymorph and the molecular order which 

can be affected by various crystal defects (Figure II-36).  

 

 
Figure II-36. Origin of charge traps in pentacene thin-film. Adapted from [130] 

  

The charge traps in the channel region considerably limit the channel mobility and the threshold 

voltage. The traps in the pentacene crystals are partially caused by structural imperfections and chemical 

impurities. In addition extended defects, such as edge dislocations or screw dislocations modify the available 

energy level corresponding to the appearance of accessible vacant orbitals in the band gap [131]. So, on the 

one hand, the observed sensitivity of measured mobility on the film thickness is related to polymorph 

structure of pentacene. However, on the other hand, most traps are located at the grain boundaries and at the 

semiconductor/substrate interface [132]. This is confirmed by our experimental results which show that 

higher mobility corresponds to films with the largest grains (Figure II-35 a). It is due to the fact that larger 

grains lead to smaller boundary perimeter between grains and consequently to smaller density of grain 

boundary traps.  
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 V - Conclusion 

 

This work present an AFM study of the growth of pentcene on two different substrates: parylene and 

BCB.  

 It was shown that under AM-AFM mode, it was possible to perform high-quality mapping of 

pentacene surfaces with sub-molecular resolution. Several deposits of pentacene were studied from an 

equivalent thickness of 6 nm to 60 nm.  A precise analysis of the grain dimensions (lateral size, height, 

volume) was performed by classical grain analysis techniques but also by the spectral methods of surface 

analysis in reciprocal space. The Power Spectrum Density (PSD) was applied on the AFM images and 3 

different models were used: k-correlation, fractal and superstructures models to get the maximum 

information on the growth mode of pentacene. In parallel, contact angle and AFM spectroscopy 

measurements were performed to get information on the surface energy of pentacene on parylene and BCB. 

A lower surface energy was obtained for the pentacene on parylene than on BCB and for both substrate the 

lower value was obtained for a thickness of 30nm. 

 It was shown a substrate-induced effect on the growth of pentacene, where the roughness of the 

substrate influence more the morphology than the surface energy. 

As expected, the rougher substrate pentacene induces the formation of smaller 3D grain than the flatter 

substrate. The 3D grains seem to appear for the first deposit, for the pentacene on parylene. For pentacene on 

BCB, the islands grow laterally and extend vertically through a stack of successive terraces of monolayer 

height, which decrease in size gradually as one approaches the summit. 

A growth mode mechanism was proposed in accordance with the measurements obtained by the PSD 

models and with literature [129]. 

The presence of a critical thickness of 30-35 nm was demonstrated by statistical grain analysis and by 

surface energy measurements. It corresponds to the largest size of the structures and the lower surface 

energy. In addition, in our electrical measurements, it also corresponds to the optimal electrical performance 

of the OTFT. 
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Chapter III 

 

AFM study of DNA-arrays assembling from X- and Y-

shaped DNA strands  

 
 

I - Introduction  
 

I-1 DNA-array assembling in the literature 

 

Nowadays, bio-nanotechnology plays an important role in the development of new materials and 

devices. The use of DNA molecules is motivated by their unique ability for self-organization, their extremely 

high length-to-width ratio of 107, and their appropriate chemical structure for electric charge transport. 

Highly specific intermolecular interactions between DNA molecules are programmed by Watson-

Crick complementarities which leads to the formation of double helices from single strands [1]. Based on 

highly precise recognition between DNA molecules, Seeman proposed to use DNA as a building block for 

the construction of new nanometer scale architectures that gave rise to the development of structural DNA 

nanotechnology, in 1982 [2]. Thanks to controlled arrangement of interacting molecules, DNA-based nano-

structures have attracted much attention for nanoscale applications. Particular interest is due to the possibility 

to create more complex intermolecular patterns than double helices. The range of programmable self-

assembled architectures includes linear one-dimensional (1D) structures [3-6], more complex assembly of 

two-dimensional (2D) DNA arrays [3, 7-10], and even three-dimensional (3D) DNA nano-objects [3, 11-13]. 

A fundamental property of DNA-based structures is that the final association has a predictable local 

geometry. This important feature of self-assembled nano-arrays has stimulated rapid progress in 

nanomedicine and molecular electronics. Concerning nanomedicine, DNA-based materials show enormous 

potential applications in tissue engineering, protein engineering and drug delivery systems [14a]. Another 

important strategy of DNA nanoarrays is their use for DNA-based fluorescent nano-barcodes for single cell 

and molecular sensing [14b, 15]. On the other hand, algorithmic self-assembly could also be used for DNA-

based computation [16-18]. For example, simple computations such as commutative XOR and binary 

counting were performed in some works [19, 20]. More detailed descriptions of novel DNA-based materials 

and their applications are discussed in reviews of Yan et al. and Luo et al. [21, 22]. 

Future applications of DNA-based nanostructures in molecular diagnostics and therapeutics can be 

potentially coupled with molecular computers. Molecular computers can be programmed for targeting and 
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drugs delivery in the cellular environment. Together with DNA-based detection systems, it will allow 

autonomous detection and disease diagnostic [21].  

 Biophysical functions of DNA macromolecules are strongly dependent on their surroundings, thus, a 

good understanding of self-assembly properties and of changes in DNA conformation at a molecular scale is 

crucial for structural DNA-nanotechnology. In addition, the arrangement of DNA molecules often occurs 

through self-assembly surfaces. It has considerably motivated studies on the DNA behaviour on solid 

surfaces, in recent years [3-13, 21, 22].  

Much progress in understanding controlled assembly of DNA molecules on solid surfaces has been 

made by using AFM. AFM is an appropriate technique for DNA molecules and DNA-based complexes on 

flat surfaces, especially due to its high spatial resolution and ability to operate in liquid environment, making 

it possible to image DNA under physiological conditions [23, 24]. The choice of appropriate substrates is 

very important in DNA imaging because DNA-substrate interactions could affect the conformation and the 

biophysical function of the macromolecule [25]. Reproducible AFM imaging depends on deposition 

conditions of DNA molecules. at the same time, to obtain a high resolution AFM image at a molecular scale, 

a completely flat surface should be used [25, 26].  

Furthermore, in some cases, it is very important to preserve biophysical activity of DNA. This 

implies that on one hand, molecules should weakly interact with the substrate to be able to move, but on the 

other hand, they should be relatively strongly attached to guarantee stable imaging [25].  

Several substrates have been used and many protocols were developed for appropriate deposition of 

DNA-samples onto the surface [27-30]. In this respect, the preferred substrate is mica thanks to its 

atomically flat surface over a large area [31, 32]. In recent years, mica was frequently used to study DNA-

DNA and DNA-protein interactions and conformational changes by AFM [33-36].  

The binding of DNA molecules to mica is mainly obtained by weak electrostatic interactions through 

multivalent cations [37, 38].The strength of the DNA adsorption can be changed by an adjustment of the 

cations concentration [39]. For example, the attraction between negatively charged DNA molecules and the 

mica surface is often referred as a “salt bridge” effect, by means of divalent or multivalent cations [40]. The 

mica pre-treatment by ions and the respective role of monovalent and divalent ions concentration have been 

recently established [31, 41]. However, the correct principle of DNA adsorption on the mica surface is not 

clearly understood yet. Fortunately, the origin of several forces that help to bind DNA molecules on mica 

surface was elucidated in the work of Zozime et al. [25]. 

In fact, to study the DNA assembling, it is important to understand how DNA interacts with mica 

surface. For this purpose, physical and chemical properties of both DNA and mica should be considered in 

details.  
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I-2 Deposition of DNA molecules onto the mica surface 

 

I-2-1 Physic of adsorption 

 

I-2-1-1 Mica as substrate for DNA imaging by AFM 

 

Mica has become a standard substrate for AFM biotechnology even if surfaces of silicon, glass, 

graphite or lipid bilayer and silanised substrates can also be used [42, 43]. There are several types of mica 

which slightly differ from each other, in chemical nature. Mica represents a group of minerals that includes 

muscovite, biotite, phlogophite, lepidolite and other one [44, 45]. One of the most common used mineral 

surfaces is the muscovite mica because its perfect cleavage along the {001} planes ensures atomically flat 

and chemically inert surface that makes it suitable for deposition of many biological materials like DNA and 

proteins [46]. The control of the adsorption and biophysical reactions of biological materials on the mica 

surface requires deep understanding of the structure of cleaved mica on the atomic scale. 

A crystalline structure of muscovite mica KAl2(Si3Al)O10(OH)2 includes aluminosilicate layers 

which are negatively charged due to a substitution of Si4+ ions by Al3+ ions. These layers are electrostatically 

bound with each other by interlayer potassium ions K+ as shown in Figure III-1a). 

 

 

 

 

Figure III-1.Crystalline structure of the muscovite mica. a) Side view (projection onto the a-axis). b) Top view 

(projection onto the b-axis). Vectors a and b define {001} plane, residual potassium ions are not shown [48]. 

 

 

During the cleavage, the separation occurs through interlayer of potassium ions. This separation is 

possible due to the weak bonds between the potassium ions and the adjacent aluminosilicate layers. It was 

established that the potassium layer breaks during the cleavage whereas the atomic structure of the 

aluminosilicate layers remains undisrupted [47]. A cleaved mica surface consists in a {001} plane with a 

hexagonal arrangement of silicon Si (partly Al) and oxygen O atoms, as shown in Figure III-1b). In turn, the 

K+ ions are generally distributed in an equal manner between two surfaces. In totality, the electric charge of 
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the mica surface is negative, but the local distribution of this charge is not homogenous [48]. In addition, the 

deposition of a liquid on the cleaved mica produces heterogeneous exchanges between the K+ ions of the 

surface and the cations of the solution [49].  

 

The binding forces between the negatively charged DNA and the negatively charged surface of mica 

change inevitably the conformation of molecules during deposition [50]. In the case of a weak DNA-surface 

binding, the molecules can move on the substrate and their final conformation corresponds to the lowest 

energy state. If the molecules adhere strongly to the surface, they can not equilibrate and their resulting 

conformation reflects the process of adsorption. Therefore, it is difficult to distinguish the native DNA 

conformation from those induced by the surface adsorption [51]. 

Consequently, a quantitative interpretation of adsorption mechanisms is required to understand the 

processes which affect the DNA arrangement and the resulting changes in size and conformation. 

 

 

I-2-1-2 Double-layer interaction between DNA and mica 

 

The electrical double-layer model is an analytical model to describe qualitatively the binding of 

DNA to the mica surface [52]. The corresponding force includes the electrostatic repulsion between the 

counterion clouds and the thermal pressure [52, 53]. 

This model is applied in assumption that only divalent counterions interact with DNA and mica.  

For relatively high ionic strength, between 0.1 and 1M, the highly charged DNA molecule can be considered 

as a charged plane surface [54]. In this case, for low DNA concentration (lower that 1µg/ml), DNA 

molecules are covered by a thin layer of counterions with a thickness λZ  [55]: 
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Where e is the electron charge, σ the surface charge density, z the ions valence and lb the Bjerrum 

length (the separation at which the electrostatic interaction between two elementary charges is comparable in 

magnitude to the thermal energy) given by: 
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where ε is the dielectric constant, kB the Boltzmann constant, and T is the temperature. 

 

Equation (3.1) shows that the thickness λZ is only dependent on the surface charge density and on the 

valence of the counterions. 



  127 

 

The double-layer force can be derived in assumption that the double-layer potential is situated 

outside the adsorbed ion layer and that the surface charge densities of the two planes are different. Then 

according to Lau et al. [56], the pressure P(d) between DNA and mica is: 
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where d is the distance between adsorbed ion layers and dφ/dx is the gradient of electrostatic 

potential. 

 

In equation (3.3), the first term corresponds to the thermal pressure of the counterions and the second 

one represents the electrostatic interaction of the counterion clouds. 

 

The electric potential can be calculated by using the Poisson-Boltzmann equation for the case of 

mobile ions between two charged surfaces [52, 56]: 
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where φ(x) is the normalized electrostatic potential, n(x) the external charge density, k is a constant 

depending on boundary conditions, σa and σb are the surface charge densities of mica and DNA, respectively.  

 

It is worth to note that, from boundary conditions, equation (3.5) follows that electric potential only 

depends on σa for x = 0 and on σb for x = d. 

