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Résumé

Les fonctions analytiques généralisées sont définies par des séries convergentes de mondmes a
coefficients réels et exposants réels positifs. Nous étudions I'extension de la géométrie analytique
réelle associée & ces algebres de fonctions. Nous introduisons pour cela la notion de variété
analytique réelle généralisée. Il s’agit de variétés topologiques & bord munies de la structure du
faisceau des fonctions analytiques réelles généralisées. Notre résultat principal est un théoréme
de monomialisation locale de ces fonctions.
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Introduction

Resolution of Singularities is an important subject in many fields of mathematics, being a fun-
damental tool in the resolution of lots of important problems as well as a set of elaborated
techniques resulting very useful in full of different contexts. This explain that, even if it is a
classical discipline, it is gaining in importance and constantly progressing.

The general setting is well known: given an object that we want to study (manifolds, varieties,
functions, foliations, vector fields, diffeomorphisms, families) it may present singularities making
it non trivial. The strategy to understand the richness behind these singularities consists on
modify the ambient space by terms of compositions of a particular kind of well known transfor-
mations (blowing-ups) given rise to an object with "simpler singularities” easier to study. The
problem is then translated to the understanding of the combination of the blowing-up transfor-
mations and the relation between the geometry of the object obtained and the initial one.

This method was applied to the classical case of algebraic varieties by using algebro-geometric
techniques by Zariski and the Italian School which constituted the foundations of modern Al-
gebraic Geometry. The Hironaka’s work of 1964 suppose an inflection point in the resolution of
singularities theory. It shows resolution of singularities on algebraic varieties of characteristic
zero. Since then, many of the important progress in resolution of singularities has been based on
this work: resolution of singularities on real and complex analytic manifolds, the effective reso-
lution, embedded resolution of singularities, local uniformization, monomialization, resolution of
singularities on complex foliations of codimension one, resolution of singularities on vector fields,
rectiliniarization of subanalytic sets,...

The framework of this doctoral thesis is resolution of singularities on real analytic sets. One
of the vicissitudes of this resolution of singularities is that of monomialization of germs of real
analytic functions, consisting on the process to transform such a germ f on a function f which
can be locally expressed as

fx1,. .. xm) =2t - apmg, with g(0) # 0,

that is, the product of a monomial times a function which does not vanish (we say that f is
a locally monomial function). In this way, the set of zeroes of f is locally very simple: it
consists on the coordinate hyperplanes with respect to a given coordinate system. For instance,
the process of monomialization of germs of real analytic functions is well known. As we can
see in [2], which serve us as a model for our work, there are two crucial arguments to show this
result: first one is the Noetherianity of the ring of analytic germs and the other one is Weierstrass
Preparation Theorem.

Monomialization of wider classes of germs is proved in more general contexts where neither
Noetherianity nor Weierstrass Preparation Theorem holds. For instance, 3] about quasi-analytic
Denjoy-Carleman classes or [4] about quasi-analytic classes appearing as formal solutions of a
certain kind of differential equations. They are quite important classes on the framework of
o-minimal structures and model theory. In these cases, the germs considered admit usual formal
series (with natural exponents) as asymptotic expansions with the property of quasi-analyticity,



or uniqueness of such an expansion, which is essential for the adaptation of the proof in the
analytic setting to this more general case.

In this work we remain inside the class of real generalized power series R[[X*]]. These are series
of the form
5§ = Z S X |1 Xom

a€[0,00)™

with s, € R such that the support Supp(s) = {a/so # 0} is contained in a cartesian product
S1 X+ X Sy, where S; C [0,00) is a well ordered subset for the usual order in R. We focus on the
subclass R{X™*} of real convergent generalized power series for the usual notion of convergence of
infinite sums of functions (see definition 1.2.3) which are, so to speak, the smallest quasi-analytic
subclass of R[[X*]]. It follows, from the definition, that we do not have Noetherianity on these
classes. For instance, if m = 1, the ideal generated by {X“ : a > 0} is not finitely generated.

Formal generalized power series as well as convergent, appear associated to natural problems on
differential or functional equations. By example, the function

z+— ((—logz) = Z:plog” [0, — R
n=1

where ( is the Riemann zeta function,

()=

n=1

Elements in R{X *} give rise to real functions by passing to the limit, which, being the exponents
of the variables not necessary integers, are not defined in a whole neighborhood of the origin in
R™. Those functions are then defined on the hyper-cube [0, ] where they are continuous, and
as we will see, in the interior of [0,&]™ they are analytic. We will call them real generalized
analytic functions or, for short, G-functions.

This kind of functions has been deeply studied by Van den Dries and Speissegger in [1] from
the point of view of o-minimal properties: roughly speaking, sets defined by equalities and in-
equalities using these functions and the linear projections of these sets have the same geometrical
behavior as real (global) subanalytic sets: finitude of the number of connected components, finite
analytic stratifications, triangulations, etc. The condition on the well ordered support replace,
in some way, Noetherianity in the proof of those finitude results. An other crucial ingredient,
proved also in [1], is the version of the Weierstrass Preparation Theorem with respect to regular
"analytic variables" (appearing only with integer exponents).

Using as a thread the mentioned work |1| and the techniques on resolution of singularities ap-
pearing in [2| and [3] we present in this work the local monomialization of real generalized
analytic functions.

In order to present it in a general geometrical context we construct the category of real gen-
eralized analytic manifolds. We use the generalized power series analogously to the power
series in the classical case of analytic manifolds. One of the main peculiarities is that generalized
analytic manifolds will be manifolds with boundary and corners. This is a geometrical conse-
quence of the existence of non analytic variables in the generalized case: a function like 2* for a
non integer A is only defined for positive values of the variable .

For a better comprehension of the differences with the classical analytic case, we will use analytic
manifolds with boundary and corners. We present at the beginning of chapter two a brief recall
of these objects and their properties in the language of subsheaves on R-algebras of continuous
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functions (called locally ringed spaces).

The Appendix is devoted to a brief exposition of the general concepts and basic properties
in this theory. In a few words, we consider the category € where an object of € is a pair
X = (|X|,€x) where | X]| is a topological space and €x is a sheaf of R-algebras of continuous
functions over | X| such that, for each p € | X|, the stalk €x , is a local R-algebra. The morphisms
between two objects X = (| X|,€x) and Y = (|Y],&y) are pairs (g, ¢*) where ¢ : |[X| — |Y]|
is a continuous map and ¢! : €y — ,Cx is the associated morphism of sheaves determined
by ¢ by composition; that is, if f € €y (V) is a section over the open set V of |Y|, then

P(f) = fopep.x(V)=Cx(e (V).

We will define G the category of real generalized analytic manifolds and O the category of real
analytic manifolds with boundary and corners as subcategories of €. In both cases O and G,
an object will be a locally ringed space on R-algebras of continuous functions whose underlying
topological space is a topological manifold with boundary of pure dimension, all of them locally
homeomorphic to a local model R’;O for some k. By a convenient choice of the second component
of the object (that is the sheaf of continuous functions), objects in the subcategory O will be
the (standard) real analytic manifolds with boundary and corners, when the chosen sheaf is such
that it is locally isomorphic to the sheaf of analytic functions in the local model (those which are
sums of standard real convergent power series). Objects of the subcategory G, on the contrary,
are defined with the property that the sheaf is locally isomorphic to the sheaf of generalized
analytic functions on the local model. They will be called generalized real analytic manifolds.

Once the geometrical context is given, we concentrate on the statement and the proof of the
main result, Theorem 3.4.2.

Local Monomialisation of G-analytic functions.- Let M be a generalized analytic manifold
and f € G(M) a G-analytic function. Given p € |M| there exists a finite family

Y= {ﬂ'j : Wj — M7Lj}j€J
where

1. each 7; is the composition of a sequence of finitely many local blowing-ups (with admissible

centers)
Tj,mn.; Tjm,;—1 i1

T Wi=Win, = Win;o1 = Win—2- = Wio=M
2. each L; is a compact subset of |[W}| such that Ujc m;(L;) is a compact neighborhood of p
in |M]|.

such that for all j € J, fom; : W; — R is locally monomial at any point of L; (i.e. it writes
in certain coordinates as a monomial times a nowhere vanishing function). We can furthermore
take such a family 3 such that any of the local blowing-ups involved in it is with an admissible
center of codimension < 2.

Let us explain the terminology involved in the statement of the main theorem. First, an ad-
missible center of a generalized or standard manifold is a submanifold of the ambient space (a
similar notion to that of a smooth analytic submanifold of an analytic manifold without bound-
ary) which is locally given by the zeros of some local coordinates. Geometrically, it has "normal
crossings” with the boundary of the ambient manifold.

Let us now get into the definition of blowing up morphism with closed admissible center in the
category of generalized analytic manifolds. We can proceed as follows.

First, we recall what a blowing-up morphism is in the category of (standard) real analytic man-
ifolds with boundary and corners. This is a quite well known notion in the category of analytic
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manifolds without boundary. Kssentially, it is a proper analytic morphism that replaces the
center of blowing-up by an hypersurface taking account of the set of lines in a normal bundle
of the center, inducing an isomorphism outside this hypersurface, called the exceptional divisor
of the blowing-up. In our point of view, since the analytic manifolds that we consider have
boundary and corners, we follow the suitable approach of considering the so called oriented real
blowing-up, in contrast with the (relatively more usual) projective real blowing-up. The main
difference is that, in the former case, points of the center of blowing-ups are replaced by the set
of half-lines, normal to the center, defined by means of a system of coordinates; while for the
projective blowing-up, points are replaced by the set of normal lines through them. At boundary
points, we have no entire but half-lines, thus showing the convenience of the use of oriented
blowing-up.

As a consequence, the exceptional divisor (the inverse image of the center) always becomes a new
boundary component to the blown-up space even if the center of blowing-up is contained in the
interior of the standard analytic manifold (where normal entire lines are defined). The choice for
this kind of blowing-up also at interior points is based only on consideration of coherency.

In compensation, we do not alter the properties of orientability of the manifold, although in these
pages, where we only use local blowing-ups (that is, whose center is just a closed "subvariety"
on some open domain), this point does not give us an advantage.

In order to introduce the concept of blowing-up morphism in the category of generalized ana-
lytic manifolds, we notice first a (a priori unexpected) peculiarity that does not occur in the
standard case: if we proceed defining directly the blowing-up for the local model (as we may do
in the standard case) by "gluing" the local charts, we could obtain different (non-isomorphic)
blowing-up morphisms for different choices of local coordinates. Thus, our concept of blowing-up
morphism is not only attached to an admissible center of blowing-up, but relative also to the
choice of coordinates.

A convenient procedure to define blowing-ups in the category of generalized manifolds uses the
concept of standardization. In few words, a generalized manifold is said to be standardizable
if it is isomorphic (the isomorphism will be called a standardization) to a generalized analytic
manifold obtained from a standard analytic manifold (with boundary and corners) by “enriching”
its structure of analytic functions by the procedure of adding to the sheaf of analytic functions
in a coordinate atlas those generalized analytic functions in the same coordinate atlas, just in a
similar way as we consider an algebraic variety as having an analytic structure by adding ana-
lytic functions to the algebraic ones. The theory of enrichments and standardizable manifolds is
developed in section 2.4.

Once we have a standardizable generalized manifold M and a fixed standardization ¢ to the
enrichment of some standard manifold A, we can translate blowing-ups with admissible centers
in A (in the standard setting) to corresponding admissible centers in the generalized manifold
M via the standardization. The details of this definition are presented in section 3.3.

As we can expect, the peculiarity noticed above on the dependence on the coordinates is reflected
in the fact that the blowing-up so defined depends on the considered standardization ¢ of M.

The term ”local blowing-up” in the statement of the main theorem stands, as usual, for blowing-
up with an admissible center which is locally closed, that is, closed in some open subset of the
ambient space considered. The existence of such local blowing-ups is guaranteed by the Propo-
sition 3.1.10 below where we prove that any point in a generalized manifold has a neighborhood
which is standardizable (this is just given by the existence of local coordinates).

However, the global situation is not that easy. We show in 2.4.2 concrete examples of general-
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ized analytic manifolds which are not standardizable. Such examples are interpreted as exotic
examples that could complicate the theory of generalized analytic manifolds in its full generality.
In fact, with this peculiarity in mind, no good notion of blowing-up is possible when the closed
admissible center to be blown-up has not a neighborhood which admits a standardization. This
is the case of the example in 2.3.5: it consists of a three dimensional generalized manifold whose
boundary consists of a circle which has no standardizable open neighborhood. The geometric
interpretation of this pathological example is that this center has not a good "global normal
bundle" of half-lines.

The existence of such pathological examples of non-standardizable generalized manifolds may
constitute an essential point of difficulty on the attempt to prove a Global Resolution of Singu-
larities of generalized functions.

This problem is, roughly speaking, as follows. Start with M a neighborhood of a given fix point
of the manifold. Can we improve our statement of Local Monomialization Theorem so that the
family ¥ consists of a single sequence of blowing-ups ( |J| = 1)

T M, M, S My e IS My = M

and such that, moreover, each 7; is a global blowing-up; that is, a blowing-up with respect to a
closed admissible center of the whole manifold M;_q ?

A global resolution of singularities in the category of generalized manifolds and generalized
functions is a desirable result which we have not attacked and a natural continuation of the
subject that we present in this text. It remains as an open question of, in our modest opinion,
great interest.

13



14



Chapter 1

Generalized power series.

In this chapter we introduce the algebra of generalized power series both in the formal and
convergent setting. Most of the basic properties on these series are presented and proved in the
work of Van den Dries and Speissegger [1]. We prove here a new property, proposition 1.1.20,
which will be fundamental for our purposes.

1.1 Formal generalized power series.

1.1.1 Basic definitions.

Let [0,00) denote the set of non-negative real numbers and (0, 00) the set of positive real num-
bers. For reasons to be clear below, once we have fixed a natural number m, elements in [0, 00)™
will be called exponents and they will be usually denoted by «, 3, etc. On the other hand,
elements of (0,00)™ will be called weight vectors and they will be usually denoted by p, 7, etc.

For exponents o = (a1, g, ..., ap,) and 8 = (B, B2, . . ., Bm) and a weight vector p = (p1, p2, .- -, Pm)
we put as usual o+ 8 = (o + fr,a2 + B2 ..,y + ) and |a, = prag + paco + ... + pma.
When p = (1, ..., 1), sometimes we use the standard notation |a| = aj + - - + auy, for |of,.

We partially order [0,00)™ as follows. For exponents « and S,
a=(ar,...,0n) <B=0P1,....0m) & a; <GB Yie{l,...,m}
We call the order given the division order.

Definition 1.1.1. A subset of [0,00)™ will be called good if it is contained in a cartesian
product of well ordered subsets of [0, c0).

Proposition 1.1.2. Let m € N and let S,7 C [0,1)™ be good subsets of [0,00)™ and p be a
weight vector. Then

i) S is countable.
i1) The set {(p1a1, p22, ..., pmam) : @ € S} is good.

ii1) The set Spin of minimal elements of S for the division order is finite, and each element
B € S is greater or equal to some element of Spyiy.

iv) The set SUT is a good subset of [0, 00)™.

v) The set
Z(S) ={a'+... +a" : keNand o!,...,0f € S}

is a good subset of [0, 00)™. In particular, by iv), S+ T :={s+t:s€ S,t €T} is a good
subset of [0,00)™ too, since S+T C > (SUT).

15



vi) The set {|a|, : @ € S} is a well ordered subset of [0,00) and for any ¢ € [0,00) the set
Sy(c) :={a € S :|a|, = c} is finite.

Proof. For i), it is enough to show the result for m = 1, but this is a well known result : given
x € S there exists its successor, z+ defined by

zt:=min{y € S:y > x}
and we can find a rational number ¢, € Q between x and z ™.

For i1), as S is good, S C 51 x Sg X -+ x Sy, with S; C [0, 00) well ordered for alli € {1,2,...,m}.
Then, {(p1a1, p22, ..., pmaum) : @ € S} C p1S1 X p2aSa X -+ + X ppSpy.

iii), iv) and v) are proved in lemma 4.2 and 4.3 in [1]. wvi) is proved in the same paper, for
the special case of p = (1,...,1). The proof for general p € (0,00)™ goes in the same lines: If
{la], : @ € S} is not well ordered we can take an infinite sequence {a"},cy in S such that
the sequence {|a"|,}nen is strictly decreasing. This implies that at least one of the projections
{a’;}neN must contain a strictly decreasing subsequence against the fact that S is good.

Assume now that we can take an infinite sequence {a"},en such that |a"|, = c. As it is infinite
there must be omne infinite projection. If there are no strictly decreasing subsequences in this
projection, there must be an increasing subsequence. As the value of |a"|, is constant, there
must exists a strictly decreasing sequence in other projection, which is impossible because S is
good. O

Let X = (X1,Xs,...,X,,) be variables and let X* denote the multiplicative monoid whose
elements are the monomials X% := X' X352 ... X% with a = (a1, 02,...,0y) € [0,00)™
multiplied according to X - X# = X8 The identity element of X* is X = 1, where
0=(0,...,0).

Definition 1.1.3. Let A be a commutative ring with 1 # 0. A formal generalized power
series in the variables X with coefficients in A is a map s : [0, 00)"™ — A, that we write as the
formal series

s=s(X):= Z Sa X9,

a€l0,00)™

where s, = s(«), such that the set Supp (s) := {a € [0,00)™ : s4 # 0}, called the support of s,
is a good subset of [0, 00)™.

Let A[[X*]] denote the set of generalized power series in the variables X with coefficients in A.
If the support of s is finite we say that s is a generalized polynomial on X*, and we write
A[X™] for the set of generalized polynomials on X™* with coefficients in A. We consider the power
series ring A[[X]] also as subset of A[[X*]], namely as the subset of all series s as above for which
Supp(s) € N™. (Note that N is a good subset of [0,1)™.)

The operations of sum and product on A[[X*]] are defined as usually : Given a € A and
s,t € A[[X*]] with s =) ym Sa X @ and ¢t =37 ta X

a€l0,00 a€l0,00)™

as = Z (asq) X

a€[0,00)™

s+t:= Z (So + to) X®

a€l0,00)™

st = Z (Z sgty) X

a€l0,00)m B+y=a
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It is obvious that as € A[[X*]]. On the other hand, notice that Supp(s + ¢t) CSupp(s)USupp(t).
So, by proposition 1.1.2, Supp(s + t) is good and s + t is a well defined element in A[[X*]].

Notice also that for every a € [0,00)™ we have the inclusion

{8+~ € Supp(s) + Supp(t) : B+ = a} C {6 € Supp(s) + Supp(t) : || = |af}

So, by proposition 1.1.2, for each o € [0,00)™ there are only a finite number of 5 €Supp(s) and
v €Supp(t) such that 8+ =, s0 > 5. _, Sgly is a finite sum in the ring A and then a well
defined element of A. Hence the series st as above is well defined as a map from [0,00)™ to A.
Moreover, since Supp(st) C Supp(s)+Supp(t), by proposition 1.1.2 again, st is an element in
LX)

The set A[[X*]] with these operations is an A-algebra. Notice also that these operations are
compatible with the standard operations in the ring A[X]: considering a variable X; as the
series with support equal to {(0,...,0,13,0,...,0)}, taking a natural power X is just the
series with support {(0, ...,0,n(),....0)}. Moreover, the generalized polynomials A[X*] and the
formal power series A[[X]] with their standard operations, are subalgebras of A[[X*]].

The constant term of a series s = > s, X% € A[[X*]] is the element sy = s(0) € A. Notice
that the map
s=) saX*€A[X*)|— 50 € A

sending a series to its constant term is an A-algebra homomorphism.

Fix a weight vector p = (p1,...,pm) € (0,00)™. Let s = 3 1 ooym Sa X € A[[X"]]. The
p-order of s is defined as:

min{|a|, : so #0} if s#0.
ord,(s) =

00 if s=0.

In the special case of weight vector p = (1,...,1), the p-order of a series s will be called simply
order of s and denoted by ord(s).

Given s1, s2 € A[[X*]] we have that
i) ord,(s1 + s2)> min{ord,(s1),ord,(s2)}
i1) ord,(si1s2)>ord,(s1)+ord,(s2), with equality if A is an integral domain.
As a consequence, we obtain that A[[X*]] is an integral domain if A is an integral domain.

Definition 1.1.4. Given a weight vector p and a series s = ) 5, X% € A[[X*]] we define the
initial part of s (relative to p) as

In,(s) = Z Sa X

|lafp=ord,(s)

The series s € A[[X*]] will be called p-homogeneous if it is equals to its initial part relative to
p-

A geries is quasi-homogeneous if it is p-homogeneous for a weight vector p.
Finally, for any series s € A[[X*]] and any weight vector p we write:
s =In,(s) +res,(s)

where res(s), = Z|a‘p>ordp(s) sq X%, is called the p-residual part of s. It is a series whose
p-order is strictly greater than that of the series s.
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Remark 1.1.5. Notice that, by property vi) in 1.1.2, the initial part In,(s) is in fact a polyno-
mial.

Definition 1.1.6. We say that a family {s;};cs in A[[X*]] is sumable if :
i) For each a € [0,00)™ there are only finitely many j € J such that a €Supp(s;), and
it) UjesSupp(s;) is a good subset of [0, 00)™.

In this case, if we put s; = Zae[o,oo)m 55, X* for every j € J, we define the sum of {s;};es
denoted by > .. ;s; to be the map from [0,00)™ to A which we write in series notation as

Zsj:: Z (Zsja)Xa.

jeJ a€gl0,00)™ jeJ

je€J

Notice that it is well defined by condition 7). We claim that ;. ;s; € A[[X"]] : The support of
>_jecs 8j is the set
Supp(D _s;) ={a €[0,00)™ : Y 55, #0}.
jeJ jeJ
If o €Supp(3_ 7 85): 2_jey Sjn # 0 so there exists at least some j € J such that s;, # 0. Thus
Supp(D_ e 85) € UjesSupp(s)). As U;c Supp(s;) is a good subset by condition 44), then so is
SUPP(ZjeJ 5j)'

Notice that if s = ), s, X is a generalized power series then the family {soX®}aesupp(s) 18
summable and that its sum is nothing but s.

The following lemma (cf. 4.2 of [1]) characterize the set of units in A[[X*]]. We reproduce here
its proof in order to start getting familiar with the kind of arguments that we use repeatedly in
the sequel.

Lemma 1.1.7. Let 5 = 3, cg soym Sa X € A[[X7]]. Then s is a unit in A[[X*]] if and only if
its constant term sg is a unit in A.

Proof. . If s’ =1 with s’ = 266[0700),” s’ﬁXﬁ, then sps(, = 1, so sp is a unit in A. Conversely,
if bsp = 1 with b € A, then bs = 1 — ¢’ with ord(s’) > 0. Let us see first that the family
{s""}nen is summable : if a € [0,00)™ since ord(s’) > 0 and ord(s™) > n ord(s’) there exists
N € N big enough such that Nord(s") > |a|. Then for any n > N, o €Supp(s™) and condition
i) of 1.1.6 is satisfied. For condition i) notice that Supp(s™) C > (Supp(s’)) for all n € N,
50 UpenSupp(s™) € Y- Supp(s’), which is a good subset of [0,00)™. So there exists the sum
Yonens" €A[XY]) As1=(1—-5)>, cns™, we have that 1 = bs(D, .y s™) s0 s is a unit in
alx .

Remark 1.1.8. In the proof of 1.1.7 it is proved implicitly that if s € A[[X*]] with ord(s) >0
then {s"},en is a summable family.

Definition 1.1.9. Given s € A[[X*]], we define the minimal support of s as the set
Supppin(s) := {a € Supp(s) : @ is minimal for the division order}

Notice that, differently of the classical formal setting, the algebra A[[X™*]] is not Noetherian:
the ideal generated by {XII/N : N € N} is not finitely generated. If it was the case, take the
generator with smallest order in the variable X, say s with ordx, (s) > 0. We can find N € N

such that 1/N <ordy, (s), so s does not divide X/N,

Nevertheless, we have the following finiteness property, which is a consequence of property i)
of proposition 1.1.2.
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Proposition 1.1.10. Given s € A[[X*]] its minimal support is finite and the series s can be

written as

s= Y X% (1.1)
where u, € A[[X*]] satisfies uo(0) # 0 for any a € Supp,,;,($).
The expression (1.1) is called a monomial presentation for s. It is unique up to a change

on the elements u,, for instance, taking s(X,Y) = X +Y + XY we have two possible choices,
X1+Y)+Yand X+Y(1+X).

Definition 1.1.11. A series s € A[[X*]] will be called of monomial type if s = X%u where
u € A[[X*]] with u(0) # 0. A series is of monomial type if and only if its minimal support has
only one element.

Lemma 1.1.12. If s = s150 € R[[X*]] is the product of two series s1,s2 € R[[X*]] and s is of
monomial type, then s; and so are both of monomial type.

Proof. Put s1s9 = X®u where u € A[[X*]] with u(0) # 0. Write a monomial presentation for s;

and ss: X ,
S1 — E X Up 13 SS9 — E X« V2

Since 5152 = X “u there exists 31 €Supp(s1), 82 €Supp(sz2) such that a = ' 4 52 < o' + o for
any ! €Supp(s1) and a? €Supp(s2). Suppose that there exists o' €Supp(s1) such that B! £ ol
This implies that there exists j € {1,...,m} such that ,8]1 > ozjl-. Then, o = /3]1- + ﬁ?— > ajl. + /3]2,
an so a £ a' 4 42, contradiction. Thus 8 < ! for any a! €Supp(sy) so s1 is of monomial type.
Similar for s;. O

Mixed series. Let (X,Y) = (X1,...,Xm,Y1,...,Y,) be a tuple of (m + n) distinct variables.
Let
s= Y sasXOYP e A(X.Y)
(a75)€[0700)77L+7L

From now on we put
Suppx(s) := {a € [0,00)™ : exists B € [0,00)" with (a, ) € Supp(s)} = prx (Supp(s))

Suppy-(s) := {8 € [0,00)" : exists a € [0,00)™ with («, ) € Supp(s)} = pry (Supp(s)).

where pry (respectively pry) denotes the projection onto the first m coordinates (respectively
last n coordinates) of R™*".

We consider for § €Suppy (s), the following series in the X-variables
5.8(X) = Z SapX®
a€Suppy (s)

Recall that Supp(s. 3(X)) CSuppx(s) for each 8 which is good because is the projection of a
good subset, so s. g(X) € A[[X¥]].

If we define for 3 €Suppy (s), sg := 5. 5(X)Y? we can see 55 both as an element of A[[(X,Y)*]]
and as an element of (A[[X™]])[[Y*]]. In both cases the family {s5}gecsuppy (s) i clearly summable,
so we can consider its sum

Z sg = Z ( Z 505X *)Y"

BESuppy (s) BESuppy (s) a€Suppx(s)
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as an element in A[[(X,Y)*]] or in (A[[X*]])[[Y*]]. Notice that in the former case, this gives
nothing but s. This procedure permits to identify A[[(X,Y)*]] with a subring of (A[[X*]])[[Y™]]
via the injective ring homomorphism

A Y] = (A[XTIDIY ]

D 5ap XV Y (D s0pX*)YF
B ]

Note that this homomorphism is not surjective in general: with m,n > 0, the series Y -, Xll/lek

is in (A[[X*]D[[Y*]], but not in (the image of) A[[(X,Y)*]]. Notice, however, that we have a
natural inclusion, (A[[X*]])[Y*] C A[[(X,Y)*]].

We shall also work with the subring A[[X™*, Y]] of A[[(X,Y)*]], consisting of those s € A[[(X,Y)*]]
in which the Y-variables have only natural numbers as exponents, that is whose support is
included in RZ; x N”, ie., such that Suppy(s) € N”. Similarly to the above, we identify
A[[X*,Y]] with the corresponding subring of A[[X*]][[Y]]; notice again that the example above
shows that A[[X*, Y]] € (A[[X*]])[[Y]]. On the other hand, we have the equality A[[X™*, Y]] =
(A X

As a matter of terminology, in the ring A[[X*, Y]], variables X will be called generalized (or
non-analytic) and variables Y will be called analytic.

Partial derivatives. The operation s — 8‘9)2 € A[[X]] does not extend naturally to A[[X*]],

but the modified operation s — Xiaa—)z on A[[X]] does have a good extension 0; to A[[X*]]: given
s =Y 5,X" € A[[X"]], we define

0;8 1= Zaisaxa € A[[X™]]

On the other hand, considering s € A[[X*, Y]] as an element of A[[X*]][[Y]], the partial deriva-
tives 0s/0Y; defined as usual belong to A[[X*, Y]], and in fact Y;0s/0Y; = Opjs.

1.1.2 Newton polyhedron of generalized series.

In this paragraph, let us use the following quite well known terminology about polyhedron that
can be found in the modern book [11], for instance.

A subset A of a real affine space E is called a (finite) convex polyhedron of E if it is a
finite intersection of closed half-spaces in E (a closed half-space is the closure of one of the two
connected components of E\ H where H is an affine hyperplane in E). The dimension of A is
the minimum dimension of an affine subspace of E containing A. It has dimension equal to that
of E if and only if A has a non-empty interior in F.

An affine hyperplane H in R" is called a supporting hyperplane for A if A is contained in
one of the two closed half-spaces determined by H. A face of A is the intersection of A with
a supporting hyperplane. It is easy to see that there are only finitely many faces of a convex
polyhedron A and that a face is a convex polyhedron in the supporting hyperplane. A face of a
face of A is called a subface of A. A face which is not equal to the whole A is called a proper
face. A face of dimension 0 is called a vertex and a face of dimension one is called an edge .

It is a well known result that a bounded convex polyhedron is nothing more than the convex hull
of its vertices and, reciprocally, the convex hull of finitely many points in E is a bounded convex
polyhedron in E.

Finally, a (finite) polyhedral complex in E is a finite union of convex polyhedra in E such
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that the intersection of two of them is either empty or a common face of both. For example, if A
is a convex polyhedron in E with non-empty interior, then its frontier is a polyhedral complex,
equal to the union of all proper faces of A.

Now, given s € A[[X™]], we can define its Newton polyhedron in the usual way. Consider
N(s) :=Supp(s) + R, and define the Newton Polyhedron A(s) as

A(s) = convex hull of (N(s))

Using the property of finite monomial presentation of s (cf. Proposition 1.1), we have that
Suppmin($) is finite and that
N (5) = Supp,in(s) + R,

In this situation, we can assure that the Newton polyhedron A(s) is a finite convex polyhedron
as we have defined above, which justifies the given name.

Figure 1.1: Newton polygon and minimal support.

Notice that every vertex of the polyhedron is an element of the minimal support of s but not
reciprocally (see Fig. 1.1). By property iii) of 1.1.2 we conclude that the Newton polyhedron of
a generalized power series has finitely many vertices.

Given a weight vector p € (0,00)™, the initial part In,(s) of a given series with respect to p can
be determined geometrically using the Newton polyhedron of s in the usual way. For any non
negative constant ¢ € R>¢, we define the hyperplane of R™

H,.:={(z1,22,...,2m) €R™ : p121 4+ pox2 + ... + pm@Tm = ¢}
Lemma 1.1.13. Fix p € (0,00)™ a weight vector. Given a series s € A[[X™]],
i) The p-order of s is given by ord,(s) = sup{c € R>o: H, . N A(s) =0}

i1) We have that

H

pord,(s) N Fr(A(s)) = Convex Hull(Supp(In,(s)))

Proof. First notice that if ¢ € R>q is such that H, .NA(s) # () then for all ¢ > ¢, H, .NA(s) # )
by definition of A(s). On the other hand, H, sq,s) NN (s) # 0, by definition of ord,(s). Thus
ord,(s) is an upper bound of {¢ € R>¢ : H, NN (s) = 0}. Let ¢ =sup{c € R>¢: H, NN (s) =
0}. Notice that, since A(s) is connected, for any ¢ for which H, .NA(s) = ), the hyperplane H, .
is a supporting hyperplane of the polyhedron A(s). By continuity, we must have also that H, . is
a supporting hyperplane and, moreover, H, »NA(s) # (. But then H, sNA(s) = H, «NFr(A(s))
which is a face of the polyhedron. This face contains at least one vertex of A(s), that is an element
a € A(s). Since a € H, s, we have |a|, = ¢ and thus, by definition of the p-order, we obtain
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ord,(s) < ¢, giving the required equality.

For the second part of the lemma, notice that we have proved that H).q,(s) 18 & supporting
hyperplane of A and thus it cuts the polyhedron in a face F' of it. This face contains no line
parallel to a coordinate axis, so F'is a bounded face and hence, F' is the convex hull of its vertices.
Being this set of vertices included in the hyperplane H, ,q,(s), it is contained in Supp(In,(s))
and thus H, orq,(s) N A(s) C Convex Hull(Supp(In,(s))). The other inclusion is obvious since

p
Supp(In,(s)) C F and F is convex. O

1.1.3 Composition morphisms.

Recall that in the classical framework of formal power series, the composition of series makes
sense: we can change variables by series with no constant term. Formally, if s € A[[Y]], and
t = (t1,t2,...,tn) € A[[W]]", where W = (W1,...,W,), with ¢t;(0) = ... = t,(0) = 0 we may
substitute ¢ for Y in s and obtain an element s(¢(W)) € A[[W]]. This operation of substitution
satisfies the following natural property: for any fixed n-tuple of series t(W) € A[[W]]", the map
s — s(t(W)) from A[[Y]] to A[[W]] is an A-algebra homomorphism.

