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Résumé

Les fonctions analytiques généralisées sont dé�nies par des séries convergentes de monômes à
coe�cients réels et exposants réels positifs. Nous étudions l'extension de la géométrie analytique
réelle associée à ces algèbres de fonctions. Nous introduisons pour cela la notion de variété
analytique réelle généralisée. Il s'agit de variétés topologiques à bord munies de la structure du
faisceau des fonctions analytiques réelles généralisées. Notre résultat principal est un théorème
de monomialisation locale de ces fonctions.
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Introduction

Resolution of Singularities is an important subject in many �elds of mathematics, being a fun-
damental tool in the resolution of lots of important problems as well as a set of elaborated
techniques resulting very useful in full of di�erent contexts. This explain that, even if it is a
classical discipline, it is gaining in importance and constantly progressing.

The general setting is well known: given an object that we want to study (manifolds, varieties,
functions, foliations, vector �elds, di�eomorphisms, families) it may present singularities making
it non trivial. The strategy to understand the richness behind these singularities consists on
modify the ambient space by terms of compositions of a particular kind of well known transfor-
mations (blowing-ups) given rise to an object with "simpler singularities" easier to study. The
problem is then translated to the understanding of the combination of the blowing-up transfor-
mations and the relation between the geometry of the object obtained and the initial one.

This method was applied to the classical case of algebraic varieties by using algebro-geometric
techniques by Zariski and the Italian School which constituted the foundations of modern Al-
gebraic Geometry. The Hironaka's work of 1964 suppose an in�ection point in the resolution of
singularities theory. It shows resolution of singularities on algebraic varieties of characteristic
zero. Since then, many of the important progress in resolution of singularities has been based on
this work: resolution of singularities on real and complex analytic manifolds, the e�ective reso-
lution, embedded resolution of singularities, local uniformization, monomialization, resolution of
singularities on complex foliations of codimension one, resolution of singularities on vector �elds,
rectiliniarization of subanalytic sets,...

The framework of this doctoral thesis is resolution of singularities on real analytic sets. One
of the vicissitudes of this resolution of singularities is that of monomialization of germs of real
analytic functions, consisting on the process to transform such a germ f on a function f̃ which
can be locally expressed as

f̃(x1, . . . , xm) = xa11 · · ·x
am
m g, with g(0) 6= 0,

that is, the product of a monomial times a function which does not vanish (we say that f̃ is

a locally monomial function). In this way, the set of zeroes of f̃ is locally very simple: it
consists on the coordinate hyperplanes with respect to a given coordinate system. For instance,
the process of monomialization of germs of real analytic functions is well known. As we can
see in [2], which serve us as a model for our work, there are two crucial arguments to show this
result: �rst one is the Noetherianity of the ring of analytic germs and the other one is Weierstrass
Preparation Theorem.

Monomialization of wider classes of germs is proved in more general contexts where neither
Noetherianity nor Weierstrass Preparation Theorem holds. For instance, [3] about quasi-analytic
Denjoy-Carleman classes or [4] about quasi-analytic classes appearing as formal solutions of a
certain kind of di�erential equations. They are quite important classes on the framework of
o-minimal structures and model theory. In these cases, the germs considered admit usual formal
series (with natural exponents) as asymptotic expansions with the property of quasi-analyticity,
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or uniqueness of such an expansion, which is essential for the adaptation of the proof in the
analytic setting to this more general case.

In this work we remain inside the class of real generalized power series R[[X∗]]. These are series
of the form

s =
∑

α∈[0,∞)m

sαX
α1
1 · · ·X

αm
m

with sα ∈ R such that the support Supp(s) = {α/sα 6= 0} is contained in a cartesian product
S1×· · ·×Sm where Sj ⊂ [0,∞) is a well ordered subset for the usual order in R. We focus on the
subclass R{X∗} of real convergent generalized power series for the usual notion of convergence of
in�nite sums of functions (see de�nition 1.2.3) which are, so to speak, the smallest quasi-analytic
subclass of R[[X∗]]. It follows, from the de�nition, that we do not have Noetherianity on these
classes. For instance, if m = 1, the ideal generated by {Xα : α > 0} is not �nitely generated.