Substitution of eq. (3.5) into the eq. (3.3) gives the next system of transcendental equations for pressure P(d) 

[57]: 

 

 

(eq.3.6) 
 

(eq.3.7) 
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As it follows from equations (3.6) and (3.7), the pressure between DNA and mica depends on their 

surface charge densities, but does not depend on the bulk concentration of divalent ions. It obviously means 

that the charge density of the double-layer profile is not dependent on the bulk salt concentration. Also, the 

negative pressure P(d) corresponds to the attractive interaction force and the positive to the repulsive force. 

 

The pressure between two planes can by obtained by solving numerically the equations (3.6) and 

(3.7) [57]. The results of theoretical calculation are shown in Figure III-2, where pressure between DNA and 

mica surfaces is represented versus the distance d for different charges of mica surface. 

 

 

 

Figure III-2. Electrical double-layer pressure between DNA and mica surfaces for different σa/σb ratios, where σa and σb 

are surface charge densities of mica and DNA respectively: (i) σa/σb=4; (ii) σa/σb=2; (iii) σa/σb=0.5; (iv) σa/σb= - 0.5[53]. 

 

The density of the net surface charge is the sum of the native surface charge density (for DNA    σb = 

- 1018e/m2 and for mica σa = - 2·1018e/m2, where e is the electron charge) and the adsorbed density of ions. 

According to Figure III-2, for a net surface charge of DNA σb = 0.15e/nm2, the repulsion pressure decreases 

for small surface charge of mica (decrease from (i) to (iv)).  

Furthermore, if the DNA and the mica are oppositely charged σa/σb= - 0.5, the pressure between 

them becomes attractive for large separation distance. Namely, if the separation d ≥ d0 then the attractive 

pressure exceeds the thermal repulsion. The characteristic distance d0 can be obtained from eq. (3) at the 

condition P(d0) = 0, thereby: 
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However, the repulsive force between DNA and mica becomes stronger, for short distances. It can be 

explained by the fact that the entropy of the counterion clouds decreases near the surface [56]. 

 

Obviously, the double-layer approximation does not describe all forces involved in DNA-mica 

interactions; short-range attraction implies another type of electrostatic force. 

 

  

I-2-1-3 Counterion correlation 

 

In solution, an electrostatic attractive force between DNA and mica can appear due to the counterion 

correlation on their surfaces. This mechanism was proposed by Arenzon et al. [58] and it considers that DNA 

and mica surfaces can be represented as two parallel charged lines. According to the proposed model, the 

attractive correlation force is expressed by: 
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where indexes i and j correspond to the mica and DNA sites respectively; zi and zj are the valences of 

i th and j th ions; d is the distance between DNA and mica charged layers; (x2
i,j+d2)1/2 is the distance between 

the i th mica site and j th DNA site. The variables iφ  and jφ describe the occupation of the corresponding sites 

so that 0=φ  if the site is unoccupied and 1=φ  if the site is occupied.  

 

The repartition between occupied and unoccupied sites is determined through the process of energy 

minimization and it also depends on the system geometry. The optimum repartition of counterions between 

the DNA line and the mica surface corresponds to a staggered configuration [58] (Figure III-3). 

 

 

Figure III-3. Staggered configuration of counterions for the line shape of DNA and mica. Indexes i and j correspond to 

charged sites, d is the distance between interacting layers, b the distance between the counterion sites [58]. 
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In assumption that only the bivalent counterions participate in the interaction between two lines, a 

numerical solving of the eq. (3.9) shows that the attractive short-range force appears if the interlayer distance 

d is smaller than the site separation b (d < b) [53].  

According to the counterion correlation approximation it can be concluded that the range of 

attraction between DNA and mica is determined by the separation distance between neighboring sites of 

interacting lines. In other words, short-range attraction is possible if DNA and mica are highly charged. 

However, this model does not take into account the influence of the temperature on the occupancy of the 

sites. 

 

I-2-1-4 Influence of temperature on attractive force 

 

The counterion correlation force was assumed to be no temperature dependent. However, in real 

conditions, thermal motion may considerably affect the attraction of DNA onto mica which, is also 

dependent on the ionic strength of the solution. More precisely, the ionic strength determines the screening 

length of the electrostatic potential (Debye length) which together with the temperature defines the 

probability of the counterions to be placed in staggered position [53]. This probability is qualitatively 

different for different separation distances.  

The separation can be considered as a short separation, if the distance between DNA and mica is 

much smaller than the Bjerrum length (d << lb). Bjerrum length defines the distance between charges for 

which their thermal energy equals the electrostatic energy, so for distances << lb the average electrostatic 

energy between two cons-ions is larger than the thermal energy. This leads to a probability of the staggered 

position significantly higher than unstaggered, and, therefore, the DNA and mica attract each other [53]. 

At intermediate separations 0.1·lb < d < b the probability of unstaggered position depends on ionic 

strength of solution.  

– For low ionic strength (I < 100mM), the Debye length is larger than the Bjerrum length (λD > lb). 

In this case, the Bjerrum length is of order of the intersite distance b (lb ~ b) that leads to a stable staggered 

position of counterions. Consequently, the thermal motion weakly affects attraction of the DNA to the mica, 

and the probability of occupancy in staggered position is high and insignificantly dependent on the ionic 

strength of the solution [53]. 

– For high ionic strength (I  ≥  100mM), the Debye length is smaller than the intersite separation b  

(λD < b). In such conditions, the correlation force between counterions is greatly screened and the probability 

of staggered position is low. So, at high ionic strength, the thermal motion reduces the correlation force 

between charges that leads to weak the DNA attraction [53]. 

– For large separations, where the distance between DNA and mica exceeds lb, the thermal energy of 

the counterions is larger than their electrostatic energy whatever the ionic strength of solution.  

The electrostatic attraction between DNA and mica has been explained by using the model of 

correlation force between divalent or higher valence cations. However, the mechanism of attraction can be 

greatly influenced by the presence of monovalent cations.  
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I-2-1-5 Influence of monovalent cations on attraction force 

 

The valence of cations involved in the DNA-mica interaction determines the attraction force, 

namely, the monovalent cations enter into the competition with the divalent cations to neutralize negatively 

charged surfaces of DNA and mica. Hence, the surface density of monovalent and divalent cations on both 

surfaces is a determinant factor for the attractive force. In fact, the correlation of monovalent cations does not 

contribute to the attraction, but a high surface density of them may completely inhibit DNA adsorption onto 

the mica surface [55]. 

To study the competitive interactions of the mono- and divalent cations with DNA and mica 

surfaces, their surface charge densities should be associated with their bulk concentrations. For this purpose, 

the Poisson-Boltzmann theory can be used [55]. According to this theory, the surface concentrations of 

monovalent (ns1) and divalent (ns2) cations can be presented as follows: 
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where nb1 and nb2 are mono- and divalent cations bulk concentrations, respectively, and ψ  is the 

surface electrostatic potential.  

The surface concentration of divalent cations ns2 with respect to the bulk concentration of the 

monovalent nb1 and divalent nb2 cations can be obtained from the following equation [53]: 
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In the context of this model, the surface concentrations of cations ns1 and ns2 are constant if bulk 

concentrations nb1 and nb2 vary in such way that the ratio nb2 / nb1 is constant. It implies that the DNA to mica 

attraction force remains unchangeable for a given ratio nb2 / nb1. 

Theoretical calculations show that the attraction force is very sensitive to changes of the 

concentration of divalent cations ns2 on the DNA surface in the case of negligible electrostatic screening, i.e. 

if I < 100mM [53].  

Another important aspect in the DNA-mica interaction that should be mentioned is the influence of 

the chemical functionalizing of mica surface on the adsorption properties. The double-layer and the 

correlation force models of adsorption, previously discussed, have been considered for clean mica surface 
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that binds DNA molecule through divalent or higher valence cations. However, for AFM imaging of DNA 

and DNA-based complexes, the divalent cations are generally used together with chemically pretreated mica 

surface. On pretreated mica, a competition between mono- and divalent cations occurs only on the DNA 

surface because of the high binding of Ni2+ ions with mica sites.  

Generally added to the buffer, the Mg2+ counterions for DNA binding to mica do not have a great 

affinity with the mica surface. As a result, the correlation force of the Mg2+ counterions can be affected by 

thermal agitation. On the contrary, the Ni2+ cations contribute to a very strong interaction between DNA and 

the mica surface. Indeed, Ni2+ such as Mg2+ can easily interact with the phosphate groups of DNA bases, but 

Mg2+ does not form so strong bonds with mica than Ni2+ [59]. This different affinity with the mica surface is 

explained by the difference in relationship between enthalpy of hydration and ionic radius of Ni2+ and Mg2+. 

For both, ionic radii are very close (0.65 Å), but the enthalpy of hydration of Ni2+ is larger than for Mg2+ 

[37]. As a consequence, adsorbed Ni2+ counterions can be hardly removed by thermal motion. 

 

I-2-2 The object of study: DNA-based structures  

   

I-2-2-1 Description  

 

In this work, we study self-assembly architectures, of new DNA-based structures at the nanometric 

scale. The synthesis of these structures was realized under “click” chemistry conditions activated by 

microwaves. This experimental protocol was developed in the team of F. Morvan [60]. Using this strategy, 

five different oligonucleotide structures were synthesized, namely: two X structures (X1 and X2 molecules), 

two Y structures (Y1 and Y2 molecules) and a 20 base molecule. With these structures, three sets of 

mixtures were prepared: X1+X2, Y1+Y2 and X1+20bases mixtures in order to study their ability to create 

self-assembled architectures in different conditions. 

The X and Y structures are so called due to their X- and Y-like molecular shapes. At a molecular level, 

both X and Y structures are composed of the pentaerythrityl [60] core and a certain number of single DNA 

strands (4 for X structures, 3 for Y structures and 2 strands for 20 bases-molecules that is illustrated in details 

in Annexe II). This core plays the role of a linker between the oligonucleotides and determines the spatial 

structure of a molecule i.e. the shape of the X or Y structures.  

Synthesized X structures are composed of four single strands (each contains 10 oligonucleotide bases) 

exhibiting twice the same sequence for both X1 and X2 molecules. More precisely, as it is shown in Figure 

III-4 (a), two sequences of X1 (X11) are complementary to two sequences of X2 (X2c1) and the other two 

sequences of X1 (X12) are complementary to two sequences of X2 (X2c2). Governed by complementary 

recognition, the molecules of X1+X2 mixture can be arranged in linear double double-stranded chains or 

more complex two dimensional squared double-stranded net architectures. Expected patterns are 

schematically illustrated in Figure III-4 (a) and (b). 
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+X11 X2c1
X12 X2c2+X11 X2c1
X12 X2c2

 

 

a) b) 

 

Figure III-4. (a) Linear double double-stranded and (b) mesh of double double-stranded  

X structures expected for X1 and X2 shaped molecules. 

 

Using the similar strategy, the Y-shaped structures were synthesized (see Annexe II). Each molecule 

has three single strands (each composed from 10 bases) connected by Y-like linker between them. Moreover 

two among these strands are the same for Y1 and Y2 molecules. More precisely, two identical sequences of 

Y1 (Y11) are complementary to two sequences of Y2 (Y2c1) and another one sequence of Y1 (Y12) is 

complementary to one sequence of Y2 (Y2c2) (Figure III-5(a)). Two possible arrangements of the Y1 and Y2 

are expected. Similarly to X1+X2, the Y1+Y2 can be patterned in a linear chain or a two dimensional mesh 

architectures, but with different topologies. In this case, the conformation of the chain should be an 

alternation of double double-stranded and single double-stranded, that is defined by the shape of Y structures 

(Figure III-5(a)). The Y1+Y2 mixture should also provide the creation of a 2D mesh with a periodical 

change in the density of double-stranded oligonucleotides, as shown in Figure III-5(b). 

 

 

 

 

 

 

a) b) 

 

Figure III-5. (a) Linear double/single double-stranded and (b) mesh of double/single double-stranded  

structures expected for Y1 and Y2 shaped molecules. 

 

The third mixture includes the previously described X1 structure and the 20 base molecule. The 20 

base molecule is a single-stranded oligonucleotide sequence composed of 20 bases. One half of the 20bases 

is complementary to one sequence of X1 and the other half – to another X1 sequence. Namely, the first part 

+

Y11

Y11

Y12Y2c2

Y2c1

Y2c1
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of the 20 base molecule (10mersC2 sequence) is complementary to one sequence of X12 and the second part 

(10mersC1 sequence) is complementary to one sequence of X11. Molecules of the X1+20 bases mixture are 

also expected to be able to form linear and 2D architectures, which can be obtained, through the fixation with 

the 20 base molecules, by the end-to-end stacked X1 molecules, as it is shown in Figure III-6 (a) and (b).  