We can proceed similarly in the situation of mixed power series, already studied in [1], page 4393,
when we just substitute analytic variables by formal series. More precisely, let s € A[[X*, Y]],
where X is m-dimensional and Y is n-dimensional, and let t = (t1,t2,...,t,) € A[[W]]™ with
t1(0) = ... = t,(0) = 0. Since A[[X*,Y]] C A[[X*]][[Y]], we may substitute ¢ for ¥ in s
and obtain an element s(X,t(W)) € A[[X*]][[W]]. One easily checks that in fact s(X,t(W)) €
A[[X*, W]] (see part i) of Proposition 1.1.14 below). Again, once t(W) is fixed, the map s €
A[[X* Y]] — s(X,t(W)) € A[[X™,W]] is an algebra homomorphism.

However, the general problem of composition of generalized power series is much more delicate.
Take for instance just the simple example s = Y'/2 € R[[Y*]] with Y a single variable. If we want
that substitution gives rise to an algebra homomorphism (or if we want any reasonable definition
of substitution), to substitute Y by a generalized power series ¢(W) must be interpreted as a
"square root" of t(W). But then, choosing for instance t(W) = W 4+ Ws in two variables, there
is no reasonable candidate in R[[W*]] whose square is equal to W7 4+ Ws. However, in the special
case of A =R, there is a subset of real generalized power series which is characterized precisely
by this condition, the series of monomial type. Let us prove that they are exactly those series
that can be plugged into variables in every generalized power series (propositions 1.1.14 and
1.1.20).

Proposition 1.1.14. Let X = (X1, Xo,..., X)), Y = N, Ys,....Y)), Z = (Z1,%2,...,Z;)
and W = (Wq, W, ..., W;) denote multi-variables.

i) Let s = 24 1)ef0,00)mxnm S,nX*Y! € A[[X* Y]] and let t = (t1,t2,...,t,) € A[[W]]"
with ¢1(0) = ... =t,(0) = 0. The family

{8(a,n X'ty -t} aeSuppy(s)
I=(i1,i2,...,in)EN"

is summable and its sum, denoted by s(X,t1,t2,...,t,), or for short, s(X,t(W)), is in
A[[X*, W]]. Moreover, the map s — s(X,t(W)) is an A-algebra homomorphism from
A[[X™, Y]] to A[[X™, W]].

i) Let s = 37, peo,o0)mxnn S,nX*Y! € A[X*,Y]] and let ¢t = (t1,ta,...,tn) € A[[Z*]]"
with ¢1(0) = ... =t,(0) = 0. The family

{S(oz,l)*xatzlltZQ2 T t%n} a€Supp x (s)
I=(i1,i2,...,in)EN"
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is summable and its sum, denoted by s(X,t1,ta,...,t,), or for short, s(X,¢(Z)), is in
A[[X*, Z*]]. Moreover, the map s — s(X,t(Z)) is an A-algebra homomorphism from
A[[X™, Y]] to A[[X™, Z7]].

i) f u = Y cp,00m uaX® € R[[X™]] is such that up > 0, the family{(u — uo)* Y ren is
summable and then we can define for every a > 0

wti= 3 () - ) € RIX)

keN

iv) Let s = Y. 5,X* € R[[X*]] and t = (t1,t2,...,tm) € R[[Z¥]|™. If t; = Zu;, with
Bt # (0,...,0), u; € R[[Z*]] and u;(0) > 0 for all i € {1,2,...,m} (that is, #; is of
monomial type), the family {sat7"5% -+ - 13" } oesupp(s) 8 summable and its sum, denoted
by s(ti,ta,...,t,) is in R[[Z*]]. Moreover, the map s — s(t1,...,t,) is an R-algebra
homomorphism from R[[X*]] to R[[Z*]].

Proof. For i), let us call for any a € Suppx(s) and I = (i1,i2,...,0,) € N”

Uol) = S(a,n X T LE -1

Notice that if (v, J) € [0,00)™ x N, (v,.J) €Supp(q(a,n) if ¥ = a. Since t1(0) = ... = t,(0) = 0,
for any 1 < ¢ < n there exists ~J: € Nﬁ with jl # 0 such that WY divides ¢;. Then, for
I = (i1,d9,...,in) € N, Withtizlettindn divides 142 - - - tin. As there are only finitely many

I = (i1,42,...,i,) € N™ such that i1j1 + igjg + -+ +i,J, < J we have condition i) of 1.1.6
summable family. On the other hand,

U Supp(g(a,r)) € Suppx(s) x N'
a€Suppx(s)

I=(’i1,’i2,...,in)€Nn
which is a good set.
We can reason analogously for i), but in this case, using the analogous notation,

U Supp(q(a,n) € Suppx (s) x > (U, Supp(t;))
a€Suppx (s)
I=(i1,i2,...,in)EN™

which is a good set by properties 1.1.2.

Part 4i4) is an immediate consequence of remark 1.1.8.

For part iv), we write _
t; = Z’BZ (ul(O) + Ei)

where £;(0) = 0 and ¢ = (8%, 85,...,8.) # 0 for i = 1,2,...,m. We define for any a =
(O[l,CYQ, . ~7am) 6 Supp(s)7

o 1= 50200400 0y (0) 4 £0) (ua(0) 4 €2) -+ (un(0)  E)™ (12)

By part iii), go € R[[Z*]] for any o € Supp(s). We have to prove that the family {qa }aesupp(s)
is summable. For i € {1,2,...,m},

(i) + % = 3 (o) -¥ek

keN
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Let v = (v1,72,---,7%) € [0,00)". If v €Supp(qa),
fy:oqﬂl+a2ﬂ2+---+am,8m+6(a) (1.3)

where §(a) = (d()1,6(a)2,...,6(cr),) € > (U™ Supp(e;)). Suppose that there are infinitely
many a = (a1, Q,...,q;,) € Supp(s) such that v €Supp(qa). Take a sequence {a”},en of
different elements in Supp(s) such that v €Supp(gen) for n € N. As Supp(s) is good, there
exists j € {1,2,...,m} such that {a?}neN is strictly increasing. Take k € {1,2,...,m} such
that 3] # 0. Since
Yo = of By + B BE 4+ ap B+ 6"

and all the terms involved are non-negative, either {§(a™);}nen or {af }nen for at least one
i # j should be strictly decreasing which is impossible because ) (U™ ,Supp(e;)) and Supp(s)
are good.

On the other hand, by (1.3), Usesupp(s)SuPP(da) S > (U Suppy, (s)3" U Suppe;)) where
Suppy;, (s) is the projection on the it"-component of Supp(s), and by proposition 1.1.2

> (U Suppy, (s)8" U Suppe;))

is good. O

Remark 1.1.15. Let s = ) s5,X* € R[[X*]], My, My, ..., M, € R[[Z*]] be monomials (M; =
Z8" with ' # 0), W = (W1, Wa, ..., W,,) be variables and A1, Ao, ..., Ay € Rug. If we define
for any a = (a1, ag, ..., ) € Supp(s)

tq := SaM{ll(Al + Wl)alM;Q ()\2 + Wg)a2 <o M%m(km + Wm)am
by part iii) of proposition 1.1.14 above, t, € R[[Z*, W]]. In fact, the sum of the family
{tOé = SO/Mlal(Al + Vvl)oqu’?a2 ()‘2 + I/VQ)OC2 T M%W(Am + Wm)am}ocz(al,az,...,am)ESupp(s)

(summable in R[[Z*, W*]] by part iv)), belongs to R[[Z*, W]|. This is a consequence of the proof
of part 4v). We denote this sum by s(M7"* (A1 +W1)*t, M52 (Ao +Wa)2, ..., M&™ (N + W, )@m).

Examples 1.1.16. i) Let Gptn denote the group of permutations of m + n elements, and
Gm,n the subgroup of G4, permuting on the one hand the first m elements between
them and the n last elements on the other. Then if o € G, , it induces an A-algebra
automorphism of A[[X*, Y]] by putting

() 5asXYP) =" 50 50(XYP)

where o(X*Y ) := X:(ll) e X?&)Yf(lmﬂ)_m . Yf(’;wn)_m. We usually write os for o(s),

where s € A[[X*,Y]]. Also corresponding to o we define a map o : R™*" — R™*" by
o(2,y) = (To(1)s - > To(m)s Yo(mt1)—m - - s Yo(m+n)—m)- (For a polyradius r = (r1,...,7m)
the case n = 0 applies, so that o(r) = (T5(1),- - To(m))-)

i1) Assume m > 2. Given distinct 4,5 € {1,2,...,m} and v > 0, we define an injective monoid
homomorphism ¢; : X* — X* such that ¢;(Xg) = X}, for k # i and ¢;;(X;) = X; X}, as
follows:

V(va)._ vo1yo2 O —1 YT Q1 m _ Yy
gij(X).—X1 X5 --~Xj_1 Xj Xj+1 e X=X Xj

It extends to an injective A-algebra endomorphism of A[[X*]] by putting CZ(Z SaX ) =
> 8a5;;(X®). To avoid too many nested parentheses, we will write ¢/s instead of ¢ (s).
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Proposition 1.1.14 shows that, in the context of real generalized power series, substitution of
variables X; by other series t; is possible if the substitute series ¢; are of monomial type. In the
following proposition we prove a reciprocal result, that is, if a real generalized power series ¢, in
any given number of variables, can be the "substitute" of a variable in any generalized power
series, then ¢ must be of monomial type. A correct statement of this reciprocal property makes
use of the special series XV, for N € N, where to substitute the variable X by t; that is,
existence of N*'-roots of ¢ for any N. For our purposes, we state this result in the slightly more
general context of mixed series.

Definition 1.1.17. Let s € R[[X*, Y]] be a formal generalized real power series where X =
(X1,...,Xm), Y =(Y1,...,Y,) are respectively the generalized and the analytic variables. Sup-
pose that s # 0. For N € N> we say that s has has an N'"-root if there exists sy € R[[X*,Y]]
such that (sy)V = s.

Lemma 1.1.18. Let s € R[[X*]]. Suppose that s # 0 and that s has an N'"-root for any
N € N. Then, for any weight vector p € (0,00)™, the initial part of s, In,(s) have an Nt'_root

for any N € N. Moreover, any N**-root of In,(s) is p-homogeneous whose p-degree is equal to
ord,(s)/N.

Proof. Put s = In,(s)+res,(s) where res,(s) is the residual part of s with respect to p. Let
sy € R[[X*,Y]] be an N'-root of s and put sy =In,(sy)+res,(sy). We have

s = (sn)N = (Iny(sn) +res,(sn)Y = (Iny(sn))™ + Z ( )Inp sn) ™ Fres,(sn)F

Since ord,(In,(sn)) <ord,(res,(sn)), ord,((In,(sn))™) <ord,(In,(sn )V ~Fres,(sy)k) for all k €

{1,2,..., N} which implies that In,(s) =(In,(sx))". This argument also shows that any N'-
root of In,(s) is p-homogeneous and its p-degree is equal to ord,(s)/N by property 2 of the order
function ord,,. O

Corollary 1.1.19. Let s € R[[X*]]. Suppose that s # 0 and that s has an N* -root for any
N € N. Let, for all N € N, sy € R[[X*]] be an N*"-root of s, that is (sy)V = s. Then, for any
weight vector p, In,(s) = (In,(sn))”™ and so ord,(In(sy)) =ord,(In(s))/N.

Proposition 1.1.20. Let s € R[[X*,Y]] be a formal generalized real power series where X =
(X1,...,Xm), Y =(Y1,...,Y,) are respectively the generalized and the analytic variables. Sup-
pose that s # 0 and that for any integer N € N> there exists a N*-root sy € R[[X*,Y]] of s,
that is (sy) = s. Then s = X%u, where a € [0,00)™ and u € R[[X*,Y]] is a unit such that
u(0,0) > 0.

Proof. If m = 0, the result is well know : If s = s(Y) € R[[Y]] is a usual formal power series
with all N-roots then s is a unit. Otherwise, any N*"-root of s is not a unit. Thus ord(sy) > 1,
because sy € R[[Y]], and then the order of s would be greater or equal to N for all N € N and
thus s = 0. In addition, s(0) > 0 because s2(0)% = s(0).

If m > 0. Consider s as an element of (R[[Y]])[[X*]]. Suppose that the Newton polyhedron of s
(as an element of (R[[Y]])[[X*]]) has only one vertex, that is, s = X*u(X,Y") with «(0,Y") # 0.
If ord(u(0,Y)) = 0, u(0,0) # 0 and in particular »(0,0) > 0. If not, (sy)V = s = X%u; if X*/N
does not divide sy, there exists i € {1,2,...,m} such that X?"'/N does not divides s, that is, such
that o;/N < min(Suppyx, (sy)) which implies that ; < min(Suppy,(sY = s)), contradiction.
Thus, XN divides sy, so sy = X*Nty and X(tn)N = (sy)V = s = X%. Then u has all
the N*"-roots which implies that «(0,Y") is 0 or it is a unit by the case m = 0,n € N.

Now we prove that the Newton polyhedron of s (as an element of (R[[Y]])[[X*]]) can not have
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more that one vertex. Suppose that it has at least two different vertices. Then, the Newton
polyhedron has at least one edge [a, 8] with o # [ which is not parallel to a coordinate axis.
Then there exists a weight vector p = (p1,...,pm) € (0,00)™ and a supporting hyperplane of
A(s) of the form H,. = {pix1 + p2z2 + ... + pmxm = ¢} with ¢ > 0 that cuts the Newton
polyhedron exactly in the edge [«, 5].

Write s as the sum s =p,(s)+r,(s) where p,(s) is the p-homogeneous part of s and r,(s) is the
residual part, whose p-order is strictly bigger than 1 =ord,(s). Recall that p, is a polynomial in
R[[Y]][X*] (see properties 1.1.2). Moreover, our choice of p implies that Supp(p,) is contained
in the segment [o, 5] and that its extremities a and 3 both belong to Supp(p,)

For any N € N, let sy be a N*"-root of s. As we have seen in Corollary 1.1.19, the p-initial
part p, v =In,(sy) of sy is an Nth_root of pp- Notice also that p, n is p-homogeneous of degree
ord,(s)/N.

Thus, our proposition will be finished once we prove the following claim, which is a particular
case of the proposition:

Claim: Suppose that Suppx(s) is contained in the segment [«, 5] where o # 3, non parallel
to any of the coordinate axis, and that o, 3 €Suppx(s). Then s can not have an N*"-root in
R[[X*, Y]] for any natural number N.

Proof of the Claim.- Assume that s has an N*'-root sy € R[[X*,Y]] for any N. Consider m — 1

independent weight vectors p', ..., p™ ! such that the line containing the segment [a, 3] is the
intersection of hyperplanes of the form Hpj,cg- with ¢; > 0, for j = 1,...,m — 1. Then s is

p’-homogeneous for any j and, by Lemma 1.1.18, the N**-root sy is p/-homegeneous too; that
is, its support is contained in the hyperplane of the form H,; 4. (in fact dj = ¢j/N). Therefore
Suppx(sn) is contained in a line which is parallel to [a, 5] (in fact in the line containing the
segment [a/N, /N]). We can write

S = Z SAX(lf)‘)O“F)‘/B
X€(0,1]

Notice that this sum is finite since sy is a quasi-homogeneous polynomial.

Let us call Supp*(s) := {X € [0,1] : sy # 0}. Recall that our hypothesis that a, 8 €Suppx(s)
implies that 0,1 €Supp*(s). As (sy)" = s, we have that for A € R,

S\ = > SNAISNAs " SNAN (1.4)
Ar+Ae+FAN=NAN eSupp™* (sn)

Let Ao := min(Supp*(sy)) and A1 := max(Supp*(sy)). Let us show that Ao = 0 and that
A1 = 1. In fact, taking A = Ag in the expression (1.4), we see that there is just a summand
in that expression which is (sy,)" # 0. We can also see that if A < g then sy = 0 in the
expression (1.4) by the definition of \g. Since sy = 0 for A < 0 and sy # 0, this shows that
Ao = 0. Analogously, we show that A; = 1.

Let N big enough such that if A\ € Supp*(s), then A = 0 or A > 1/N (this is possible because
Supp*(s) is finite). For A = 1/N, we have in the expression (1.4) the summands corresponding
to the tuples of the form

(A A2s -y Ay) = (0,...,16™) o)

for j =1,2,...,N. Each of them gives rise to the same coefficient (sy.1)(sn )Y " # 0 because
sn1 # 0 # sno. On the other hand, since A = 1/N ¢ Supp*(s) there must exist other N-tuples

(AL, Az, ..., Aw) € ([0, 1] N Supp*(s)]Y
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which are different of the N-tuples (0, ..., 1(jth), ...,0) and such that \y + Ao + -+ + Ay = 1.
Since all \; > 0, there exists A} €Supp*(sy) with 0 < A < 1. Now, for A = A!/N we have in
(1.4) the summands corresponding to the tuples

=
(A, Ay AN) = (0, AL, 0)
for j =1,2,..., N. They give rise to the same summand

(sna)(sno)V 1 #0

As A'/N ¢Supp*(s), there must be N-tuples

(M, A2, ..., An) € [Supp*(s)]Y

jth

P

different from (0,..., A',...,0) with \{ + Ao 4+ --- + Ay = AL, Since all Aj > 0, there exist
A2 €Supp*(sy) with 0 < A% < A < 1. We construct in this way a strictly decreasing sequence
in Supp*(sy) which is impossible. O

1.1.4 The b invariant

Let us introduce here a numerical invariant, that will be used in the proof of the main theorem in
chapter 3, associated to a series that measures how far it is a series from being of monomial type.
Below, we will see how does this invariant behaves under some specific transformations of the
type of example 7i) in 1.1.16 (those corresponding to the local expression of certain blowing-up
morphism to be defined in chapter 3). Both the invariant and its behavior is already introduced
and discussed in the paper [1]; we just reproduce here the same arguments since they are crucial
to our purposes.

Let a, 8 € [0,00)™ be exponents. Put inf(«, ) := (min{aq, 81}, ..., min{am, Bn}). Hinf(a, B) €
{a, B}, then put d(a, 8) = 0. If inf(«, B) & {, B}, there are two possibilities:

i) inf(o,8) = 0. Let a:=|{j € {1,...,m} : aj # 0} and b := |{j € {1,...,m} : B; # O}
Then, d(a, B) = a +b.

i1) inf(a, B) # 0. Then, d(«, ) := d(a — inf(a, B), B — inf(a, 5)).

Finally, write X*| X% or "X divides X?" iff o < 3, ged(X®, X#) := X™H(@h) and d(X, XP) :=
d(a, B).

The mapping d : [0,00)™ — N measures how far is {«, 8} to be totally ordered by the division
order.

For m > 2, different i,j € {1,...,m} and v > 0 let g?j denote the morphism given in example
i) of 1.1.16.

Lemma 1.1.21.  4) d(X®, X%) = 0if and only {«, 3} is totally ordered by the division order,
or equivalently, either X | X# or X8 | X,

i) if m=1,d(X* XP) =0.

iii) If m > 2 and d(X* XP) = 0, then d(¢};(X*),¢};(X")) = 0 for any different i,j €
{1,...,m} and v > 0.

iv) d(X, XP) =d(XP, X).
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v) If d(X®, XB) # 0, then there exists different i,j € {1,...,m} and v > 0 such that
d((X), H(XP)) < d(x®, X7)

and
a1 (x), (X)) < d(x®, XP)

Proof. We reproduce the proof given in [1] of point v) because of the relevance of that point
on the proof of the main result of this work. Suppose d(XO‘,Xﬁ) % 0. Suppose first that
ged(X®, XP) = 1. Then we can choose different i,j € {1,...,m} such that o; # 0 and Bj # 0.

Let 7 == f;/a;. Then ¢J}(X*) = XX}’ and ¢},(X”) = X?. Dividing X? and X*X,” by its
Bj . Y « Y e 1/~ a 1/~

ged, X7, we obtain d(c;(X ),gij(Xﬁ)) < d(X*,X"?). Analogously, d(s;i '(X¥), 55 (X9) <

(X, X5).

For the general case, take i,j € {1,...,m} and v > 0 such that

(s (X ), s[(XP7)) < d(X*, XP)

and
1 a—w 1 —w e}
d(s}/ (X7, 1 (XP)) < d(X*, XP)

where w = inf(a, 8). The identity ¢;;(X) = ¢;(X*7*)¢;(X*) then implies
d(7(X*), (XP)) = d(¢(X¥), L (X))

hence, d(<;(X®),;,(X?)) < d(X*, XP). The case of 5;/7 is again similar. O

Definition 1.1.22. Given s € A[[X*]], we define
b(s) = (b1(s), b2(s)) := (#Supppmin () — 1, ba(s)) € N (1.5)
where

0 if bi(s) =0
ba(s) =
min{d(a, 8) : o, B € Suppun(s), 0 £ B} if bi(s) £ 0.

Notice that b(s) = (0,0), if and only if s is of monomial type. Consequently, if m = 1, b(s) = (0,0)
for any s € A[[X™]].

We order N? lexicographically in what follows.
Proposition 1.1.23. Let s € A[[X"]].
i) If b(s) = (0,0) and m > 2, then for any different ,j € {1,...,m} and v >0
b(<)(5)) = (0,0)
i1) If b(s) # (0,0), then there exists different 4,5 € {1,...,m} and v > 0 such that

b(7i(s)) < b(s) and b(s}/"(s) < b(s)

1

Proof. Tt follows from the definition of b and lemma 1.1.21. For a detailed proof see [1], propo-
sition 4.14. 0
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1.1.5 Weierstrass preparation theorem.

Now we state a Weierstrass Division and Preparation Theorem for formal generalized
series as it appears in [1].

Definition 1.1.24. Let n > 0. A power series s € A[[X*, Y]] is called regular in Y,, of order d
if
5(0,0,Y,) = uY,? 4 terms of higher degree in Y;,

with u a unit in A. Put Y/ := (Y1,...,Y,_1).
Theorem 1.1.25. Let n > 0 and let s € A[[X™, Y]] be regular in Y,, of order d.

1. There is for each s’ € A[[X*, Y]] a unique pair (Q,R) with @ € A[[X*,Y]] and R €
A[[X*,Y']][Yz], such that

s = Qs+ R and degy, (R) < d.

2. s factors uniquely as s = uP, where u is a unit in A[[X*,Y]] and P € A[[X*,Y']][Y,] is a
monic polynomial of degree d in Y.

Note that the polynomial P has the form
P=Y44a (X, Y)Y+ .  +ag(X,Y)

with @;(0,0) non units in A for 1 < i < d because it is monic and s is regular in Y,, of order d
(if there exists ¢ such that a;(0,0) is a unit, s would be regular of order smaller or equal than
i < d).

Implicit functions. We obtain as a corollary an Implicit Functions Theorem:

Corollary 1.1.26. Let s = (s1,52,...,5:) € A[[X*,Y,W]]* where X = (X1, X2,...,Xm),
Y =MN,Ys,...,Y,) and W = (Wy,Wy,...,W). Suppose that s;(0) =0 for j =1,2...,k and

that the matrix (aavs‘} (Q))1< . is not singular. Then there exists t1,to,...,tx € A[[X*, Y]]
¢ <4, <

with #;(0) = 0 such that s;(X, Y, (X,Y),t2(X,Y), ..., tx(X,Y)) =0for j =1,2... k.

Proof. By induction on k. If k = 1, since 8‘9;‘}1 (0) # 0, s1 is regular of order 1 in Wj. By

Weierstrass preparation,

S1 = (Wl - G,(X, Y7 W27 W37 SRS Wk))ul

We take t; = a, which solves the problem.

Let k > 2 and suppose the result true for k — 1. We can suppose 88‘;9[}1 (0) # 0 and aa‘fiﬁl (0) = 0 for

Jj=2,3...,k (if this is noat the case, change the order of the s; to have 08‘,5[}1 (0) # 0 and then pick
s

51 := 51 and 5; 1= 55 — %2‘/117

awy ()

ti,ta, ..., t; € A[[X*, Y]] with ¢;(0) = 0 such that s;(X, Y, t1(X,Y), t2(X,Y),..., tx(X,Y)) = 0.
Notice that the same ¢; solve the initial problem.)

sy for j =2,3...,k. If the result is proved for the s; we obtain

Since 591?1/11 (0) # 0, s1 is regular of order 1 in Wj. By Weierstrass preparation,

S1 = (Wl — G(X, Y, WQ, W3, ey Wk))ul
We define for j =2,3... )k,

85 1= Sj(X,Y,CL(X, Y Wy, Ws, .. .,Wk),WQ,Wg, .. ,Wk)
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which are in A[[X™*,Y, Wy, W3, ..., W;]] because a(0) = 0 (see proposition 1.1.14). On the other
hand,

0s; 0s; da 0s; 0s;
0) = =2 (a(0 0 70y = 229 (0
A AR 2 TAC R TAC T A
< < k. z = z
for 1 < i,j < k. Then, the matrix <8Wi (Q))Qgi,jgk (8Wi (Q))Qgi,jgk which is not singular
because (98;}1 (0) = 0 for j € {2...,k}, so by the induction assumption, there exits ta,...,t; €

A[[X*,Y]] with ¢;(0) = 0 such that
$i (X, Y, a(te(X,Y), .., tx(X,Y)), 62(X,Y), .. ., tx(X,Y)) = 55(X, Y, t2(X,Y),.. .. tx(X,Y)) =0

for j =2,3... k. Take t; = a(t2(X,Y),..., tx(X,Y)). O

1.2 Convergent generalized power series

In this section, we consider the subring of convergent series in the ring of formal generalized
power series, where convergence is defined in a very natural way. The most part of the concepts
and results are already given in the paper [1] but we reproduce here some of them when the
arguments are useful for our purposes.

Convergent generalized power series give rise, passing to the limit in the partial sums, to functions
in their domains of convergence, as much as the convergent standard power series give rise to
the analytic functions. We will call those functions "generalized analytic functions". They will
be our objects of study during the rest of this text.

1.2.1 Basic definitions.

Given any family {c;};jcs of positive real numbers, we can consider its sum
¢ €[0,00]
Je€J

With this notation we mean, as usual, that ZjeJ ¢; is equal to ¢ € [0, 00) if for any € > 0 there

exists a finite set .J(e) C J such that for any finite subset J of .J containing .J(e) we have,

|ch—c]<e.

jeJ

If > ;e ¢j is not equal to ¢ for any ¢ € [0,00) we say that >_ .,
familiarized with this concept can go directly to Definition 1.2.5.

¢j is equal to co. The reader

We recall a property about interchanging index of summation in these kind of infinite sums.

Lemma 1.2.1. Let {c;;}; j)erxs be a family of positive real numbers, ¢; ; > 0 for any (4,7) €
I x J. It is equivalent:

) D j)erxg Cij = C < oo.

it) Foreachie€ I, i ;¢ ;=C;<ocand ), .;C;=C.

jed

iii) For each j € J, > ;o ¢ij = CV < oo and > ied CI=C.

Proof. Let us show the equivalence between i) and i), being the equivalence between i) and i)
analogous.
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i) = i1). Suppose that there exists C' € Rs( such that E(i,j)eIxJCi,j =C. Letiel, and Jy a
finite subset of J. Since the ¢; ; are positif and Z(i jerxJ Cig = C, ZjeJo cij < C. Let

JoCJ
Jofinite JjeJdo

Notice that C; < C, for any ¢ € I. We claim that C; = ZjeJ cij: first, if J; C J is finite,
> jea, Cij < C; by definition of C;. Let € > 0. Since C; — € is not an upper bound of de family
{Z]eJO Cij} Joct , there exists Jy C J finite such that C; — e < ZjeJo ¢;,j, which implies that

Jofinite

Ci = ey, Cig <€ Thus, C; =3 . ;cij.

Let us prove now that ) ,.; C; = C. Notice that if Iy C I is finite, ZZEIO C; < C (if not, there
should exist a finite Iy C I such that Zzel C; = C + e with € > 0. Let, for i € Iy, Jo(i) C J
finite such that C; — > ) Cig < T I , where Iy denotes the number of elements in Iy. Let

Jo = UieryJo(i). Then,

C+e— Z Ci,j:ZCi— Z Ci,j<€

(4,9)€loxJo i€ly (3,5)€loxJo

j€Jo(3

which implies that C' < Z(i,j)eloxJo ¢;,j. Contradiction.) If € > 0, there exists Ip x Jo C I x J
finite such that C'— 3" ey« Cij < € But,

> =) (3 )<y G

(3,5)Elox Jo i€ly jeJo i€l
Then,
C-) CG<C- > caj<e
i€lp (4,7)€Iox Jo
So, C' = Zie[ C;.

ii) = 1i). Let us show first that if A C I x J is finite, then 3 ; o5 ¢ij < C. Suppose A = Io x Jo

with Iy and Jy finite, then °; ;o) ¢ij = Zzelo(deJo Cij) < e, Ci < C.

Let € > 0. As ), ;C; = C, there exists Iy C I finite such that C' — >, Ci < 5. For each
i € Iy let Jy(i) C J finite such that C; — > ) Cig < 211[ where #1y denotes the number of

je€Jo(i
elements in Iy. Let Jo := Ujer, Jo(7). It is finite and for any i € Iy, C; — Z]GJO cij < 2t1[ Then,
Dier, Ci — Z(i,j)elox.]o ¢ij < 5. Thus, € — Z(i,j)eloxjo Cij <€ O
Now, if A is a normed ring with norm | - |, we can generalize the concept of the sum of a family

of elements in A.

Lemma 1.2.2. Given any family {a;};cs of elements of A, there is at most one element a € A
such that

for each € >0 there is a finite subset J(e) C J with
|Zaj — a] <e for any finite set J C J that contains J(e). (1.6)
=

Proof. Suppose a,b € A satisfying (1.6). For € > 0, there exists J,(€), Jp(e) C J finite such that
|2 jesa0 @ —al < 5and [3 ) a; —b < 5. Then, with J(€) = Ja(e) U Jo(e), [a — b <
la =2 ese @l + 12 jes() @ — bl < € for any € > 0. O

Definition 1.2.3. With the notation of Lemma 1.2.2 above, if a € A has property (1.6), we say
that ;. a; exists in A and define 3, a; == a.
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We show here some properties of these kind of sums which will be useful for the rest of the
chapter.

Lemma 1.2.4. Let {a;};c; be a family of elements of A.

i) If Y c;aj existsin A, then, for any finite subset JCJ, > jgjasexistsin Aand 3., 5a; =
jeg i — Zjei aj.
it) If ZjGJ a; exists in A, then, for any e > 0 there exists a finite subset J(e) C J, such that
| 22527 aj| < € for any J C J finite containing J(e).

iii) If Ais complete and >, rla;| < 00, > cra; exists in A.
w) I e ajexistsin Aand 3, s |aj| < oo, then, |37, ;a;] < 37 lal-

Proof. For i), let J C J be a finite subset of .J. Let € > 0 and J(¢) C J be finite such that
|2 jes @5 — 22 jeg ;] < e for any J C J finite containing J(e). Let J*(¢) := J(e) N (J\ J). If J*
is a finite subset of .J \ .J with J*(¢) C J*, J(e) C J U J*, so

O a = a) = > al=1> a;— D ajl<e

JjeJ jeJ JEJ* JjeJ jeJuJgx

For i1), let e > 0 and J(e) C J be finite such that [ ;. ;a; — 3. ja;| < e for J C J finite
containing J(€). By part 1), [ 32 o500 =13 c5a5 — X e 5 a5

For iii), we claim that under these hypothesis, a; # 0 for only countably many j € J. For
that, it suffices to prove that if X is a subset of strictly positive real numbers and C' > 0 a
constant such that for any finite subset Y C X, >° o < C, then X is countable. Suppose
that there exists {zy }nen a strictly increasing sequence of elements of X. Then, for any N € N,
Nz < Zf\il x; < C, which is impossible. So given x € X there exists its antecessor, £~ defined
by

r” :=max{y € X :y <z}

and we can find a rational number g, € Q between = and x. So we can suppose J = N. The
sequence {S, := Z?Zl ajtnen is a Cauchy sequence in A, because for m < n, |S, — Sp| <

Y hem |0k| —57=5—=0 . Since A is complete, >y an exists in A.