Formal generalized power series as well as convergent, appear associated to natural problems on
di�erential or functional equations. By example, the function

x 7→ ζ(− log x) =
∞∑
n=1

xlogn : [0, e−2] −→ R

where ζ is the Riemann zeta function,

ζ(z) =
∞∑
n=1

1

nz

Elements in R
{
X∗
}
give rise to real functions by passing to the limit, which, being the exponents

of the variables not necessary integers, are not de�ned in a whole neighborhood of the origin in
Rm. Those functions are then de�ned on the hyper-cube [0, ε]m where they are continuous, and
as we will see, in the interior of [0, ε]m they are analytic. We will call them real generalized

analytic functions or, for short, G-functions.

This kind of functions has been deeply studied by Van den Dries and Speissegger in [1] from
the point of view of o-minimal properties: roughly speaking, sets de�ned by equalities and in-
equalities using these functions and the linear projections of these sets have the same geometrical
behavior as real (global) subanalytic sets: �nitude of the number of connected components, �nite
analytic strati�cations, triangulations, etc. The condition on the well ordered support replace,
in some way, Noetherianity in the proof of those �nitude results. An other crucial ingredient,
proved also in [1], is the version of the Weierstrass Preparation Theorem with respect to regular
"analytic variables" (appearing only with integer exponents).

Using as a thread the mentioned work [1] and the techniques on resolution of singularities ap-
pearing in [2] and [3] we present in this work the local monomialization of real generalized

analytic functions.

In order to present it in a general geometrical context we construct the category of real gen-
eralized analytic manifolds. We use the generalized power series analogously to the power
series in the classical case of analytic manifolds. One of the main peculiarities is that generalized
analytic manifolds will be manifolds with boundary and corners. This is a geometrical conse-
quence of the existence of non analytic variables in the generalized case: a function like xλ for a
non integer λ is only de�ned for positive values of the variable x.

For a better comprehension of the di�erences with the classical analytic case, we will use analytic
manifolds with boundary and corners. We present at the beginning of chapter two a brief recall
of these objects and their properties in the language of subsheaves on R-algebras of continuous
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functions (called locally ringed spaces).

The Appendix is devoted to a brief exposition of the general concepts and basic properties
in this theory. In a few words, we consider the category C where an object of C is a pair
X = (|X|,CX) where |X| is a topological space and CX is a sheaf of R-algebras of continuous
functions over |X| such that, for each p ∈ |X|, the stalk CX,p is a local R-algebra. The morphisms
between two objects X = (|X|,CX) and Y = (|Y |,CY ) are pairs (ϕ,ϕ]) where ϕ : |X| → |Y |
is a continuous map and ϕ] : CY → ϕ∗CX is the associated morphism of sheaves determined
by ϕ by composition; that is, if f ∈ CY (V ) is a section over the open set V of |Y |, then
ϕ](f) = f ◦ ϕ ∈ ϕ∗CX(V ) = CX(ϕ−1(V )).

We will de�ne G the category of real generalized analytic manifolds and O the category of real
analytic manifolds with boundary and corners as subcategories of C. In both cases O and G,
an object will be a locally ringed space on R-algebras of continuous functions whose underlying
topological space is a topological manifold with boundary of pure dimension, all of them locally
homeomorphic to a local model Rk≥0 for some k. By a convenient choice of the second component
of the object (that is the sheaf of continuous functions), objects in the subcategory O will be
the (standard) real analytic manifolds with boundary and corners, when the chosen sheaf is such
that it is locally isomorphic to the sheaf of analytic functions in the local model (those which are
sums of standard real convergent power series). Objects of the subcategory G, on the contrary,
are de�ned with the property that the sheaf is locally isomorphic to the sheaf of generalized
analytic functions on the local model. They will be called generalized real analytic manifolds.

Once the geometrical context is given, we concentrate on the statement and the proof of the
main result, Theorem 3.4.2.