 

 

 

 

 

a) b) 

 

Figure III-6. (a) Linear double double-stranded and (b) mesh of double double-stranded  

structures expected for X1-shaped and 20 base shaped molecules. 

 

I-2-2-2 Experimental verification of molecular assembly  

 

In order to study the association of the X1+X2, Y1+Y2 and X1+20bases structures, UV-thermal 

dissociation experiments were realized for each mixture. Thermal dissociation study gives information about 

fusion and hybridization of nucleotides as a function of the temperature. An example of such study is 

presented for X1 and X2 structures and their mixture X1+X2 in Figure III-7. 

 

a) b) 

 

Figure III-7. (a) Experimental fusion and (b) hybridization curves obtained for X1, X2 and X1+X2 structures 

Upper curves correspond to X1+X2c1 and X2+X1c2 duplexes, bottom curves –  

to single stranded DNA of corresponding structures. 

single strands 

double strands 
(duplex) 

single strands 

double strands 
(duplex) 
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Experimental study of thermal dissociation for X-shaped structures was performed at the concentration 

of 1µM, for each molecule, in a phosphate buffer solution PBS (at a concentration of 0.01M and pH=7), in 

which 0.1M or 1M of NaCl was added. Figure III-7 represents the fusion (a) and the hybridization (b) curves 

for the corresponding concentrations of NaCl, arrows indicates the corresponding melting temperatures 

(Tm). The values of the melting temperatures, measured from the curves in Figure III-7 (a) and (b), are 

presented in table 1. Just to recall, melting temperature is defined as the temperature at which half of the 

DNA strands are in the double-stranded state and half are in the single-strand state [61]. 

 

 

 

 

 

 

 

 

Table 1. Melting temperatures for X1, X2 and X1+X2 structures  

determined from curves in Figure III-7 (a) and (b). 

 

For Y1+Y2 structures, the study of thermal dissociation has been performed in the same conditions as 

for X1+X2 structure. Corresponding TM values are represented in the summary table together with TM of 

X1+X2 structures (Table 2). The TMs of X1+20bases structure are believed to be equal to that of X1+X2, 

because both structures have exactly the same sets of oligonucleotide sequences. 

 

 

 

 

 

Table 2. Experimentally determined TM for X1+X2 and Y1+Y2 mixtures. 

 

As it can be clearly seen from fusion and hybridization curves in Figure III-7 (a) and (b), the X1+X2 

mixture presents higher absorbance values than isolated X1 or X2 structures. It indicates a high affinity of 

hybridized double-stranded structures in comparison with non hybridized single strands suggesting that X1 

and X2 interact together with more than one sequence. In addition, a higher concentration of NaCl favours 

stronger interaction between nucleotides. This leads to higher values of melting temperatures measured 

during fusion and hybridization, meaning a better thermal stability of DNA double strands as a part of 

X1+X2 structure. The similar tendency was observed for Y1+Y2 structures. 

 

Sample / 
concentration 

Fusion, °C 
Hybridization, 

°C 

X1 / 0.1M 37.02 38.92 

X1 / 1M 51.07 48.87 

X2 / 0.1M 39.08 39.82 

X2 / 1M 51.12 30.82 

X1+X2 / 0.1M 45.22 43.78 

X1+X2 / 1M 55.92 56.02 

Sample TM of X1+X2 °C TM of Y1+Y2 °C 
Denaturation 

[NaCl] 
Fusion Hybridization Fusion Hybridization 

0.1 M 45 44 45 46 
1 M 56 56 55 58 
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In order to determine which pair of complementary strands (duplex) (X11/X2C1 or X12/X2C2 for 

X1+X2 etc) participates the most to the experimentally measured TM, theoretical prediction of TM values 

for each duplex was performed using the Zuker’s model, “mfold” software [62]. Results are presented in the 

Table3.  

 

Sample TM of X1+X2 °C TM of Y1+Y2 °C 
Duplex 

 
[NaCl] 

5’-GAC GCT GTG G-3’(X11) 
3’-CTA CGA CAC C-5’(X2c1) 

5’-GAC GCT AAT C-3’ (X12) 
3’-CTG CGA TTA G-3’ (X2c2) 

5’-GAC GCT GTT GG-3’ (Y11) 
3’-CTA CGA CAA CC5’-(Y2C1) 

5’-GAC GCT AAT C-3’ (Y12) 
3’-CTG CGA TTA G-3’ (Y2c2) 

0.1 M 43.9 34.0 42.9 34.0 
1 M 54.5 44.8 57.2 44.8 

 

Table 3. Theoretically calculated TM for X1+X2 and Y1+Y2 structures in presence of NaCl. 

 

On Table 3, the calculated TM values of the X11/X2C1 duplex, i.e. ~ 44°C and 55°C for NaCl 

concentration of 0.1M and 1M, respectively, are very close to the experimental TM values of 45°C and 56°C 

(fusion) and 44°C and 56°C, (hybridization) presented on Table 2. Calculated values for the X12/X2C2 

duplex, 10°C lower (34°C and 45°C) demonstrate the low contribution of this duplex in the experimental 

TM. These results are also entirely applicable to X1+20bases structures.  

Using similar considerations to Y1+Y2 structure, one can also conclude that experimentally measured 

TMs corresponds to the Y11/Y2C1 duplex and not to the Y12/Y2C2. Experimental TMs for Y11/Y2C1 are 45°C 

and 55°C (fusion), and 46°C and 58°C (hybridization) for NaCl concentration of 0.1M and 1M, respectively 

(Table 2) and predicted values are ~ 43°C and 57°C (Table3). Calculated TMs of Y12/Y2C2 are ~ 34°C and 

45°C for respective NaCl concentrations which is approximately 11°C lower than calculated TMs for 

Y11/Y2C1 duplex. 

 

This study of the duplex thermal dissociation leads to an important conclusion: The duplexes, elements 

of X1+X2, Y1+Y2 and X1+20bases structures are characterized by different thermal stabilities. This 

indicates that the denaturation starts for X12/X2C2 duplex while the other duplex X11/X2C1 remains stable. 

The same behaviour, also occurs for the Y1+Y2 and X1+20base structures. 

Concerning these specific structures, our first hypothesis is that they will form linear double-stranded 

structures rather than two-dimensional networks. In order to obtain any insights of the global arrangement, 

an AFM study of the different structures was performed. Our objective is not only to observe but also to 

determine the influence of the medium (air or different buffers) on the arrangement. 
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I-2-3 Preparation of samples for AFM studies 

 

  I-2-3-1 The salt solution  

 

After the synthesis of X-, Y-shaped and 20bases molecules, their mixtures X1+X2, Y1+Y2 and 

X1+20bases were prepared in water and thereafter lyophilised and packed in eppendorfs containing 1nmole 

of each molecule. Then, each mixture was hybridized in a Tris acetate buffer at a concentration of 20mM, 

containing 10mM of MgCl2 salt. 

The thermal dissociation of mixtures has not been studied experimentally for MgCl2 containing 

solution. However, based on a very good agreement between theoretically predicted and experimentally 

measured TMs in NaCl containing solution (Tables 2 and 3), the same Zuker’s model [62] was used to 

calculate the melting temperatures in MgCl2 containing solution (Table 4).  

 

As shown in Table 4, the TM values for MgCl2 concentration of 0.01M are between the respective TM 

values for concentrations of 0.1 and 1M of NaCl, for X1+X2 and Y1+Y2 structures. Furthermore, the 

relations between TMs of the different duplexes are the same than for NaCl containing solution. Namely, the 

TM of X11/X2C1 is 49.5°C, 39.7°C for X12/X2C2, and the TM of Y11/Y2C1 is 52.2°C, 39.7°C for Y12/Y2C2. 

Once again, the duplexes present considerable difference in their thermal stability (Table 4). 

 

Sample TM of X1+X2 °C TM of Y1+Y2 °C 
Duplex 
 

[MgCl2] 

5’-GAC GCT GTG G-3’ (X11) 
3’-CTA CGA CAC C-5’(X2c1) 

5’-GAC GCT AAT C-3’ (X12) 
3’-CTG CGA TTA G-3’ (X2c2) 

5’-GAC GCT GTT GG-3’ (Y11) 
3’-CTA CGA CAA CC5’-(Y2C1) 

5’-GAC GCT AAT C-3’ (Y12) 
3’-CTG CGA TTA G-3’ (Y2c2) 

0.01 M 49.5 39.7 52.2 39.7 
 

Table 4. Theoretically calculated TM for X1+X2 and Y1+Y2 structures in presence of MgCl2. 

 

 

I-2-3-2 The hybridization of oligonucleotides  

 

Since duplexes of mixtures X1+X2, Y1+Y2 and X1+20bases have different melting temperatures, they 

can not be synthesised at a constant temperature. It implies that the hybridization conditions should ensure 

the assembly of some duplexes without affecting the assembly of other duplexes. This goal can be achieved 

by changing the temperature gradient during hybridization.  

 

However, a question arises: how long should continue the hybridization process? The answer to this 

question can be obtained by an estimation of the duration of the hybridization time of nucleotide sequences. 

The hybridization time t1/2 is the time required to reach half of the equilibrium (after this value half of 

all possible duplexes should be already formed) [63]: 
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NC

L
t

⋅⋅
=

52/1 105.3
2ln

      (eq.3.14) 

 

where L is the nucleotide length in nt (nt is the common used abbreviation for nucleotide length 

measurement; here equal to the total number of base pairs) and CN is the nucleotide concentration in 

mol/liter. 

 

The total time of hybridization “ t ” is estimated to be 5 times the t1/2, that is sufficient to reach about 

90% of the equilibrium [63]. In our case L = 10 and CN = 10-6M, then we obtain that t1/2 = 6.3s and t = 31.3s, 

according to eq. (3.14).  

 

In our experiment, all the duplexes are not totally isolated, but they can form complex structures which 

are able to create linear or 2D architectures. It implies that the real hybridization time t may exceed the 

estimated time of 31.3s. Consequently, the cooling velocity should not be too high in order to ensure a 

sufficient relaxation time for a successful assembly of DNA-based complexes. 

Taking into account the above requirements for hybridization of nucleotides, we followed the 

experimental protocol proposed by Labean et al. [64]. The eppendorfs containing each mixture were put in 

boiling water and then left to cool in a polystyrene box during 40h. 

The change of water temperature, in the box, during hybridization was recorded and is presented in 

Figure III-8. The temperature which corresponds to the highest TM (52°C for Y1+Y2) is marked by a red 

circle and the lowest TM (~40°C for both X1+X2 and Y1+Y2) by a blue circle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III-8. Temperature gradient during hybridization.  
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The temperature gradient curve allows to estimate the duration of the change in temperature of 1°C 

(Figure III-8). The temperature change from 52°C to 40°C takes about ~ 580min, it corresponds to a change 

of 1°C in around 48min, in assumption that the temperature versus time dependence between the highest and 

the lowest TMs (between circles) is linear. Thus, during the theoretical hybridization time t = 31.3s, we 

obtain a change of temperature around 0.007°C, which can be considered as constant. One can then conclude 

that the temperature decreases slowly enough ensuring sufficient time for duplexes formation.  

 

II - AFM studies  

 

 AFM imaging was realised in air and in two liquid media: Tris and HEPES buffers. 

Each mixture before hybridization, has had the concentration of 1µM of each molecules diluted in 

20µL of Tris acetate buffer (see paragraph I-2-3- Hybridization of oligonucleotides). After hybridization, all 

mixtures were remained intact. In other words, all mixtures were deposited on the substrate from the same 

solution in which they were hybridized and neither the chemical composition of the solution or the 

concentration of molecules has not been changed. 

 The muscovite mica was used as a substrate for the samples deposition according to the reasons 

discussed in paragraph I-2-1. An appropriate protocol for the deposition of hybridized molecules was used 

which depends on the chemical properties of the mica surface, namely, chemically pre-treated or simple 

freshly cleaved mica. All the experiments were realized in dynamic mode AFM (AM-AFM), a detailed 

description is given below.  