For iv), let e > 0. Let J(e) C J be finite such that |} ;c;a; — 3 ;c7a,] < € for J C J finite
containing J(€). Thus

1> a=) ajl > ‘\ > ajl- Zaﬂ’ > a1 ail = 1D ail=> " lagl = 1D al=) lal

JjeJ jeJ JjeJ jeJ JeJ jeJ JjeJ jeJ jeJ jeJ
which implies | >, ;a;j| — > ¢ laj| < e for any e > 0. O
From now on, unless indicated otherwise, we let A denote a normed ring with norm |- |. We let

r,l € (0,00)™ denote polyradii, and we write r < [ if r; <; for all i, and r < [ if r; < ; for all
(notice that r» < [ does not mean r <[ and r # [). Also if a € [0,00)™, we put r* = r{* - - rg".

Definition 1.2.5. For s =) ym SaX @ € A[[X"]] and a polyradius r we define

a€(0,00

sl := > lsalr® € [0,00]

a€[0,00)™

We have, for s,t € A[[X*]] and polyradii r,1 € (0,00)™ (see [1], page 4391):
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L. ||s||y = 0 if and only if s = 0;
2. s+t < sl + lltll;

3. |Istllr < lIsll-#ll;

4. if r <, then [s|, < ||s||;

We now define
A{X"} o= {s € A[[X7]] : [|s]l < oo}

Note that A{X™*}, is a normed ring with norm || - [|,. It is clearly a subring of A[[X™*]] containing
A[X*]. We put

A{X*} = A{X),
Since A{X*}, D A{X*}; if r <[, A{X"} is also a subring of A[[X*]]. Put also, for mixed
variables X = (X1,...,X,,) and Y = (Y1,...,Y,),
A{X* Y} = A[X5 Y] n A{(X,Y)"},

and
A{X*, Y}(r,l) = A[[X*v YH N A{(X7 Y)*}(r,l)

for polyradii 7 = (r1,...,7mm), L = (l1,...,1n).

Now, always for a normed ring A, we generalize the concept of summable family (cf. 1.1.6) of
formal generalized power series in the following way (see 5.7 of [1]):

Definition 1.2.6. Let J be any index set and assume that {s; =) 5o X%};jcs is a family in
A[[X*]] such that

i) for each o € [0,1)™ we have 3, ;[sjal <ocoand 3, ;sjq exists in A
i1) UjesSupp(s;) is a good subset of [0,1)™.
Then, if we define 3. ;55 := 32,3 ey $j,a) X, D ey 85 € A[[X7]].

Proposition 1.2.7. Let {s; = > 5;oX“}jes be a family in A[[X*]] satisfying i) and i) of
Definition 1.2.6. Suppose that >, ; [Isj[lr < oo. Then || 3 ;c;sjllr <> c;ls;ll- and we obtain
that

i) > jes8; actually belongs to A{X*}, and
i) > ;e 8 is also the sum of the family {s;};es in the normed ring (A{X"},, | - [|+)-
Proof. By lemma 1.2.1,

Do llsillr =D Isia

) = (> Isiar”

jeJ jeJ « a jeJ
On the other hand,
1D sile =D 1> sjalr®
jedJ a  jed

Thus, by part iv) of Lemma 1.2.4, || > c s sillr < > e lIsjllr < 0o which implies consequence
i). For ii), let € > 0. Since 3, |s;lr < oo, by i) and i) of Lemma 1.2.4 there exists J(e) C J
finite such that 3.4 ;) lls;ll» <e. Then,

1> 5= D sile=1 D sile< D sl <e

jed JEI(€) JgJ () JgJ(e)
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Remark 1.2.8. Let s = ) 5, X* € A{X"},. Let for any A € Pr([0,00)™), 57 := > ,cp Sa X,
where P£([0,00)™) denotes the set of finite subsets of [0, 00)™. Then, by Lemma 1.2.4, for any
€ > 0 there exists a A(e) € Pr([0,00)™) such that

Is — sallr = || Z saX|r <€
ag A

for any A € Px([0,00)™) with A(e) C A.

1.2.2 Properties of convergent series

We show here those properties of formal series with an analogous statement in the convergent
setting: composition morphisms, Weierstrass preparation and implicit functions. We need the
following lemma

Lemma 1.2.9. If s = )" 5, X% € A{X*}, then lim,_q ||s|» = [s(0)].

Proof. (see [1], 5.5) It suffices to show that lim,_,o ||s — s(0)||, = 0, so replacing s by s — s(0) we
may as well assume that s(0) = 0. Take [ such that [[s[|; < oo, and fix € > 0. Let J CSupp(s)
be finite such that >, ;[sa|l* < €/2 (Lemma 1.2.4), and let [ < be a polyradius such that

Y oac 5a|1* < €/2 . Then for every r < [ (Lemma 1.2.4),
Isllr = |l Z sa X+ Z sa Xy < || Z Sa Xl + || Z sa Xy < Z |Sa|r® + Z |3a|l~a <€
agJ acJ agJ acJ agJ acJ

Since € was arbitrary, this proves the lemma. O

Using the same notation as in Proposition 1.1.14 the following "convergent version" of the prop-
erties of composition of series holds:

Proposition 1.2.10. Let X = (X1, Xo,...,Xp,), Y = Y1,Ys,....Y0), Z = (Z1,22,...,2Z,)
and W = (Wy, Wa, ..., W;) denote multi-variables.

Z) Let s = Z(a,])G[O,oo)mXN” S(Q’I)XOCYI S A{X*,Y} and let t = (tl,t?,. ,tn) S A{W}TZ
with ¢;(0) = ... = ¢,(0) = 0. Then s(X,¢(W)) is in A{X*,W}. Moreover, the map
s — s(X,t(W)) is an A-algebra homomorphism from A{X* Y} to A{X™*, W}.

ii) Let s = >, 1)e[0,00)m S@,nX*Y!T € A{X*Y} and let t = (t1,t2,...,1,) € A{Z*}"
with ¢1(0) = ... = t,(0) = 0. Then, s(X,#(2)), is in A{X™*,Z*}. Moreover, the map
s — s(X,t(Z)) is an A-algebra homomorphism from A{X* Y} to A{X*, Z*}.

i1i) Let a > 0. Iff u =) ua X € R{X*} is such that ug > 0,

a€l0,00)™

u =3 (Z) w8 — up)* € R{X*}

keN

iv) Let s = 3.5, X € R{X*} and t = (t1,to,...,tm) € R{Z*}™. If t; = Z%u;, with
B #(0,...,0), u; € R{Z*} and u;(0) > 0 for all i € {1,2,...,m} (that is, t; is of monomial
type), s(t1,t,...,tn) is in R{Z*}. Moreover, the map s — s(t1,...,ty,) is an R-algebra
homomorphism from R{X"*} to R{Z*}.

Proof. We use Proposition 1.2.7 to prove the convergence of the formal series obtained in Propo-
sition 1.1.14

For i), let us call for any a € Suppx(s) and I = (iy,49,...,i,) € N*

Q(a,1) = S(aJ)XatzlltZQQ cee t;n

34



Then, it suffices to prove that there exists polyradius 7 € (0,00)™ and [ € (0,00)™ such that
22,0 Aol 77y < 0. Take polyradius (r,1) € (0,00)™*™ such that s € R{X*,Y}(N) and

t1,...,tn € R{W};. Now, take [ < [ such that Itill; < l; (which is possible by Lemma 1.2.9
because t;(0) =0 for : = 1,2,...,n.) Thus,

S lten ey = D Is@nlr Il ]2 - ltalz < 3 [s@nlrt = llslls < o0
(Oé,[) (OZ,I) (Oé,[)

The same argument is valid for it). For i), if we put € := u — u(0) € R{X*}, £(0) = 0. So it
is enough to prove that there exists a polyradius r € (0,00)™ such that >, [e[|¥ < co. Notice
that this is a particular case of 7).

For iv), we define for any a = (a1, a2, ..., qy,) € Supp(s),
Go 7= SatS1H52 - - 43m

By part iii), g, € R{Z*} for any a € Supp(s). Let § = (01,92,...,0mm) € (0,00)™ be a
polyradius such that s € R{X*}é. Since t1(0) = t2(0) = ... = t,,(0) = 0, by Proposition
1.2.9 there exists a polyradius r € (0,00)* such that |||, < &; for ¢ = 1,2,...,m. Then,
lgallr < |sallltallSt[E2]|22 - - - [ltm||$™ < |Sq]d* for any o €Supp(s) which implies that

Y ldalls <D 15ald® = lIslls < oo
« (63

O

Remark 1.2.11. Let s = > 5, X“ € R{X*}, My, My, ..., M,;, € R{Z*} be monomials (M; =
Z8" with B* #0), W = (Wy, Wa, ..., W,,) be variables and A1, Ao, ..., Ay € Rug. If we define for
i=1,2,...,m, t; ;== M;(A\; + W;), by remark 1.1.15, s(t1,t2,...,tm) € R[[Z*, W]]. Analogously
to the proof of part iv) we obtain that in fact s(t1,ta,...,t,) € R{Z*, W}.

Example 1.2.12. Notice that in particular, with the notation of the example 1.1.16, if s €
A{X*Y} and 0 € Gy, 05 € A{X* Y}

Corollary 1.2.13. Let s € A{X*}. Then s is a unit in A{X*} if and only if s(0) is a unit in A.

Proof. The necessity is clear. Suppose then s(0) # 0 and write s = s(0)(1—t) for some t € A{X"*}
with ¢(0) = 0. Then 1—¢ has inverse 1+t+t2+... € A[[X*]]. The series §:= >, .y W* € A{W}.
By part ii) of Proposition 1.2.10, 1+t +t2 + ... = 5(t) € A{X*}. O

The Weierstrass Preparation Theorem is also true in the convergent case (see 5.10 of [1]).
Theorem 1.2.14. Let n > 0 and let s € A{X*, Y} be regular in Y;, of order d.

1. There is for each s’ € A{X* Y} a unique pair (Q,R) with Q@ € A{X*,Y} and R €
A{X* Y'}[Yy], such that

s = Qs+ R and degy, (R) < d.

2. s factors uniquely as s = UP, where U € A{X* )Y} is a unit and P € A{X*,Y'}[Y,] is
monic of degree d in Y.
Corollary 1.2.15. Let s = (s1,52,...,8,) € A{X* Y, W}* where X = (X1,X2,...,Xn),
Y =M,Ys,....Y,) and W = (Wy, Wa,...,Wy). Suppose that s;(0) =0 for j =1,2...,k and
that the matrix (g;ﬁ (O))1< . is not singular. Then there exists ¢1,t2,...,t; € A{X* Y} with
* 7Z'7 ‘7

ti(0) = 0 such that s;(X,Y,t1(X,Y), t2(X,Y),..., tx(X,Y))=0for j =1,2... k.
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Proof. By induction on k. If k = 1, since a‘avs‘}l (0) # 0, s1 is regular of order 1 in Wj. By
Weierstrass preparation,

S1 = (Wl - CL(X, Y7 W27 W37 cee Wk))ul

We take t; = a, which solves the problem.

Let k > 2 and suppose the result true for k£ — 1. We can suppose 551}1 (0) # 0 and 05, (0) = 0 for

oWy
Jj =2,3...,k (if this is not the case, change the order of the s; to have gvsvll (0) # 0 and then pick
8.s‘j
51 := 51 and §; 1= 55 — %Zvll (;)31 for j =2,3...,k. If the result is proved for the s; we obtain
aw; Y

t1,to, ...ty € A{X™*, Y} with ¢;(0) = 0 such that 5;(X,Y,t:1(X,Y),t2(X,Y),...,t,(X,Y)) = 0.
Notice that the same ¢; solve the initial problem.)

Since 8‘9;}1 (0) # 0, s1 is regular of order 1 in Wj. By Weierstrass preparation,

§1 = (Wl - (I(X, Y, Wo, Ws, ..., Wk’))ul
We define for j =2,3... )k,
S5 1= Sj(X,Y,a(X,Y,WQ,Wg,...,Wk),WQ,Wg,...,Wk)

which are in A{X™*,Y, Wy, W3, ..., W}} because a(0) = 0 (see proposition 1.1.14). On the other

hand,

0s; _ 0Os; Oa 0s; _ 0sj

0) = 0 0 0) = 0
ow; V= g, O gy O F 5 0 = Gy, O
.. . Js5; 0s; . . .
< < . J — J
for 1 < 4,5 < k. Then, the matrix (BWi (Q))ng‘gk (awi (Q))Qéi,jgk which is not singular

because 8851} (0) =0 for j € {2...,k}, so by the induction assumption, there exits ta,...,tx €

A{X*, Y} with #;(0) = 0 such that

Sj(X,Y,a(tQ(X,Y),...,tk(X,Y)),tQ(X,Y),...,tk<X,Y>) :?j(X,KtQ(X,Y),...,tk(X,Y)) =0
for j =2,3... k. Take t; = a(t2(X,Y),..., tx(X,Y)). O]

Notice that in Corollary 1.2.15 we do not ask the partial derivatives of the s; to be convergent.
However, one can ask if the formal partial derivative (defined in 1.1.1) of a convergent series is
convergent too. Paragraph 5.9 of [1] answer affirmatively this question:

Lemma 1.2.16. (cf. 5.9 [1]) Let s € R{X*,Y'}. If i € {1,...,m}, then the partial derivative
(0s/0X;) e R{X* Y}, and if j € {1,...,n}, (0s/0Y;) € R{X*,Y}.
1.2.3 Functions defined by convergent series.

From now on we are only interested in the case A = R, with the norm on R given by the usual
absolute value. Note that Corollary 1.2.13 implies that R{X *} is a local ring with maximal ideal
{s € R{X*} : s(0) =0}, and if m = 1, then R{X*} is a valuation ring.

Given a polyradius & = (&1,...,&nan) € (0,00)™1" we put
I = [0751) X X [07§m) X (=&m+1,&ma1) X - X (—Emtns Emtn);

and

CIOS(Im,n,ﬁ) = 1[0,&] x -+ x [0,&m] X [=&mat1, Emr1] X - X [=Eman, Emn]
we will denote [0,00)™ X R™ by I, n.0o. We also write R{X*, Y}5 instead of R{X*, Y}(T ) where
r= (&, &) and I = (&ng1s- - -5 &mgn)- If n=0 we write I, ¢ instead of I, o¢.
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Most of the time we will consider polyradius whose components have all the same value, usually
e > 0or d > 0. In that case € (respectively 0, etc.) will denote a positif constant € or polyradius
€ = (e,...,€) with different length, and its significant will be deduced by the context.

Finally, to emphasize the length of the multi-variables involved X = (X3, Xo,...,Xp),Y =
(Y1,Ya,...,Y,), etc. we put R{X*, Y}mn. Then, for instance, if € > 0, to denote the R-algebra
of convergent series in the variables Z = (Zy,Z), W = (W7, Wa, W3), where the variables Z

are generalized and the variables W are analytic and the polyradius of converge is €, we put
R{Z*, W}a3,.

Definition 1.2.17. Let m,n € N and £ € (0,00)™"" a polyradius. To an element s =
> saﬁX"‘Y’B € R{X*, Y}m e We associate a function on I,,, , ¢ as follows. Given (z,y) €Clos(Lyne),

the series > saﬁxo‘yﬁ converges absolutely to a real number. Thus we can define the function
Se(s) : Clos(Ipypne) — R
Se(s)(,y) == Sa 2™y’

Lemma 1.2.18. Let s € R{X*,Y}g. If € < €, Sg(s) is equal to the restriction of Se(s) to the
polyinterval I, & that is Sg(s) = Se(s)s

m,n,§

Proof. Immediate by definition of the sum morphism. O

For a real valued function f: X — R we let || f||oo denote its uniform norm, that is

[flloo = sup{|f(z)] : x € X} € [0, 0]

Lemma 1.2.19. Let s = >, 3 SapXYP € R{X*7Y}mn§' Then, [|Se(s)|loo < |I8]le- In
particular, with the notation of Remark 1.2.8, for any A € Pr(Supp(s)), since Se(s) — Se(sn) =
Se(s — s, [15e(5) = Se(sa)lloe < s — salle.

Proof. Let (x,y) €Clos(Iy, n¢). Then,
1Se(s) (@, ) =D sapz®y?1 <D Isaslla®lly®] < [Is]le
(a,B) (a,3)
OJ
Let CO(Clos(Ipmn¢); R) denote the ring of all real valued continuous functions on Clos(Iy, ).
Proposition 1.2.20. The function Sg(s) is continuous on Clos(Ip, ,,.¢). Moreover, the map
Se : R{X™, Y}WW5 — CY(Clos(Ine); R)
s Se(s)
is an R-algebra homomorphism.

Proof. For each A € Pr([0,00)™ x N"), the series sy = >, g)ea 5apXYP € R{X*’Y}m,n,g'
Since A is finite the corresponding associated function Se(sa) : (z,y) €Clos(Ip, ne) = sa(z,y) €
R is continuous. Let € > 0. By Remark 1.2.8, there exists A C [0,00)™ x N" finite such that
s —salle < §. Let (z,y) €Clos(Ine). Then,

€

[Se(s) (2, y) = Se(sa)@,y) = | Y sapa®y’| < |Is = salle < 3

(e, B)EA
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Since S¢(sa) is continuous on Clos( mng) there exists 6 > 0 such that if |(z,y) — (z,w)| < 4,
then [Se(sa)(z,y) — Se(sa)(z,w)| < §. Thus, if (z,w) €Clos(Ipmne) with |(z,y) — (2, w)] <4,
|Se(s)(, y) = Se(s) (2, w)| < |Se(s)(2,y) — Se(sa) (@, y)|+
|Se(sa) (2, y) — Se(sa) (2, w)| +[Se(sa) (2, w) — Se(s)(z,w)| <€
Now let us prove that S¢ is an R-algebra homomorphism. Let s,t € R{X*, Y}mn£ and c € R.
First notice that if s or ¢ have finite support, Se(cs) = ¢Se(s), Se(s +t) = Se(s) + Se(t) and
Se(st) = Se(s)Se(t). The result then follows from Remark 1.2.8 and Lemma 1.2.19: Let € > 0.
By Remark 1.2.8 there exists A = A(e) € P#([0,00)™ x N") such that ||cs — (cs)alle < § and
c[|ls — salle < §. By Lemma 1.2.19,
1S (es) = €Se(s)lloo = [|Se(cs) — eSe(s) £ eSe(sa)lloo <
< [[S¢(es) = Se((es)a)lloo + [leSe(s) — eSe(sa)lloo <
<lles = (es)alle + lellls — salle =<e
Since e was arbitrary, Se(cs) = cS¢(s).
Analogously for the sum, if € > 0, let A = A(e) € Pr([0,00)™ xN") such that ||(s+t)—(s+t)alle <
S, Is —salle < § and [[t —talle < §. By Lemma 1.2.19,
15 (s + 1) — (Se(s) + Se(t)lloo = [ISe(s +1) — (Se(s) + Se(t)) £ Se((s +1)a)[loo <
< [15e(s + ) = Se((s + t)a)lloo + [1Se(sa) = Se(8)lloo + [[Se(ta) = Se()]loo <
<|l(s+1) = ((s +)a)lle + [lsa = slle + llta —tlle <€
Since € was arbitrary, Se(s+t) = Se(s) + Se(t).
Analogously for the product, if e > 0, let A = A(e) € Pr([0,00)™ xN") such that ||(st)—(st)alle <
S Isllellt = talle < § and ||tl¢]ls — salle < §. By Lemma 1.2.19,
[15¢ (st) — Se()Se () lloo = [|Se(st) — Se(s)Se(t) £ Se((st)a)lloe =
= [[Se(st) — Se((st)a) + Se(sa)Se(ta) = Se(s)Se(t)[loo <
< [[Se(st) = Se((st)a)lloo + 156 (5) Se () — Se(s4) S (ta) £ Se(s)Se (ta)lloo =
< [[Se(st) = Se((st)a)lloo + (1S (s)(Se(t) — Se(ta)) + Se(ta)(Se(sa) — Se(s)) oo <
< [15¢(st) = Se((st)a)lloo + 1[Se(8)llool[Se () = Se(ta)lloo + 1S (Ea)llooll Se(sa) = Se(s)lloo <
< |[st — (st)alle + [Isllellt — talle + tallellsa — slle <e
Since e was arbitrary, Se(st) = Se¢(s)Se(t). O
We call S¢ the sum morphism. Using the same notation as in Proposition 1.1.14:

Proposition 1.2.21. Let X = (X1, Xs,....Xpn), Y = (Y1,Ya,....Yy), Z = (21, Zo, ..., Z,)
and W = (Wq, Wy, ..., W) denote multi-variables.

i) Let s e R{X™*, Y} and let t = (t1,t2,...,t,) € R{W}" with t1(0) = ... =t,(0) = 0. Then,
for convenient strictly positif €,

Se(s(X, (W) (@, w) = Se(s)(x, Se(t1)(w), Se(t2)(w), . .., Se(tn)(w))
for any (x,w) €Clos(Ip k).

i1) Let s € R{X*, Y} and let ¢t = (¢1,t2,...,tn) € R{Z*}" with ¢1(0) = ... = t,(0) = 0. Then,
for convenient strictly positif €,

Se(s(X, 1(2))(x, w) = Se(s) (@, Se(t1)(2), Se(t2)(2), - - -, Se(tn)(2))

for any (x,2z) €Clos(Ipm1p.e).
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iii) Let s = Y. 5,X% € R{X"} and t = (t1,ta,...,tm) € R{Z*}™. If t; = Z7u;, with
B #(0,...,0), u; € R{Z*} and u;(0) > 0 for all s € {1,2,...,m} (that is, ¢; is of monomial
type), there exists € > 0 such that

Se(s(ti,ta, ... tm)) = Se(Se(t1)(2), Se(t2)(2), ..., Se(tm)(2))
for any z €Clos(/,,¢).

iv) Ifs € R{X*, Y}m ,and j € {1,2,...,n} there exists € > 0 such that for each (z,y) € I n.e
the partial derivative (0(Sc(s))/0y;)(z,y) exists and

Se(0s/0Yj) (2, y) = (9(S(5))/9y;) (2, y)

v) If s € R{X*,Y}mn and i € {1,2,...,m} there exists ¢ > 0 such that for each interior
point (z,y) of Iy, e, the partial derivative (0(Sc(s))/0x;)(z,y) exists and

2i(0(Se(s))/0xi) (2, y) = Se(9si)(z,y)
vi) If s € R{X*, Y}mn and o € Gy, (see 1.1.16) then there exists € > 0 such that

Se(os)(x,y) = Se(s)(o(z,y))
for all (z,y) € Imne.

Proof. The result is immediate if all the series involved have finite support. For general series,
we apply Remark 1.2.8 and Lemma 1.2.19 as in the proof of 1.2.20. O

Proposition 1.2.22. Given v € (0,00)™ and £ € (0,00)™ "™, the sum morphisms
Se : R{X*}  — C°(Clos(I); R)

and
Se :R{X" Y} o — C%(Clos(Ing);R)

are injective.

Proof. We reproduce the proof given in [1] for the first morphism, being analogous the proof for
the mixed case.

Let s =) s, X% € R{X*}g and assume s # 0; we will show that Sg¢(s) cannot vanish identically
on any Im,é with é < & small enough (which is more than what we need). By induction on m:
if m =1 then X = X; and, assuming s has order §, we can write s = X%(s5 + >_ o5 5aX*"°)
with s5 # 0. Put ¢ := 55+ 3,25 5a X0 It follows from Lemma 1.2.9 that S¢(¢)(z) # 0 for all
z € (0,¢], where £ > 0 is small enough.

Let m > 1; assume our claim holds for R{(X")*}¢/(X' = (X1, X2,..., Xpm-1),& = (£, &m) €
(0,00)™). Write a nonzero s € }R{X*}£ as s = Y 5 SamXm" € (R{(X)}e){X} )¢, and
note that {a, : sqa,, # 0} is a well ordered subset of [0,00). Hence |[|s|l¢ = > ||Samllerémm
and S¢(s)(z) = > Ser(say, ) (@ )z for all = (2, xp,) € Inpne. Fix some a,, € [0,00) with
Sa,, 7 0; by the inductive assumption there are 2’ € Iy, 1, arbitrarily close to the origin such
that Se(Sa,,)(2") # 0. For such 2/ we have shown above (case m = 1) that S¢(s)(2, ) =
> Ser(Sap, ) (Tm)*™ is nonzero for all sufficiently small z,, € (0,&y,). O
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Taylor expansion. Let s = E(QJ) Sa XY € R{X*, Y}mng' Let (a,b) = (a1,...,am,b1,...,by) €
I e Let s((a,b) + (Z,W)) denote the sum of the family (summable by 1.2.10)

{sa,s(a1+ Z1)*" -+ (am + Zin)*™ (b1 + W1)7 - (b + Wi )7 }a.1)€[0,00)m xNn

Notice that s((a,0)+(Z, W))(0) = 3=, Sa,70°b! which is a real number because (a,b) € Ly, ¢
Recall that s((a,b) + (Z,W)) € R{Z*, W} and that for any i € {1,...,m} such that a; # 0,
the variable Z; is analytic on s((a,b) + (Z,W)). Put m' := |{i € {1,...,m} : a; # 0}|. Then,
if o is a permutation of {1,...,m} such that o({i € {1,...,m} : a; # 0}) = {1,...,m'},
T(a,b)(s) = as((a, b) + (Z, W)) e R{(Zl, cee, Zm/)*, Lt 41y -+« s Ly W}

On the other hand, suppose that f € CO(Im7n7§; R) is in the image of the sum morphism Sg, that
is, there exists s € }R{X*,Y}m’n’5 such that f = Se(s). Let (a,b) € Inypne. Put m' := |{i €
{1,...,m} : a; # 0}/, and let o be a permutation of {1,...,m} such that o({i € {1,...,m} :
a; # 0}) = {1,...,m'}. We consider the map (z,w) = O p) (2, y) = (c(x),y) — (c(a),b).
If € > 0 there exists 6 > 0 such that if (z,y) close enough to (a,b) (||(z,y) — (a,b)|| < 0),
(z,0) = Oap),0(,Y) € Ly (mem’)4ne- Let us call fup) = fo0p) o The next proposition
assures that f(, ) is the sum of a convergent series, in fact of the series T, 3)(s):

Proposition 1.2.23. Given s € ]R{X*,Y}mn§ and (a,b) € Ip, ¢ there exists 0 < € < & such
that SE(T(a,b) (‘9)) = f(a,b)

S

R{X*, Y}mm’ 5 Co'(Umne — R)

ﬂmwi lﬂmwﬂ

* Se
R{Z ) W}m’,(mfm’)+n,e %CO(Im’,(mfm’)+n,e — R)

We obtain as a consequence that the sum of a convergent series is analytic on the interior of its
domain of definition.

Proof. See 6.7 of [1]. O
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Chapter 2

(eneralized analytic manifolds.

In this chapter we introduce the concept of Generalized Analytic Manifold. We use the general-
ized power series analogously to the power series in the classical case of analytic manifolds. One
of the main peculiarities is that Generalized Analytic Manifolds will be manifolds with boundary
and corners. This is a geometrical consequence of the existence of non analytic variables in the
generalized case: a function like z* for a non integer X is only defined for positive values of the
variable x.

For a better comprehension of the differences with the classical analytic case, we will use ana-
lytic manifolds with boundary and corners. We present in the first section a brief recall of these
objects and their properties in the language of subsheaves on R-algebras of continuous functions
(called locally ringed spaces).

The Appendix is devoted to a brief exposition of the general concepts and basic properties
in this theory. In a few words, we consider the category € where an object of € is a pair
X = (|X|,€x) where | X]| is a topological space and €x is a sheaf of R-algebras of continuous
functions over | X| such that, for each p € | X|, the stalk Cx , is a local R-algebra. The morphisms
between two objects X = (|X|,€x) and Y = (|Y],€y) are pairs (o, pf) where ¢ : |X| — |V
is a continuous map and ¢! : €y — ,Cx is the associated morphism of sheaves determined
by ¢ by composition; that is, if f € €y (V) is a section over the open set V of |Y|, then
O f) = fop € pu€x (V) = Ex (o (V). In what follows, we are interested in two specific sub-
categories, O and G of €. Their objects are objects in € and the morphisms between two objects
are exactly those morphisms when considered as objects in € (briefly, they are full subcategories
of €, see definition B.0.22 of the appendix).

In both cases O and G, an object will be a locally ringed space on R-algebras of continuous
functions whose underlying topological space is a topological manifold with boundary of pure
dimension, all of them locally homeomorphic to a local model Rio for some k. By a convenient
choice of the second component of the object (that is the sheaf of continuous functions), objects
in the subcategory O will be the (standard) real analytic manifolds with boundary and corners,
when the chosen sheaf is such that it is locally isomorphic to the sheaf of analytic functions in
the local model (those which are sums of standard real convergent power series). Objects of the
subcategory G, on the contrary, are defined with the property that the sheaf is locally isomorphic
to the sheaf of generalized analytic functions on the local model (to be defined below by means
of convergent generalized power series). They will be called generalized real analytic manifolds.

At the end of this chapter, we introduce the concept of standardizable generalized analytic mani-
fold which will permit to consider some generalized analytic manifolds as a standard real analytic
manifolds with an enrichment of the structure. Certain well known operations in standard an-
alytic manifolds such as blowing-ups with smooth centers could be translated to standardizable
generalized analytic manifolds (and this will be the purpose of the next chapter).
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However, we show in 2.4.2 that there exist examples of generalized analytic manifolds which are
not standardizable. Such examples are interpreted as exotic examples that could complicate the
theory of generalized analytic manifolds in its full generality.

2.1 Analytic manifolds with boundary and corners.

Fork € N, Réo denotes the topological subspace of R¥ consisting on those points p = (p1,p2, ..., Dk)
in R¥ such that p; > 0fori=1,2,... k.

Definition 2.1.1. The local model of (real) analytic manifold with boundary and cor-
ners of dimension £ is the locally ringed space Aﬁ = (Rgo, OAi) whose underlying topological

space is Réo and the sheaf O Ak is defined by the assignment, for any open subset V C R’goz

where (’)A;1 (V') consists on the set of real functions f : V' — R for which there exists an open

neighborhood of V in R*¥, W D V, and ]?: W — R an analytic function on W whose restriction
to V is equal to f. We will simply say that f is analytic on V for such a function.

Notice that (’)A;i together with the restriction of functions as restrictions morphisms, certainly

define a sheaf on Réo- Moreover, it is clear that for every open set V C Réo, OA]i (V) is a
sub-R-algebra of the R-algebra of real continuous functions on V' and that the stalk OML plsa

local R-algebra for any p. Thus Aﬁ is a locally ringed space on local R-algebras of continuous
functions, that is, an element of the category € (see the Appendix for the details).

Definition 2.1.2. A (real) analytic manifold with boundary and corners, or for short,
a standard analytic manifold of dimension £ is a locally ringed space on R-algebras of con-
tinuous functions A = (JA|, O4) € Objects(€), where |A| is a Hausdorff topological space with a
countable open basis, such that any point of |A| has an open neighborhood isomorphic in € to
Ak |y = (V, OA?JV) for some V' open subset of Rgo :

In other words, a locally ringed space A = (|A]|,O4) € Objets(€) is a k-dimensional analytic
manifold with boundary and corners if for any p € |A| there exits an open neighborhood U of
p, an open V C RY, and an isomorphism (¢ : Aly — A%|y) € Morphismse(A|y, A% |y). In
particular, if U is an open subset of A, the sections of O4 over U are exactly those continuous
functions f : U — R such that for any p € U there exists W an open neighborhood of p and an
homeomorphism ¢ : UNW — o(UNW) C RE | such that fo ™! is analytic (that is, it admits
an analytic extension to a neighborhood of o(p) in R¥).

Remark 2.1.3. If o > 0 is not integer, then the map x € R>g — 2® € R> is not a section of
A}r, because it has not an analytical extension to an open neighborhood of 0 in R.

Definition 2.1.4. If A = (|A|,O4) is a standard analytic manifold, an open submanifold of
A is the locally ringed space A|y = (U, O4l|y) where U is an open subset of |A| (see the appendix
for the notation). It is clear that an open submanifold is also a standard analytic manifold with
boundary and corners.

Given two analytic manifolds A, B with boundary and corners a morphism between them
is by definition a morphism ¢ : A — B of the category € (we will usually call it an analytic
morphism). In this way we define the category of analytic manifolds with boundary and corners,
denoted by O by

objects(Q) := {A € objects(€) : A is an analytic manifold with border and corners}
morphisms(O) := {(¢ : A — B) € morphisms(€) : A, B € objects(O)}
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Thus, by definition, O is a full subcategory of €. Recall that a morphism (¢, ¢#) between two
analytic manifolds with border and corners A = (|A|,04) and B = (|B|,Op) is determined
by a continuous map between the topological spaces ¢ : |A| — |B| (but not any continuous
map!) because the associated morphism of sheaves ot is given by composition with ¢: if V is an
open subset of |B| and f € Op(V), ¢ (f) = fop € Os(¢ 1 (V)) (see proposition B.0.21 in the
appendix). Such a morphism is an isomorphism if and only if ¢ : |A| — |B]| is an homeomorphism
and for all p € |A] the R-algebras homomorphism induced in the stalk

4,0% OBpp) — Oap

‘ng(f@(p)) =(fo So)p

is an isomorphism. We will denote frequently a morphism (¢, ") simply by the underlying
continuous map ¢, the associated sheaf morphism ¢ being completely determined by .

