Thèse soutenue

Analyse des instabilités aéroélastiques dans les turbines spatiales : étude du flottement dans des configurations récentes de turbines à traversanalyse aérodynamique des écoulements subsoniques soumis à un mode de structure vibratoire imposé

FR  |  
EN
Auteur / Autrice : Hakim Ferria
Direction : Pascal FerrandTorsten Henry Fransson
Type : Thèse de doctorat
Discipline(s) : Mécanique des fluides
Date : Soutenance le 01/02/2011
Etablissement(s) : Ecully, Ecole centrale de Lyon en cotutelle avec Kungliga tekniska högskolan (Stockholm)
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Jury : Président / Présidente : Michel Lance
Examinateurs / Examinatrices : Fabrice Thouverez, François Moyroud, Julien Herpe, Marc Legros
Rapporteurs / Rapporteuses : Jan-Gunnar Persson, Damian Vogt

Résumé

FR  |  
EN

Les aubes des turbomachines modernes sont de plus en plus fines, légères et chargées aérodynamiquement. Cette tendance accroît l'apparition de phénomènes aéroélastiques tel que le flottement qui conduit à la rupture si l'amortissement est insuffisant. Bien que les outils numériques soient de plus en plus robustes, la fiabilité de sa prédiction demeure insuffisante. La nature critique du phénomène et le manque de données expérimentales pour des écoulements typiques de l'industrie encouragent des travaux de recherche. Dans ce contexte, la présente thèse est dédiée à l'étude du flottement dans des configurations récentes de turbine à travers l'analyse aérodynamique des écoulements subsoniques ou supersoniques soumis à un mode de structure vibratoire imposé. L'objectif est de fournir des éléments de compréhension des mécanismes potentiellement générateurs de flottement pour une meilleure intégration lors de la conception des aubes. L’approche consiste à mener des travaux expérimentaux et numériques. La partie expérimentale s'appuie sur un secteur de grille annulaire constitué de sept aubes dont une peut osciller de manière contrôlée. Les fluctuations de pressions instationnaires générées sont mesurées avec la technique dite des coefficients d'influence pour différents paramètres mécaniques et aérodynamiques : déformées modales pures et combinées, fréquence réduite, nombre de Mach, angle d'incidence. Complétée par des mesures de niveau de turbulence, la base de données vise à évaluer l'influence de ces paramètres sur la réponse aéroélastique, à valider le principe de superposition linéaire et à soutenir les codes numériques. La partie numérique se base sur des calculs instationnaires linéarisés dans le domaine fréquentiel en utilisant la technique dite des "ondes propagatives" (traveling wave mode).Deux cas de turbines spatiales industrielles sont étudiés.• Des calculs 2D sont réalisés sur une turbine monobloc ou blisk. L'amortissement mécanique quasi-nul entraîne des déformées complexes avec couplage de modes et des fréquences réduites très élevées. Bien que les aubes soient prédites stables, une méthodologie basée sur des décompositions géométriques élémentaires est présentée afin d'identifier les contributions déstabilisantes. Les résultats aboutissent étonnamment aux conclusions de la théorie du flottement classique : la torsion est une source potentielle d'instabilité. De plus, le coefficient d'amortissement aérodynamique a été trouvé extrêmement sensible au déphasage interaube et aux fréquences de coupure (modes cut-on/cut-off).• Des calculs 3D sont ensuite réalisés sur une turbine supersonique. L'écoulement présente des ondes de chocs avec décollement de la couche limite et le mouvement de l'aube est de nature élémentaire, i.e. purement axial. Les aubes ont été prédites instables pour les modes rétrogrades et stables pour les modes propagatifs. En dépit des fortes hypothèses, des analyses quasi-stationnaires rendent compte des mécanismes de flottement : la phase entre le mouvement du choc et l'excitation établit la frontière entre configurations stable et instable.