 

 

 

II - 1 Observation of the different structures in air  

 

    II-1-1 Experimental AFM conditions 

  

 AFM imaging in air was carried out with a Smena NT-MDT Microscope Stand Alone P-47 in AM-

AFM mode. We deliberately worked in a “light tapping” mode (the high part of the Low branch) where ASP / 

A0 ratio was of 67% for a given experimental free amplitude A0 = 18nm and a working amplitude ASP ~12nm 

in order to be sure to create no damage on the DNA structures. The scanning of samples was performed with 

rectangular silicon cantilever with the spring constant k = 11.5N/m and a typical tip curvature of 10nm. The 

cantilever was excited at its resonant frequency of 224.7kHz allowing thus a quality factor of Q = 488. 

Determined experimentally optimal scanning rate was between 0.7-0.9Hz. Scanning was realized in ambient 

condition, at a temperature T of 23°C and a relative humidity H = 33%. 

Values of widths of DNA molecules indicated in all cross-sections of the current chapter represent 

values after substracting of the convolution effect with the AFM tip. Detailed description of used 

deconvolution method is explained in the Annexe III. 
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II-1-2 Deposition on mica substrates 

 

In air, the arrangement was studied on chemically pre-treated and non treated mica surfaces. First of all 

we will focus on the study of the DNA structures on non pretreated mica. 

 

II-1-2-1 Deposition on non pretreated mica surface 

 

It was known that, smooth and clean mica sheets can be easily obtained by simple cleavage. In our 

experiments, a mica plate was cleaved with scotch tape until a plane and step-free surface was obtained. 

Immediately, samples were deposited on this freshly cleaved substrate. 

The deposition process follows these different steps:  

- deposition from a drop of 2µL of the corresponding solution, using a micropipette, 

- incubation in air during 5 or 10 min, 

- rinsing with deionised water, 

- drying by nitrogen gas. 

 

For such small volume, the deposition period should not exceed a certain time because, the deposited 

drop can be completely evaporated, that inevitably leads to the desiccation of the deposited molecules, their 

juxtaposition and an undesirable salt aggregation. It was experimentally determined that deposition time 

should not be larger than 10-12 min in our experimental conditions. Once the samples were deposited during 

a sufficient time, the rinsing was performed in order to remove from the surface non adsorbed molecules. We 

used 0.5mL of deionised water, which was accurately deposited on vertically placed mica surface in order to 

let the water flow down under gravitational force.  

After rinsing, samples were dried in a weak flow of nitrogen in order to minimize the risk to damage 

deposited molecules.  

 

   II-1-2-2 Deposition on pretreated mica surface 

 

The same deposition protocol was performed on pretreated mica. 

Chemical pretreatment of the mica surface was performed with divalent cations of NiCl2+ in solution. 

In order to obtain a uniform distribution of divalent cations on the surface, mica was completely immersed in 

a NiCl2+ solution, before deposition of the samples. More precisely, the pretreatment protocol included the 

following stages: 

- diving of the freshly cleaved mica in 10mM NiCl2+
 solution during 1min. 

- rinsing of the treated mica with deionised water. 

- drying by nitrogen gas  

Immediately, the samples were deposited on this pretreated mica, following the protocol previously 

described. 
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   II-1-3 AFM imaging  

 

II-1-3-1 Study on non treated mica surface 

 

X1+X2 structures 

 

For a deposit during 5min, AFM images typically show X1+X2 structures randomly distributed on the 

mica surface in small fragments with lengths ranging between 10 and 160nm and heights between 1.4 and 

1.6 nm (Figure III-9a).  

 

Figure III-9. Arrangement of X1 + X2 mixture in air on non pretreated mica, deposition time t = 5min.  

a) Topography image of 2x2µm; b) zoom on the insert area from image (a) 0.5x0.5µm;  

c) Cross-section of the filament visible on image (b).  

 

Furthermore, a more complex X1+X2 association was found, among the small linear structures. This 

molecule is shown in Figure III-9(b), which is a zoom of the area marked by the white rectangle in Figure 

III-9 (a). This is a 1D structure of ~ 200nm long with four bifurcation points at which branches of the X1+X2 

molecule are created. Formed in such a way, branches define loop-like structure of the assembly indicating 

that there are mismatches between hybridized X1 and X2 molecules. As it can be seen in the Figure III-9 (b), 

three from four bifurcations are “three-branched” and one point is “four-branched”. This is possible thanks to 

the X-shaped structure of molecules which potentially allows a connection of one molecule with four other 

molecules (i.e. by forming single double-stranded interaction instead of double double-stranded). 

Another interesting point is that the average height of the small fragments (1.5±0.1nm) is higher than 

the height of the long loop-like macromolecule around 0.7nm (Figure III-9(c)). In addition, fragments are 

thicker than the macromolecule ~4nm and ~2nm, respectively. This fact indicates that X1 and X2 molecules 

form long macromolecule by single double-stranded linkage with each other, whereas small fragments are 

double double-stranded structures. 

However, even more complex structures were formed on a base of X1+X2 molecules. For exactly the 

same deposition condition, a “fishhook-like” structure was observed as shown in Figure III-10(a). This 

  

 

 

 

a)  b)  c) 

0.7nm 0.7nm 

2nm 2nm 
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complex structure presents a symmetrical geometry and involves two types of molecular assembling: a linear 

(1D) double double-stranded branches (both have a length of ~200nm) and a 2D array assembling in the 

centre of the structure and at the end of the upper branch. It is worth to note that areas with 2D assembling 

are higher (1.3-1.4nm) than areas with 1D assembling (0.8-0.9nm) (Figure III-10(c). This can be explained 

by a larger deformation of 1D structures by the AFM tip during scanning. 

 Another example of X1+X2 assembling is shown in Figure III-10(b). This structure obtained after 

10min of deposition exhibits three types of molecular assembling. Namely, a 1D linear assembling with 

single double-stranded linkage for upper part of the loop and for a long “tail”; a 1D linear assembling with 

double double-stranded linkage for the area between the loop and the central perpendicular part and, a 2D-

array assembling for the central part.  

 

 

 

 

 Figure III-10. Arrangement of X1+X2 mixture in air on non pretreated mica. a) deposition time t = 10min;  

b) deposition time t = 5min; c) and d) are cross-section of structures in images (a) and (b) respectively. 
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Y1+Y2 structures 

 

As for the X1+X2 structures, the Y1+Y2 structures deposited during 10min manifest generally, by 

small dispersed fragments on AFM images (Figure III-11(a), (b)). However, the length of these fragments is 

larger than the length of the X1+X2 fragments. It varies between 30 to 240nm in comparison with 10 to 

160nm for the X1+X2 fragments. The typical height of these observed structures is 1.2-1.3nm (Figure III-

11(c)). 

Figure III-11. Arrangement of Y1+Y2 mixture in air on non pretreated mica, deposition time t = 10min; a) 

Topography image of 5x5µm; b) zoom in the marked area of image (a) 1x1µm; c) cross-section of the filament of 

image (b). 

 

At the same deposition condition, a large structure with a length of ~3µm was observed (Figure III-

12a). This 1D macromolecule has three bifurcation points, two of which create a loop at the upper part of the 

molecule (Figure III-12b). Homogenous height (0.77nm) and thickness (2nm) along the whole structure 

indicate that only one type of molecular assembling is presented – single double-stranded linear structure 

(III-Figure 12c).  

 

Figure III-12. Arrangement of Y1+Y2 mixture in air on non pretreated mica, deposition time t = 10min; a) 

Topography image of 2x2µm; b) zoom in the marked area of image (a) 1x1µm; c) cross-section of the macromolecule 

inthe marked area of image (b).  
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X1+20 bases structure 

 

In comparison with the previously described X1+X2 and Y1+Y2 structures, the X1+20bases mixture 

did not provide the formation of small fragments on the mica surface (Figure III-13a). Observed linear 

structure (Figure III-13b) with length of ~260nm and thickness of ~15nm indicate the formation of array 

which exactly corresponds to the structure shown in Figure III-6 (b). 

Figure III-13. Arrangement of X1+20 bases mixture in air on non pretreated mica, deposition time t = 10min; a) 

Topography image of 2x2µm; b) zoom in the marked area of image (a) 0.3x0.3µm; c) cross-section of the 

macromolecule in the marked area of image (b).  

 

Further observation of deposited X1+20 bases structures gave the same results. No filament and no 

branched structures were observed with the X1+20bases mixture on non-pretreated surface of mica (Figure 

III-14a). Macromolecule with similar parameters (length of 140nm, height and thickness of 0.68nm and 

13.8nm respectively) was observed (Figure III-14b, c) which indicates a molecular assembling in a small 

network as shown in Figure III-6(b). In addition, the surface density of the deposited X1+20bases was really 

low in comparison with that of X1+X2 and Y1+Y2 structures.  

Figure III-14. Arrangement of X1+20 bases mixture in air on non pretreated mica, deposition time t = 10min; a) 

Topography image of 2x2µm; zoom in the marked area of image (a) 0.3x0.3µm; c) cross-section of the macromolecule 

in the marked area of image (b).  
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II-1-3-2 Study on NiCl2+ pretreated mica surface 

 

X1+X2 structures 

 

The pretreatment of the mica surface with NiCl2+ cations changes drastically the molecular 

arrangement of the deposited mixtures. As can be seen in Figure III-15(a), the density of the deposited 

structure is considerably higher than on non pretreated mica, for the same time of deposit 10min (Figure III-

9a). Furthermore, the chemical pretreatment leads to the juxtaposition of a large number of deposited 

molecules, which suggests that the electrostatic interaction between molecules and substrate was increased 

limiting the diffusion of molecules on the surface.  

 

Figure III-15. Arrangement of X1+X2 mixture in air on pretreated mica, deposition time t = 10min; a) 

Topography image of 2 µm x2µm; Zoom in the marked area of image (a) 0.5µm x0.5µm; c) cross-section of the 

macromolecule in the marked area of image (b).  

 

A close look at the arrangement of the deposited structures in Figure III-15(a) reveals that among 

overlapped structures there is large number of small fragments with branched geometry. In addition, it is 

clearly shown that the strong DNA/substrate interaction also leads to the formation of molecular dendritic 

aggregates on the surface as can be seen in Figure III-15(b).  

 

Y1+Y2 structures 

 

As in the case of non pretreated surface (Figure III-11a), Y1+Y2 structures are generally assembled in 

small fragments (Figure III-16a) with comparable surface density, on chemically modified mica. However, 

these fragments have complex geometry with several branches and do not have a linear structure as observed 

in Figure III-11(a). Their typical dimensions are 65nm of length and they are homogenous in height 

~1.4±0.1nm. This indicates that they arrange in linear structures with double double-stranded linkages 

between Y1 and Y2 molecules. 

Rarely, among the small fragments, large macromolecule with branched structure can be observed 

(Figure III-16b). This assembly of molecules contains several bifurcation points which make large loop in 
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the central part of the structure and some smaller loops at its periphery. The macromolecule has a lateral 

dimension of ~500nm, and a vertical dimension of ~400nm. The height is quite homogenous and is around 

1.5 nm, whereas the thickness varies from 4 nm to 30nm indicating the presence of 1D and 2D types of 

molecular assembling (Figure III-16c). 

Figure III-16. Arrangement of Y1+Y2 mixture in air on pretreated mica, deposition time t = 10min; a) 

Topography image of 2x2µm; b) zoom in the marked area of image (a) 0.5x0.5µm; c) cross-section of the 

macromolecule in the marked area of image (b).  

 

Another example of the Y1+Y2 molecular assembling is shown in Figure III-17. In this case, small 

fragments do not form branched structures, but only linear structures with lengths between 8-112nm as on 

non pretreated mica surface (Figure III-11). Among these structures, a more complex macromolecule was 

found (Figure III-17b). This structure with a length of 466nm has a worm-like geometry with one bifurcation 

point which makes a loop in the bottom part of the molecule. As it can be seen from Figure III-17(c), height 

and thickness of the macromolecule are of 0.47nm and 2nm respectively, which is smaller than the sizes of 

the surrounding fragments (1.4nm and 4nm respectively).  

 Figure III-17. Arrangement of Y1+Y2 mixture in air on pretreated mica, deposition time t = 10min; a) 

Topography image of 2x2µm; b) zoom in the marked area of image (a) 0.4x0.4µm; c) cross-section of the 

macromolecule in the marked area of image (b). 
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Except in the bifurcation region (upper right part of the loop), the height and the thickness of the 

macromolecule are quite homogenous. This seems to indicate that only one type of molecular assembling is 

presented: the single double-stranded linear linkage.  