Remark 2.1.5. Notice that if V; and V5 are respectively open subsets of R@O and RI;QO, and

© EMorph(g(Ai1 |V1,Ai2\v2), there exists an open neighborhood W of V; in R¥! and an analytic
mapping ¢ : W — V5 (in the sense that each component of ¢ = (¢1,...,¢Pg,) is an analytic
function on W) such that ¢|y; = ¢. This is a consequence of the definition of O and the fact
that the projection functions 7; : p = (p1,p2,...,Pk,) € Vo — pj € R are sections of OA? v

forany j =1,2,...,kp. Hence mjop = ¢; € OA’;’1|V1 which implies that for any j = 1,2,..., ks
there exists an open neighborhood W; of Vi and an analytic function ¢; : W; — R such that
Qilvi = ¢j. We take W = ﬂ;“z:le and @ = (P1,. .., Pk, ). Notice that by the identity principle
for analytic functions ¢ is the unique analytic function satisfying @ly, = ¢.

In particular, if p € V7 we can define the differential of ¢ at p, dpp := d,, a linear map from
R*1 to R¥2. As a consequence, if (p, pf) is an isomorphism, first of all ¢ : V; — V5 is an homeo-
morphism so k; = ko = k, and the inverse of ¢, ¢! : V5 — V] induces a morphism too. So there
exists ¢ analytic on U an open neighborhood of V5 in R¥ with 1L|V2 =1 As @‘VQ = ¢ 1y,
by the identity principle for analytic functions ¢ = @1 so for any p € V4, if we put ¢ = o(p),
dg(¢™1) = (dpp) ™1, that is, dpep is a linear isomorphism.

We have seen that if ¢ eMorph@(Aﬁl v A{? v, ), the components of the continuous map (¢, . .., Yk, )
are analytic functions. Conversely, if we have ko analytic functions on a neighborhood of Vj in
R¥2 01, ..., ¢k, such that p;(p) > 0 for any p € V4, the continuous map ¢ = (p1,...,¢k,) :
Vi— o(Vh) C Rl?o induces a morphism (¢, ) : A’f lv, — Al—?‘«:(%)'

Examples 2.1.6. Some examples of standard analytic manifolds are

i) Let Ogr denote the sheaf of analytic functions over R¥. Then (R¥, Ops) is a standard
analytic manifold. To see that, remark that the homeomorphism ¢ : R¥ — R’;O C R’;O
defined by o(y1,...,yr) = (e¥!,...,e%) induces an isomorphism (of locally ringed spaces)
from (R*, Ogs) to AI—HR’;O = (R, OA]i |R}§o)' Then, in particular, for V open subset of R¥,
if we let Oy denote the sheaf of analytic functions on V, (V,Oy ) is a standard analytic
manifold.

i1) More generally, if M = (|M|,Ops) is a real analytic manifold (with the sheaf-theoretic
interpretation; that is, that Oy is the sheaf of real analytic function on the underlying
variety |M|), then M is a standard analytic manifold. This is an immediate consequence
of example above.

ii1) For any k, an example of k dimensional standard analytic manifold is the local model
A’f&- = (Riov Opk)-
= +
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iv) Consider RZ x R™ with the product topology. Let ® : RT x R" — RZ x RZ, C R’g&r "
be the map defined by

(2,y) € RTy x R" B (2,0(y)) = (z,e”,...,e%) € RY x RY

It is a homeomorphism. We can endow a structure of standard analytic manifold to R x
R™ via this homeomorphism: just consider the sheaf O,,, defined by assigning to each
open set V' C RY; x R" the R-algebra of functions f : V' — R such that f o ¢_1|¢(V) €
AT™(®(V)), that is there exists W an open neighborhood of ®(V) in RZ{" and an
analytic function g on W such that g|ey = f o <I>*1]¢,(V). For reasons that will be clear
below, we call the standard analytic manifold

AT X R := (RZ) x R™, Oy )

the (m,n) mixed local model. Notice that by the moment A" x R™ is just a notation.
We show in proposition 2.1.16 below that the category O has product. In particular the
product of the standard analytic manifolds A" and R" has sense and it agrees with the
given here.

Let A = (|A|,O4) be a standard analytic manifold and p € |A|. A local chart at p will be a
pair (U, w) where U is an open neighborhood of p in |A| and

w:U—V
w(q) =(wi(q), - .., wk(q))

is a homeomorphism which induces an isomorphism of standard analytic manifolds Aly =
(U,04lp) and Ak |y = (V, OA’;‘V)' The components wy, ..., w; will be called local coordi-
nates at p. We say that a local chart is centered at p if it sends p to the origin.

Ifp=(p1,...,pr) € RE,, we put A(p) :={i € {1,...,k} : p; = 0}, m;, :=number of elements in
A(p), np =k —my and for € > 0, Ta(py,e == B1 X By x -+ -By, C RE, where the B; is either the
interval [0,€) C Rif i € A(p) or the interval (—¢,€) if i ¢ A(p). Notice that for any p € RE, the
set {(p + Lagp),e) N Rgo : € > 0} is a fundamental system of neighborhoods of p in Rgo. -

Proposition 2.1.7. The map

pERgol—anEN

is upper semi-continuous.

Proof. Let p = (p1,...,pk) € Rgo and 0 < € < min;ga{pi}. Hence p + I4(,) . is an open
neighborhood of p in Réo and if ¢ € p+ L4, with ¢; = 0, then p; = 0 (since |g;i| > p; — € >0
for any i ¢ A(p)) which implies that A(q) C A(p) and so my < my. O

Let p € Rgo, and o a permutation of {1,...,k} such that o(A(p)) = {1,...,mp}. We denote by
0p,o the affine map

ep,a(qlv .- 7(1k) =p+ (qcr(l)7 s )qo(k))

Let € > 0 be such that for any q € (p+14(p).c), Mg < mp. Then 0, , restricts to a homeomorphism

from [0, €)™ X (—€, €)™ to V}, := p+14(p) . We claim that its inverse 0;3_ induces an isomorphism
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from A’_ﬂvp to (AT” X R )10,eymp x(—e,c)mp: consider the diagram

fo Gp_,},

fod~1

Then it suffices to prove that ® o 9;7(1, induces an isomorphism between Aﬁ v, and Aﬁ\¢([075)mp X (—e,e)™P)-
This follows from the fact that

—1 o(m —m o(k)—m
Dol (p+ (1, s Ty YLy - Uny)) = (To(1)s - s To(my), €77mP T edo=me )
Hence we have proved

Proposition 2.1.8. For any point p € Rgo there exists ¢ > 0 small enough and an open
neighborhood (depending on €) isomorphic to (AT” X R™)[0,eymp x (—e,e)mp -

Corollary 2.1.9. Let A’_HV be an open submanifold of A’L Then any point p € V' has an open
neighborhood isomorphic to AT” x R™.

Proof. By proposition above it suffices to notice that the map

©:10,6)" X (—€,€)" — RYy x R™

) ) ms ) ) n € — xl? b € — xm? € — (y1)27 ) € — (yn)2
induces an isomorphism between (A'}” x R™)10,e)mp x (—e,)me and (A7 x R™). O

2.1.1 Stratification by the number of boundary components.

Let, for the rest of the section, A = (|A|, O4) denote a k dimensional standard analytic manifold.
A direct consequence of the definition is that the underlying space |A| is a topological manifold of
dimension k with boundary, because each point in |A| has an open neighborhood homeomorphic
to an open subset of R’;O, a topological manifold of dimension k with boundary (see the annex
for details). Another consequence is that if int(|A|) denotes the interior of this manifold then
the open submanifold

A‘mt(A) = (Znt(’ADa OA‘mf(\AD)

is a real analytic manifold because any section of Oa;n(j4)) is an analytic function. This implies
that at points in the interior of the manifold, the dimension is the only local invariant by isomor-
phisms. As we show below, this is not the case for points at the boundary 0|A|: looking at the
standard local model Aﬁ, although any two points in the boundary have topologically equivalent
neighborhoods, they would not have necessarily isomorphic neighborhoods in the category O.
In fact, the number of coordinate hyperplanes ("boundary components"), passing through the
point will be invariant for local isomorphisms.

Let p € |A| and (U, y) be a local chart at p and define m,, := [{1 € {1,...,k} : yi(p) = 0}|. We
are going to prove that m, does not depend on the local chart chosen but only on the point p.
We need the following proposition
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Proposition 2.1.10. Let V4 and V5 two open subsets of Réo and suppose that the standard
analytic manifolds A¥ |y, = (V4, OAi’Vl) and Ak |y, = (13, (’)AEJVQ) are isomorphic via ¢. Then

for each p € Vi, mp = my ).

Proof. Suppose Ak |y, = (W1, OMr\Vl) and A% |y, = (13, (’)A;jr|v2) isomorphic via ¢. In particular,
by Remark 2.1.5, the differential dpy is a linear isomorphism for any p € V;.

Claim.- If i € A(p) and ¢; = (0, ..., 0, 1(ith), 0,...,0) is the 5" vector of the canonical basis of R*
then, for any j € A(p(p)), the j™-coordinate of dpp(e;) is equal to zero.

Once the claim proved, we obtain that my,) < m, because in M,, the jacobian matrix of dpp,
there are k — my, columns (d,p(e;) for any I € A(p)) ¢i = (c14,---Cki), 1 < i < k —my, with

cji = 0 for at least m,) positions j. Since M, is invertible, the columns cy,...,Ck—r,, as
vectors in R¥ are linearly independent but all of them lie in the k — m(p) dimensional subspace
ﬂjeA(w(p)){(:cl, o.,xp) ERF: x; = 0}, so necessary k —my <k —my ), i.e. myp) < my.

Proof of the claim.- Denote by ¢ the extension of ¢ to an analytic mapping from a neighborhood
of p in R¥. Write Taylor’s formula of order one:

P(p +tei) = o(p) + tdpp(ei) + o(t). (2.1)
Since i ¢ A(p), we have that p + te; € V; for every t € R sufficiently small and thus @¢(p + te;) =
@(p+te;) € Va. Suppose that the j-coordinate of d,¢(e;) is equal to \; # 0, for instance A; > 0.
Then, for every t < 0 with |¢| sufficiently small, taking into account that the j*-coordinate of
©(p) is equal to zero, the formula (2.1) above gives that the j*"-coordinate of ¢(p + te;) has the
sign of t);, i.e., negative which is impossible since Vo C R’;O.

Since (¢, ") is an isomorphism, we can prove symmetrically that if i ¢ A(p(p)) and e; =
(0,...,0, 1(im),0, ...,0) is the i vector of the canonical basis of R¥ then, for any j € A(p), the

j*-coordinate of dw(p)go*l(ei) is equal to zero and hence m, < m O

w(p)-

Remark 2.1.11. We obtain as a corollary of proposition 2.1.10 and corollary 2.1.9 that given a
standard analytic manifold A = (|A|, O4), any point p € |A| has an open neighborhood U in |A|
such that the open submanifold A|y is isomorphic to A}” x R". By definition, each p € |A] is
in the domain of a chart (U, ¢) where the range of ¢ is an open subset of ]R’;O. By Proposition
2.1.10, we can choose such a chart centered at p, i.e., such that ¢(p) = (0,...,0) if and only if
m, = k. If we want to have always a chart centered at any given point, we can think that there
is not a single local model for standard analytic manifold of a given dimension k, namely A¥
but several ones, A" x R" with m +n = k.

Definition 2.1.12. Let A = (|A|, O4) be a standard analytic manifold. The function m : |A| —
N defined by

m(p) :==m, = [{i € {1,...,k} : wi(p) = 0},
where w = (w1,...,wg) is a local chart on p is well defined. Moreover, m is an upper semi-

continuous function. Given a point p, we will say also that m,, is the number of boundary
components of the point p.

For j € {0,1,...,k} let
D(@j) = A{p e [A]:my = j}
Let jo :=max{j € {0,1,...,k}: D(j) # 0}. We call D(jo) the lime of A.

Let {D(j)i}ie1, be the connected components of D(j). We consider the partition of the under-

lying space |A| by these sets
k

|A| = U(UijteD(j)ij)

J=0
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Proposition 2.1.13. For each j € {0,...,k} and each i € I;, D(j); is a locally closed set and the

restricted sheaf (D(j)i, Oalp(;),) gives rise to a real analytic manifold of dimension k — j. The

family Dy = {D(j)i;} ijer; is a locally finite stratification of |A[; that is, for every stratum
]6{07'7k}

D(j);, its boundary

OD(j)i = D(5)i \ D(j):

is a locally finite union of strata of dimension not greater than the dimension of D(j);. Moreover,
the boundary 0|A| of |A| is the union of all strata of dimension strictly smaller than k.

Proof. All stated properties are true if they are true locally at each point of the manifold. Thus
the proof follows from the definition of A as being locally isomorphic to open submanifolds of
the local standard model A% after checking that proposition is true for the (finite) stratification
Dy of RE,. O

Definition 2.1.14. Let |X| be a k dimensional Hausdorff topological space with a countable
open basis. We say that a family {(Uy, ¢x)}rea is an O-atlas of | X]| if

i) For any A € A, U, is an open subset of |X| and ¢y : Uy — V) := ¢or(Uy) C ]R’;O is an
homeomorphism.

i7i) For any \,u € A, ¢y o <p;1 s (U, NUy) = oA (U, NUy) is an isomorphism in O.

Let U an open subset of |X|. We denote by Ox (U) the set of continuous functions f : U — R
such that for any p € U, there exists an open V' C U such that f o 90;1 coa(VNUy) — R has
an analytic extension to an open neighborhood of ¢(p) in R* for any A € A such that p € Uy,

Proposition 2.1.15. The pair X = (|X|, Ox) is a standard analytic manifold.

Proof. By definition, X €0bj(€). Let p € | X|. Let A € A such that p € Uy. Then, ¢, " induces
a morphism from A{ﬂm(UA) to X|y, by definition of X. Moreover, vy : Uy — ¢x(Uy) induces
a morphism from X|y, to Aﬂm(m) : let V be an open subset of p(Uy) and g : V — R a
section of (’)Azi over V. Then, go ¢y € Ox(py (V) because if ¢ € ¢, (V), and p € A is such

that ¢ € Uy, foprop,! € OA’i(Sou o (V) since by condition iii) of 2.1.14 g € OAi(V) —
gopyo gp;l € OA’i (¢ 0 @y (V) is an isomorphism. O

Proposition 2.1.16. O is a category with product.

Proof. We show first that given V; C Rgo and Vo C ngo open sets, there exists a product of the
open submanifolds of the local model AT |y, and Aiz lv,. Let V.=V x Vo C R’go the topological
product of V7 and V;, where &k = k1 + k2. Considering V' as open submanifold of Aﬁ we claim
that V', together with the usual projections p; : V. — V;, ¢ = 1,2, is a product of A]f]vl and

k
ATy,.
Let A be a standard manifold and «; : A — V; morphisms of O. Since V is the topological
product of V4 and V3, there exists a unique continuous map ® : A — V such that p; o ® = a;.

Let us see that ® is a morphism in the category O. Let U be an open subset of V. It suffices to
see that for every f € OA]i (U), fo® € O4(®7L(V)). Let a € U and ¢ a local homeomorphism

at a from W, an open neighborhood of a, to (W) C RY; (m =dimension of A) inducing an
isomorphism between the open submanifolds Aly and A’'[, ). Thus, for any g € ¢(W)

fo®oyp H(q)=f(pro®oy (q),p20Pop (q) = flarop (q),a20¢ ()
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Since o; : A — V;, i = 1,2, are morphisms and p;(U) is an open subset of V;, a; o p~! €
OAKL(go(ai_l(pi(U)))). Thus «; o ¢! have an analytic expansion on a neighborhood of ¢(a).
As f € OAi (U), f has an analytic expansion on a neighborhood of (ai(a),a2(a)) € U, which

implies that f(a1 o™, as0p~!) has an analytic expansion on a neighborhood of ¢(a) as was
to be proved.

Finally, just notice that if W; is an open subset of V; and g; € O, x; (Wi), giop; € OA;i (p; 1 (W7))
+

because for any (v;1,vi2) € p;I(Wi), 9i 0 pi(vi1,vi2) = gi(v;;) which has an analytic expansion
on a neighborhood of (v;1,v;2) since g; has an analytic expansion on a neighborhood of v; ;.

Now, let A; and As be two standard analytic manifolds of dimension k; and ko respectively. We
start by constructing a triplet P = (|P|,p1 : P — A1,p2 : P — As) as a candidate to be the
product of A; and As.

It is logical to pick as underlying topological space for P the cartesian product |P| = |A;| X |Ag|
with the product topology and as morphisms p; : P — Aj,pe : P — As the morphisms induced
by the projections maps

p1=pri: |P| = [Aq| x |Az] — |A4] p2 = pra: |P| = [Aq| x |Az] — |Ag]

We construct now the sheaf Op that will determine the structure of standard manifold for P.
In order to define the sheaf Op as a subsheaf of the sheaf of continuous functions, it is enough
to associate to any element of a basis of open sets of the topology of |P| a R-subalgebra of
continuous functions with. After that, we need to show that with this structure, |P| is locally
isomorphic to A]iﬁk?.

As a basis of open sets of the topological product |A1| x |Az|, we can consider the set
B ={Uy x Uy C|A1| x |Az| : U; C |A;| is the domain of a coordinate chart ,i = 1,2}
Let Uy x Uy € B. Then A,|y, is isomorphic to Amvz via ; for i = 1,2. Let ® be the map
O = (p1,02) : Ut x Uy = V1 x Vo C RY x RE2) = REFF

Put k = k1 + k2. Then @ is an homeomorphism and V; x V5 is an open subset of Rgo- Let us
define
Lo(Up x Uy, Op) ={f: Uy x Uy - R/fod L e (V] x V2, 041}

First of all let us prove that this definition does not depend on the morphisms @1, @9 such that
(U1, 1), (Ua, p2) are local charts which will endow the topological product with a well defined
structure of standard analytic manifold. Let

i Ui =V}
be isomorphisms between A;|y, and A]fﬂv; and we define
O = (o], 05) 1 Up x Uy — V] x Vi
then 'y = I'g. We can illustrate the situation with the diagram
P01

Podp’—1

/_\

Vi x V<2 U x Up =2 Vi x Vs

.f% lf%

R
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The result is clear once we notice that ® o 1 and ® o ®~! are morphisms of standard an-
alytic manifolds (thus both isomorphisms), which can be seen using the definition of product
and that there exists the product of open submanifolds of the local model. So A1 x Ay =
(JA1] x |Az2|, Oa,x4,) €Obj(O). Remark that the natural projections p; : |A1| x |Az2| — |A;| are
morphisms from A; x Ay to A;. To finish, we have to prove that (A; x A, p1,p2) is a solution
of the universal problem. But this is easy: if B is a standard analytic manifold and 3; : B — A;
are morphisms for ¢ = 1,2, the map ® : B — A; x Ay defined by ® = (1, 2) is continuous and
induce a morphism of standard analytic manifolds since this property is a local one and locally
Ay X As has the structure of product, by definition. O

Proposition 2.1.17. O is a category with gluing.

Proof. Let B, Ay, Az be standard analytic manifolds and ¢; : B — A; be open immersions (see
appendix B) decomposing in

w1

ﬂlﬁ\zlfh

/
B h
X

P2

Ao, 2 As

Notice that h = @z 0 g1 ' : A|y, — As|y, is an isomorphism. Let |A] be the topological space
obtained by the quotient of the topological disjoint union |A;| L |A2| by the equivalence relation

a; ~ ag if a; =ag or a; € Uy, ag € U and az = h(ay)

Denote by 7 : |A1| U |As| — |A| the quotient map. For i = 1,2 define «; : |4;] — |A| as the
composition of the inclusion |A;| C |A1| U |As| with the quotient map.

aq

Aq

/

|A1| U [Ag| ——|A|

\

A
az

Then we have that a; is continuous, that its image W; = «;(|A;i|) is an open set of |A|, that
a; : |A;] = W; is a homeomorphism and that |A| = W; U Ws. Now we want to define a sheaf of
continuous functions (on local algebras) O4 on |A| such that A = (|A|, O4) is a standard analytic
manifold and «; is a morphism of standard analytic manifolds. Using a general construction of
gluing ringed spaces (see Appendix for details), it suffices to define such a sheaf Oy, on W; for
i = 1,2 such that, for any open set V- C W; N Wa, we have Oy, (V) = On, (V): explicitly, O4
will be given by

OA(U)={f:U —=R: foa;€Oa,(a; (U)), i=1,2}
Define



if V.C W is open, Ow, (V) ={f:V = R: foa; € O4,(a; ' (V))}.

With this definition, A; is isomorphic (in €) to W; via ;. Now, let V' C W1 NW5 be an open set.
The homeomorphism afl o ag induces an isomorphism (of standard analytic manifolds) between
the open submanifold oy (V) of Ay and a;*(V) of A;. Thus, if f: V — R is continuous, we
have

foar €0 (a7 (V) & foaz € Ouy(az'(V))

which shows O, (V) = Ow,(V), as required. We claim that A = (|A|,O4) is the gluing of
A1, Ay with respect to the open immersions @1, po. To see this, let (81, f2,T) be a triplet where
T = (|T|,Or) is a standard analytic manifold and f; : A; — T are open immersions such that
B1 0 w1 = B2 0 py. We have to show that there exists an unique morphism f : A — T such that
B; = foa for i =1,2. Uniqueness of f comes from the fact that |A| is the solution of the same
universal problem in the category of topological spaces: the map f : |A| — |T'| must be defined
by
f(p) = al_l(p) for pe Wy and f(p) = az_l(p) for p € Wy

We just have to prove that f is a morphism of standard analytic manifolds. This is a property
that we can check locally. But f is locally defined either by 51 o afl on Wi or by s 0 a;l on
Wy, both morphisms in the category of standard analytic manifolds. O

2.1.2 Local expression of morphisms.

Let A = (|A],04) and B = (|B|,0p) be standard analytic manifolds and ¢ : |A| — |B| a
continuous map which induces a morphism from A to B. Let p € |A| and ¢(p) € |B|. We want
to investigate how is the local expression of the morphism ¢ when we take local coordinates
centered at p and at ¢(p).

More precisely, consider a local chart at p, i.e. an isomorphism ¢ : Aly, — AT” x R"™ |y, where
Up is a neighborhood of p in |A| and Up is a neighborhood of 0 in R;ng x R™, and consider,
correspondingly, a local chart ¢ : Bly,, — Vo at ¢(p) (one can chose Up and Vj to be the whole
space, according to corollary 2.1.9).

(p)

(:0")
Alu, s Bly,

(p)
(dﬁcﬁﬁ)l l(w,wﬁ)

m

AT? « R™» A_}_w(p) % R™e ()

Then, the map h:=1opo¢!: qug x R — RT&"(”) x R™¢(®) has an analytic extension to a
neighborhood of 0 € R™»+7»,

Reciprocally, any such continuous map h : Uy — Vj that induces a morphism (resp. isomorphism)
h: AT” x R™ |y, — AT“’@ ) x R™ W |y, gives rise, by reversing the charts ¢ and 1 to a morphism
(resp. isomorphism) from an open submanifold of A containing p to an open submanifold of B
containing ¢(p).

In the following proposition, we just describe the conditions for a continuous map h to give rise
to a morphism or an isomorphism between the corresponding open submanifolds of the local
models A" x R" = (RZ) x R", Op, ).

Proposition 2.1.18. Let m,n, m’,n’ be natural numbers, k = m+nand ¥’ = m/+n/. Let U, V
be open neighborhoods of the origin in RZ; x R" and in R;”é x R respectively. Let h: U — V be
a continuous map with h(0) = 0, and h = (hy, ..., hgz) be the components of h as a map ranging
in R¥. Denote by (z,4) = (Z1,...,Zm,Y1,---,yn) and (z,w) = (21,..., Zm, W1, ..., wy) the
coordinates in RZ; x R™ and RZ) x R™. Then
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i) h induces a morphism (h,h¥) : AT x R"|y, — AT/ x R" |y, where Uy and Vj are open
neighborhoods of the origin in R7; x R" and R%"é x R™ respectively, if and only if each h;
has an analytic extension on a neighborhood of the origin in R¥.

ii) Assume that k = k" and that h induces a morphism (h, h¥) : AT x R"|; — AT’ x R™ |y
Then (h, h*) is an isomorphism in the category O if and only if m = m/, n = n’, h is an
homeomorphism and for any j =1,2,...,m,

zj = hj(z,y) = i(;)9;(, y)

where g; an analytic function at 0 such that g;(z,y) # 0 for any (z,y) € W for W a
desirable neighborhood of 0 in RT; x R™ and j — i(j) a permutation of {1,...,m}.

Proof. Necessity of part i) follows from the fact that the projections functions pr; : (p1,...,px) €
R@é xR — pj € R are sections of O, ,» over any open neighborhood of the origin in ]R;”é xR,
so if h induces a morphism, each prj o h = hj is a section of Oy, , over an open neighborhood of
the origin in R7; x R™ which implies that they admit an analytic extension to a neighborhood
of the origin in R*. Conversely, suppose that each hj admits an analytic extension to Uy C U an
open neighborhood of the origin in R*. In particular, by the open mapping theorem for analytic
functions, h is an open map, so V := h(Up) is an open subset of V. Let W be an open subset of
Vo and f a section of Oy, ,,» over W. Then foh € Omm(h*l(W)) because it admits an analytic
extension for any p € h=H(W).

For ii), suppose that the continuous map h : Uy — V| induces an isomorphism of standard
manifolds

(h, h#) : AT X R™|y, — AT x R |y,
Since h(0) = 0, by proposition 2.1.10 m = m’ and hence n = n’. Notice that h is an homeomor-
phism, so

m
h(O(RZy x R™)) = O(RZ, x R") = | J{(z,w) € RZ; x R™ : z; = 0} (2.2)
i=1
Condition (2.2) implies that for any j = 1,2,...,m there exists o/ = (a{, ...,alky) € N™ with
al # 0 such that _
. j ;
hj(z,y) = 2 gj(x,y) = 21" - 2 g;(x, y) (2:3)

with g; analytic at 0, and g;(0,y) # 0 for any y # 0 close enough to 0 € R™. Suppose g;(0,0) = 0.
Then, there exists i; € {1,...,n} such that y;, divides g; and then y; divides h;. This is not
possible, because then we could take (zo,%0) an interior point of {(x,y) € RZ; x R™ : ;. = 0}
such that h(zo,y0) € {(z,w) € RYy x R" : 2;; = 0}, against (2.2).

Each of the first m lines of the jacobian matrix of the differential at 0 € RY, x R", dph, Is given
by V(h;)(0,0). By (2.3)

J J
a;—1 ap;—1

RN ---xﬁf"_l divides V(h;)(z,y) (2.4)
As h induces an isomorphism, do is a linear isomorphism of RE. Then, there are not lines of
zeroes on its jacobian matrix. Since o/ # 0 and (2.4), for any j € {1,...,m} there exists a
unique i(j) € {1,...,m} such that ag(j) = 1 being the other components of o/ equal to zero. We

have then for any 7 =1,2,...m,

hj(x,y) = (9 (7, y)

Now, we prove that the map 7 — i(j) is a permutation of {1,...,m}. This follows from the fact
that if we make the same construction for h™!,

hl(z,w) = () f1(z,w),s s 2y fm (2, 0), frn1 (2, 0), - fr(2,w)),
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since h o h™1(z,w) = (z,w) and h=t o h(z,y) = (x,y), for 1 < j < m,

25 = 21 figg) (2, w)g; (W (z,w))
2 = i) 9i) (@ 9) i (h(z, )

hencei:je{l,...,m} —i(j) € {1,...,m} is a permutation of {1,...,m} (with inverse /). O

Definition 2.1.19. Let A = (JA|,O4) be a standard analytic manifold and p € |A|. Given a
local chart (U, ¢ = (z1,...,2)) of Aat pand f € O(U) we say that f is monomial at p with
respect to the local chart (U, ) (or with respect to the coordinates z) if the Taylor
expansion of the germ f, with respect to the coordinates x is of monomial type. In other words,
that we can write locally f in the coordinates x as

flx) =aft - -aprg(e), wel,

where g € O(U), vanishes nowhere in U, and each o; € N. We say that f is monomial at
the point p if it is monomial with respect to some local chart at p. Finally, we say that f is
(locally) monomial if it is monomial at every point of A.

Definition 2.1.20. Let ¢ : A — B be a morphism of standard analytic manifolds. We say that
¢ is locally monomial if for any p € |A| there exists local coordinates (U, ¢ = (z1,...,Tk))
centered at p such that all the components of ¢ are monomial at p with respect to these coordi-
nates.

Examples 2.1.21. i) The morphism (z,y) € L xR — (z,2+y) € A4 x R is locally mono-
mial because with respect to the new coordinates (z,y’') = (z,x + y) its components are
monomial.

ii) As a consequence of proposition 2.1.18 the morphism (z,y) € AL xR — (z,2%(2? +y?)) €
L x R is not locally monomial.

2.2 G-analytic functions.

In this section we define the concept of generalized analytic function. These are the functions on
open subsets of quadrants R’;O which can be represented locally by real convergent generalized
power series, in the same way as the classical real analytic functions are those locally described
by convergent power series. The principal difference is that depending on the position of the
point with respect to the boundary of the quadrant we are considering, the series will have a
number of analytic or generalized variables. We need some notation.

Let k,m,n € N, AC {1,...,k} and £ = (£1,...,&) € (0,00)% be a polyradius. We put
Ipg:=DBi x By x - -By CR”,

where the B; is either the interval [0,§;) C Rif i € A or the interval (—¢&;,&;) if i &€ A. For a posi-
tive real number ¢, we also write I4 for 14 (. ). Notice that, if m+n =kand A= {1,...,m},
then we have, according to the first chapter, a second notation I ¢ = I, n ¢ which will be also
used here.

Let G}, denote the group of permutations of {1,...,k} and Gy, the subgroup of G,y consist-
ing on those permutations of {1,...,m + n} such that they induce separately permutations of
{1,...,m}and {m+1,...,m+n}. Given o € Gy,

o:RF 5 RF

o(wi, . wk) = (We(1ys - - We(k))
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With this notation, ¢ denotes a permutation of {1,...,k} or a map from R¥ to R¥. We will
deduce the meaning of ¢ from the context.

From now on, consider A C {1,...,k} and put m = m(A) = |A| and n = n(A) = k — m. Let
G 4 denote the subset of permutations of {1, ..., k} sending A to {1,...,m}.

Remark 2.2.1. Given 0,7 € G4, 007 ! € Gm(A),n(A)-

Notice that if & > 0 is sufficiently small, then, o restricts to an homeomorphism o : Iy s — Iy s
(notice the abuse, again, of notation) whose inverse is also the restriction of a linear automorphism
of R* induced by a permutation of {1,...,k}, the inverse o=!, of .

Itp=(p1,...,px) € R’%O, we put
A(p) ={ie{l,...,k}:p; =0}
mp =m(A(p)) := |A(p)]
np =n(A(p)) ==k —my
Gp = GA(p)
Notice that the family of sets {p + I4(y)} , where € > 0 is sufficiently small, is a fundamental
system of neighborhoods of p in RZO' By 2.1.7 the map

peRgov—WnpeN

is upper semi-continuous so for € > 0 small enough, if ¢ € p + I, then A(q) C A(p), and
therefore mg < my,.

Given p € R>0 and o € G, we define 0, , as the restriction to R o X R of the affine map given
by
(wlu “e. ,’ll)k) — p + U(wla ey wk)) = (pl + wa’(l)a -y Pk + wo’(k)) (25)

Coordinates in R>0 x R™ will be denoted, more conveniently, by (z1,...,%m,,¥1,--¥n,);
reflecting the number and position of factors which are half real lines and those which are real
lines.

Notice that for any small § > 0, 0}, restricts to an homeomorphism from I, n,.s to p+ 50 s
sending 0 € Ly, n,6 0 p €D+ Lap)s-

Graphically,

22

/.//

Pl,

Ta).s

(z1,y1) — (p1 +y1,71)
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Definition 2.2.2. Let V be an open set in Réo and let p € V. A function f on V is said to be
generalized analytic or, shortening, G-analytic at p if there exists § > 0, a convergent series
s e R{X*,Y}  and o € G)such that

pstip

i) (p+Tagys) SV
i) s € R{X* Y}

Myp,Np,0
ZZZ) S(S(S)’Ian,np,& - f’(p+IA(p)75) o ep,a
We say that f is G-analytic on V if it is G-analytic at every point p of V.