Observed thickening in the tail of the macromolecule (from 0.4 to 0.9nm) is not fused in a structure as 

for the bifurcation region case. This latter can be related to the juxtaposition of a small double double-

stranded molecular fragment onto the “tail” of the macromolecule. 

 

 

X1+20 bases structures 

 

On treated mica, the mixture of X1+20bases exhibited no or few fragments, as well as in the case of 

the deposition on non pretreated mica (Figure III-18a). However, among several scanned areas, a more 

complex structure was found, which is presented in Figure III-18b. This macromolecule shows two small and 

one large loop with a small tail, and has a lateral size of ~70nm and a vertical size of ~110nm. Taking into 

account these parameters together with the thickness of 7.8nm, it can be concluded that this molecule 

corresponds to a 2D assembling with a single double stranded linkage. 

 

 

Figure III-18. Arrangement of X1+20bases mixture in air on pretreated mica, deposition time t = 10min; a) 

Topography image of 2x2µm; b) zoom in the marked area of image (a) 0.2x0.2µm; c) cross-section of the 

macromolecule in the marked area of image (b). 

 

Another macromolecule with a curled geometry was observed (Figure III-19a). This linear structure 

with length of 415nm has a height and a thickness of 0.33nm and 8.9nm respectively (Figure III-19c), quite 

similar to the previously described structure in Figure III-18(b). This macromolecule can also be described 

by a 2D assembling with a single double stranded linkage. 
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Figure III-19. Arrangement of X1+20bases mixture in air on pretreated mica, deposition time t = 10min; a) 

Topography image of 2x2µm; b) Zoom in the marked area of image (a) 0.3x0.3µm; c) cross-section of the 

macromolecule in the marked area of image (b). 

 

 II-1-4 Conclusion  

 

 This first AFM study of the structure assembly revealed the ability of each mixture to be arranged in 

different structures under ambient conditions, in air. It also demonstrates that the pre-treatment of the mica to 

facilitate the adsorption of structures, induces an effect in the organization of the structures on the mica. 

 Typically, on the non pretreated mica X1+X2 and Y1+Y2 mixtures generally formed small molecular 

fragments with double double-stranded structure and more rarely, worm-like large macromolecules with 

single double-stranded structure. Exceptionally, X1+X2 mixtures were observed to be assembled in 

complexes with combined 1D and 2D structures. On the contrary, X1+20bases mixture exhibited no 

branched structures neither small fragments on non pretreated mica. Rare straight molecules are visible at 

some places of the surface. 

The NiCl2+ pretreated mica provides the observation of numerous branched small fragments for the 

X1+X2 mixture and rare branched fragments for the Y1+Y2 mixture. Furthermore, large macromolecules 

have branched geometry with 2D structure and not worm-like 1D structure as on non treated mica (except 

one case for Y1+Y2 mixture). However, the pre-treatment does not affect significantly the arrangement of 

X1+20bases molecules, only a change in their conformation from straight to curled and loop-like was 

observed without any branching. The influence of pretreatement of mica on molecular organization suggests 

an important hypothesis. The NiCl2+ treatment, increased the DNA/substrate interaction force, and then 

decrease the diffusion of species on the mica surface. One can consider that structures were “frozen” right 

after deposition, they remained at the same place where they were deposited. In the contrary, on non -treated 

mica, thermal energy of deposited molecules may exceed the DNA/substrate interaction, which is lower and 

can break intermolecular linkages. Diffusion is also possible. This can explain why complex branched 

architectures are observed on pretreated mica and more simple non branched structures on freshly cleaved 

mica. So, thermodynamical processes take place on non treated mica surface leading to a molecular 

reorganization of the initial DNA assembling.  
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 II-2 Observation in Liquids  

 

  II-2-1 Experimental AFM conditions 

 

 AFM in liquid media was performed in a closed liquid cell equipped by a temperature controller 

(NT-MDT) which allows keeping the temperature at a set level with high accuracy (0.01°C). The liquid cell 

has increased volume and is hermetically closed with a silicon polymer membrane that ensures a complete 

limitation of evaporation of the liquid during experiment. Furthermore, such design provides additional 

protection from external acoustic noise. Figure III-20 presents a photo of the microscope cell with the 

membrane.  

 

 

 
 

Figure III-20. Photo of the liquid cell with the membrane (NT-MDT) 
 

 Imaging was carried out using so called “hard tapping” mode where experimental ASP/A0 ratio was of 

33-35% for chosen free amplitudes A0 ranging between 15-20nm and working amplitudes ASP = 5-7nm. 

Scanning of samples was performed with a rate between 0.8-0.9Hz when the cantilever was excited at its 

resonant frequency f0 = 17-20kHz with relatively high quality factor Q ranging between 70 and 80, not 

typical in liquid. We used rectangular cantilevers with stiffness k = 0.025N/m and typical tip curvatures of 

10nm.  

 

AFM experiments were realized at the temperature T = 25°C in two solutions: Tris buffer 

(tris(hydroxymethyl)aminomethane) and HEPES buffer (4-(2-hydroxyethyl)-1-piperazineethanesulfon acid). 

The Tris buffer was chosen because in this solution, all DNA-based mixtures were supposed to be 

hybridized. The HEPES buffer was chosen for comparison and because it is often used in AFM imaging of 

DNA. 

 In all experiments, DNA-based mixtures were deposited onto NiCl2+ pretreated mica because 

otherwise imaging was not possible due to the weak attachment of molecules onto substrate. 

  

membrane 

liquid cell 
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II-2-2 Deposition of mixtures onto pretreated mica surface 

 

The mica was pretreated following exactly the same protocol as the one presented in paragraph II-1-2-

2. Then, the mixtures were immediately, deposited following the dropping method previously described in 

paragraph II-1-2-1 but with some changes: 

- cdeposition from a drop of 2µL of the corresponding solution, using a micropipette, 

- incubation in air during 5min, 

- rinsing with the buffer solution, 

- keeping the sample immersed in the buffer solution. 

 

The deposition was performed in ambient conditions with a drop of 2µL of the hybridized mixture 

using a standard micropipette. In order to prevent the drop from dryness, the deposition time was 5min. Once 

the sample was sufficiently incubated, the non adsorbed molecules were removed from the surface by rinsing 

with Tris or HEPES buffer. Rinsing was performed by using of 0.5mL of appropriate buffer solution, which 

was accurately dropped on the vertically placed mica surface in order to let the solution flow down under 

gravitational force.  

After rinsing samples were immersed in the same type of solution with which they have been rinsed. 

Then, totally wet samples were placed in the AFM liquid cell filled with the appropriate liquid:  

- Tris HCl 20mM + MgCl2+ 10mM pH=7.2, 

- HEPES 10mM + NiCl2+ 1mM pH=7.2. 

Keeping the samples in solution after rinsing avoids the use of intermediate liquid (like deionized 

water) and prevents molecular architectures from dryness. In the case of the Tris buffer, it makes possible 

AFM observation in an environment in which they were hybridized. In the case of the HEPES buffer, it is 

interesting to observe the molecular assembling in a solution different from the hybridized (“mother”) 

solution but with an excess of NiCl2+ ions.  

 

II-2-3 AFM Imaging in the Tris buffer solution  

 

X1+X2 structures 

 

The deposition of X1+X2 mixture during 5min leads to the formation of structures with dendrimer-like 

boundaries which are connected with each other by thinner structures into one large network. A typical AFM 

image of the network is presented in Figure III-21(a). The network is more visible in the phase image (Figure 

III-21b), showing a clear compositional separation between mica substrate and deposited X1+X2 molecules 

(see chapter I). 
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Figure III-21. Arrangement of X1+X2 mixture in Tris on pretreated mica, deposition time t = 5min; 

a) Topography image of 500x500nm; b) respective phase image of 500x500nm;  

c) histogram of the height distribution d) cross-section relative to the black line in (a). 

 

 There is no evidence of a preferred direction in the orientation of the dendrimers. However, their size 

is always larger than the space between them.  

The network in Figure III-21(a) present a flat on the top surface. Its homogenous height along the 

whole surface indicates that the two-dimensional X1+X2 structures are well levelled, on the mica surface. 

The histogram of the height distribution (Figure III-21b) shows two peacks: a small one centred on h1 = 

3.5nm and a high one centred on h2 = 5.4nm. The difference between them gives the mean height of the 

network h = 1.9nm, which approximately corresponds to the DNA diameter and which indicates that this 

network is a monomolecular layer of assembled X1+X2 molecules.  

 A punctual measurement of the height give a slightly larger height of 2.3nm as can be seen on the 

cross-section profile (Figure III-20c). It is in agreement with the mean height value and the good 

homogeneity of the monomolecular layer. 

 

  

a)  b) 

  

c) d) 

2.3nm 
2.3nm 

3.5nm 

5.4nm 
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Y1+Y2 structures 

 

In the same deposition conditions, the Y1+Y2 mixture exhibits the formation of a network which 

almost completely covers the mica surface. Unlike the X1+X2 assembling, the Y1+Y2 molecules do not 

form dendrimer-like structures but a large layer perturbed by small holes of around 14nm in diameter at 

some places. 

 

  

a)  b) 

  

c) d) 

Figure III-22. Arrangement of Y1+Y2 mixture in Tris on pretreated mica, deposition time t = 5min; 

a) Topography image of 500x500nm; b) Respective phase image of 500x500nm;  

c) Histogram of the height distribution d) Cross-section relative to the black line in (a). 

 

Figure III-22 (a, b) depict a flat surface of well levelled Y1+Y2 structures. In Figure III-22(c), the 

histogram presents two picks centred on h1 = 3.5±0.5nm and h2 = 7.4±0.2 nm which correspond to a mean 

height of h = 3.9±0.5nm. This means that the visible surface in Figure III-21(a) is the upper layer of a 

double-layered Y1+Y2 network. The cross-section in Figure III-22(d), gives local heights of around 4nm in 

agreement with this average height value.  

 

4nm 
3.5nm 

7.4nm 
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X1+20bases structures 

 

The X1+20bases does not exhibit a large flat surfaces but a more complex network, composed of 

dendrimer-like structures of non regular sizes separated from each other by numerous small holes (Figure III-

23a). The phase image gives the same information with probably a better resolution inside the structure 

(Figure III-23b). The histogram in Figure III-23(c) presents a broadened peak centred on 11.8 ±0.2 nm, 

beginning at around 5nm which is representative of the juxtaposition of several structures, even up to 4 

monolayers. The shape of the peak is also characteristic, it is enlarged on the low z values, which means that 

the image is dominated by the top layer but there are some information about structures above this layer. On 

the cross-section in Figure 22(d), a local height measurement of 3-4 monolayers is obtained. 

 

  

a)  b) 

  

c) d) 

Figure III-23. Arrangement of X1+20bases mixture in Tris on pretreated mica, deposition time t = 5min; 

a) Topography image of 500x500nm; b) respective phase image of 500x500nm;  

c) histogram of the height distribution d) cross-section relative to the black line in (a). 

 

11.8nm 

6.5nm 
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II-2-4 AFM imaging in the HEPES buffer solution 

 

X1+X2 structures 

 

Elongated dendrimer-like structures are present densely on the surface (Figure III-24a). The phase 

image reveals the presence of 2 different zones, the dark one corresponds to the background and the bright 

one nearly to the higher features on Figure III-24a. In fact, this image shows that the dendritic islands present 

straight step edges, which sometimes extend into filaments connecting to other islands. There is no evidence 

of a preferred direction in the orientation of the dendrimers, they are randomly distributed on the surface. 

 

  

a)  b) 

  

c) d) 

Figure III-24. Arrangement of X1+X2 mixture in HEPES on pretreated mica, deposition time t = 5min; 

a) Topography image of 500x500nm; b) Respective phase image of 500x500nm;  

c) Histogram of the height distribution d) cross-section relative to the black line in (a). 

 

The height histogram presents one thin peak centred on 2.3±0.1nm slightly broadened on the right part, 

indicating the beginning of another peak difficult to situate (Figure III-24c). The roughness given by the 

cross-section image is in agreement with a monomolecular layer but the assembling seems to be less 

organized than in the case of the same mixture in Tris (Figure III-24d). The topographic image does not 

reveal so clearly a 2D behaviour, only some rounded holes randomly dispersed.   

 

 

2.3nm 1.9nm 2.6nm 

2.3nm 
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Another example of X1+X2 assembling is shown in Figure III-25. The topographical image is more 

constrasted and shows the presence of 2D dendritic structures connected, at some places, by filaments. Three 

different levels of color can be distinguished on the image in Figure III-25a, and on the zoom in Figure III-

25b. The first dark level is the background, the second level the mean color of the filaments and 2D 

structures and the third color, brighter is present on top of some filaments and structures.  

 

  

a)  b) 

 

 

c)  

Figure III-25. Arrangement of X1+X2 mixture in HEPES on pretreated mica, deposition time t = 5min; 

a) Topography image of 500x500nm; b) Zoom in the marked area of image (a) 150nmx150nm;  

c) Histogram of the height distribution  

 

 This is in good agreement with the shape of the histograms. On Figure III-25c, the histogram is 

centred on 3.1±0.2nm with a height distribution which starts around 1 nm this indicates a level of 2.1±0.2nm. 

The peak is enlarged on the right, a second peak is forming centred around 5±0.5nm and a third one is also 

forming further. Once again the structures present straight step edges, filaments have a stick shape with no 

preferential orientation. It seems that the assembly of the structures is also 2D, like in the Tris solution, but 

the layer is less complete for the same concentration and less organized. Moreover, a second layer appears at 

some places.  

 

 

 

 

3.1nm 
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Y1+Y2 structures 

 

Like in the Tris solution, the Y1 and Y2 molecules are more densely arranged, than the X1+X2 

structures, in the HEPES solution (Figure III-26a). Obviously, three different level of colours are observed 

on the image of Figure III-26a and the zoom of Figure III-26b. the dark color corresponds to the background 

inside the holes, the intermediate color depicts a kind of mesh-like structure, with a lot of filaments, and the 

bright color, some higher isolated filaments and 2D higher part of the mesh. Figure III-26b reveals that, at 

some places, the mesh is composed of perpendicular filaments as can be seen inside the white circle of 

Figure III-26b. The histogram begins around 2nm and is centred on 4 nm, which indicates that a 

monomolecular layer is obtained, the intermediate color mesh. The peak is enlarged with a second peak 

around 6 nm, this corresponds to the start of the second monolayer height mesh. 

  

  

a) b) 

  

c) d) 

Figure III-26. Arrangement of X1+X2 mixture in HEPES on pretreated mica, deposition time t = 5min; 

a) Topography image of 500x500nm; b) Zoom in the marked area of image (a) 170x170nm2;  

c) histogram of the height distribution d) cross-section relative to the black line in (a). 

; 

It is clear that the assembly is less organized in the HEPES than in the Tris, the first layer is a mesh with a lot 

of holes and not a quasi complete monomolecular layer. The cross section in Figure III-26d shows the 

presence of holes of different depth, between structures.  

 

 

2.2nm 

4nm 

4.2nm 
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X1+20 bases structures  

 

The X1+20 bases mixture presents a very different assembly in HEPES than the other structures. The 

topography seems to be dominated by small rounded islands of ~ 15±0.5nmin diameter (Figure III-27a). 

They constitute a repeating pattern and cover mostly all the surface. Even when they joint each other, they 

can be individually identified. This small island is the elementary building block of the arrangement, no 

filaments are observed to connect islands. The phase image (Figure III-27b) does not provide of a contrast 

between deposited structures and the substrate. 

 However, the height histogram in Figure III-27(c) shows the mean height of 2.9nm which does not 

correspond to thickness of a double layer structure (it should be around 4nm). It can be explained by the fact 

that due to the dense structure of the background layer the surface of mica is not accessible and consequently 

it was possible to measure the height of only the second layer. 

On the other hand, the cross-section (Figure III-27d) shows that height of X1+20bases architectures 

actually varies between 2.3nm and 3.2nm. This indicates that not all structures were successfully levelled 

during deposition.  

 

  

a)  b) 

  

c) d) 

 Figure III-27. Arrangement of X1+20bases mixture in HEPES on pretreated mica, deposition time t = 5min; 

a) Topography image of 500x500nm; b) respective phase image of 500x500nm;  

c) histogram of the height distribution d) cross-section relative to the black line in (a). 

 
 

2.3nm 

2.9nm 

3.2nm 
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II-2-5 Conclusion 
 
The AFM study of the X1+X2, Y1+Y2 and X1+20bases mixtures reveals their different arrangement 

in Tris and HEPES buffer solutions. 

 In the Tris solution, all mixtures exhibit a denser architecture with well levelled surfaces in 

comparison with structures observed in the HEPES solution. More precisely, the structures X1+X2 and 

Y1+Y2 tend to arrange in compact networks, dense monomolecular layers with few holes at some places, in 

the Tris buffer solution. They form less dense networks, some kind of mesh-like structure where 2D features 

present straight step edges and are connected by stick-like filaments. 

The X1+20bases mixture present a different arrangement on the surface. In the Tris solution, it seems 

that there is no organisation on the surface, with a lot of holes of several monolayers in depth. 

In the contrary, some small islands of 1 ML high randomly dispersed on the substrate are observed in 

the HEPES solution. They are not connected by filaments but juxtapose to each other to form the assembling.  

The Tris buffer is the solution in which all mixtures were hybridized. The Tris or HEPES buffer 

solutions are the solution in which structures are maintained for AFM observation. In consequence, it was 

shown that HEPES buffer modifies the molecular arrangement of the already deposited structures. 

 In HEPES buffer, the molecular assembly is modified due to the change of the ionic strength of the 

solution. In other words, it means that the molecular reorganisation takes place even after the deposition on 

the pretreated mica. 

 

It seems that the Tris buffer favors the homogeneity of the layers compared to the HEPES due to the 

interaction of the DNA molecules to each other, greater than their interaction with the mica surface. This is 

due to the fact that the Mg2+ cations, present in the Tris solution, have a higher affinity with the DNA 

molecules than with the mica. Moreover, Ni2+ cations have a higher affinity with muscovite mica than with 

DNA.  

In addition, Mg2+ and Ni2+ cations have different ionic strengths in Tris and HEPES buffers. One 

should remember that, the ionic strength of a solution is a measure of the intensity of the electric field 

created by ions in the solution [65]. The ionic strength can be calculated according to the following 

expression:  

 

∑=
i

bii nzI 2

2

1
     (eq.3.15) 

 
Then, the ionic strength of Mg2+ in Tris buffer, I MgCl2+ = 20mM and Ni2+ in HEPES buffer, I NiCl2+ = 2mM 

in our experimental conditions.  

 

Thereby, after immersing the samples in HEPES, the ionic strength of the solution decreases. This may 

lead to a decrease of the interaction between DNA and mica. Furthermore, a competition between Ni2+ and 

Mg2+ cations occurs which probably leads to a partial substitution of already adsorbed cations of Mg2+ by 

Ni2+ cations. This leads to the disruption of previously formed bonds between surface of mica and DNA 
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molecules. As a result, structures observed in HEPES are less dense than the one observed in the Tris 

solution. Molecules can not be well aligned on the surface due to their increased bonding with mica throw 

Ni2+ cations. 

Observed in both solutions, double-layer (or more) structures suggest that interlayer interactions have 

electrostatic origin. Otherwise, if these structures were bonded to each other only by physical adsorption, 

then the upper layers should have been washed away during rinsing procedure. Consequently, the existence 

of such structures can be explained by the formation of salt bridges between juxtaposed layers, favoured by 

Mg2+ cations in Tris and by Ni2+ cations in HEPES.  

 

By comparing the structures observed in air and in liquid, we can conclude that both liquids induce a 

2D organisation of the DNA-based mixtures and that isolated filaments, sometimes worm-like wired 

structures, are only present in air. It is noticeable that it was difficult to observe structures in air, especially 

on non treated mica. It seems that in air, DNA-based networks are not stable and the few that have been 

observed remain in a dendritic structure on treated surface or a linear macromolecule on fresh mica. 

 

 

In order to have a clear idea of how exactly the molecules are associated with each other, a 3D 

molecular model was built using a software for chemical simulation Schrödinger® (Figure III-28). This 

model was created for X1 and X2 molecules, hybridized in a linear double double-stranded chain. For 

X1+X2, Y1+Y2 and X1+20bases mixtures, the number of DNA bases is the same, so the geometrical 

parameters of this 3D structure are also relevant for other mixtures. 

 
 

 
Figure III-28. Molecular 3D model for X1 and X2 molecules hybridized in linear double double-stranded chain. 

Length of structure X1 (X2) 
a = 9.64 nm 

Length of single double strand X11X2c1 
(X12X2c2) a’ = 3.65 nm 

Width of double double-strand 

b = 4.27 nm 

Width of single double strand 
b’ = 1.97 nm 

Length of linker 

c = 2.34 nm 
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According to the model in Figure III-28, the length of one X1 or X2 molecule (or Y1/Y2) is of 9.64 

nm with a width of 4.27nm and a linker length of 2.34nm. The length and diameter of single double-strand 

are 3.65nm and 1.97nm, respectively. 

 

It becomes possible to better understand how molecules are assembled with each others, by comparing 

the simulated 3D structure with the theoretically calculated molecular associations (Figures 4, 5, 6), and also, 

by taking into account geometries of observed structures. Models of the structures presented on Figure III-

29a and b are proposed on Figures 29c and d. 

 

 
Figure III-29. Molecular 3D model for X1 and X2 molecules hybridized in linear double double-stranded chain. 

 

  

 

c) d) 

Single double strand 

double double strand 1D-1D bifurcation 

1D-2D bifurcation 
double double strand 

1D-2D bifurcation 

a) b) 
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Structures in Figure III-29a and b were already discussed in section “AFM imaging on non treated 

mica surface”. They are good examples because they demonstrate all types of molecular associations 

observed for all mixtures. Namely, the structures shown in Figure III-29 a, b contain the juxtaposition of 1D 

and 2D architectures with several points of bifurcation.  

The sketch in Figure III-28c proposes an interpretation of the molecular assembling of the structure 

shown in Figure III-28a. One can see a difference in the molecular assembling between single double-

stranded and double double-stranded 1D and the origin of the bifurcations. Actually, there are two types of 

bifurcations:  

1D-1D and 1D-2D bifurcations which are points of transition from 1D single double-stranded to 1D double 

double-stranded structure or from 2D to one of types of 1D structure. So, the molecular structure is 

determined by a number of linkages between molecules in longitudinal or latitudinal direction.  

Figure III-28d is an interpretation of the molecular assembling of the structure shown in Figure III-

28b. This structure does not contain single double-stranded chains and thus consists of 2D and 1D structures 

connected between them through 1D-2D bifurcations.  

 

Using the principle of molecular association shown in the Figures 28c and d, it is possible to explain 

molecular assembling for all the other DNA-based mixtures. Resulting architectures depend on the number 

of connections involved in the interaction between molecules.  

This number of intermolecular connections is also strongly dependent on the chemical properties of the 

substrate and the environment (air, Tris and HEPES). 
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General Conclusions 
 

To summarize this work, we can see that the AFM technique is a powerful tool that offers a wide 

enough range of capabilities to perform direct studies of morphology of experimental samples and to obtain 

local information on the physical and mechanical properties of surfaces and isolated nanostructures.  

In chapter I, we focussed on the technique, the different modes, the different forces involved, and the 

advanced approach for analysis of the images. 

In an appropriate operation mode, depending on the chosen working parameters and the environment, 

different forces act between the tip and the sample. The interaction regime is in a large extent dependent on 

the sample properties that finally defines the scale of action of short-range repulsive Pauli force, long range 

van der Waals force and also electrostatic and magnetic forces. On the one hand, these forces may affect 

detectable information and thus may be undesirable, for example capillary force in the air or high 

viscoelastic forces on fragile biological samples. However, these forces may give additional information 

about the sample properties and about the regime of the tip-sample interaction. For example, the 

measurement of adhesion force provides information about mechanical properties of the sample. Or, in 

dynamic operation mode, depending on elastic properties of the sample and initial parameters (A, Asp, ω0), a 

bistable oscillation regime may take place where transitions between one state to another can be indicated by 

an inversion of phase shift. 