Remark 2.2.3. The definition above does not depend on the choice of ¢ in the following sense:
if 6, s and o are as in that definition satisfying ¢), i) and 4i7), then for any 7 € G, there exists
t e R{X*’Y}mp,np,d (which depends on 7) such that kS’(g(t)\[mM,p’(S = f‘(p+IA(p),6) 00, To

prove this claim, take 7 € G, and let n = 0~ o 7, a permutation of {1,...,k}. Denote by 7s

the series in R{(X,Y)*} obtained by the morphism of substitution (see Proposition 1.2.10) of
the variable X; by X, ;) and of the variable Y; by Y} (;4)—,. Notice that this series belongs
actually to R{X™,Y },,,, n,.s because n induces a permutation of the generalized variables X; and
a permutation of the analytic ones Y;. The remark follows from the observation that

ep,a = 6[),’7’ on
and the fact that Ss(ns) = Ss(s) on, from Proposition 1.2.21.

Definition 2.2.4. Let V' be an open subset of Rgo. We let G; » (V) denote the set of G-analytic
functions on V' :

Gix(V):={f:V = R: f is G-analytic on V}

Then G; (V) is a R-subalgebra of the algebra of continuous functions on V' with respect to the
natural inclusion R — Gy« (V) that identifies a real number with the corresponding constant
function. It is a straightforward computation, as a consequence of the fact that the sum of
convergent series is an algebra homomorphism (see Proposition 1.2.20), to check that Gy x(V) is
a sub R-algebra of the algebra of real functions on V.

Theorem 2.2.5. i) A G-analytic function f at a point p is continuous at that point.

i) A G-analytic function at a point in the interior of R’;O in R* (that is, a point p =

(p1,---,pkK) € Réo such that p; # 0 for all 1 <4 < k) is analytic at this point.

ii1) Let V be an open subset of Rgo, p a point in V and f : V — R a function which is
G-analytic at p. Then there exists a neighborhood of p, W C V', such that f is G-analytic
on W.

As a consequence, if V' is an open subset of R’;O and f : V — Ris G-analytic on V, f is continuous

on V and analytic on the interior in R* of V.

Proof. Part i) follows from the fact that f coincides with the sum of a convergent generalized

power series in a neighborhood of p and such a sum is continuous by 1.2.20. Part i) follows from

definition of G-analytic function.

For #i7), if f is analytic at p then, by definition there exists § > 0, s € R{X*,Y}m ... and
pyttp

o € G such that

L (p+Iap)s) €V and s e R{X* Y}

Myp,Np,0
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2. 85()| Ly inps = Flw+1a).0) © Opoo

Take ¢ > 0 such that J < min;g () {pi}. Then, for all ¢ € p+ 14,5, A(q) S A(p) and therefore
mg < my (see 2.1.7). We claim that f is G-analytic on p+14(,) 5. Let ¢ = (g1, .., qx) be a point
in p+ I and consider a = (ay,...,ax) := 0, 1(q) € I, n,s- Put

m'=[{ie{l,...,mp}:a; =0} and n' =k —m'.

By Proposition 1.2.23 given a permutation 7 of {1,...,k} such that 7(A(a)) = {1,...,m'} and
€ > 0 such that
a+7(w) € Iy, n,.s

whenever w € I,y . , there exists a unique Tys € R{U*, V' },, v . such that
Se(TaS)(w) = S(;(S)(CL + T(U}))
for all w € Im’,n’,s-

Consider the composition of permutations n = 7o. We have, in one hand, that n € G-
If j € A(q) then the j'"-coordinate g¢; of ¢ is equal to zero. But q; = p; + ay(j) and, since
A(q) € A(p), pj = 0 and thus a,(;) = 0. This implies that o(j) € A(a) and then that n(j) =
7(o(j)) € {1,...,m'}.

On the other hand, we have that
Ha,'r(fm’,n’,e) Ca+ T(Ln’,n’,e) C Im,n,év

so that the composition 0, , 08, ; is well defined in I, ,,» .. But this composition is nothing more
than the map 60, -, obtaining finally

Se(Tos) = S5(s)0b0qr =fo0b0p5004,=f0b,:5
which shows that f is G-analytic at the point ¢, as was to be proved. O

Forp € R’;O we consider the R-algebra of germs of G-analytic functions at p in the usual way: it is
the quotient of the set {(V, f) : p € V,V open and f : V — R G-analytic at p} by the equivalence
relation (V, f) ~ (U, g) if and only if there exists an open neighborhood of p, W C U NV such
that flw = glw. Let G, denote the R-algebra of germs of G-analytic functions at p.

Proposition 2.2.6. For any p € R’;O the R-algebra Gy« ,, is isomorphic to R{X*, Y}m - As
= ) py'p

a corollary, the R-algebra of germs of generalized analytic functions Gy, is a local R-algebra

whose maximal ideal consists of those germs of functions which take the value zero at p.

Proof. Let p € Rgo. As in the beginning of this section, let A(p) = {i € {1,...,k} : p; = 0} and
let G), be the set of permutations of {1,...,k} that send A(p) into {1,...,mp}. Fix 0 € G, and
denote by 6, , the map defined in Rgg x R by 0(w) = p + o(w).

Let s € R{X*,Y}m .. s be a given convergent generalized series and denote, as in 1.2.20 by
Pyepy

Ss(s) its sum, a G-analytic function on I,,, . 5 C Rgo By its very definition, the composition

pyTlps

Ss(s) o 9;7(1, is a G-analytic function in some neighborhood of p. We can then consider the map

F,: R{X*,Y}m,,,n,, = Gy (2.6)

assigning to an element s € R{X*, Y}m . 5 the germ at p of Ss(s) o 0, &, which is well defined
psTtp, ’

(the germ of such a composition does not depend on the polyradius § as long as the series has
radius of convergence greater or equal to 0). The fact that the sum operator Sy is an algebra
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homomorphism between R{X*, Y}m .. and COIa(p),5:R), gives directly the result that F, is
psTp ’
an R-algebra homomorphism.

Let us see finally that F'is a bijection. It is injective thanks to the fact that the sum morphism
Sy 1s injective. Surjectivity of F, comes from definition: if f,€ Gy, is the germ of some G-
analytic function f € Gpx(U) , by definition of Gy »(U) (and Remark 2.2.3) there exists § > 0
and s € R{X*,Y}mpmm such that Ss(s) = f o 0,,. Then, F,(s) = f,. O

Notice that we have proved that the morphism Fj in (2.6) is an isomorphism for any o € Gy.
Following Remark 2.2.1, if 0,7 € G, we obtain that given a germ f,, the two series F, *(f,),

F71(f,), are obtained one from the other by the permutation o o 771 (or its inverse) of the

variables X, Y. This permutation belongs to the subgroup Gy, n, of permutations of the k
variables which induce separate permutations, one on the generalized variables X and another
permutation on the analytic ones Y. Thus we can define

Definition 2.2.7. Given p € RE and f, € G« ,» the series F71(f,) € R{X*7Y}m ., s called
= ’ pstip

the Taylor expansion of the germ f, . It is well defined modulo the action of Gy, », on the

series.

Examples 2.2.8. Let us give some examples of G-analytic functions.

i) If V is an open subset of R’;O and f:V — R is a function which is the restriction to V'
of a real analytic function on an open set of R* containing V, then f is G-analytic on V.

This is an easy consequence of the fact that, given variables X and Y, we have naturally
the inclusion R{X,Y} C R{X* Y}.

ii) If s € R{X*, Y}mn6’ then its sum is G-analytic on I, , 5.
iit) sin(z*y*) in R,
iv) log(1+ z?) in R

v) Let ¢ denote the Riemann zeta function. Then,
o
((—logzx) = leog(”) [0,e7?) =R
n=1
is G-analytic.

2.3 Generalized analytic manifolds.

We are going to define a subcategory G of € that will be called the category of generalized
analytic manifolds.

In order to define G we proceed as follows. First of all we construct a particular object L* in
G for each k € N called the Standard Local Model of dimension k. Then objects of G are those
objects in the category € which are locally isomorphic to some L* as ringed spaces. Morphisms
in G will be the morphism in € when consider the objects of G as objects in € so that G will be
a full subcategory of €.

We consider Rgo as a topological space with the topology of subspace of R¥. If U is an open set

of ]Rgo the assignment U +— Gy (U) of G-analytic functions on U (see definition 2.2.4), together
with the restriction morphism

ng(U) — g]Lk(V),f — f ‘v
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each time that V C U, is a sheaf on Rgo. Moreover, by 2.2.4 and theorem 2.2.5, it is a subsheaf
of local R-algebras of the sheaf of continuous functions. We define the standard local model
of generalized analytic manifold of dimension k as

LF = (REy, Gpw).

Definition 2.3.1. A generalized analytic manifold or, for short, G-manifold of dimension
k is a locally ringed space M = (|M|,Gar) € Objects(€), where |M]| is a Hausdorff topological
space with a countable open basis, such that for every p € | M| there exists an open neighborhood
U of p and an open set V C RY, such that the restrictions M|y = (U,Gun|y) and L[y =
(V,Grk|y) are isomorphic in the category €.

Definition 2.3.2. If M = (|M|,Gy) is a G-manifold, an open submanifold of M is the
locally ringed space M|y = (U, Op|v) where U is an open subset of |M| (see the appendix for
the notation). It is clear that an open submanifold is also a G-analytic manifold.

Given two generalized analytic manifolds M = (|M|,Gyr) and N = (|N|,Gn) a morphism be-
tween them is, by definition, a morphism of the category €. The category G of generalized
analytic manifolds is then defined by setting

objects(G) := {M € objects(€) : M is a generalized analytic manifold}
morphisms(G) := {(¢ : M — N) € morphisms(€) : M, N € objects(G)}

Recall that a morphism ¢ between two generalized analytic manifolds M = (|M|,Gy) and N =
(IN1],Gn) is determined by a continuous map between the topological spaces ¢ : |M| — |N| (but
not every continuous map between the underlying topological spaces induces a morphism between
the ringed spaces !), and that such a morphism is an isomorphism if and only if ¢ : |M| — |N|
is an homeomorphism and for all p € |M| the induced homomorphism in the stalk

©GNp) — IMp

@(f‘cp(p)) - (f © W)‘P
is an isomorphism of R-algebras.

Examples 2.3.3. We give some examples of generalized analytic manifolds to illustrate the
definition. Most of them will be used through this work.

i) Let Ogr denote the sheaf of analytic functions over R¥. Then (R*, Og:) is a generalized
analytic manifold. To see that, remark that the homeomorphism ¢ : RF — R’;O C R’;O
defined by o(y1,...,yr) = (e¥1,...,e%) induces an isomorphism (of locally ringed spaces)
from (R¥, Ogr) to Lk|R§O = (R, ng|R’;O)— Then, in particular, for V open subset of R¥,
if we let Oy denote the sheaf of analytic functions on V', (V, Oy ) is a generalized analytic
manifold.

i1) More generally, if M = (|M|,Ops) is a real analytic manifold (with the sheaf-theoretic
interpretation; that is, that Oy is the sheaf of real analytic function on the underlying
variety | M), then M is a generalized analytic manifold. This is an immediate consequence
of example above.

iii) The local model L* = (Rém Gpx) is a generalized analytic manifold of dimension k.

iv) Consider RT x R™ with the product topology. Let ® : RTy x R" — RZ; x RY, C RZ ™
be the map defined by -

(x,y) € Ry x R™ 2, (z,0(y)) = (z,e",...,e%) € RT, x R,
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It is a homeomorphism. We can endow an structure of generalized analytic manifold to
RZ, x R™ via this homeomorphism: just consider the sheaf G,,, defined by assigning to
each open set V C R7, x R" the R-algebra of functions f : V — R such that fo ® ! is
a G-function on the open set ®(V) of RZ™. For reasons that will be clear below, we call
the generalized analytic manifold

L™ x R™ := (Rgﬂ x R"™, Om,n)

the (m,n) mixed (generalized) local model. Notice that by the moment L™ x R"™ is just
a notation. We show in proposition 2.3.21 below that the category G has product. In
particular the product of the standard analytic manifolds L”* and R" has sense and it
agrees with the given here.

Definition 2.3.4. Let p € |[M|. A local (generalized) chart at p will be a pair (U, z) where
U is an open neighborhood of p in |M| and

z:U—V
2(q) =(21(q), - - -, 2(q))

is a homeomorphism which induces an isomorphism of generalized analytic manifolds M|y =
(U, Garlv) and LF|y, = (V,Gpx|v). The components 21, ...,z will be called local coordinates
at p. We say that a local chart is centered at p if it sends p to the origin.

Proposition 2.3.5. For any point p € R’;O there exists € > 0 small enough and an open
neighborhood (depending on ¢) isomorphic to (L™ x R™)[10,e)mp x (—e,c)mp - AS a consequence,
given IL*|y,, an open submanifold of ¥, any point p € V has an open neighborhood isomorphic
to LM» x R".

Proof. Let p € R’;O, A(p) C {1,...,k} and 0 € G, as defined in 2.2. For ¢ > 0 sufficiently small,
the map 6, , as in equation (2.5) restricts to a homeomorphism from the neighborhood Ly iny.6
of (0,...,0) in R’;O to the neighborhood 14, s of p in Rgo. Then we have that its inverse 9;},
induces an isomorphism between L*|; Ay, and (L™ x R™))| Iy np.s- I this way we can see 0, p
as a local chart at p, centered at p. Now, it suffices to notice that the map

©:]0,6)™ x (—e, )" — Ry x R™

Y ’ my Y yJIn € —1’1’ 9 e_xm7 € — (y1)27 Y € — (yn)2
induces an isomorphism between (A}” x R™)10,e)mp x (—e,e)me and (AP x R™). O

Definition 2.3.6. Let M = (|M|, G ) be a k-dimensional generalized analytic manifold. Let U
be an open subset of |[M| and f: U — R a continuous function on U. Let p € U. We just say
that f is G-analytic at p if the germ of f at p belongs to the local algebra Gys,. The function
f will be called a G-analytic function on U if it is G-analytic at every point of U. Equivalently,
since Gys is a sheaf, f is G-analytic on U if it belongs to the algebra Gas(U) of sections of the
structural sheaf.

By the very definition of G-analytic manifold, we deduce that f is G-analytic at a point p € U if
and only if there exists a local chart at the point p, z : U, =V C R’io such that the function
foz1:V — Ris G-analytic at ¢(p). If f is G-analytic at p for all p € U we say that f is
G-analytic on U.

Remark that this property does not depend on the choice of the local chart z. If Uy, Us are open
neighborhoods of p and z; : U; — V; are isomorphisms from M|, to ]Lklvi, we have the diagram
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then if f o z; ' is G-analytic at z;(p) it is G-analytic on a neighborhood V' of z1(p) (see 2.2.5),
that is foz; ' € Gua(V'). As 21 0 2y ! is an isomorphism,

fOZl_1021022_1:fOZ2_1 € Gur(W")
where W’ = 25 0 2,71 (V’). In particular f o z; ' is G-analytic at 22(p).

Definition 2.3.7. Given f a G-analytic function over M and p € M, let (U, p = (z1,...,2k)) be
a local chart of M at p. The Taylor expansion of f at p with respect to these coordinates
is the series in R{X*}, X = (Xy, ..., X}) which is the Taylor expansion of the the germ of fop~!
at p(p) € R, (It is well defined up to a permutation of the generalized variables (those X; such
that x;(p) = 0) and a permutation of the analytic ones (those X; such that z;(p) # 0).

Definition 2.3.8. Let |M| be a Hausdorff topological space with a countable open basis. We
say that a family {(Ux, @) }rea is an G-atlas of |M]| if

i) For any A\ € A, Uy is an open subset of |M| and ¢y : Uy — @ (Uy) C R’go is an homeo-
morphism.

ii1) For any \,u € A, py o gp;l s (U, N Uy) = oA (U, NUy) is an isomorphism in §.

Let U an open subset of |[M|. We denote by Gas(U) the set of continuous functions f: U — R
such that for any p € U, there exists an open V' C U such that f o cp/(l oAV NUy) — Ris
G-analytic at ¢(p) € Rgo for any A € A such that p € U,.

Proposition 2.3.9. The pair X = (| X, Ox) is a generalized analytic manifold.

Proof. By definition, X €Obj(€). Let p € | X|. Let A € A such that p € Uy. Then, 90;1 induces
a morphism from ]Lk\w(UA) to X|y, by definition of X. Moreover, py : Uy — x(Uy) induces a
morphism from X|y, to I[Jk|m(UA) : let V be an open subset of ¢ (Uy) and g : V — R a section
of Gy x over V. Then, goyy € Gx () (V) because if ¢ € 3 '(V), and p1 € A is such that g € Uy,
fopyo ‘P;l € Grr(py 0 w;l(V)) since by condition i) of 2.3.8 g € Gyx (V) +— go ) o (pljl €
Grr(pp o @y (V) is an isomorphism. O

2.3.1 Stratification by the number of boundary components.

Fix a k dimensional generalized analytic manifold M = (|M|, Gas). The first consequence of the
definition is the following

Theorem 2.3.10. i) The underlying space | M| is a topological manifold of dimension k with
boundary.
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i1) If int(|M|) denotes the interior of this manifold then the restricted sheaf
int(M) = (int(IM]), Garlint( 1))
is a real analytic manifold.

Proof. i) follows from the fact that each point in |M| has an open neighborhood homeomorphic
to an open subset of R’io, a topological manifold of dimension k& with boundary.

i1) follows from the fact that each point p in int(|M|) has an open neighborhood U, such that the
restriction M|y, = int(|M|)|y, is isomorphic to the restriction of L* to some open set contained
in the interior R’;O of ]R];O. After this remark, use theorem 2.2.5 that asserts that a G-analytic
function at an interior point of R’;O is analytic at that point. O

The Theorem above shows that at points in the interior of the manifold, the dimension is the
only local invariant by isomorphisms. As we show below, this is not the case for points at
the boundary |M]|: looking at the standard local model R%, although any two points in the
boundary have topologically equivalent neighborhoods, they would not have necessarily isomor-
phic neighborhoods in the category of generalized analytic manifolds. In fact, the number of
coordinate hyperplanes ("boundary components'), passing through the point will be invariant
for local isomorphisms.

Let (U, z) be a local chart at p and define my, := |[{i € {1,...,k} : z;(p) = 0}|. We are going to
prove that m, does not depend on the local chart chosen but only on the point p. We need the
following proposition

Proposition 2.3.11. Let U and V two open sets of Rgo and suppose that the generalized ana-
lytic manifolds L*|;; = (U, Gur|v) and L*|y, = (V, GLx|v) are isomorphic via the homeomorphism

¢ :U — V. Then for each p € U, m;, = m,) and 80 ny = ny(,).

Proof. Assume that m;, > m,) (otherwise, take the inverse of ¢). To say that L*|; and L*|y
are isomorphic via ¢ means that, for any ¢ € U the induced local homomorphism on the stalks

ol Gk o(q) — Lk g
foq) = (Fo @)

is an isomorphism. Let p € U. By lemma 2.2.6 Gyx ;) is isomorphic to R{X*,Y}mw(p)’%(p)

and Gy, is isomorphic to ]R{Z * W}m .- It is important to recall what are the isomorphisms
P pstep
considered in that proposition: they are given by the maps

Fi=F, ) R{X"Y} = GLk (p)

My (p)Teo(p)
Py— . *
G = FT,p : R{Z aW}mp,np — g]kap

where F (and similarly for G) sends a series s € R{X*,Y'}
at ¢(p), o being a permutation in G,(p) and 0

to the germ of S;(s) 00;(11))

Me(p) T (p) g

o(p),o 18 defined as in (2.5) We have the diagram

Pp

G P

lo

R{Z*, W}

Gk 2(p)

d
R{X*,Y} ¢:=G Lop,oF

Me(p)Teo(p) Mp,Np

As Z; has all N''-roots in R{Z* W} |
pyitp
that ¢(Z;) also have all N'"-roots and then, by Proposition 1.1.20 ¢(Z;) = X%U; for all

and ¢ is an algebra homomorphism, we have
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j€{1,...,mp} where the U; are units. Notice that a; # 0 because Z; is not a unit and an iso-

morphism send non units to non units. Consider at ¢(p) the local chart Z = (71,...,2;) = 0;(1]3)70

and at p the local chart Z = (z1,...,%) = 6,7 (cf. proposition 2.3.5). Denote by Z; the germ
of Zj at ¢(p), etc. By the way we have defined the isomorphism F, we have F(Z;) = z; for
J=1,..myy) and F(W;) = Zjym,,, for j =1,..,n. Write then Z = (z,w) where z are the
first m,,(,) components of Z and w are the last n,,) components. Similarly we put & = (z,y)
where x are the first m, components of Z and y are the last n, components.

Write the map ¢ in these coordinates as

o(r,y) = (p1(z,9),- -, or(z, )

where ¢; = Zjop. By definition, the germ of ¢; is the image by the isomorphism cplﬂ; of z;. Using
the commutative diagram above, we obtain, in a neighborhood of p, the expression

o(x,y) = (2 ur(z,y),..., 2z "e® U, (T,Y), Py +1(2,Y), - x(T,Y))

where u; denotes the sum of the convergent series U;(X,Y) € ]R{X*, Y}mpmp. Thus we have
©j(0,y) = 0for j € {1,...,myp) } and every small y. Together with the assumption m, > m ),
this implies that ¢ restricts to a map from {(x,y)/z = 0} into {(z,w)/z = 0}. This two sets
being open subsets of R™ and R"™¢® respectively, and ¢ being injective, the Invariance of the

Domain Theorem implies that n, = ng(,) as was to be proved. O

Remark 2.3.12. A natural question that arises from the proof of the Proposition above is
whether two algebras of convergent mixed generalized series R{X * Y}mn and R{Z*, W}, s
are isomorphic if and only if m = m/ and n = n’. This is easily the case for m or m’ is equal to 0
because it is the only case where such an algebra is noetherian. In our proof we have only shown
that the number of analytic or non-analytic variables are the same if the isomorphism, ¢, is given
by a morphism on the sheaf structure, that is, by "composing" series under a homeomorphism.

Definition 2.3.13. Let M = (|M|,Gar) be a G-manifold. The function m : |[M| — N defined by

m(p) :=my = [{i € {1,...,k} : zi(p) =0},

where z = (z1,..., 2x) is a chart on p is well defined. Moreover, m is an upper semi-continuous
function. Given a point p, we will say also that m,, is the number of boundary components
of the point p.

Let M be a G-manifold of dimension k. For j € {0,1,...,k} let
D(j) ==A{p € |M[:mp = j}
Let jo := max{j € {0,1,...,k} : D(j) # 0}. We call D(jo) the lime of M.

Let {D(j)i}ier, be the connected components of D(j). We consider the partition of the under-
lying space | M| by these sets
k
|M’ = U(U”LJEIJD(])lJ)
j=0

Proposition 2.3.14. For each j € {0, ...,k} and each i € I, D(j); is a locally closed set and the
restricted sheaf (D(j)i, Gum|p(j),) gives rise to a (standard) real analytic manifold of dimension
k —j. The family Dy = {D(j)i;} i;e1; is a locally finite stratification of [M]; that is, for

7€{0,....k}
every stratum D(j);, its boundary

0D(j)i = D(j)i \ D(j):

is a locally finite union of strata of dimension not greater than the dimension of D(j);. Moreover,
the boundary 9|M| of | M| is the union of all strata of dimension strictly smaller than k.
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Proof. All stated properties are true if they are true locally at each point of the manifold. Thus
the proof follows from the definition of M as being locally isomorphic to open submanifolds of
the local standard model L* after checking that proposition is true for the (finite) stratification
Dyx of RE,. O

2.3.2 Local expression of morphisms

Let M = (|M|,Gar) be a G-manifold. By definition, each p € |M]| is in the domain of a chart
(U, ¢) where the range of ¢ is an open subset of }R’;O. As a consequence of Proposition 2.3.11,
we can choose such a chart centered at p, i.e., such that ¢(p) = (0, ...,0) if and only if m,, = k.
However, by proposition 2.3.5, if we want to have always a chart centered at any given point,
we can think that there is not a single local model for standard analytic manifold of a given
dimension k, namely ¥, but several ones, L™ x R with m 4+ n = k.

Let M = (|[M|,Opr) and N = (|N|,On) be standard analytic manifolds and ¢ : |[M| — |N| a
continuous map which induces a morphism from M to N. Let p € |[M| and ¢(p) € |N|. We
want to investigate how is the local expression of the morphism ¢ when we take local coordinates
centered at p and at ¢(p).

More precisely, consider a local chart at p, i.e. an isomorphism ¢ : M|y, — L™ x R"? |y, where
Up is a neighborhood of p in |M| and Uy is a neighborhood of 0 in R;ng x R™  and consider,
correspondingly, a local chart 1 : N‘Vﬂp) — Vo at ¢(p) (one can chose Uy and Vj to be the whole
space, according to proposition 2.3.5).

(.0")
M|y, ———— Ny,

P

<¢,¢ﬁ>i lw,w)

LM x R L) x R™e(®)
Then, the map h:= 1 opo ¢! : RLZ x R — RLE® x R™® is G-analytic at 0 € R”» ",

Reciprocally, any such continuous map h : Uy — Vj that induces a morphism (resp. isomorphism)
h: L™ x R |p, — L@ x R™@ |y, gives rise, by reversing the charts ¢ and ¢ to a morphism
(resp. isomorphism) from an open submanifold of M containing p to an open submanifold of N
containing ¢(p).

In the following proposition, we just describe the conditions for a continuous map h to give rise
to a morphism or an isomorphism between the corresponding open submanifolds of the local
models L™ x R™ = (RZ; x R",Gp, »)-

Proposition 2.3.15. Let m,n,m’,n’ be natural numbers, k = m+n and k' = m/+n’. Let U, V
be open neighborhoods of the origin in R7; x R" and in R@(l) x R" respectively. Let h: U — V be
a continuous map with h(0) = 0, and h = (hy, ..., hys) be the components of A as a map ranging
in R¥. Denote by (2,9) = (Z1,...,%msY1s---,Yn) and (z,0) = (21,..., Zm/, W1, .., wy) the
coordinates in RZ, x R™ and RZ) x R". Then

i) h induces a morphism (h, ) : L™ x R"|y, — L™ x R"/h/0 where Uy and V| are open
neighborhoods of the origin in RT x R™ and ]Rg(l) x R"™ respectively, if and only if each h;
is G-analytic at the origin in RY) x R", and for j =1,2,... ,m/,

) j J
hj(xvy) = xajgj(xvy) = ‘7“‘(1)[1 o 'xfénmgj(xvy)

for a certain o’ € [0,00)™ and g; a section of Gy, , with g;(z,y) > 0 for any (z,y) close
enough to the origin in RYy x R", and the map y = (hm+1(0,y),...,ht(0,y)) induces an

analytic morphism from R"” to R™ .
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i) Assume that k = &’ and that h induces a morphism (h, k) : L™ x R"|y; — L™ x R™ |y
Then (h, h¥) is an isomorphism in the category G if and only if m = m/, n = n/, h is an
homeomorphism, y — (hm4+1(0,9),...,hi(0,y)) induces an analytic automorphism of R”™
and for any j =1,2,...,m,

zj = hj(z,y) = 2;(;9i(2,y)
being a; > 0, g; an analytic function at 0 such that g;(x,y) > 0 for any (z,y) € W for W
a desirable neighborhood of 0 in RT; x R"™ and j — i(j) a permutation of {1,...,m}.

Proof. For i), suppose that h induces a morphism (h, h¥) : L™ x Ry, — L™ x R"’]VU where
Up and Vj are open neighborhoods of the origin in RZ;, x R" and R;’l{) x R™ respectively. Since
the projection maps prj : (p1,...,0k) € ]Rg”(l) x R" — pj € R are sections of G, , over any open
neighborhood of the origin, hj =prjoh ;hﬁ(prj) are G-analytic at 0.

We have the diagram

h
Gt ' 0 im0

v| TG
d)::G*lohgoF

R{Z"\ W}, R{X*Y}, .,

O

where F' and G are defined as in 2.2.6. Notice that with the notations of 2.2.6 we can take 6
equal to the identity for F' and G. Thus, for 1 < j < m/, F(Z;) is the germ at 0 of the projection
map prj, which implies that ¢(Z;) is the Taylor expansion of h; at 0. By proposition 1.1.20,
since ¢(Z;) has an N*-root for any N € N (gb(Z;/N)), there exists o/ € [0,00)™ and a unit
Uj R{X*,Y}mm with U;(0,0) > 0 such that ¢(Z;) = Xo‘jUj. Let g; denote the sum of Uj,
then for any (x,y) close enough to the origin in RZ; x R" g;(z,y) > 0 and by construction of G,

hj(z,y) = 2% gj(z,y).

For m/+1 < j <k, h;j(0,y) = Sc(F~1(h;))(0,y) = Sc(F~1(h;)(0,Y)) for an € > 0 small enough,
which implies that y + h;(0,y) is analytic. Then, the map y — (Am+1(0,y),...,ht(0,y)) induces
an analytic morphism form R” to R™.

To prove the reciprocal of part i), let Uy be an open neighborhood of the origin in R, x R"
such that g;(z,y) > 0 for any (z,y) € Up and any j with 1 < j < m’; such that the map
Y = hmy;(0,y) is analytic at any y € prre(Up) for any j € {1,...,n'} where prg» : (z,y) €
RTy x R" — y € R"; and such that h; is G-analytic at any (z,y) € Up. Put Vo := h(Up). Notice
that by the hypothesis h;(x,y) = 2% g;(x,y), for 1 <j <m/, V; C R% x R™. If W is an open
subset of Vo and f € G, n|vi (W), by proposition 1.2.21 we can compose the Taylor expansions
of f and h at any (z,y) € h™Y(W), so f o h € Gmnlu, (K H(W)).

To prove part ii), if h induces an isomorphism, h is an homeomorphism so k = £/, and since
h(0) = 0, by proposition 2.3.11, m = m/ and so n = n’. By part i), the coordinates x and z are
related via h by the equations

21 = xa;gl(x, Y) T = zﬂlfl(z, w)
2y = 2% ga(z,y) zo = 27 fo(z,w) (2.7)
Zm = xamgm(l’vy) Tm = Zﬂmfm(zaw)

Define the matrices A := (O‘g)lﬁi,jgm and B := (527)197%% Since h o h~! = id, the product of
the matrices AB is equal to the identity matrix Id,,. In particular the matrix A is invertible so,
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for all j € {1,...,m}, (a{,...,a%)#(@,...,O).

Now we claim that '
ol £0=af =0 (2.8)

foralli € {1,...,m} and j # k, j,k € {1,...,m}: if there existed i € {1,...,m} and j # k,
such that o # 0 # a¥ we would have, by 2.7, that the homeomorphism h|(R7>no) sends {z; = 0}
to {zx = 0 = 2} which is not possible because the Invariance of domain theorem.

Then, by (2.8), the columns of A have only one component not equal to zero. As A is invertible,
the rows too. This implies that for any j € {1,...,m}, there exists a unique i(j) € {1,...,m}
such that a‘z(j) # 0 and that if j # k, i(j) # i(k), so j — i(j) is a permutation of {1,...,m}. The
rest of the properties and the reciprocal follow from part ¢) and the implicit functions theorem
1.2.15. O

Definition 2.3.16. Let M = (|M|,Gy) be a G-analytic manifold and p € |M|. Given a local
chart (U, = (x1,...,2)) of M at p and f € G(U) we say that f is monomial at p with
respect to the local chart (U,y) (or with respect to the coordinates z) if the Taylor
expansion of the germ f, with respect to the coordinates x (see definition 2.3.7) is of monomial
type. In other words, that we can write locally f in the coordinates x as

f(x):xtlll "'l‘?nmg(li), zel,

where g € G(U), vanishes nowhere in U, and each «; € [0,00). We say that f is monomial
at the point p if its monomial with respect to some local chart at p. Finally, we say that f is
(locally) monomial if it is monomial at every point of M.

Remark 2.3.17. i) f is monomial at any point p € M such that f(p) # 0 (by definition).

i1) fis monomial at p if and only if there exists local coordinates such that the Taylor expansion
of f at p with respect to these coordinates (see 2.3.7) is of monomial type. However,
we can chose different local coordinates for which the Taylor expansion of f at p is not
of monomial type. For instance y; € R{y1,y2} is of monomial type but the change of
coordinates y; = z1 + 232, y2 = 22 makes it not monomial.

ii1) f is locally monomial if and only if {f = 0} has normal crossing, that is, at any point p
of {f = 0} there are local coordinates such that {f = 0} is locally at p the union of some
coordinate planes.

iv) As a consequence of Lemma 1.1.12, if f = hg and f is locally monomial, then so are h and
g.

v) If fj = xo‘juj(x) is locally monomial for j = 1,2, 3, then either a! < a? or o? < o' (see,
for instance Lemma 4.7 of [2]).

Proposition 2.3.18. If f € G(M) is monomial at a point p € M then there exists a neighbor-
hood U of p such that f is monomial at any point of U.