One of the possible ways to avoid effect of capillary is to pass in liquid media. However, in this case 

the damping effect due to the higher viscosity of solution should be taken into account. In addition, AFM in a 

liquid media requires of more complex theoretical description of the tip-surface interaction forces such as the 

DLVO theory. 

 

We showed by an example on a DNA chip, that information achieved in one regime of AFM operation 

can be successfully complemented by information obtained in another regime. This underlines the 

exceptional complementarity of the different modes of operation of the AFM. A clear example of this is the 

ability of the AFM to simultaneously detect information related to different physical properties of the 

sample. Especially, phase imaging is often performed together with a standard topographical imaging. Phase 

shift depends on working conditions and is also defined by the contribution of mechanical properties of the 

sample. Another example is the phase and amplitude spectroscopies, which can be realized simultaneously, 

in the same conditions, and thus give an idea about tip-sample interaction character even before scanning. 

  

The experimental study of the phase and amplitude dependence on the tip–surface separation allowed 

to perform a quantitative description of the dissipative processes during AFM mapping of the DNA chip. It 

also made possible to characterize the tip-sample interaction regime by controlling the cantilever motion. In 

the other hand, it was shown that nonlinear dynamics of the cantilever is responsible of noise on the images 

and contrast artefacts. 
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Calculated from phase shifts data, the dissipation energy presents an evolution while changing of the 

A/A 0 ratio. This allows to establish the influence of the initial parameters (A, Asp, ω0) on the quality of the 

resulting images. However, in our case, this information is not sufficient to give of clear idea about the 

interaction regime of the tip with DNA molecule.  

For this reason, we calculated the derivative of the experimental dissipation energy curve which offers 

unambiguous identification of the tip-sample interaction regime. For our concrete experimental system, this 

approach shows that dynamic dissipation processes on the DNA chip are mostly defined by a viscoelastic 

tip-sample interaction. 

Because the maximum in the energy dissipation curves is about 30eV per cycle, material contrast may 

be achieved without introducing irreversible tip–surface modifications. Consequently, knowing the dynamics 

of the dissipation processes during the DNA-chip mapping, it becomes possible to predict appropriate 

experimental conditions in order to prevent damage of fragile DNA molecules.  

 

This experimental study clearly demonstrated that the choice of the most adapted AFM operation 

mode added to a careful adjustment of experimental parameters can not only improve image quality, but also 

may significantly affect the correctness of measured quantities. 

Moreover, after imaging in good conditions, it is also really important to interpret all the information 

given by the images. In this work, the spectral PSD-method for statistical analysis of the AFM images is 

proposed ; it gives a more complete description of the morphology in comparison with the conventional 

method of analysis. Different models are described in details in chapter I and used to characterize our study 

in chapter II. 

 

 

In Chapter II, we studied the pentacene thickness-driven growth performed on two polymeric 

substrates, parylene and benzocyclobutene (BCB). AFM was used because we wanted to characterize the 

surface of pentacene at a nanometric scale, for small deposit thicknesses (at a submicronic scale). Our 

objective was to establish a link between the substrate nature, the morphology of the pentacene towards the 

deposited equivalent thickness and the mobility of the charges. On these organic materials, we showed that 

the AM-AFM mode is well appropriate to obtain the better resolution. 

 To understand the morphology for thicknesses of more than 30nm, the first step of the growth was 

studied, when equivalent thicknesses of 6 nm, 10nm and 15nm were deposited. 

The morphology of the pentacene is different on the two substrates and to analyse in details these 

difference we used grain analysis, conventional and the PSD methode presented in Chapter I. The grain size 

distribution showed its nonlinear evolution versus the equivalent film thickness. Namely, for the range of the 

film thickness from 15nm to 60nm, the largest grain size was obtained for the thickness of 30nm on both 

substrates, around 500 nm for pentacene on parylene and 860 nm for pentacene on BCB. At the same time, 

the shape of the grains remained unchangeable for all thicknesses: a bulk-like grains on the parylene and a 

pyramid-like ones on the BCB. Therefore, the conventional methods of analysis showed the existence of a 
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certain critical thickness of the pentacene at 30nm, but for a more thorough study we had to apply additional 

methods of analysis. 

 

Conventional methods of surface analysis gave information on sample properties determined by the 

distribution of heights on the surface. However, the PSD-method gave access to the surface properties in two 

dimensions i.e. in vertical and lateral directions. The application of this method to AFM images is possible 

thanks to their high spatial resolution. It allows their transformation into 2D reciprocal Fourier space and 

then representation in 1D graph (PSD curve). Analysis of experimental PSD-curves was performed with 

fractal and two nonlinear parametrical models (k-correlation and superstructural model) which provide 

exhaustive information not only on the accessible surface of the sample but also on its inner structural 

properties. 

Actually, the fractal model made it possible to obtain fractal dimension of each sample, based on 

which it was elucidated that while deposition pentacene molecules can move more freely on the BCB than on 

the parylene. This information was completed by the k-correlation model which allowed us to establish 

mechanisms of growth of the pentacene films. According to this model, the growth of the pentacene films on 

parylene begins by an evaporation and condensation mechanism and evolves in a bulk diffusion mechanism 

for thicknesses higher than 30nm. For the pentacene on BCB, the growth begins by a viscous flow mode 

until a thickness of 35nm and changes in an evaporation and condensation mechanism for higher thicknesses. 

In addition, superstructures models give quantitative description of the lateral dimensions of the pentacene 

grains and their aggregates. The variation of the film thickness has caused the formation of superstructures 

with sizes ranging from 0.6µm to 1.1µm for pentacene on parylene from 1.3µm to 1.6 µm on BCB, where 

the largest sizes correspond to the thickness of 30nm. Furthermore, according to the superstructures model, 

variation of the size of the aggregates is not caused by variation of the size of the grains that form them but is 

mostly influenced by the quantity of grains in aggregates.  

Evidenced by the k-correlation model, transitions at 30nm from one growth mechanism to another 

were already seen as peaks in the grain size distribution obtained by the superstructures model. In addition, 

measured by AFM spectroscopy, pentacene surface energies were the lowest at this thickness namely, for 

pentacene on parylene the surface energy values were 81.4 mJm-2 (pentacene 35nm) and 32.6 mJm-2 

(pentacene 30nm). This change in surface energy is related to transition from orthorhombic to triclinic phase 

for pentacene growth on parylene. In a similar way, transition of the pentacene film polymorph occurs on 

BCB. Hence the growth mechanism can be described as follows: Pentacene molecules during the early stage 

of deposition have a tendency to stand vertically on a flat surface forming the orthorhombic crystalline 

structure. Further increasing of the film thickness leads to pentacene growth on gradually formed surface of 

grains hillsides. This causes additional inclination of pentacene molecules and as a result, the thin film phase 

and triclinic bulk phase are formed at higher film thicknesses. 

Therefore, AFM imaging together with AFM spectroscopy and spectral methods of AFM image 

analysis allowed us to predict the relationship between morphology, molecular structure and growths 

mechanisms of pentacene thin films deposited on parylene and BCB. In addition, performed electrical 
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measurements on the pentacene based OFETs made it possible to relate theoretically predicted pentacene 

polymorph properties to its electrical performances. Namely, the best electrical performances were obtained 

for pentacene thickness of 30nm, which corresponds to the thickness of the film with the largest grain size. 

 

 

Chapter III was devoted to the study of structure assemblies of X- and Y-shaped DNA-mixtures. 

Our objective was to reveal their ability to be arranged in different structures under ambient conditions 

in air and in liquid media. After a brief description of the DNA arrangement in literature, the advantage of 

the mica surface as a substrate, the X and Y structures designed by our collaborators (F. Morvan et al Institut 

des Biomolécules Max Mousseron, UMR 5247, Universite de Montpellier 2) were presented and described 

in details. 

  

 The effect of the mica pre-treatment by Ni2+ ions was observed. The Ni2+ cations contribute to a strong 

interaction between DNA and the mica surface. The high affinity of the Ni2+ with the mica surface is 

explained by a high enthalpy of hydration in comparison with the Mg2+ which has a very close ionic radii 

(0.65 Å), but a enthalpy of hydration smaller than for Ni2+. 

 

It was shown that it provoked a competition between Ni2+ and MgCl2+ cations in DNA/mica binding. 

This has a direct impact on the processes of molecular organization on the solid surface. 

In the air, the pretreatment of the muscovite mica surface with NiCl2+ cations considerably changes the 

molecular arrangement of X1+X2 and Y1+Y2 mixtures. Structures manifest by the presence of small 

molecular fragments with double double-stranded structure and worm-like large macromolecules with single 

double-stranded structure on the non treated mica.  Large macromolecules with branched 2D geometry and 

not worm-like structure formed on pretreated mica. However, the pre-treatment does not affect significantly 

the arrangement of X1+20bases molecules. Non branched structure, are obtained straight on non pretreated 

mica and curled or loop-like on pretreated mica.  

The NiCl2+ treatment increases the DNA/substrate interaction force and then reduces the diffusivity of 

species. Therefore, the molecules are remained at the same place right after deposition. In the contrary, on 

non-treated surface, the larger thermal motion of weakly bounded to mica DNA molecules may provoke the 

breaking of the intermolecular linkage which results in the formation of more simple, non branched, and 

worm-like structures. So, less exhaustible thermodynamical processes on the non treated mica lead to a 

molecular reorganization of the initial DNA assembling. 

 

Observation in Tris and HEPES buffer solutions revealed different arrangement of the X1+X2, Y1+Y2 

and X1+20bases mixtures. In the Tris solution containing only Mg2+ cations, all mixtures exhibit a denser 

architecture with well levelled surfaces in comparison with structures observed in the HEPES solution. In 

HEPES which contains only Ni2+ cations, the ionic strength is 10 times lower, that leads to a decrease of the 

interaction between DNA and mica. However, DNA molecules do not move away due to a partial 
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substitution of already adsorbed cations of Mg2+ by Ni2+ cations which have a higher affinity with mica than 

Mg2+. Disruption of previously formed bonds between mica and DNA molecules results in the formation of 

less dense structures, in HEPES, than previously observed ones, in the Tris solution. However, molecules 

can not be well aligned on the surface due to their increased bonding with mica throw Ni2+ cations. The 

presence of layered structures (2 or more layers) observed in both solutions can be explained by the 

formation of salt bridges between juxtaposed molecular layers, favoured by Mg2+ cations in Tris and by Ni2+ 

cations in HEPES. 

The AFM study of the X1+X2, Y1+Y2 and X1+20bases mixtures in air and in liquid, made it possible 

to establish their molecular assembling in the native Tris solution and explore how it is influenced by 

changing the environment of observation while conserving initial conditions of adsorption. According to our 

results, we can conclude that both liquids favour a 2D organisation of the DNA-based mixtures and that 

isolated filaments, sometimes worm-like wired structures, are only present in air. It was elucidated that in air, 

DNA-based networks are not stable and the few that have been observed remain in a dendritic structure on 

treated surface or a linear macromolecule on fresh mica. 
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Annexe I. Surface energy measurements by sessile drop 

technique 
 
 

The surface energy γ is defined as the reversible work required to form a unit area of new surface of 

the material [1]. For two plane surfaces of different materials separated by an interface the work of adhesion 

W0 is the reversible work required to create two new surfaces across a unit area of this interface.  

 

W0 = γ1 + γ2 – γ12 

 

where γ1 and γ2 are surface energies of two materials and γ12 is the interfacial energy e.g. the additional 

energy of interaction between these materials.  

The surface energy can be determined by the contact angle method [2]. This method consists in using a 

liquid droplet deposited on a flat solid surface in air. Once the droplet deposited, two distinct equilibrium 

states are possible: partial or complete wetting. When the liquid drop spreads on the solid surface, it results 

in a low value of contact angle, which is typical for a high wettability of the surface. On the contrary, if the 

deposited drop adopts a spherical shape, the contact angle becomes higher, indicating a low wettability of the 

surface. If pure water is used as a working liquid, the solid surface with the high/low wettability can be 

interpreted as a hydrophilic/hydrophobic surface, respectively. So, the contact angle is a direct measurement 

of the liquid ability to spread on a surface. 

The measured contact angle is the angle between the tangent line drawn at the edge of the droplet, 

prolonged down to the surface, and the surface plane (as shown in Figure 1). The final droplet shape is 

governed by the surface tension given by the equilibrium state of the three interacting phases: solid, liquid 

and gas (as sketched in Figure1). 

 
 

Figure 1. Scheme of the contact angle measurements 
 

The contact angle is related to the surface energy and can be expressed by the Young’s equation as 

follows: 

γlv cosθ = γsv – γsl 

where γlv, γsv, γsl are the interfacial tensions between, liquid and vapor, solid and vapor, and solid and liquid, 

respectively. θ is the contact angle measured experimentally. 
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Among the Young equation parameters, only the liquid/vapor component γlv and the contact angle θ 

can be determined experimentally. To calculate the other parameters, several models were developed. The 

most common models are Owens & Wendt and Good & Van Oss models [3, 4]. 

According to the Owens & Wendt model [3] the surface energy is described as: 

 

p
S

d
SS γγγ +=  

where: 

- d
Sγ  is the dispersive component of γsv (Lifshitz-Van der Vaals interactions) 

- p
Sγ  is the polar (non dispersive) component of γsv (Lewis acid base) 

 

The relation between the contact angle and the tension components is then given by: 

 
p
L

p
S

d
L

d
SL γγγγθγ 22)cos1( +=+ , 

 
where d

Lγ and p
Lγ are dispersive and polar components of γlv respectively. 

 

This contact angle model requires two different liquids for the surface energy calculation. However, 

the approximation on non dispersive interactions is considered as the geometrical mean of p
Sγ  and p

Lγ . As a 

result, such approximation can not predict the behaviour of polar polymers in aqueous environment.  

The Good Van Oss model [4] considers that the surface energy can be expressed as: 

−++= SS
d
SS γγγγ 2 , 

where  

- d
Sγ  is thedispersive component (Lifshitz-Van der Vaals interactions) 

- +
Sγ and −

Sγ are the polar components (Lewis acid base) 

The general equation of the surface energy is given by:  

 

( )−+−+ ++=+ SLLS
d
L

d
SL γγγγγγθγ 2)cos1(  

 
In this model, three different liquids with known dispersive and polar components are necessary to calculate 
the surface energy. 
 
References 
 
[1] Merril W.W., Pocius AV. Langmuir 7, (1991), 1975. 
[2] Fowkes F.M. American Chemical Society: Washington, DC, 1964. 
[3] D.K. Owens, R.C. Wendt – J. Appl. Polymer Sci. 13, (1979), 1741. 
[4] C. J. van Oss, M. K. Chaudhury and R. J. Good. Advan. Colloid Interface Sci. 28, (1987), 35. 



  173 

 

Annexe II. Synthesis of X and Y shaped DNA-based 

oligonucleotides 
 

Synthesis of X-shaped molecule: 
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X2 

 

 

Synthesis of Y-shaped molecule: 
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X1 and 20bases  

 

Structure of molecules: 
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Annexe III. Deconvolution methods 
 

 
In order to substract the effect of convolution of AFM tip with DNA molecules we firstly applied two 

known approaches. At first, we used a formula for a rectangular object and a spherical tip [1]: 

 

222 hRhD −= ,       (1) 

where D – is the real width, h – is the measured height, R – is the tip curvature. 

 

Then, we also tried to use a formula for spherical sample and spherical tip [2]: 

 

RHWw 22 −= ,      (2) 

where w – is the real width, W – is the measured width, H – is the measured height, R – is the tip 

curvature. 

 

These two approaches are efficient for samples which have rectangular or spherical geometry, and a 

size comparable to the size of the AFM tip, but it is not the case for DNA molecules. In our experiments,  the 

tip curvature was larger than the diameter of a molecule (10 nm against 2 nm respectively)and the formulas 

(1) and (2) do not take into account an inevitable deformation of the DNAs during the AFM experiments. For 

example, in Fig. III-10 (c, d) one can see that the measured height depends on the width of the 

macromolecules (i.e. number of molecules in a macromolecule). Obviously, except a vertical deformation 

there is also effect of a side deformation, which is not detectable in our experiments. To solve this problem, 

we used the following assumption. 

Since the DNA molecules form two types of 1D filaments (thin and thick), we considered that these 

configurations correspond to the "single-double strand" and "double-double strand" of DNA molecules. So 

their widths should be around 2 nm and 4 nm respectively. It is possible to obtain these values (2 and 4 nm) 

when it is assumed that the radius of curvature of the tip is R = 10 nm and the effect of convolution is 2R = 

20 nm. This semi-empirical approach was used for the deconvolution of experimentally obtained data. So, all 

the widths in the cross-section images in the Chapter III present deconvoluted values. 

In the contrary, the values of the measured heights correspond to those directly read from the graphs. 

This is because the effect of convolution takes place at the "edges" of the molecules and therefore the 

measured heights are the real heights (of course we must take into account the effect of deformation of the 

molecules by the AFM tip). For example, instead of the height of 2nm on "single-double strand" there is only 

0.7 nm due to very important deformation. But on the "double-double strand" molecules it gives 1.53 nm and 

not  0.7 nm. So we can consider that for given experimental conditions a large tip of 10 nm causes a large 

enough deformation on the isolated molecules and less important on larger structures. According to the 

histograms of the heights of DNA arrays, we can see that the effect of the deformation is negligible. 
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However, it should be noted that the real geometry of the tip was unknown and we used several 

cantilevers during AFM experiments. Therefore the radius of curvature of the tip and its shape could be 

different for each selected cantilever. 
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Abstract 
 

This work reports the various aspects of the application of atomic force microscopy (AFM), for the characterization of 
organic semiconductors and DNA-based arrays, for organic electronics and biological applications. On these soft surfaces, the 
amplitude modulation AFM mode was chosen. This choice is argued by a study of dissipative processes, performed on a particular 
sample, a DNA chip. We showed the influence of experimental parameters on the topographic and phase image quality. By 
calculating the dissipative energy, it was shown that the dissipation on the DNA chip was mainly induced by a viscoelastic tip-
sample interaction. 

The AFM study of the "thickness-driven” pentacene growth was made to link the morphology to the nature of the substrate 
and to the electrical performance of created pentacene-based Organic Field Effect Transistor (OFET). Deposited on two polymer 
substrates, parylene and benzocyclobutene (BCB), pentacene has been characterized for nanoscale film thicknesses between 6 and 
60nm. It has been shown that the larger grains were created for a deposited thickness of 30nm. Spectroscopic AFM mode was used as 
an alternative to the method of contact angles, to measure local surface energy. Decrease of surface energy is characteristic of a more 
ordered surface and was measured for a thickness of 30 nm of pentacene deposited on both substrates. Models of statistical analysis 
of spectral images, based on the Power Spectrum Distribution (PSD) have been used to explain the morphology of pentacene films. 
In addition, these models have provided a comprehensive description not only of the accessible surface of the sample, but also of its 
internal structural properties. Highlighted in the models, the critical thickness of 30 nm corresponds to a transition from the 
orthorhombic phase to the triclinic phase for  pentacene molecules deposited on parylene. Similarly, a polymorphic transition occurs 
on the BCB. On OFETs, based on pentacene on BCB, the largest mobility of 3.1x10-2 cm²/Vs corresponds to the pentacene layer of 
30nm, that shows a better ordering of the orthorhombic molecular packing in comparison with the triclinic packing. 
The molecular arrangement of X and Y structures based on DNA was observed, by AFM, in air and in two buffer solutions of Tris 
and HEPES on a mica substrate. It was shown that the treatment of the mica by Ni2 + ions increases the strength of the DNA/substrate 
interaction and reduces the diffusivity of the molecules. In air, wired macromolecules containing one double-stranded structure are 
observed on untreated mica and macromolecules with a 2D geometry on pretreated mica. Onto a non-treated, the greater thermal 
motion of weakly bounded to mica DNA molecules leads to the rupture of intermolecular bonding and the forming structures are 
more simple and not branched. The organization is different in solutions of Tris and HEPES. In the Tris solution, containing Mg2+ 
cations, the arrangement leads to a well-organized 2D architecture. In the HEPES solution, containing Ni2+ cations, the ionic strength 
is 10 times lower, this leads to a breaking of the bonds previously formed between DNA and mica. However, DNA molecules are 
near each other due to a partial substitution of already adsorbed Mg2 + cations by Ni 2 + cations of higher affinity with the mica. These 
results show that the two liquids promote a 2D assembly. In air, the networks are not stable and the few observed ones remain in a 
dendritic structure on the surface of pretreated mica and as a linear macromolecule on the untreated mica. 
 

Résumé 
 

Ce travail de thèse porte sur les divers aspects de l'application de la microscopie à force atomique (AFM), pour la 
caractérisation de semi-conducteurs organiques et de réseaux d’ADN,  pour des applications en électronique organique et en biologie.  
Sur ces surfaces molles,  le mode de fonctionnement Amplitude modulation de l’AFM  a été choisi. Ce choix est argumenté par une 
étude des processus dissipatifs,  réalisée sur un échantillon particulier, une puce à ADN. Nous avons montré l’influence des 
paramètres expérimentaux d’amplitude sur la qualité des images topographique et de phase. A partir du calcul de l’énergie 
dissipative, il a  été montré  que la dissipation sur la puce ADN était  principalement induite  par une interaction pointe-échantillon  
de type viscoélastique.  

L'étude par AFM de la croissance “thickness-driven“ du pentacène a été réalisée afin de relier sa morphologie à la nature du 
substrat et aux performances électriques pour la réalisation de transistors organiques à effet de champ, OFET (Organic Field Effect 
Transistor). Déposé sur deux substrats de polymères, le parylène et le benzocyclobutène (BCB), le pentacène a été caractérisé à 
l'échelle nanométrique pour des épaisseurs de film entre 6 et 60nm. Il a été démontré que les grains créés par le dépôt étaient les plus 
étendus pour une épaisseur déposée de 30nm. La spectroscopie AFM en mode contact  a  été utilisée, comme une alternative à la 
méthode des angles de contact, pour mesurer localement l'énergie de surface. Une énergie de surface minimale caractéristique d’une 
surface mieux ordonnée a été mesurée pour l’épaisseur de pentacène déposée de 30nm pour les deux substrats. Des méthodes 
spectrales d'analyse statistique d’images,  à base de PSD (Power Spectrum Density), ont été utilisées pour expliquer la morphologie 
des films de pentacène. En outre, ces modèles ont fourni une description exhaustive non seulement de la surface accessible de 
l'échantillon, mais aussi de ses propriétés structurales intérieures. Mise en évidence dans les modèles, cette épaisseur critique de 30 
nm correspond à une transition de la phase orthorhombique à la phase triclinique pour les molécules de pentacène déposées sur 
parylène. De même, une  transition polymorphique se produit sur le BCB. Sur des OFET créés à  base de pentacène sur BCB, la 
mobilité la plus importante de 3.1x10-2cm²/Vs correspond à la couche de pentacène de 30nm, ce qui montre l'avantage de l' 
moléculaire orthorhombique en comparaison du triclinique. 

 L’assemblage moléculaire de structures en X et en Y à base d’ADN a été observé par AFM à l’air et dans deux solutions  
buffer de Tris et HEPES sur un substrat de mica. Il a été montré que le traitement du mica par des ions Ni2+ augmente la force 
d'interaction ADN/substrat et réduit la diffusivité des molécules. A l'air, des macromolécules  filaires contenant une seule structure 
double brin sont observées sur le mica non traité et des macromolécules avec une géométrie 2D ramifiée,  sur le mica prétraité.  Sur  
une surface non-traitée, l’agitation thermique  suffit à déplacer les molécules  d’ADN faiblement liées au mica, ce qui conduit à la 
formation de structures plus simples  1D. L’organisation est différente dans les solutions de  Tris et d’HEPES. Dans la solution de 
Tris, contenant des cations Mg2+, les arrangements conduisent à une architecture 2D, bien organisée. Dans la solution d’HEPES, 
contenant des  cations Ni2+, la force ionique est 10 fois plus faible, qui conduit à une rupture des liaisons préalablement formées entre 
le mica et l'ADN. Cependant, les molécules d'ADN restent les unes près des autres en raison d'une substitution partielle des cations 
de Mg2+ déjà adsorbés par les cations de Ni2+ de plus grande affinité avec le mica. Ces résultats montrent que les deux liquides  
favorisent un assemblage 2D. Dans l'air, les réseaux ne sont pas stables et les rares qui ont été observés restent dans une structure 
dendritique sur la surface de mica traité ou  sous forme de  macromolécule linéaire  sur le mica non traité. 



  



 