Proof. By definition there are coordinates around p, (U, = (1,22, Tm,s Y1,Y25 -+ > Yn,))
such that the function f : U — R is given by f(z,y) = 2®y’h(z,y) where h € G(U) vanishes
nowhere in U and a € [0,00)™, 8 € N, We can moreover assume that f o o= € Gy i (p(U))
is the sum of a convergent series of monomial type

s(X,Y)=XYVYPH(X,Y) e R{X*, Y}

where H is a unit, and that ¢(U) is contained in the domain of convergence of s. We can see
that the Taylor expansion T,s of s at any point a € U is again a series of monomial type. The
proof is consequence then of Theorem 1.2.23. O
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Definition 2.3.19. Let ¢ : M — N be a morphism of G-manifolds. We say that ¢ is locally
monomial if for any p € |M| there exists local coordinates (U, ¢ = (x1,...,x1)) centered at p
such that all the components of ¢ are monomial at p with respect to these coordinates.

Examples 2.3.20. i) The morphism (z,y) € L xR — (2,2 +y) € L x R is locally mono-
mial because with respect to the new coordinates (z,y') = (z,x + y) its components are
monomial.

ii) As a consequence of proposition 2.3.15 the morphism (z,y) € L x R — (z,2%(2? + ¢?)) €
L x R is not locally monomial.

2.3.3 Products

Proposition 2.3.21. G is a category with product.

In order to prove this proposition, we state first the version for open submanifolds of the local
models L*:

Lemma 2.3.22. Let V] C Rgo and V5 C R’;QO be open sets and let V =V x Vo C R’;O, where

k = k1 + ko. Considering Vi, V3 and V' as open submanifolds of L*1, IL*2 and LF respectively, we
have that V, together with the usual projections p; : V. — V;, i = 1,2, is a product of V; and V5.

Proof. Let A be a G-manifold and «; : A — V; morphisms. Since V is the topological product
of V1 and Vs, there exists a unique continuous map ® : A — V such that p; o ® = «;. Let us
see that ® is a morphism in the category of G-manifolds. It suffices to see that for every a € |A|
and for every germ fg(a) € Gy p(q) of a G-analytic function f at ®(a) € V, the germ of the
composition f o ® belongs to G4 ,. Put ®(a) = (b1, b2) where b; € V;. The induced map on the
stalks a; : Gy, — Ga,q by the morphism «; can be seen, taking local coordinates at b; € V; and
a € A, as a morphism between algebras of convergent generalized power series

Qj IR{(‘XV(”)*7Yv(l)}m(bl),n(bl) — IR{Z*’T}m(a),n(a)a 1=1,2.
(

Since in) has all N* -roots, its image by & has also all N*-roots and, by proposition 1.1.20, it
is of monomial type as a series in R{T'}{Z*}, namely

a(x\ =Py (2.9)

where M,ii) is a monomial in the Z variables and U,Ei) (0) # 0.

On the other hand, if we put X = (XM, X®) v = (YD, Y?), then Gv.o(q) i isomorphic
to R{X*, Y} and under this isomorphism, the morphism induced by p; on the corresponding
stalks Gy, 5, and Gy g (q) is just the inclusion R{(X®)* Y@} c R{X* Y} that assigns a series
in variables (X®)*, Y to the same series but considered in variables X*, Y.

Now, if f € Gy e(,) is a G-analytic germ, it is the germ of the sum of its Taylor expansion
s = To@)f € R{X*, Y} (up to a permutation of variables, see 2.2.7). Using Proposition 1.2.10
and (2.9), the series

Py oM )

1)1 1 1
t(Z,T):S(Mf)Uf ),...,M oy Uit 7 m(bz) T m(bz2)’

() Um(bn)? T)

belongs to R{Z*,T}. By construction, the germ of its sum is the composition f o ® viewed in
the local chart that we have considered for A at a. Thus, this composition is G-analytic as was
to be proved. O
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Proof of Proposition 2.3.21.- Let M7 and Ms be two generalized analytic manifolds of dimension
k1 and ko respectively. We start by constructing a triplet P = (P,p; : P — Mj,p2 : P — My)
as a candidate to be the product of M7 and M.

It is logical to pick as underlying topological space for P the cartesian product |P| = |M;| x | Ma|
with the product topology and as morphisms p; : P — Mj,ps : P — My €Morph(G) the
morphisms induced by the projections maps

p1=pri: |P| = |Mi| x |[Ma] — | M| p2 = pra: |P| = |[My| x |Ma] — |Ma|

We construct now the sheave Gp that will determine the structure of a G-manifold for P. In
order to define the sheaf Gp as a subsheaf of the sheaf of continuous functions, it is enough
to associate to any element of a basis of open sets of the topology of |P| a R-subalgebra of
continuous functions with. After that, we need to show that with this structure, |P| is locally
isomorphic to LFi+k2,

As a basis of open sets of the topological product |Mj| x |Ms|, we can consider the set
B ={Uy x Uy C|Mi| x |Ma| : U; C |M;|is the domain of a coordinate chart ,i = 1,2}
Let Uy x Uz € B. Then M;|y, is isomorphic to Lki\vi via @; for i = 1,2. Let ® be the map
O = (p1,02) : U1 x Uy = V1 x Vo C RY x RI2 = RYFF

Put k = k1 + k2. Then & is an homeomorphism and V; x V5 is an open subset of R’go. Let us
define
LUy x U, Gp) = {f : U1 x Uy = R/fo® L € (V] x Va,Gy )}

First of all let us prove that this definition does not depend on the morphisms @1, @2 such that
(U1, 1), (Ua, p2) are local charts which will endow the topological product with a well defined
structure of generalized analytic manifold. Let

i Ui = V]
be isomorphisms between M; |y, and L¥|y, and we define
O = (o], 05) 1 Uy x Uy — V] x Vi
then I'g = I'g. We can illustrate the situation with the diagram
®op1

Pod’—1

/_\

VI x Vi< Uy x Up —2= V3 x Vi

f& lf%

R

The result is clear once we notice that ® o ®~! and ® o ®~! are morphisms of G-manifolds
(thus both isomorphisms), which can be seen using the definition of product and Lemma 2.3.22.
So My x My = (|Mi]| x |Ma|,Gnrxa,) €0Obj(G). Remark that the natural projections p; :
|Mi| x |[Ma] — |M;| are morphisms from M; x Ms to M;. To finish, we have to prove that
(My x Mas,p1,p2) is a solution of the universal problem. But this is easy: if A is a G-manifold
and «; : A — M; are morphisms for i = 1,2, the map ® : A — M; x My defined by ® = («, az)
is continuous and induce a morphism of G-manifolds since this property is a local one and locally
My x Ms has the structure of product, by definition.
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2.3.4 Gluing manifolds.

Proposition 2.3.23. G is a category with gluing.

Proof. Let | M| be the topological space obtained by the quotient of the topological disjoint union
|M7| L |Ma| by the equivalence relation

my ~mg if my =mg or my € Uy, mg € Uy and mg = h(my)

Denote by 7 : | M| U |Mz| — |M| be the quotient map. For i = 1,2 define «; : |M;| — |M]| as
the composition of the inclusion |M;| C |M;| U |Ms| with the quotient map.

ai
Ml\
| M| U [ M| —— | M|
My

a2

Then we have that a; is continuous, that its image W; = «;(|M;|) is an open set of |M], that
a; : |M;| — W; is a homeomorphism and that |M| = W1 U Ws. Now we want to define a sheaf
of continuous functions (on local algebras) Gy on |M| such that M = (|M|, Gyr) is a G-manifold
and «; is a morphism of G-manifolds. Using a general construction of gluing ringed spaces (see
the Appendix for details), it suffices to define such a sheaf Gy, on W; for i = 1,2 such that, for
any open set V' C W1 N Wy, we have Gy, (V) = Gw, (V): explicitly, Gy will be given by

Gu(U)={f:U—=R: foa; € Gala; ' (U)), i=1,2}
Define
if V.C W;is open, Gw,(V) ={f:V = R: foa; € Gu,(a; ' (V))}.
With this definition, M; is isomorphic (in €) to W; via a;. Now, let V' C Wi N Wy be an open

set. The homeomorphism afl o g induces an isomorphism (of G-manifolds) between the open
submanifold a;*(V) of My and a7 (V) of M. Thus, if f : V — R is continuous, we have

foar € Gy (a7 (V) & foag € Gay(az (V)

which shows Gy, (V) = Gw,(V), as required. We claim that M = (|M|,Gu) is the gluing of
M, My with respect to the open immersions @1, 2. To see this, let (51, 82, T) be a triplet where
T = (|T|,Gr) is a G-manifold and §; : M; — T are open immersions such that 51 0 @1 = 2 0 pa.
We have to show that there exists an unique morphism f : M — T such that §8; = f o «; for
i = 1,2. Uniqueness of f comes from the fact that |M| is the solution of the same universal
problem in the category of topological spaces: f : |M| must be defined by

f(p) = ozl_l(p) for p e Wy and f(p) = az_l(p) for p e Wy
We just have to prove that f is a morphism of G-manifolds. This is a property that we can check

locally. But f is locally defined either by £1 o al_l on Wi or by B0 a2_1 on Wy, both morphisms
in the category of G-manifolds. O
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2.3.5 An example of an exotic generalized manifold.

Let N = L' xR\ {0}, D1 = Dy = L'xRand ¢; : N — Dy, ®2.o : N — Dy be defined respectively

by ¢1(z,y) = (z,y) and g2 q(z,y) = (z,1/y) if y > 0, p2.o(x,y) = (z*,1/y) if y < 0. Notice that
¢1 and ¢2 , are open immersions so we can define C, as the gluing of D; and D with respect to

o1 and ¢ 4.

Remark 2.3.24. Notice that C; is nothing but is the usual cylinder with the product structure
C:=R>g x S' in O. Then, the underlying topological space of C, is homeomorphic to the usual
cylinder, the underlying topological space of Cj.

We are going to show now that the generalized manifolds C, and Cg are not isomorphic if o # 8,
although they have homeomorphic underlying spaces. For the shake of simplicity, we just consider
B=1and a# 1.

Suppose that there exists an isomorphism
f:Ch—=C=0C

By the very construction of the space |Co| = C, as the quotient space of D LI Dy by the relation
~a, if T 1 D1 U Dy — Cy denotes the quotient map, then U, ; = mo(Dj), j = 1,2, is an open
set, Co = Uq,1 U U, 2 and we have local charts

Pa,j = (Ta,js Ya,j)  Uaj = Ry X R

where Zq,j = ¢a,j OPIR € GlU, ;(Ua,j) and Yaj = ¢a,j o prr € Glu, ;(Ua,;) for j = 1,2. Change
of coordinates is given in U, 1 N Uq2 by

) (a,1/b) if b>0
¢a,1 o 525;’2((1, b) =
(a®,1/b) if b<O
Remark that in C there exists two open subsets Uy 1, Uy 2 covering C' isomorphic to R>g x R :

¢17j = («Tl,j,ij) : Ul,j — RZU x R

where x1j = ¢1j 0 prr., € Olv, ;(Ur;) and y1; = ¢ o prr € Oy, ;(Ur;) for j = 1,2 such that,
in U1 NUy 2, the change of coordinates is given by

1.1 0 ¢75(a,b) = (a,1/b)

Denote by the same letter the underlying homeomorphism f : Co = |Co] — C = |C1]. Let
p € 0C,. Then f(p) € OC. Suppose for instance that p € U, 1 and that f(p) € Uy;. Using
Proposition 2.3.15 on local expressions of isomorphisms between G-manifolds, we can express f
in these charts (in a neighborhood of p) as:

¢1.1 0900 ¢ 110, (T, Vo) = (Ta1) u(@a1, Yar), (a1, Vo) (2.10)

where § > 0 and u, h are G-functions in a neighborhood of ¢4.1(p) = (0,ya,1(p)) such that
u(0,Ya,1(p)) > 0 and y — h(0,y) is an analytic isomorphism from a neighborhood of y, 1(p) to
a neighborhood of y1 1(f(p)) in R.

Un,1 Ui
¢a,1l l(bl,l
Y=¢1,10fod
RZO x R Rzo x R
Lol Yo, 1 r11 Y1,1
R R R R
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Notice that the exponent 5 > 0 in the expression (2.10) above depends a priori on p and on the
charts (Ua,1, ¢a,1) at p and (Uy,1, ¢1,1) at f(p) chosen in order to express locally the isomorphism
f. We should write then (momentarily):

B=06(f,p,Usg — Ur1). (2.11)

Claim. f is locally constant.

Proof of the claim.- Consider the Taylor expansion of the first coordinate (z4,1)%u in (2.10) at
the point (0, ya,1(p)); i.e. a series s € R{X*, Y} for some variables X, Y (notice that there is no
ambiguity of the Taylor expansion here as was discussed in 2.2.7 since X and Y are 1-dimensional
variables). Then s is of the form

s=XU(X,Y)

where U is a unit. This observation, together with Proposition 1.2.23 gives the proof of the
claim.

Notice now that, if p € Uy,1 and that f(p) € U1 N Uy is in the domain of the two charts, then,
B(f,p,Ua1 — Ur1) = B(f,p,Ua1 — Ur2) because in that domain we have y;; = y 2 for the
second components of these chart, by construction of C;. So we have proved that 5(f,p, Ua1 —
U,i) does not depend on i = 1,2 as long as f(p) € Uy N Ui 2. We simply use the notation
B(f,p,Uq,1) for this number. Define analogously B(f,p,Uq2). Let now py := ¢q,1(0,0). Note
that po & Ua,2. Let By := B(f, o, Ua,1). By construction of Cy, if p € Uy1 NUqx 2 NOC,

5(f7p7 Ua,Q) if ya,l(p> >0
B(fip,Uan1) = . (2.12)
aﬁ(f7p7 Ua,?) if ya,Q(p> <0

Let for € > 0 sufficiently small, pf := gzﬁ;ll(O, €),p; = ¢;}1(0, —€) € Uy, 1 NUy2 NOC,. Then
Bo = B(f,pF,Uar1) = B(f,p-,Uan) because B is locally constant. On the other hand, by

(2.12), By = BT, Uan) = B(pt,Uaz2). Also, B(p7,Uan) = B(pt,Uaz2) = Bo because they are
connected in Uy but, again by the formula (2.12) above, 8(p;, Ua,1) = aB(p., Uq,2) which implies
that 8y = afy. Contradiction.

2.4 Standardizations.

Notice that (’)A;jr is a subsheaf of Gy over Rgoz if a function is the restriction of an analytic

function to an open subset of R’;O its germ at any point is the germ of the sum of a convergent
power series, thus a generalized power series; this shows that this function is also G-analytic.

In other words, the identity map Id : R’go — Rgo induces a morphism from L¥ = (R’go, Grr) —
Ai = (R’;O, (’)Ai) in the category € of locally ringed spaces. We can also interpret this as saying
that we have "enriched" the structure of the model of analytic manifold with boundary and
corners Aﬁ to an structure of G-analytic manifold by "adding" the generalized analytic functions
to the (standard) analytic ones.

In this section we describe and analyze this "enrichment"” process for any analytic manifold with
boundary and corners.

Proposition-definition 2.4.1. Let A = (JA|,O4) be an analytic manifold with boundary and
corners. Let U = {(U;, ¢i)bier be an O-atlas of A. Then the subsheaf G4 of the sheave of
continuous functions over |A|, whose sections over an open of |A|, U C |A| are

(f:U—=R)€Ga(U) < flunu, © @5 piwnuyy) € Gurlei(UNUy)) Vi € I with UNU; # 0.
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R

f‘Uﬁ U; - Uun UZ
‘Pii fi=fop; ' €6,k (Vi)
e;(UNU;) CV;

does not depend on the chosen atlas & and endows |A| with a structure of G-analytic manifold
= (JA[,G4) such that the identity in |A| induces a morphism

(Id ), Id?y) : A° — A
in the category € of locally ringed spaces.
We will say that the G-manifold A€ is the enrichment of the (standard) manifold A.

Proof. If {(Wj,v;)}jecs is another analytic atlas of A let us see that the sheaf over |A|, §’; defined
over any open of |[A|, U C |A| by

(f:U—=R)eGyU) < flonw; o 1/1-_1|¢j(Uij) € Gur(Vy)

for all j € J such that U NW; # 0 is exactly the sheaf G4 : let U C |A| open. Then we have the
following commutative diagram

(U NU; N W)

1/’3 \
fluonuinw; - UﬂU Nnw;
\ %

(UNU; N W)

Since

fopit=foy;loyjop™
and

fou;l=foptopioy;!
we only have to show that the homeomorphism ¢; o @ZJ; induces an isomorphism between the
open G-submanifolds ]Lk|¢j(Uij) to Lk|¢i(Uiij)~ But, it induces, by definition of atlas, an
isomorphism between Alﬂng and Afﬂvi so by proposition 2.1.18 it is locally monomial. By

Proposition 2.3.15 we deduce that it induces a morphism between L*|,, and L*|y;, thus an
J
isomorphism by taking its inverse.

On the other hand, similar arguments show that we can define alternatively
Lemma 2.4.2. f € I'(U,G,) if and only if for every p € U there exists some ¢ € I with p € U;
such that f o Lpi_l is G-analytic at the point ¢;(p) € Réo

This implies that the homeomorphisms ; induce isomorphisms of locally ringed spaces between
Galu, and ]Lk\%(Ui), which shows that A¢ is a G-manifold. O

Remark 2.4.3. For A a standard analytic manifold we could give the definition of enrichment
as a generalized analytic manifold A with the same underlying topological space and such that
the identity map induces a morphism A — A. But with this definition, we would have several
different G-manifolds as possible enrichments of the same standard analytic manifold. As an
example, consider L? = (R%, G 2) with global coordinates (y1,y2) on RZ,. Let

o (RZZO)(Z/LZ/Q) — (Rzzo)(xl,xz)
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be the map defined by
d(y1,y2) = (U3 (Ui +43), 2)

It is an homeomorphism with inverse

¢ (21, 72)

\/\/:c2—|—4:c1—x2 2)

For V C ]RQZO an open subset of RZZO we define

G'(V) =G0 (V) ={9:V > R:gogls1(v) € G2 (¢ (V))}

With this definition, (L?) = (R%,,G’) €0bj(€), that is, it is a locally ringed space on local
algebras of continuous functions,_and the homeomorphism ¢ : ]R2>0 — ]R2>0 induces an isomor-
phism of locally ringed spaces, because if g € G'(V), go ¢ € Grz2(¢~1(V)), and if h € GL2(U),
hog¢ ' € G'(p(U)) because hodp ™t o = h € G2(¢~ (4(U))). This implies that (L2) is a
generalized analytic manifold.

Notice that the sections on open sets of the quadrant R2>0 for the sheaf G’ contains the analytic
functions; i.e. that the identity map of the quadrant induces a morphism (L?)" — A%. However,
G’ # Gy, i.e., these sections do not consist on the generalized analytic functions on open sets
(moreover, the identity map on the quadrant does not induce a morphism L2 — (IL2)'). In fact,
if ' = Gp2 then the function y?(y? + y3) = x1 o ¢ which is a section of G’, would have all its
Nth_roots which is not the case. This implies that .2 and (IL?)’ are two different objects and
that the identity map of R2>0 does not induce an isomorphism.

However, given an analytic series s(X7, Xo) € R{X;, X2}, convergent on a neighborhood of the
origin of (RZ()(z,,2) We have that Sc(s) o ¢(y1,42) = Se(s)(Wi(y7 + v3),y2) and s(Y2(Y{ +
Y$),Y2) € R{Y1,Y2}. Which implies that Sc(s) € G'. This shows that the germs at the
origin on (IL?)" contains the germs of analytic functions at zero on the usual sense. That is,
R{X1, X2} C gEo,o)

Example 2.4.4. For any k € N, (A%)° =1L*.

Remark 2.4.5. The enrichment is not a functor. In other words, given A = (|A|,O4) and
B = (|B],Op) two analytic manifolds with border and corners and ¢ : A — B a morphism, then
the underlying continuous map ¢ : |A| — | B| does not induce in general a morphism between A°
and B¢. Take for instance the morphism ¢ : Aa_ — A}F given by the map (z,y) — x +y. This
map does not induce a morphism between the enrichments L2 — L.

In fact, using Proposition 2.3.15, we can state:

Proposition 2.4.6. Let A = (|A|,04) and B = (|B|,Op) be standard analytic manifolds
and let 7 : B — A be a morphism. Then its underlying continuous map induces a morphism
m¢: B¢ — A° of G-manifolds if and only if 7 is locally monomial.

2.4.1 Standardizable generalized manifolds.

Enrichments of standard analytic manifolds are good candidates of generalized manifold to extend
those operations that we know already to be well behaved for standard manifolds. In the next
chapter we will follow this line of reasoning for the operation of blowing-up.

This motivates the following definition.
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Definition 2.4.7. Let M = (|M]|,Gr) be a generalized analytic manifold. We say that M is
standardizable if it is isomorphic to the enrichment of an standard analytic manifold; that is,
if there exists a standard analytic manifold with boundary and corners A and an isomorphism
¢¢ . M — A€ of G-manifolds where A€ is the enrichment of A. Notice that then the composition
¢=1ido¢®: M — A:

ML A°

A

is a morphism of locally ringed spaces whose underlying continuous map ¢ : |[M| — |A| is a
homeomorphism.

In this situation we say that the pair (A, ¢ : M — A) is a standardization of M.

Notice that if M = (|M|,Gar) is a generalized analytic manifold, A = (|A]|,O4) a standard
analytic manifold and ¢ : M — A a morphism whose underlying continuous map ¢ : |[M| — |A]
is a homeomorphism, then, in general ¢! : |A¢| — |M| does not induce a morphism from A°
to M. Consider for instance M = A = R = (R,Og) and ¢ : * — x3. We have, however the
following:

Proposition 2.4.8. Let M = (|M|,Gur) be a generalized analytic manifold, A = (|A|,04)
a standard analytic manifold and ¢ : M — A a morphism whose underlying continuous map
¢ : |[M| — |A] is a homeomorphism. Then, if ¢! : |A¢| — | M| induces a morphism from A¢ to
M it is in fact an isomorphism so that (A, ¢) is a standardization of M.

Proof. Since ¢ is an homeomorphism, the dimension of M, A and A€ is the same, k. Let p € |A|.
Put ¢ = ¢, m =m, and m’' = My (py- Since ¥ = (1, ..., 9) induces a morphism from A° to
M, by proposition 2.3.15 there are local coordinates (x,y) centered at p and (z,w) at 1(p) such
that the components of 1 are expressed in those coordinates as

¢j(x> y) = 'Iajgj(x7 y)

with o/ € [0,00)™, g; G-analytic at 0 and g;(0,0) > 0 for any j € {1,...,m'} and for j €
{m’ +1,...,k}, ¢; is G-analytic at 0 and the map y — (¢¥ny4+1(0,9),...,¢%(0,y)) induces
an analytic morphism from RF~™ to R¥=™'_ Since ¢ : M — A is a morphism, in particular
y = (dma1(0,w), ..., ¢r(0,w)) induces an analytic morphism from R¥=™ to R¥=™_ Then,
m =m' and y = (Yn41(0,y),...,9%(0,y)) induces an analytic isomorphism from R¥™ to
R*=™_ As ¢ is an homeomorphism, if there exists j € {1,...,m} with o #0# o fori #1,
Y({x; =0 =x2;}) C {z; = 0}, against the Invariance of domain theorem. Thus, by proposition
2.3.15, 1 induces an isomorphism. O

As it is the case for enrichments, standardizations do not behave always functorially; i.e. mor-
phisms between standard manifolds which are standardizations of generalized manifolds do not
"lift" to a morphism between these generalized manifolds. But, using Proposition 2.4.6, we can
say

Proposition 2.4.9. - Let M, N be standardizable G-manifolds and let (A4, ¢), (B, ¢') be stan-
dardizations of M and N respectively. Given a morphism 7 : B — A, there exists a morphism

72



7: N — M such that po T =mo ¢

™

M Ae <™ pe N
lid ii(i/
x ¢/
A< B

if and only if 7 is locally monomial. We say that in this case also that 7 lifts to N and that ¢’
is the lifting (notice that it is unique).

Proof. Using Proposition 2.4.6, 7 lifts to the enrichments 7€ : B¢ — A€ iff 7 is locally monomial.
But 7¢ exists iff 7 = (¢¢)~! o 7€ 0 ¢'¢ exists. O

2.4.2 An example of a non-standardizable manifold.

We want to prove here finally that there are generalized analytic manifolds which are not stan-
dardizable. In fact,

Proposition 2.4.10. The (exotic) cylinder C, constructed in 2.3.5 is standarizable if and only
ifa=1.

Proof. Assume the same notations as in 2.3.5. Fix a > 0 and suppose that there exists a
standardization (A, ¢) of the G-manifold C,. Denote also by ¢ the underlying homeomorphism
¢ : Co = |Co|l — |A|. Let V; = ¢(Uqy;) for i = 1,2, an open subset of |A| homeomorphic to
R>p x R. Let D; = V; N 0|A| be the boundary inside this open set. The proof is finished once
we show the two following claims.

Claim 1.- For i = 1,2 there exists an analytic function h; in a neighborhood of D; in V; (thus
a G-analytic function for the structure of the enrichment A°) such that D; is the zero locus
of h; and, in the intersection Vi N V3, the quotients hy/hg and ho/hy (both defined outside the
boundary) remain bounded in a neighborhood of any point of the boundary 9|A|NV; N V4, except
possibly for a discrete subset of points.

Claim 2.- If a # 1, the analogous claim 1 for C, is not true: there are no G-analytic functions
h; on a neighborhood of 0C, N U, for i = 1,2, having the boundary dC,, as the zero locus and
such that hq/hg and hg/h; remain bounded in a neighborhood of each point of the boundary
except for a discrete subset of them.

Proof of claim 1.- We take an analytic coordinate chart (z;,y;) centered at some point ¢; € D;
such that D; = {x; = 0} and we consider h; as the analytic continuation in V; (simply connected
domain) of the coordinate function x;, locally defined and analytic in a neighborhood of ¢;. Given
a point g € V;, the function h; writes in analytic coordinates (z,y) at g for which x = 0 is the
boundary as

hi(z,y) = 27D H(z,y), where yi(¢q) € N>; and H(0,y) # 0.

The fact that the change of coordinates (z,y) and (2/,1’) centered at two points in the boundary
satisfies 2’ = zU(z,y), where U is a unity (see Proposition 2.1.18), implies that the exponent 7;(q)
is well defined independently of the chosen coordinates at q. Moreover, it is locally constant with
respect to ¢ and thus constant for every g € V;. Since 7;(¢g;) = 1 we have the same exponent, 1,
for every point of the whole boundary 9| A|. This gives the desired condition about the quotients
hi/ha and ha/hy in the intersection Vi N Va.

Proof of Claim 2.- Suppose that h; is a G-analytic function in a neighborhood of 9C, N U, ; for
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i = 1,2 whose zero locus is equal to the boundary. Consider the coordinates (zq.i, Ya,i) globally
defined in U,; (see the notations in 2.3.5). Then we can write h; globally in its domain of
definition as:
hi(Za,is Yayi) = l’g,Hz,

where 3; € Ry and H; is a G-analytic function in a neighborhood of 9C, N U,,; such that the
restriction H;|gc, to the boundary does not vanishes identically (thus, since this restriction is
analytic, its zero locus is a discrete subset of 9C,NU, ;). Now, consider an open set ¢, for e = +
or —, contained in dCy, N {€eys,1 > 0} where neither H; or Hp vanishes. Taking into account the
expression of the change of variables between (24 1,%q,1) and (24,2, Ya,2), We can write

hi =l | Hy = 20y Hi in QF,

hy =l Hy = a3 Hyin Q.

If the condition about the quotients hi/hs and hy/hq is true in both open sets Q1 and Q™ then
we must have Sy = 81 = af1, which is impossible if o # 1. O
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Chapter 3

Local monomialisation.

We attack in this chapter the main result in this work: to transform a given G-analytic function
in a neighborhood of a point into locally monomial functions by means of local blowing-ups with
admissible centers. This is a kind of result that can be untitled as Local Monomialisation of
generalized analytic functions, since this is the name of the analogous (well known) result on
real analytic functions (see [5] or |2] for instance). It can be considered inside the frame of the
theory of reduction of singularities in the category of generalized analytic manifolds. In order to
state correctly the Theorem of Local Monomialisation, we need first to define what a blowing-up
morphism is.

The plan is as follows. First we define the kind of "admissible" centers to be blown-up, both in the
category of standard and generalized analytic manifolds. These centers are closed "subvarieties"
locally given at any point by the annihilation of several coordinate functions.

Second, we recall what a blowing-up morphism is in the category of (standard) real analytic
manifolds with boundary and corners. This a quite well known notion in the category of analytic
manifolds without boundary. In our point of view, since the analytic manifolds that we consider
have boundary and corners, we follow the suitable approach of considering the so called oriented
real blowing-up, in contrast with the (relatively more usual) projective real blowing-up. The main
difference is that, in the former case, points of the center of blowing-ups are replaced by the set
of half-lines, normal to the center, defined by means of a system of coordinates; while for the
projective blowing-up, points are replaced by the set of normal lines through them. At boundary
points, we have no entire but half-lines, thus showing the convenience of the use of oriented
blowing-up.

As a consequence, the exceptional divisor (the inverse image of the center) always becomes a new
boundary component to the blown-up space even if the center of blowing-up is contained in the
interior of the standard analytic manifold (where normal entire lines are defined). The choice for
this kind of blowing-up also at interior points is based only on consideration of coherency.

In compensation, we do not alter the properties of orientability of the manifold, although in these
pages, where we only use local blowing-ups (that is, whose center is just a closed "subvariety"
on some open domain), this point does not give us an advantage.

Third, we introduce the concept of blowing-up morphism in the category of generalized analytic
manifolds. This notion has a (a priori unexpectable) peculiarity that does not occur in the
standard case: if we proceed defining directly the blowing-up for the local model (as we may
do in the standard case) by "gluing" the local charts of a standard blowing-up and then take
the enrichments, we could obtain different (non-isomorphic) blowing-up morphisms for different
choices of local coordinates. Thus, our concept of blowing-up morphism is not only attached to
an admissible center of blowing-up, but relative also to a standardization of the manifold.

75



With this peculiarity in mind, no good notion of blowing-up is possible when the center to
be blown-up has not a neighborhood which admits a standardization. A concrete example of
this situation can be constructed using the example of the exotic cylinder C, with a # 1 (cf.
2.3.5): put Dy = Cq x L', whose boundary C,, x {0} is a curve isomorphic to the circle S* (an
admissible center of codimension 2) with no open standardizable neighborhood. The geometric
interpretation of this pathological example is that this center has not a good "global normal
bundle" of half-lines: once you start at a point with half-lines in some given coordinates you
return, after a turn in the circle, with a "non-compatible" family of half-lines with respect to
another system of coordinates.

3.1 Admissible centers.

We give here the definition of regular submanifold both in the category O of standard real an-
alytic manifolds with boundary and corners and in the category G of generalized real analytic
manifolds. Admissible centers to be considered below for blowing-up are among regular sub-
manifolds of a very specific nature (those having also normal crossings with the boundary of the
manifold).

The lack of differentiability of a morphism in the later case prevents to define immersions in
the usual way. However, as it is defined in the book of Gunning & Rossi [10], the immersion
condition is replaced by the fact that the morphism induced on the stalks is surjective.

In this section, the notation A stands either for the standard category A = O or for the gener-
alized one A = G.

3.1.1 Submanifolds and regular subsubmanifolds.

Definition 3.1.1. Let M = (|]M|, Ay) and N = (|N|, An) be A-manifolds. A morphism
¢ : N — M is a submanifold if

i)  is injective
i1) for each p € |N|, the induced homomorphism in the ring of germs
5 Gatp(p) = INyp
is surjective.

If in addition, ¢(|N|) is a closed subset of |M| we say that the submanifold ¢ : N — M is
closed. A submanifold ¢ : N — M is said to be a regular submanifold of M if moreover
@ : [N| = ¢(|N]) is an homeomorphism.

Remark 3.1.2. Notice that the condition that ¢ is injective and continuous implies (by the
Theorem of Invariance of the Domain) that dim(/N) <dim(M). On the other hand, it can be
shown, though we will not make use of, that in the standard category A = O, the condition 1)
is equivalent to the usual condition for immersions, that is, that the differential di,, at the point
p is injective.

Examples 3.1.3. i) The morphism induced by the map
te Ry (t,t,0) € RS,

is a closed regular submanifold (of Ai in the standard category O and of L3 in the G
category).
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it) Let m,n € N. Consider the O-manifold product A" x R™. Then the morphism i :
A" x R™ — R™" induced by the inclusion mapping i : RZ; x R" < R™" is a regular
submanifold.

ii1) Let m,n € N. Consider the G-manifold product L™ xR"™. Then the morphism ¢ : L™ xR" —
R™*" induced by the inclusion mapping i : RYp x R — R™*" is a regular submanifold.
3.1.2 Admissible centers.

Definition 3.1.4. A regular submanifold ¢ : N — M between A-manifolds is said to be an
admissible center if for every p € |N|, there exist A-coordinates x and y, centered at p and at
©(p), respectively, such that, up to permutation of the target variables y, ¢ writes locally as

p(z) = (z,0).
Example 3.1.5. i) The morphisms induced by the map

te Ry (,t,0) € R,

are not admissible (neither in the standard or generalized category).
i1) For any a > 0 the morphism induced by
te[0,1] — (a,t,1—1t) e RY,
is a closed admissible center.

Proposition 3.1.6. Let M = (|M|, Ay) be a A-manifold and |Y| a connected subset of |M|.
Suppose that for any p € |Y| there exists (Up,¢p = (1,...,21)) a A-local chart at p and
Jp €{1,...,k} such that

ep(IYNUp) = {q € Up: 2j(q) = z;(p) for any j € Jp} (3.1)

Then there exists a unique structure of A-manifold over |Y|, say Y = (]Y|,Gy) such that the
morphism induced by the inclusion map i : |Y| < |M| is an admissible center. Reciprocally, if
¢ : N — M is an admissible center, then |Y| = ¢(|N|) has the above property.

Proof. For any p € [Y| put I, = k—#Jp, Vp :=|Y|NUp, mp : (x1,...,21) € R 5 ()¢, € R
and ¢, = 7, 0 ¢,

V, = Y| N U, > RE, (3.2)

S

lP
Ry

Since [, is locally constant on |Y| and |Y'| is connected [, is constantly equals to [. We check
easily that {(V},¥p)}pe)y| is a A-atlas of [Y| (the change of variables between two such local
charts comes from considering some components of a change of variables x — y for two local
charts of the ambient manifold M where some of the variables between the x are substituted by
a constant). We can consider Y = (|Y], Ay ) the A-manifold associated to this atlas as in 2.3.8.

Now we prove that ¢ : Y < M is a closed regular submanifold. Let p € |Y| and i,ﬁ, :Gmp — Gyyp
the induced homomorphism in the stalks. Taking local coordinates (U, ¢p = (z1...,2x)) at i(p)
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and (V, v, = ();¢1,) at p we have the isomorphisms F' and G, (as in Proposition 2.2.6 for the
generalized category and the analogous for the standard category):
Y

ip
Gup——=0Gyp

| la

R{XT} —2- R{(X (p)"}

where [J is equal to an asterisque * in the generalized category (and nothing in the standard
one), X (p) = (X;);jgs,- We have that ¢ = G™! oigoF is given by substituting those variables X
such that j € J, by a constant (equal to zero if X is a boundary variable). Thus, ¢ is surjective
and consequently ig too.

Uniqueness of the structure Ay comes from the following observation: if (Up, ¢) is a local chart
of M at p satisfying the condition (3.1) and if 7, stands for the same meaning as in the diagram
(3.2) then ¢ = m, 0 ¢ is a local chart of the A-manifold Y. O

In the sequel, we will just use the expression "Y is an admissible center of M" or "Y C M is an
admissible center" if Y = (|Y'|, Ay) is in the conditions of Proposition 3.1.6 with |Y| C |M].

With the notations of proposition 3.1.6 above, for each p € |Y'|, there exists a local chart (U, z)
with p € U such that M|y, is isomorphic to Y|y, x L™ x R™ in the generalized case (and to
Y|y, x ATP x R in the standard case) where my, = {j & Jp:j € Alep(p)} and ny, = |{j ¢
Jp i J & Alpp(p))}. We call U, together with the isomorphism M|y, = Y|y, x L™ x R™ a
normalizing chart for Y. We have that m;) and nl’D does not depend on the normalizing chart
and that dim(Y’) = k —mj, —ny,. In a normalizing chart, we have that Y is described as the zeros

of the last mj, + nj, coordinates and that the restriction of the first k& — mj, — n;, coordinates to
Y gives a chart for the structure Ay of Y as a regular subvariety of M.

Example 3.1.7. The numbers mj, and n;, may depend on the point p € |[Y| (although its sum,
equal to the codimension of Y in M is independent of p). Take for instance for M = L2, with
coordinates (z,y), the admissible center whose underline space is

Vi={(z.y) eRE:x+y=1}

3.1.3 Standardizable admissible centers.

Let A be a standard analytic manifold and let Y C A be an admissible center. By its very
definition, the inclusion i : Y < A is a morphism which is locally of monomial type. Thus, using
2.4.6, it lifts to a morphism ¢ : Y¢ < A€ which is, moreover, an admissible center.

We have not, however, the reciprocal of the above situation.

Example 3.1.8. Consider the G-manifold L! x R with coordinates (x,y). Let Y «— L! x R
be the regular submanifold where |Y| = {(z,y) € R>g x R : y = 2%} where a > 0 is not
rational. Then Y C L! x R is an admissible center (in the category G). However, if we consider
the standardization ¢ : L! x R — A}r x R induced by the identity (that is, so that L! x R is
the enrichment of Al x R), then the image ¢(|Y|) = |Y| does not satisfy the property (3.1) in
Proposition 3.1.6.

In view of this example we give the following definition.

Definition 3.1.9. Let M be a G-manifold and let Y € M be an admissible center. We say that
Y is standardizable inside M or that the pair (M,Y) is standardizable if there exists a
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standardization ¢ : M — A of M such that |Z] = ¢(|Y|) C |A] has the property (?7?); thus |Z] is
the underlying space of an admissible center Z C A. If such a standardization ¢ exists, we will
say that ¢ is a standardization of the pair (M,Y).

As we have seen in Example 2.4.2, the regular subvariety dC, of the exotic cylinder C, is an
admissible center of C, but the pair (Co, 0C4) is not standardizable if o # 1 (in fact there exists
no open neighborhood of dC, which is a standardizable G-manifold. This is an example of a non
standardizable admissible center of codimension 1, but we can construct similar examples of any
codimension just by making the product of C, by the local models L*.

This pathology occurs only on the global setting, the local counterpart being always simpler (the
proof comes easily from the definitions):

Proposition 3.1.10. Let M be a G-manifold and let Y C M be an admissible center. Given a
point p € |Y|, there exists an open neighborhood U, of p in | M| such that Y|y, is a standardizable
admissible center inside U,,.

3.2 Blowing-up on standard analytic manifolds.

In this section we recall the notion of blowing-up with a closed admissible center in a standard
analytic manifold (with boundary and corners). We will proceed by defining explicit models
and explicit charts of blowing-up morphisms, although the notion could be given in categorical
terms as a solution of a universal problem inside the category of these manifolds (this is the way
the blowing-up morphisms are defined for instance in Hironaka’s paper [15] for the category of
complex analytic spaces).

We start with the very well known case of the (polar) blowing-up of a point in the model R* of
analytic manifold without boundary.

Theorem 3.2.1. Let RF :=— Ai x SF=1 the product in the category O of A}F and S¥1. We
define

W&Qk :RZO x Sk=1 s Rk
k
7T§ (T> (xla e ,LL‘k)) = ('r'l'l, e ,T‘:Ek)

Then, the map 7Tél$ is continuous and proper. Moreover, it induces a morphism form RF to RF,

(wflfk)_l(g) = {0} x S! is a closed regular submanifold of RE (in fact an admissible center), and

induces an isomorphism between RF \ (w§k)—1(g) and R\ {0}.

the restriction 77%@ \@\(WRJC )-1(0)
0 E 0

Moreover, the morphism ﬂélfk is locally of momnomial type.

The pair (@,ﬂ§k> will be called the blowing up of R* with center the origin. If p € R is
any point and 7, : R* — RF is the translation of the point p to the origin, totally analogous

properties as above are true for the morphism wffk =T,o0 w(’)“ : RF = A}F x S¥=1 — R*. The pair

(H’@, ﬂffk) in this case is called the blowing-up in R* with center the point p.

In all the cases, we call, as usual, (wﬁk)*l(p) the exceptional divisor of the (corresponding)
blowing-up.

Now we can define the blowing up at any point in each of the mixed models A’ x R™ for analytic
manifolds with boundary and corners.

Let m,n € N. Consider the O-manifold product A" x R™ as a regular submanifold of R™*" by
the set-theoretic inclusion (see Example 3.1.3)
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Theorem-definition 3.2.2. Let p € RZ) x R" C R™*™ and let (W, TrSmM) be the blowing-

up in R™*" with center p. Then Ry"" = (W5n1+n)*1(]1%§0 x R") C Rsg x S™™~1 ig a regular

subvariety of R™*7 (by set-theoretic inclusion) and the restriction induces an analytic morphism

m,n __ R™M+n /_’n\’b_jl m n
ﬂ'p —7Tp @'RP —)AJF x R

which is proper and a local isomorphism at any point except for those in (m,"")~!(p), which is a
regular subvariety of R,"" of codimension 1 (in fact an admissible center). The pair (R,"", 7m,"")

is called the blowing-up of A" x R" at the point p and (m,"")~!(p) is called the exceptional
divisor of the blowing-up.

The definition of blowing-up at a point as we have stated above gives explicitly the blown-up
space together with the blowing-up morphism. But it is one of the possibilities to consider a
blowing-up morphism. We need not to be attached to a concrete form of a blowing-up, mostly
if we have the aim to define it in general analytic manifolds. So we define:

Definition 3.2.3. Let p € RY) x R". A blowing-up of A" x R" at the point p is any pair
(B, mp) where B is a standard analytic manifold with boundary and corners and 7, : B — A" xR"

is an analytic morphism such that there exists an analytic isomorphism 6 : B — R with
m,n
Tp="mp 00

B

Tp
0

m,n

L.
R 2> AT x R™

Examples 3.2.4. i) Consider two copies of R>g with coordinates x; and wza respectively.
Let B be the disjoint union R>g U R>g. Then the two copies of R>y embed as open
coordinate domains of B giving rise to a structure of O-manifold to B. Together with the
map 7 : B — R which is well defined in these charts as

7r(x1) = x1;7r(x2) = —X9
the pair (B, 7) is a blowing-up of R at the origin.
ii) The pair (Ay,idy ) is a blowing-up of A at the origin.
ii1) If m = 1 = n, we take two copies of ]RQZO and Rlzo x R with coordinates (z1,y1), (x3,y3)
and (x2,y2) respectively. Let B be the quotient space obtained from the disjoint union
(RZ,) U (Rxp x R) U (R%,)) by the relation
(w1,91) ~ (22,92) © y1ye # 0,y2 > 0,21y1 = 72, and 71 = T2y2

(x2,y2) ~ (23,93) < Y2ys # 0,42 < 0,23y3 = x2 and — x3 = Tays

Then the two copies of RZZO and R>¢ x R embed as open coordinate domains of B giving
rise to a structure of O-manifold to this quotient topological space. Together with the map
m: B — R>0 X R which is well defined in these charts as

m(w1,y1) = (191, 71); (T2, Y2) = (72, T2Y2); T(73,Y3) = (T3Y3, —73)

the pair (B, ) is a blowing-up of AL x R! at the origin.
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Y2

Y3 Y1

T3 1

iv) If m =0,n = 2, we take four copies of R>¢ x R with coordinates (z1,y1), (z2,¥2), (z3,¥3)
and (x4,y4) respectively. Let B be the quotient space obtained from the disjoint union
(RZO x R) U (RZO x R) U (RZO x R) U (RZO x R) by the relation

(w1,91) ~ (T2,92) < y1 > 0,92 < 0,21 = —72y2 and x1y1 = T2
(x1,91) ~ (24,y4) © y1 < 0,ys > 0,21 = 24y4 and z1y; = —24
(z2,92) ~ (23,93) & y2 > 0,y3 < 0,72y2 = z3 and 9 = —x3y3
(z3,93) ~ (24,94) & y3 > 0,y1 <0, —x3 = 24y4 and z3y3 = 74

Then the four copies of R>¢p X R embed as open coordinate domains of B giving rise
to a structure of O-manifold to this quotient topological space. Together with the map
7 : B — R? which is well defined in these charts as

m(x1,y1) = (x1, 2191); T(22, y2) = (—T2y2, x2): T(23,y3) = (—3, —23Y3); T(24,Ya) = (Tays, —24)

the pair (B, 7) is a blowing-up of R? at the origin.

v) Take m = 2,n = 0. Consider two copies of Ai with coordinates (z1,y1) and (z2,y2)
respectively. Let B be the quotient space obtained from the disjoint union R%o U ]RQZO by

the relation
(1,y1) ~ (w2, 92) © T1y2 # 0,21 = 222 and yp = Ty
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Then the two copies of RQZO embed as open coordinate domains of B giving rise to a
structure of O-manifold to this quotient topological space. Together with the map 7 :
B — Rzzo which is well defined in these charts as

m(x1,y1) = (331,$1y1)a (w2, y2) = (T2y2,Y2),

the pair (B, ) is a blowing-up of A% at the origin.

Y2

Y1

1

3.2.1 Blowing up points in analytic manifolds.

Now we want to define the blowing-up at a point in any standard analytic manifold with boundary
and corners. In a natural way, we use the fact that any point has a neighborhood U which is
isomorphic to one of the models A" x R™ and then consider the blowing-up as defined in this
model which can be carried to the blowing-up on U. But this involves the ambiguity of the
chosen isomorphism. So we need to prove first the following result:

Proposition 3.2.5. Let 6 : AT x R" — AT x R™ an 1somorphlsm sendlng the orlgln to the

origin. Then there exists an isomorphism § : Rmn — Rmn such that 770 "of=0o 7r

0

— o~
Rm,n Rm,n

m,n m,n
o o

AT xR L AT X R™

Proof. Considering A”' x R™ as a regular submanifold of R”*" and taking into ac account that
the blowing-up morphism m;"" is defined as the restriction of the blowing-up of R™*" at 0 to
the corresponding spaces, it is enough to prove the case where m = 0.

This is a quite well known result: the isomorphism 0 is unambiguously determined at any point

outside the exceptional divisor Dy = (7 8”) 10) = {0} x S"71 C AL xS"! = = RO, If we
write 0 = (01,...,0,) the components of the map 6 : R" — R", the explicit expression is, for
(r,z) € R> x S*! with r # 0:

0: () (p = VO(rD)? + 1 b (rz)?, (01<p >,__.’en<:x>))

Use now the Taylor expansion of 8 of order 1 at the origin
0(w) = L(w) + O(||w|*)

where L is a linear isomorphism, to conclude that the expression above extends to a local iso-
morphism at any point of the exceptional divisor. O
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Now we can extend the Theorem-Definition 3.2.2 to general analytic manifolds.

Let A = (|A|,04) be a standard analytic manifold with boundary and corners and let p € |A|.
Take a local chart ¢ : U — RT; x R" centered at p. Consider the two open immersions

U\ {p} -4
U\ {p} - R

where ¢y is the set-theoretic inclusion and 19 =i o (mg"") Lo p!

e~

U\ {p} £ AT x R\ {0} — R\ (m"™)~1(0) < Room

Let A(p) be the gluing manifold associated to these immersions and wﬁ(gp) . A(p) — A the
corresponding projection onto A.

Theorem-definition 3.2.6. i) The morphism 71’;14(@) is proper and surjective and it induces
an isomorphism from the open submanifold |f~1(g0)]\7rl‘,4(<p)_1(p) to |A|\{p} and ﬂﬁ(np)_l(p)

is a regular submanifold of A(p) of codimension 1 (in fact an admissible center.)

i) ' : U — ]R%”O x R™ is another local chart centered at p then there exists an isomorphism
Op + A(p) = A(¢) such that 771 (¢') 0 b, 0 = 7 ().

A blowing up of A at p is any pair (;lv, 7%4) where A is an O-manifold and 7%4(90) t A Als

a morphism such that there exists an isomorphism 6 : A — ﬁ((p)

3.2.2 Blowing-up an admissible center.

In the previous paragraph we have defined the blowing-up of a standard analytic manifold at
a point (an admissible center of dimension zero). Here we define the blowing-up with center a
closed admissible center of any dimension.

Let A = (JA|,04) be a standard analytic manifold with boundary and corners and let Z =
(|1Z],0z) C A be a closed (connected) admissible center of A. Recall from the paragraph 3.1.2
that for any point p € |A| we have an open neighborhood U of p in A which is a normalizing
domain for the subvariety Y, that is, that

/
Al =2 Y|y % AT” x R™.

(It p & Y|, since |Y] is closed, we take U that does not intersect |Y| so that Y|y = 0). We
can moreover assume that the isomorphism above restrict to the identity between U N'Y and
Y| x {0}. The natural numbers may depend on the point p but not in the neighborhood U (cf.
Example 3.1.7).

The following Lemma generalizes Lemma 3.2.6

Lemma 3.2.7. Let U and V be two normalizing domains of Y:
QYU : A’U = Z’U X AT(U) X Rn(U)

and
(o) Vi A‘V = Z‘V X AT(V) X Rn(V)
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m(U) , pn(U)
Define 74 (U) := (id,WQAJr * ): Zly X AT(U) x RU) — 7|y x AT(U) x R™Y) (and analo-
gously Wé(V)), where the second component is the blowing-up of AT,(U) x R”(U) at the origin.
Assume that U NV # 0. Then m/(U) = m/(V), n'(U) = n/(V). In this case, there exists a

unique isomorphism
0: (n7(U) pu(UNV)) = (5(V)) (ev(UNV))
such that o' o m4(V) o 6 = oy oy (U).

Proof. The first claim follows from the fact that if ¢ € U NV then m/(U) = m;, = m/(V) and

n'(U) = n, = n'(V) because of the invariance of the number of boundary components of an

O-manifold at a point.

The change of normalizations § = @y ogpljl is an isomorphism between an open submanifold Wy of
Y|px A xR and an open submanifold Wy of Y| x AT xR™ such that Y|, = Y|w, = Y|vnv-
Using Proposition 2.1.18, the isomorphism 6 writes (with evident notations) as

0: (g, (') = (¢, (¢ (g, 2", 9),w' (¢, 2, 0/))),

where ¢ € [Y|NU NV, 2/, w are analytic in all arguments, each component of 2’ is divisible
by some of the variables 2/ and, moreover, for any fixed ¢, the jacobian matrix of (2/,w’) with
respect to the variables (z/,y’) is non singular. We proceed similarly as in the proof of Lemma
2.4.6 (this time as a parametric version with parameter ¢ € Y) to lift the isomorphism 6 to an
isomorphism 0 to the blown-up spaces. O

Theorem-definition 3.2.8. Let A = (|A|,04) be a standard analytic manifold and Z =
(1Z],0z) an admissible center. Consider the topological space

1A = | U N 2| x ATV anw)/N

U normalizing chart

()

where the equivalence relation is defined for p = (a,z) € [UNZ|x AT x R™U) and ¢ = (b,y) €

VN Z| x ATY) x Rr(V) as

p~qe0(a,z)=(by)

where 0 : Zyay X AT(U) x RU) — Zyay X AT(V) x R™V) is the isomorphism given in lemma
3.2.7.

For any U normalizing chart of Z, let U(U) be an O-atlas of AT(U) x RMU). Then, {|Z NU| x

U)o normalizing chart 18 all OD-atlas of |g\ becau~se the~change of charts are analytic. Then we
can endow |A| with an structure of O-manifold A = (|A4], O).

The map 74 : |A| — |A| defined by the restriction of the blowing-up morphism 74 (U) for any
normalizing domain is a well defined continuous, surjective, proper map that induces a morphism
from A to A. Moreover, it restricts to an isomorphism from the open submanifold A\ (74)~*(2)
onto A\ Z.

Any pair (B, ) where B is an O-manifold and 7 : B — A is a morphism for which there exists
an isomorphism 6 : B — A such that 779 o6 = 7 will be called a blowing-up of A with center
Z. The inverse image 7~ (Z) will be called the exceptional divisor of the blowing-up 7. It
is a regular subvariety of B of codimension one (in fact an admissible center).
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The definition above of blowing-up with an admissible center in an analytic manifold is of global
nature. In fact, the Theorem above shows that for any closed admissible center Y C A there
always exists a blowing-up of A with center Y. This is a result which will be untrue in the
category of generalized manifolds.

For our purposes later, we will not need to make blowing-ups repeatedly with global closed
admissible centers in the whole manifold, but only with centers that are locally closed, i.e.,
closed in some open submanifold.

Definition 3.2.9. Let A be a standard analytic manifold with boundary and corners. A local
blowing-up on A (with locally closed admissible center) is a pair (B, 7) where B is an
O-manifold and 7 : B — A is a morphism obtained as the composition

T=40o7:B—U<— A,

where ¢ : U < A is an open submanifold and 7 : B — U is a blowing-up on U with an admissible
center Y C U closed in U.

Example 3.2.10. As an example, if ¥ C A is an admissible center of an analytic manifold
A U ~Y|y x A7 x R is a normalizing chart and (R™"™ 7™ is the blowing up on
AT’ x R™ at the origin, the composition

m=iyoyp Lo (id ") Y|y x R = A
is a local blowing-up.

All of this kind of examples with codimension of Y less or equal than two (that is, m’+n’ < 2) can
be made explicit with the use of Examples 3.2.4 with the role of m, n there as m’, n’ here. In order
to give precise expressions in local charts, we just take the expressions already presented in those
corresponding examples and take the cartesian product with the identity for local coordinates
on the subvariety Y.

Recall once more that blowing-up a center of codimension one may produce some effect, contrary
to the case of standard projective blowing-up in analytic manifolds without boundary: if for
instance we have m’ = 0, n’ = 1, the local blowing-up writes as

T Y’U X A},— U Y’U X A},— - Y|U X R77T(Q7y) = <Q7 iy)? for (Q7y) € Y’U X A}H

where the sign + or — depends if the point is in the first or the second of the copies Y|y x Ai.
Geometrically, we add a new boundary component, {y = 0}, of codimension one so that the
non-boundary normal-to-Y variable y becomes a boundary variable after the blowing-up.

3.3 Blowing-up on generalized analytic manifolds.

In this paragraph, we define the notion of blowing-up generalized manifolds with admissible cen-
ters.

The same approach as in the case of standard manifolds (i.e. define the blowing-up of a point in
the local models and then use coordinates in a general manifold) does not work. The problem is
that the analogous of Proposition 3.2.5, that permits to define the blowing-up independently of
the used coordinates, does not hold.
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Example 3.3.1. Let M = LL? be the quadrant in the plane, as the local model of G-manifold,
with coordinates (x,y). A (a priori) good candidate for the blowing-up of M can be constructed
as follows (analogously as in example iv) in 3.2.4): consider the G-manifold M = (|M|,QM)
where |M | is the quotient space from the disjoint union of two copies of L? with coordinates
(x1,91) and (x2,y2), respectively, by the equivalence relation

x1 # 0,y2 # 0,21 = x2y2 and y2 = 11,

and where the sheaf G, is obtained by the consideration of the two systems of coordinates (x1,y1)
and (2, 12) as a G-atlas. Then we consider 7o : M — M as the G-morphism induced by the map
defined by mo(z1,y1) = (z1,y1) and mo(z2, y2) = (z2y2,y2). This morphism 7y has the required
properties analogous to those in Definition-Theorem 3.2.6. Consider now the isomorphism

0: M — M, 0(z,y) = (z%y),
where a > 0 is different from 1. Then there is no isomorphism 6 : M — M with the property
7T009~:907T0. (33)

(There is no even a local isomorphism defined in a neighborhood of the exceptional divisor 7 L(0)
satisfying (3.3)).

The reason is obvious: the isomorphism 6 gives a correspondence between the family of "half-
lines" {y = Az}, inside the quadrant into the family of curves (regular submanifolds) {y =
Az%}y. The morphism 7y has the effect of "opening" the family of half-lines so that each element
accumulate to a single point in the exceptional divisor, whereas it does not open the later family
so that the inverse image of each member of that family accumulate to a unique point in the
exceptional divisor. As a consequence, any morphism 6 satisfying (3.3) would not be 1 : 1 in
restriction to the exceptional divisor.

The above example makes necessary in the category of generalized manifolds to speak, not
about a blowing-up with an admissible center, but about a blowing-up with an admissible center
relatively to some coordinates.

When we want to precise what does it mean relatively to some coordinates we find out that a
more convenient terminology is that of the standardizations.

Theorem-definition 3.3.2. Let M be a G-manifold and let Y C M be a closed (connected)
admissible center in M such that the pair (M,Y) is standardizable by means of a standardization
¢ M — A Let Z = ¢(Y) C A, by definition of standardization, a (closed and connected)
admissible center in A. Let (A, 7rZ) be a blowmg up on A with center Z. Then there exists
a triple (M Ty ,(;6) where M is a G-manifold, M : M — M is a morphism of G-manifolds

and ¢ : M — A is a standardization of M such that (A, 7TZ) is a blowing-up of A with center
Z = ¢(Y) and the diagram

%
-

commutes.

If (A 7TZ) is another blowing-up on A with center Z and (M Ty ,(j)) is the corresponding triple,
then there exist isomorphisms 6 : A — A and E M — M and a standardization d:M— A

86



making the whole diagram

commuting. Any such triple so constructed will be called a blowing-up of M with center
Y relatively to the standardization ¢. For any such blowing-up, the inverse image D =
(md)~1(Y) is a regular submanifold of codimension 1, called the exceptional divisor of the
blowing-up and W{\,/[ is a proper, surjective morphism which restricts to an isomorphism from
M\ Dto M\Y.

Proof. The existence of such a triple (M, $) is given as follows. Given a blowing- up (A, WZ)
with center Z, we consider just M as the enrichment A€ of the analytic manifold A and ¢ :

M — A as the morphlsm induced by the identity map in the underlying spaces. The morphism
of blowing-up 7rY . M — M is given by using Proposition 2.4.6: the blowing-up morphism 779

is locally monomial by Theorem-Definition 3.2.8.

The second claim about the commutativity of the diagram (3.4) is proved similarly: the existence
of the isomorphism 6 : A — A is guaranteed by Theorem-Definition 3.2.8. This isomorphism,

being locally monomial, lifts to an isomorphism 15 : M — M with the required properties of
commutativity.

The rest of the properties come easily from the corresponding properties on the bottom row
of the standard analytic manifolds: In one hand, any topological property of the underlying
map, 7r{}, of the blowing-up of A with center Z is directly translated to the map 77{‘//1 since the
standardizations ¢ and ¢ are homeomorphisms. On the other hand, if p is a point of M not in
the exceptional divisor D of 7rY then <z§( ) is not in the exceptional divisor of 77? and, since the
later is a local isomorphism at that point, the same occurs for 7r I at p. O

Definition 3.3.3. Let M be a generalized analytic manifold. A local blowing-up on A (with
locally closed admissible center) is a pair (N, 7, ¢) where N is a G-manifold, 7 : N — M is
a morphism obtained as the composition

m=107: N —=>U— M,

where ¢ : U < M is an open submanifold and 7 : N — U is a blowing-up morphism on U with
an admissible center Y C U closed in U with respect to some standardization ¢ : U — V of the
pair (U,Y).

Example 3.3.4. Using Proposition 3.1.10, if Y C M is an admissible center of generalized
manifold M and ¢ : U ~ Y|y x L™ x R" is a normalizing chart, then we can assume that
Y|y C U is standardizable.

A particular case that we will use repeatedly is when Y is of codimension two (m' +n’ = 2).
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Denote by (z;,z;) the variables of L™ x R™ they can be generalized or analytic variables).
Consider the closed admissible center Y = {z; = z; = 0} inside U. Let v > 0 and consider the
standardization of the pair (U,Y") given by

¢y U = AT X R", ¢ (2, y) = (z1,...,2], ..., 25,).

Let m :~]\Zf — U < M the local blowing-up with center Y relatively to the standardization ¢.,.
Then M is covered by two charts (2/,y') and (z”,4"), both with values in Rg”é x R™, such that
the expression of the blowing-up morphism is

w2 y') = (@, ..z, (@), Ly,

m(z", ") = (27,..., 2%, ..., (x;)l/vx;, ),

We notice again that the definition of blowing-up on a generalized manifold with a closed ad-
missible center requires also to specify a standardization of the manifold (or at least of an open
submanifold containing the center). If such a standardization does not exists then, a priori, we
have not the possibility to blow-up this center.

The example of the exotic cylinder (cf. Example 2.3.5) gives an example. Consider C, one of
those exotic cylinders with a # 1 and put M = C, x L. Then Y = 0C, x {0} is an admissible
center of M of codimension two. It has no standardizable open neighborhood in M so it can
no be used as a center of blowing-up with the meaning of Theorem-Definition 3.3.2. Geometri-
cally, there is no good "generalized normal bundle along Y". Very roughly speaking, if we start
at some point p € |Y| with a family of (local) regular surfaces of the form {x = 27},, where
(z,1,2) € Co x L! are coordinates at p, then the exponent  transforms into another one and
the corresponding surfaces locally defined do not match.

3.4 Local Monomialisation Theorem.

Before the statement of the main result, we consider the following useful definition.

Definition 3.4.1. Let M be a generalized analytic manifold and p a point in M. A proper
étoilé-neighborhood (or é-neighborhood) of p (the name is taken from what Hironaka calls
"votte étoilé") is a finite family

Y={mj:W; = M, Lj}jes
where

1. each 7; is the composition of a sequence of finitely many local blowing-ups (with admissible

centers)
Tjn; Tjng—1

. o ) g ) ) 51 o
T W= Win, = Wino1 % Wigmz o 8 Wig=M

2. each L; is a compact subset of |W}| such that Ujc m;(L;) is a compact neighborhood of p
in |M].

Theorem 3.4.2. (Local Monomialisation of G-analytic functions) Let M be a generalized
analytic manifold and f € G(M) a G-analytic function. Given p € |M| there exists a proper
é-neighborhood ¥ = {m; : W; — M, L;};c; of p such that for all j € J, fom; : W; — Ris locally
monomial at any point of L;. We can furthermore take such a proper é-neighborhood such that
any of the local blowing-ups involved in it is with an admissible center of codimension < 2.

The following result about "composition" of proper é-neighborhoods is an easy consequence of
the definitions
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Remark 3.4.3. Let p € M and ¥ = {n; : W; — M, L;};jc; a proper é-neighborhood of p.
Suppose that for every ¢ € L = UjesL; there exists a proper é-neighborhood ¥, = {m,; :
Waji = Wi Lejtjerq) of ¢ Then since Vi := Ujc(q)7q,j(Lq; ) is a neighborhood of ¢, by
compactness of L (in the disjoint union of the topological spaces |W|), there exists finitely many
points q1,¢q2,...,q € L, such that L C V,,, UV, U...UV,,. Then, the set

l
A © a0 - Wais = M, Ly, jYjeaan)
=1

is a proper é-neighborhood.

We will make use of the remark above several times during the proof of Theorem 3.4.2. Notably
in order to reduce the proof to every point of the exceptional divisor after a local blowing-up
with an admissible center that passes through the point p. More precisely:

Lemma 3.4.4. Let U be a neighborhood of p in |[M| and let Y C U a standardizable admissible
center such that p € [Y]. Let 7 : U — U <+ M be the local blowing-up of M with center Y’
with respect to a given standardization ¢ of Y C U. Let D = (7¥)~1(Y) be the exceptional
divisor of the blowing-up and D, = (7¥/)~!(p) the fiber over p. If Theorem 3.4.2 holds at any

point ¢ € |Dp| then it holds at the point p.

Proof. For any q € |D,|, let £, = {mg; : W, ; — U,Lq,j} be a é-neighborhood of ¢ for which
Theorem 3.4.2 is true. Denote by V, = U;my;(Lg;), a (compact) neighborhood of ¢ in U, and
consider a smaller compact neighborhood f/q of ¢ such that f/q is contained in the interior int(V;)
of V. Notice that X, is also a proper é-neighborhood of any point in f/q. Since the blowing-
up is a proper mapping (see 3.3.2), there exists finitely many points q, ...,q, € |D,| such that
D, C UV,. Then ¥ = {z{ : int(V,,) — U,V,}; is a proper é-neighborhood of p. The result
follows from the Remark 3.4.3 above. O

The rest of this section is devoted to the proof of the Main result Theorem 3.4.2. We prove it
by induction on the dimension of M. Notice that if £k =dimM = 1 the result is immediate. For
k > 2 the proof is given in several steps.

3.4.1 The case of a Weierstrass polynomial

Proposition 3.4.5. Let p € M, dimM =k > 2 and f € G(M). Assume that theorem 3.4.2 is
true for dimM < k. Assume that the number m(p) of boundary components of M at p is strictly
smaller than k and that there exists a local chart (U, ¢ = (x,y)) where y is an analytic variable
such that

flzy) =y +ar @)y +ax(z)y® 2+ ...+ aa(z)

with a; € G(U) is independent of the coordinate y and a;(p) = 0 for all 7. Then Theorem 3.4.2
is true for f at p.

Proof. If d = 1 the change of coordinates 1 = z,y1 = y — a1(x) gives a new local chart (see
Proposition 2.3.15) for which f is monomial at p. If d > 1, we make first the Tschirnhausen

transformation: y ~~ y — GIT@ so that in these new coordinates we write

Flay) =y +ba(z)y™  + bs(2)y? > + ... + ba(z)

with b; € G(U) does not depend on the coordinate y and and b;(p) = 0 for all i. Remark that
we can consider the b; as G-analytic functions on the (admissible) subvariety M’ = {(z,y) € U :
y = 0} of U which is a G-manifold of dimension k — 1.
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Special case.- We consider first the special case where we can furthermore write
fla,y) =y + 2%uy(2)y® % + ..+ 2% ug(x)

such that the set of vectors {a;/l}j=2 . 4 is totally ordered (by the division order). Take r such
that o, /r < a;/j for all j, 2 < j < d. Take [ such that o,; # 0. Consider the admissible center
Y ={y=x;=0} C U, closed in U and of codimension 2, together with the standardization of
the pair (U,Y) given by

k—1 O‘r,l/r
¢:U =R xR, 9= (@1, @1, @ y 41y T1,Y).

The corresponding (local) blowing-up o U — M with center Y and with respect to this
standardization is such that U is covered by two charts (2/,y') and (2", "), both with values in
RZ, x R", so that the exceptional divisor (n{/)~*(Y) has equations {z; = 0} and {y” = 0} and

such that the morphism 773[{ writes

(@ y) = (@, ()Y,

ﬂ'g(:v", ") = (2f,..., (y”)r/a”acg’, Y.

Let g € (7¥)71(Y). There are 3 cases

1. g is the origin of the chart (2”,y").

We obtain it .
| e
W'+ @) ")

As ap /T < a/j forall 2 < j < d, % —j >0 and we can factor out (y")?

(W) U+ @)D ) )
and the expression in brackets is a unit

2. ¢ is the domain of the chart (z,%’) but it is not the origin of this chart.

In order to simplify notations, put (z,y) instead of (z’,y"). Then, locally around ¢ we have
coordinates (z, A + y) where A = —y(q). We obtain

apg N
- (d—j)—=+aji 1.

x?T(/\+y)d+...+xl " 2w (z) A+ y)dT

- /O(/. alyj aj,l,l a]'YH,l Ocj’m . .
(notice that here 2 means @7 --- 2,7 w77 o x™)). As o /7 < o/ for all 2 <

Jj<d, ajy — jory/r > 0 and we can factor out xlda”/r
daral Y / .
7 () T @) A+ )T )

by the Tschirnhausen transformation the coefficient of ¥~ is A\ # 0 so the expression in

brackets is regular of order less or equal to d — 1 in y and by Weierstrass preparation we
can assume that is a Weierstrass polynomial of degree less or equal to d — 1.

3. ¢ is the origin of the chart (z/,v/).

Again, we put (z,y) instead of (z/,y"). We obtain

«@

)l N Sl
= (d=3)—=+oj1 1o

d »
z; "yl 2% (x)y® I+
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As o /r < aj/jforall 2 < j <d, aj; — joy;/r > 0 and we can factor out :pzja”/r

]

d .
x, 7 (yd—i-...—l—xla]’l

S ]
_JTx/aguj(ac)ydfj +...)
If a,; = 0 for all i # [ then the expression in brackets is regular of order d — [, and
by Weierstrass preparation we can assume that is a W. polynomial of degree d — r. If
there exists ¢ # [ such that o,; # 0 we proceed by making a local blowing-up with the
corresponding center of codimension two relatively to a suitable standardization such that
the morphism has the expression in two charts (2/,v'), (2", y")

71'{{(1’/7 y/) = (xlv (‘I';)aryi/ry/)ﬂ

ﬂg(x”,y”) = (z7,..., (y”)r/a”m;’, TR

This works analogously because we have chosen r such that o, /7 < 5 /j forall j,2 < j <d,
which means that o, /r < o s/j forall j,2<j<dand1<s<Fk—1. The "bad" case
will be again at the origin of the chart (z/,3’) but we will have the same polynomial with
less variables  appearing in the monomial of the coefficient of y¢~". After at most k — 1
steps we have finished.

General case.- Let b € G(M') denote the G-analytic function obtained as the product of all
non-zero functions among the b; as well as their non-zero differences. By the hypothesis that
Theorem 3.4.2 is true for dimension smaller than &, there exists a proper é-neighborhood ¢’ =
{mi + W; — M',L;} of pin M’ (where the centers for the local blowing-ups involved are of
codimension < 2) such that bo 7 is monomial at any point of L;, for any j. Fix some § > 0
such that (—d,0) is contained in the range of values of the coordinate y. Consider, for each 7,
the morphism obtained by "fibering" 7r;- on the variable y; precisely:
Ty - Wj = Wj/ X (_5a 6) — M, Wj(‘]at) = 80_1(1‘(773(6])),0-

Then 7; is a composition of local blowing-ups with admissible centers (as in 3.3.3). We conclude
that

= {71']' : Wj — M,Lj = L; X [*5/2,5/2]}

is an é-neighborhood of the point p (with centers of codimension < 2). Using Lemma 3.4.4, it
suffices to prove Theorem 3.4.2 for the transform, f om; € G(Wj), of f by m; at any (fixed but
arbitrary) point in Lj, in fact, taking ¢ sufficiently small, at any point of L} x {0} C Wj. Fix
some of these points (¢,0). By construction, there exist local coordinates 2’ at ¢ € W]' such that
bo 7r§- is locally monomial at ¢ with respect to z’. Consequently, using iv) of Remark 2.3.17,
the transformation b; o m; of each of the coefficients b; is locally monomial with respect to the
same coordinates at q. Moreover, considering b also as a function in M and, since bo m; does not
depend on the second component of W; = Wj’ X (—6,0), we conclude that it is locally monomial
at the point (¢,0) € L; with respect to the coordinates (2',t) in W; = W] x (—=4,d) (where ¢
is the usual coordinate in R). Write locally at (¢,0), b; o m; = (2')*wj(2’,t) where u; does not
vanish at (¢,0). Then we have a local expression of f om; at (¢,0) as

fomj =17+ (&) *2upt?? - + (af) 4wy,

The proposition is finished, thanks to the special case considered above, once we prove the
following

Claim.- Up to a further composition of local blowing-ups with admissible centers of codimension
< 2, we can suppose that the set of vectors {a;/l};=2 . 4 is totally ordered (by the division order).

Proof of the Claim.- First, after performing blowing-ups with centers at the coordinate planes
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z;, = 0 (of codimension 1), we can suppose that the number of boundary components of ¢ in
W} is maximal, equal to m(q) = k — 1. In this case, (b o w;)l/l = (x’)o‘l/l(u’)ll/l is a G-analytic
function. Now, consider the function b obtained as the product of all non-zero functions and
of the non-zero differences among the family {(b; o ﬂ})l/ 1;. Repeating the argument, Theorem
[main| being by hypothesis true for E, up to further local blowing-ups, b and all its factors can
be considered as a locally monomial function (with respect to the same system of coordinates).
Now v) of Remark 2.3.17 gives the desired result about the exponents «;/I. O

3.4.2 The b invariant for a G-analytic function.

Let M be a G-manifold, p € |[M| and f a G-analytic function at p. Let (U, = (z,y)) be a local
chart of M centered at p (z = (21,...,2Zm,) and ¥ = (y1,...,¥Yn,)). Assume the notations of
paragraph 1.1.4. By 2.3.7 and, we can define b(f, p, (U, )) := b(s) € N? where s € R{X*, Y} C
(RI[Y]DI[X™]] is the Taylor expansion of f at p with respect to the coordinates (z,y) (notice that
s is defined up to a permutation o € Gy, 5, but for such a o we have that b(s) = b(os)).

Proposition 3.4.6. b(f,p, (U, )) does not depend on the local chart (U, ¢).

Proof. Let (V,9 = (2,w)) be another local chart at p. Denote by s, € R{X*,Y} and sy €
R{Z*, W} respectively the Taylor expansion of f at p with respect to the coordinates (x,y)
and (z,w). Denote by ¢ : R{Z*,W} — R{X*,Y'} the isomorphism induced by the change of
coordinates as in 2.3.11. Notice that up to a permutation o € Gy, 5, , We can suppose ¢(sy,) = S,.

aj

By 2.3.15, for 1 < j <my, z; = :Bi(j)gj(:r, y) with a; > 0, ¢;(0,0) > 0 and 4 a permutation of the

index {1,...,m}. Thus, ¢(Z;) = Xj(-;)Gj where G; € R{X*, Y} is such that G;(0,0) > 0. Then
for any exponent a € [0,00)™, ¢(Z%) = XU G where G € R{X*,Y} is such that G;(0,0) >0

and a(a) = (a;-1(1)Q-1(1)s - -+ G=1(m) ¥~1(m))- Since (a;-1(1y - -+, @i-1(m)) € (0,00)™, for any
a,f € [0,00)™, a(a) < a(f) & a < 3, which in turn implies d(«, 8) = d(a(a),a(3)). Then, as
¢(S¢) = 8907 b(S<P) = b(SUJ) and so b<f7p7 (U7 90)) = b(f7 b, (‘/7 w)) O

Then, we let b(f,p) = (b1(f,p),b2(f,p)) € N? denote the invariant of a G-analytic function in
a point p of M. As a corollary, the numerical data I(f,p) = (my,np,b(f,p)) is a well defined
invariant in N* depending only on f and the point p. In fact, the first two components depends
only on p and M. Notice that with this definition, ba(f,p) > 0 implies m, > 1.

The following result permits to prove theorem 3.4.2 by induction in the invariant I(f,p) in
lexicographic order when bo(f,p) > 0.

Theorem 3.4.7. Let f € G(M) and p € [M] and assume that ba(f,p) > 0. Then there exists
a local blowing-up 7 : M — M with admissible center Y through p, of codimension 2, such
that for any point ¢ in the fiber 77 1(p) of the exceptional divisor, the transformed function
[ = fome G(M) satisfies

I(f,q) <I(f,p)

Proof. Consider a local chart (U, (x,y)) centered at p where z = (21,....,%m), ¥ = (Y1, .-, Yn),
where m = mp, n = n,, and let s € R{X*,Y}m’n be the Taylor expansion of f at p with
respect to these coordinates. Then b(f,p) = b(s), considered s as a series in R{Y }[[X*]]. By
Proposition 1.1.23, there exists v > 0 and two different indices 4,5 € {1,...,m} such that the
transformations §Z7j y C?i/ 7 (defined in 3.3.4) applied to s gives series with smaller b-invariant.
Consider the closed admissible center Y = {x; = x; = 0} inside U and the standardization of

the pair (U,Y) given by

¢:U— AT xR", ¢(z,y) = (z1,...,2],...,25,1).
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Let m: M — U < M the local blowing-up with center ¥ and associated to the standardization
¢. Then, as in the example 3.3.4, M is covered by two charts (2/,y') and (z”,y"), both with
values in R x R", such that the expression of the blowing-up morphism is

m(@'y') = (@, ..z, (@), Y,

m(z",y") = (aF,..., 2%, ..., (a;;-’)l/vx;’, TN
Thus, we see that the Taylor expansion of f at the origin p; of the first (respectively po the origin
of the second) chart with respect to (2,y") (respectively with respect to (2”,4")) is just ¢;(s)

respectively ¢:/ '(s)). Moreover, m,, = m,, = m and thus the Theorem is proved at those two
tively ¢;/”7(s)). M oL = My d thus the Th i d at those t
points by our choice of the admissible center using Lemma 1.1.23.

Finally, for any point ¢ € 7—!(p) different from po in in the domain of the first chart we can use
the local chart ((2')7,y') centered at g where (2')f = a7 if | # j and (2') = 2, —2/(¢). Assuming
that g # p; we have x;(q) # 0 and thus (.ZU/)(]]» becomes an analytic variable (it takes positive an
negative values in a neighborhood of the point g). The rest of coordinates remaining unchanged,

we obtain that mg = m, — 1 and thus also I(f,q) < I(f,p) and we are done. O]

In order to finish the proof of theorem 3.4.2 it remains the case ba(f,p) = 0. In this situation,
there are two possibilities:

1. ny = 0. Then f is already locally monomial at p.

2. np > 0. Then there exists a local chart (U, = (z,y)) centered at p, a € [0,00)" and
g € G (U) such that
f(x,y) = 2%(z,y)
with ¢(0,y) # 0 in ¢(U). Then, there exist a suitable change of coordinates involving only

the y variables making y,, regular in g. By Weierstrass Preparation Theorem, g is under
the hypothesis of Proposition 3.4.5 and the result follows.
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Appendix A

Sheaves and ringed spaces.

We reproduce the definitions and results from the sheaves theory that we need as they appear
in [8].

Definition A.0.8. Let X be a topological space. A presheaf F of rings on X consists of the
data

(a) for every open subset U C X, a ring F(U) and

(b) for every inclusion V' C U of open subsets of X, a morphism of rings pyy : F(U) = F(V)
subject to the conditions

(0) F(0) = {0},

(1) pyu is the identity map F(U) — F(U), and

(2) if W CV C U are three open subsets, then pyw = pyw o pyv.

As a matter of terminology, if F is a presheaf on X, we refer to F(U) as the sections of the
presheaf F over the open set U, and we sometimes use the notation I'(U, F) to denote the ring

F(U). We call the maps pyy restrictions maps, and we sometimes write s|y instead of pyy(s)
if s € F(U).

A sheaf is roughly speaking a presheaf whose sections are determinated by local data. To be
precise, we give the following definition.

Definition A.0.9. A presheaf F on a topological space X is a sheaf if it satisfies the following
supplementary conditions:

(3) if U is an open set, if {V;} is an open covering of U, and if s € F(U) is an element such
that s|y; = 0 for all 4, then s = 0;

(4) if U is an open set, if {V;} is an open covering of U and if we have elements s; € F(V;)
for each i, with the property that for each i, j, si|v;nv; = sj|vinv;, then there is an element
s € F(U) such that s|y, = s; for each i. (Note condition (3) implies that s is unique).

Example A.0.10. Let X be a topological space. For each open set U C X, let C°(U;R) be the
ring of continuous real-valued functions on U, and for each V' C U, let pyy : CO(U;R) — CY(V;R)
be the restriction map (in the usual sense). Then the assignment U ~ C°(U;R) for any U open
subset of X together with the restriction of maps as restrictions morphisms is a sheaf of rings
on X that we call the sheaf of continuous functions on X and denote by €c(x). It is clear that
€c(x) is a presheaf of rings. To verify the conditions (3) and (4), we note that a function which
is 0 locally is 0, and a function which is continuous locally is continuous. In the same way we
can define the sheaf of real analytic functions on a real analytic manifold. If M is a real analytic
manifold we denote by O the sheaf of real analytic functions on M.
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A directed set is a partially ordered set (I, <) with the additional property that every pair of
elements has a lower bound. Let (I,<) be a directed set. Let {A; : i@ € I} be a family of
rings indexed by I and fj; : A; — A; be a ring homomorphism for all ¢« < j with the following
properties:

1. fii : A; — A; is the identity of A; for all ¢ € I, and
2. fri = fjio frj foralli<j<k.

Then the pair (A4, fi;) is called a direct system over I. The underlying set of the direct limit, A,
of the direct system (A, f;;) is defined as the disjoint union of the A;’s modulo an equivalence

A=lim4; = [T A4/ ~

Here, if ; € A; and x; € Aj, x; ~ x; if there is some & € I, k < ¢ and £ < j such that
fit(xi) = fir(xj). One naturally obtains from this definition canonical morphisms ¢; : A; = A
sending each element to its equivalence class. The ring operations on A are defined via these
maps in the obvious manner.

relation ~ :

Let F be a presheaf on X, and p a point of X. Let Ex(p) be the set of all open neighborhoods
of p on X. We order partially Ex(p) with the inclusion order. Actually (Ex(p), C) is a directed
set, because if U,V € Ex(p), UNV € Ex(p) and is a lower bound of U and V. We construct
a direct system over Ex(p) considering the family of rings {F(U) : U € Ex(p)} and the ring
homomorphisms pyy : F(U) = F(V) for V C U.

Definition A.0.11. If F is a presheaf on X, and if p is a point of X, we define the stalk F), of
F at p to be the direct limit of the rings F(U) for all open sets U containing p via the restriction
maps p.

Thus an element of F, is represented by a pair (U, s), where U is an open neighborhood of p,
and s is an element of F(U). Two such pairs (U, s) and (V,t) define the same element of F), if
and only if there is an open neighborhood W of p with W C U NV, such that s|y = t|y. Thus
we may speak of elements of the stalk F, as germs of sections of F at the point p. In the case
of topological space X and its sheaf of continuous functions (example A.0.10) €¢(x), the stalk
Co(x),p at a point p is just the local ring of germs of continuous functions at p.

Definition A.0.12. If F and H are presheaves on X, a morphism ¢! : F — H consists of a
morphism of rings ¢! (U) : F(U) — H(U) for each open set U, such that whenever V C U is an
inclusion, the diagram

is commutative, where p and p’ are the restriction maps in F and H. If 7 and H are sheaves on
X, we use the same definition for a morphism of sheaves. An isomorphism is a morphism which
has a two-sided inverse.

Note that a morphism ¢f : F — H of presheaves on X induces a morphism gog : Fp — Hp on
the stalks, for any point p € X, given by gog((U, s)) = (U, *(U)(s)) such that if U is an open
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neighborhood of p the following diagram is commutative

©*(U)

FU) == 1)
ip b,

The following proposition (which would be false for presheaves) illustrates the local nature of a
sheaf.

Proposition A.0.13. Let ¢! : F — # be a morphism of sheaves on a topological space X.
Then ¢ is an isomorphism if and only if the induced map on the stalk goﬁ, : Fp — Hp is an
isomorphism for every p € X.

Proof. If ¢% is an isomorphism it is clear that each %ﬁ) is an isomorphism. Conversely, assume
gpf, is an isomorphism for all p € X. To show that ¢! is an isomorphism, it will be sufficient to
show that ¢f(U) : F(U) — H(U) is an isomorphism for all U, because then we can define an
inverse morphism ¥* by ¥#(U) = (p*)~1(U) for each U. First we show ¢(U) is injective. Let
s € F(U), and suppose ¢#(U)(s) € H(U) is 0. Then for every point p € U, the image ©*(s), of
©*(s) in the stalk H, is 0. Since gpf, is injective for each p, we deduce that s, = 0 in F, for each
p € U. To say that s, = 0 means that s and s, have the same image in F,, which means that
there is an open neighborhood W), of p, with W, C U, such that s|y,, = 0. Now U is covered by
the neighborhoods W), of all its points, so by the sheaf property (3), s is 0 on U. Thus ¢*(U) is
injective.

Next we show that f(U) is surjective. Suppose we have a section t € H(U). For each p € U, let
tp be its germ at p. Since gog is surjective, we can find s, € F, such that g@zﬁo(sp) =t,. Let s, be
represented by a section s(p) on a neighborhood Vj, of p. Then ¢*(s(p)) and t|y, are two elements
of H(V},), whose germs at p are the same. Hence, replacing V), by a smaller neighborhood of p
if necessary, we may assume that ¢*(s(p)) = t|y, in H(V,). Now U is covered by the open sets
Vp, and on each V}, we have a section s(p) € F(V}). If p,q are two points, then s(p)|v,nv, and
s(q)|v,nv, are two sections of F(V, N V,), which are both sent by ¢* to t|y,nv,. Hence, by the
injectivity of ¢f proved above they are equal. Then by the sheaf property (4), there is a section
s € F(U) such that s|y, = s(p) for each p. Finally we have to check that ¢(s) = ¢. Indeed, ¢(s)
and t are two sections of H(U), and for each p, ©*(s)|v, = t|y,, hence by the sheaf property (3)
applied to of(s) — t, we conclude that f(s) = t. O

Definition A.0.14. A subsheaf of a sheaf F is a sheaf F’ such that for every open set U C X,
F'(U) is a subring of F(U), and the restrictions maps of the sheaf F’ are induced by those of
F. It follows that for any point p, the stalk ]-";’, is a subring of F).

Example A.0.15. Let M = (|M],Opr) be a real analytic manifold. Then, Oy is the sheaf of
real analytic functions on [M|. We can consider €¢(|)), the sheaf of continuous functions on
|M| (as a topological space). Then we can see that Oy is a subsheaf of €¢(as)), because any
analytic function in an open set of M, U, is continuous on U. The second condition is verified
because we are dealing with sheaves of functions and the restrictions maps are the restrictions
in the usual sense.

So far we have talked only about sheaves on a single topological space. Now we define some
operations on sheaves, associated with a continuous map from one topological space to another.

Definition A.0.16. Let ¢ : X — Y be a continuous map of topological spaces. For any sheaf
F on X, we define the direct image sheaf p.F on Y by (0. F)(V) = F(¢~1(V)) for any open
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set V' C Y, and the restrictions maps pf,; = Po—1(V)p—1(w) for any open set W C V' where p
is the restriction map of F. For any sheaf H on Y, we define the inverse image sheaf o~'H on
X to be the sheaf associated to the presheaf U — limy 5,1 H(U), where U is any open set in
X, and the limit is taken over all open set V' of Y containing ¢(U). As a particular case, if Z is
a subset of X, regarded as a topological subspace with the induced topology, i : Z — X is the
inclusion map, and if F is a sheaf on X, then we call i~'F the restriction of F to Z, and we
often denote it by F|z. Note that the stalk of F|z at any point p € Z is just F,,.

Definition A.0.17. A ringed space is a pair (X, Fx) consisting of a topological space X and
a sheaf of rings Fx on X.

Then, if X is a topological space the pair (X, QﬁC(X)) is a ringed space.

A morphism of ringed spaces from (X, Fx) to (Y, Fy) is a pair (o, ¢?) of a continuous map
¢ : X =Y and a morphism ¢f : Fy — ¢, Fx of sheaves of rings on Y.

The ringed space (X, Fx) is a locally ringed space if for each point p € X, the stalk Fx, is a
local ring. Notice that if X is a topological space the pair (X, €¢(x)) is in fact a locally ringed
space, because for any p € X, M, := {f, € €g(x), : f(p) = 0} is the unique maximal ideal of

Cox)p-

A morphism of locally ringed spaces is a morphism (ap,cpﬁ) of ringed spaces, such that for
each point p € X, the induced map (see below) of local rings @% t Fypp) = exFxp is a local
homomorphism of local rings. We explain this last condition. First of all, given a point p € X, the
morphism of sheaves ¢ : Fy — ¢, Fx induces a homomorphism of rings Fy (V) — Fx (o~ 1(V)),
for every open set V in Y. As V ranges over all open neighborhoods of ((p), ¢ ~(V) ranges over
a subset of the neighborhoods of p. Taking direct limits we obtain a map

Fyp(p) = limy Fy (V) = limy Fx (9~ (V)
and the latter limit maps to the stalk Fx .

Thus we have an induced homomorphism gog, t Fypp) — Fx,p- We require that this be a local
homomorphism: if A and B are local rings with maximal ideals 914 and 9 respectively, a
homomorphism ¢ : A — B is called a local homomorphism if ¢~!(9Mp) =, or equivalently, if
d(My) € Mp. An isomorphism of local ringed spaces is a morphism with a two-sided inverse.
Thus a morphism (¢, ¢*) is an isomorphism if and only if ¢ is a homeomorphism of the underlying
topological spaces, and ¢! is an isomorphism of sheaves.

Example A.0.18. Let X and Y be topological spaces and consider the locally ringed spaces
(X,€c(x)) and (Y,€q(yy). Let ¢ + X — Y a continuous function. Define, for any V' open
subset of Y, @*(V) : f € Coy)(V) = fop € Coxy(e (V). Notice that ©*(V) is a well
defined ring homomorphism because ¢~ (V) is an open subset of X and f o ¢ is a continuous
function on ¢ ~!(V) whenever f is a continuous function on V since ¢ is continuous, and for any

fr9€ V), (f+g)op=(fop)+(g0o¢), (fg)op=(fow)(gowp), and the diagram

%) _
Com) (V) — Cowy g™t (V))
ﬂVWJ( i%—lww—l(m
fw) _
Cowy (W) — Copy (e (W)

is commutative for every open W C V.

Hence ¢ : Coyy — e«€ox) given by V) : fe Cery(V) = fop e Q:C(X)(gofl(V)) for any
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V open subset of Y is a morphism of sheaves and thus the pair (¢, @ﬁ) is a morphism of ringed
spaces. Even more, if p € X, the induced homomorphism on the stalk golﬁ, o)) — Cox)p

is given by gpfo ) € Cowypm) — (Fow)p € Cox)p- Recall that Co(xy, and oy () are local
rings with maximal ideals respectively Me, y, , = {8 € Co(x)p : 9(p) = 0} and M,

P ; Y)e(p)

{fSD(p) € Q:C(Y),cp(p) : f((p(p)) = 0}. Let fy,(p) S mCC(Y),ap(p)' Then, (pgj(fw(p)) = (ngo)p and

fow) = flp(p)) = 0. Thus @g(m%(y),wp)) C Mey, Which implies that (0t is a
morphism of locally ringed spaces.
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Appendix B

Locally ringed spaces on R-algebras of
continuous functions.

Let € denote the category whose objects are locally ringed spaces on R-algebras of continuous
functions, and the morphisms between two objects are the morphisms as locally ringed spaces.
Put

¢ = (Objets(€), Morphisms(€)) = (Obj(€), Morph(¢))
An objet on € is a locally ringed space X = (|.X|,€x), where |X| is a topological space and €x
is a sheaf of R-algebras of continuous functions over | X|; that is, if U is an open subset of | X| the
sections over U, €x(U), is an R-subalgebra of the algebra of continuous real-valued functions on
U. Notice that this implies that the inclusion morphism R < €x (U) sends a constant a € R to
the function constantly equal to a in €x(U) for any open subset U of | X].

Example B.0.19. Given |X| a topological space we define the object C(X) = (|X[,&¢(x)) in
€ where €¢(x) is the sheaf of continuous real-valued functions on |X|. Then, for any p € [X],
the stalk at p, €o(x), 18 a local R-algebra whose maximal ideal is

Mec vy, = Up € Coxyp t f(p) =0 for any representant f:U — R of f,}

It is the unique maximal ideal because every g, & E)ﬁgc(x) , is a unit of €¢(x),p, i-e. has an inverse
in €o(x)p- In fact, the assignment |X| +— C(X) is a functor from the category of topological
spaces and continuous maps to the category €.

Notice that if X = (|X]|,€x) is another object in € whose underlying topological space is | X|,
the sheaf €x is by definition a subsheaf of € (x) and hence for any p € | X| the stalk at p, €x p,
is naturally considered as a local R-subalgebra of €¢(x) . Notice also that for any U open subset
of | X| the following diagram is commutative

R—— ¢ x)(U)
idg <
R——=¢¢x(U)
where the hooked arrow €x(U) — €g(x)(U) is the set inclusion €x(U) C €g(x)(U). This

implies that the induced inclusion morphism on the stalks €x RN Co(x),p makes

Cox)p (B.1)

]R\ i
Cxp
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commutative.

Proposition B.0.20. Let X = (|X|,€x) be an object in €, and for any point p € |X| let

M, denote the maximal ideal of €x j and Cx 5 €o(x),p the morphism in (B.1). They are
equivalent

i) The morphism Cx SN €o(x)p is local (ie. i(Mey,) € Meey,,), and the morphism
R—Cx, / Mg, induced by the inclusion morphism R < €x ), is an isomorphism.

W) Mey , = Meg iy, NExp = {fp € Cxp: f(p) =0 for any representant f:U — R of f,}
ii1) Any section of €x which does not vanish at p is locally invertible at p in €x

Proof. Consider the diagram

R Q:C(X%P/m@c@(),p (B.2)

I

R Cx, /My,

idR

If we suppose i), every arrow in (B.2) is an isomorphism. We have that Mg, C Mecixy,, NCxp

since i is local. Conversely, if f, € €x, is such that f(p) = 0, i(f,) € Mee x,- Following the
diagram anticlockwise, f, € Mg, .

Suppose ii). Then, Cx ) AN €o(x),p 18 local and the injective homomorphism R — €x,, is
surjective because given f, + Mg, either f(p) = 0, which implies by i) that f, € M, or
f(p) # 0, so it is the germ of the function constantly equals to f(p). O]

Given X = (|X|,€x) and Y = (|Y], €y) two objects in € we denote by Morphe(X,Y") the set of
morphisms of ¢ from X to Y. A morphism (¢, p*) €Morphe(X,Y) is given by a continuous map
¢ : |X| = |Y| between the underlying topological spaces, and a morphism of sheaves ¢ : ¢y —
©«€x, such that for any p € |X| the induced morphism in the stalks gof, t €y — Cxpis a
local homomorphism of R-algebras (recall that given two local algebras A and B with maximal
ideal respectively 94 and Mg an homomorphism ¢f : A — B is called local if ©f(94) C Mp.)

Proposition B.0.21. Let X = (|X|,€x),Y = (|Y],€y) be objects of € and (g, ¢*) €Morphe(X,Y).
If X,Y satisfy one of the equivalent conditions of proposition B.0.20, then the morphism of
sheaves ¢f is given by composition with ¢; that is, for any V open subset of |V,

V) fey (V) fopelx(p (V)

Proof. Let V be an open subset of |Y|. We have to prove that ¢*(V)(f) = f o ¢ for any
feey(V). Solet f €€y (V)andpc o (V). We want the equality o (V)(f)(p) = (f o ©)(p).
Put a = f(e(p)) and define g : V. — R by g(q) = f(g) —a. Then g = f —a € Cy(V)
and g(p(p)) = 0 s0 gy = (F—a),,) € My, As the induced homomorphism on the

stalks gof, : €y pp) — €xp is a local homomorphism, cpf)(gp) € Me, - Thus, by lemma B.0.20,
0= @h(8o)(P) = Ah((E — 2),))(P) = Ph(£:) (p) — . O

As a question of notation, as the morphism of sheaves ¢! is completely determined by the contin-
uous mapping ¢, we will use frequently the same letter ¢ for the underlying continuous mapping
and the morphism itself, so saying simply that ¢ : X — Y is a morphism of locally ringed spaces
or in the category €.

We have that a morphism (¢, %) €Morphe(X,Y) is an isomorphism if and only if ¢ is a home-
omorphism of the underlying topological spaces, and ¢ is an isomorphism of sheaves, or equiv-
alently the homomorphisms induced on the stalks are isomorphisms for any point.
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Definition B.0.22. Let & = (Obj(&),Morph(&)) be a subcategory of €. If for any X,Y € &,
Morphx y (&) =Morphy y(€) we say that & is a full subcategory of €.

Product.

Definition B.0.23. Let G be a subcategory of €. Given two objets of the category, X, Y €O0bj(&),
a product of X, Y in G is a triple (P, px, py) where P is an object P €Obj(&) and px : P — X
and py : P — Y are morphisms such that for every triplet

A=(Aax A= X,ay :A—=Y)

with A €0bj(6) and ax,ay €Morph(S) there exists an unique morphism, ® : A — P such
that ax =px o® and ay =py o ®

A
P
ax ay
Y
P
/ \
X Y

By definition the product is unique up to unique isomorphism in the category (in the sense that
if (A, ax,ay) is another product then ® in the diagram above is an isomorphism).

If for any X,Y €Obj(&) there exists a product of X, Y in &, we say that & is a category
with product.

Similar definitions apply for the product of a finite family of objects in the category. We use it
without any more description of the details.

Gluing.

Definition B.0.24. Let & be a subcategory of €. Let X,Y €0bj(S). An open immersion on
X is a morphism ¢ : Y — X for which there exists an open set U C |X| such that ¢ decompose
in N '

p=i03:Y L X|yp <5 X
where @ is an isomorphism.

Remark B.0.25. Let Y, X, X9 €Obj(6) and ¢; : Y — X; open immersions decomposing in

©

1
Xl’U1Ci1—> )(1
%
Y h
T

X2’U2c2—> X5

2

Then h=@r 051 ' : Xi|y, = Xa|u, is an isomorphism.
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Definition B.0.26. Given two objets of the category, X,Y €Obj(&) and open immersions

1:Y = X4, v2: Y = Xy, we define the gluing of X; and X, with respect to the open
immersions p; and ¢y as a triplet (X, a1, a2) where X €0bj(S), «; : X; — X are open
immersions for ¢ = 1,2 satisfying a1 0 91 = a0 9 and such that for any other triplet (T, 81, 32)
where T €0bj(&) and f; : X; — T are open immersions such that 1 o o1 = 53 0 9 there exists
an unique morphism f : X — T such that §8; = foq; fori=1,2.

1

X1|U1(—>X1
;;/7 \
v 3¢
X2|U2C—>X2

If for any X,Y €Obj(6&) and open immersions ¢1 : Y — X1, p2 1 Y — Xo, there exists the
gluing of X; and Xs with respect to the open immersions ¢ and 2, we say that the category
G is a category with gluing.

Similar definitions apply for the gluing of a finite (or even more generally infinite) family of open
immersions {¢; : Y — X, };,c;. However, we do not use it in this text so we omit the details.
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