Local Monomialisation of G-analytic functions.- Let M be a generalized analytic manifold
and f ∈ G(M) a G-analytic function. Given p ∈ |M | there exists a �nite family

Σ = {πj : Wj →M,Lj}j∈J

where

1. each πj is the composition of a sequence of �nitely many local blowing-ups (with admissible
centers)

πj : Wj = Wj,nj

πj,nj→ Wj,nj−1

πj,nj−1

→ Wj,nj−2 · · ·
πj,1→ Wj,0 = M

2. each Lj is a compact subset of |Wj | such that ∪j∈Jπj(Lj) is a compact neighborhood of p
in |M |.

such that for all j ∈ J , f ◦ πj : Wj → R is locally monomial at any point of Lj (i.e. it writes
in certain coordinates as a monomial times a nowhere vanishing function). We can furthermore
take such a family Σ such that any of the local blowing-ups involved in it is with an admissible
center of codimension ≤ 2.

Let us explain the terminology involved in the statement of the main theorem. First, an ad-
missible center of a generalized or standard manifold is a submanifold of the ambient space (a
similar notion to that of a smooth analytic submanifold of an analytic manifold without bound-
ary) which is locally given by the zeros of some local coordinates. Geometrically, it has �normal
crossings� with the boundary of the ambient manifold.

Let us now get into the de�nition of blowing up morphism with closed admissible center in the
category of generalized analytic manifolds. We can proceed as follows.

First, we recall what a blowing-up morphism is in the category of (standard) real analytic man-
ifolds with boundary and corners. This is a quite well known notion in the category of analytic
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manifolds without boundary. Essentially, it is a proper analytic morphism that replaces the
center of blowing-up by an hypersurface taking account of the set of lines in a normal bundle
of the center, inducing an isomorphism outside this hypersurface, called the exceptional divisor
of the blowing-up. In our point of view, since the analytic manifolds that we consider have
boundary and corners, we follow the suitable approach of considering the so called oriented real

blowing-up, in contrast with the (relatively more usual) projective real blowing-up. The main
di�erence is that, in the former case, points of the center of blowing-ups are replaced by the set
of half-lines, normal to the center, de�ned by means of a system of coordinates; while for the
projective blowing-up, points are replaced by the set of normal lines through them. At boundary
points, we have no entire but half-lines, thus showing the convenience of the use of oriented
blowing-up.

As a consequence, the exceptional divisor (the inverse image of the center) always becomes a new
boundary component to the blown-up space even if the center of blowing-up is contained in the
interior of the standard analytic manifold (where normal entire lines are de�ned). The choice for
this kind of blowing-up also at interior points is based only on consideration of coherency.

In compensation, we do not alter the properties of orientability of the manifold, although in these
pages, where we only use local blowing-ups (that is, whose center is just a closed "subvariety"
on some open domain), this point does not give us an advantage.

In order to introduce the concept of blowing-up morphism in the category of generalized ana-
lytic manifolds, we notice �rst a (a priori unexpected) peculiarity that does not occur in the
standard case: if we proceed de�ning directly the blowing-up for the local model (as we may do
in the standard case) by "gluing" the local charts, we could obtain di�erent (non-isomorphic)
blowing-up morphisms for di�erent choices of local coordinates. Thus, our concept of blowing-up
morphism is not only attached to an admissible center of blowing-up, but relative also to the
choice of coordinates.

A convenient procedure to de�ne blowing-ups in the category of generalized manifolds uses the
concept of standardization. In few words, a generalized manifold is said to be standardizable

if it is isomorphic (the isomorphism will be called a standardization) to a generalized analytic
manifold obtained from a standard analytic manifold (with boundary and corners) by �enriching�
its structure of analytic functions by the procedure of adding to the sheaf of analytic functions
in a coordinate atlas those generalized analytic functions in the same coordinate atlas, just in a
similar way as we consider an algebraic variety as having an analytic structure by adding ana-
lytic functions to the algebraic ones. The theory of enrichments and standardizable manifolds is
developed in section 2.4.

Once we have a standardizable generalized manifold M and a �xed standardization φ to the
enrichment of some standard manifold A, we can translate blowing-ups with admissible centers
in A (in the standard setting) to corresponding admissible centers in the generalized manifold
M via the standardization. The details of this de�nition are presented in section 3.3.

As we can expect, the peculiarity noticed above on the dependence on the coordinates is re�ected
in the fact that the blowing-up so de�ned depends on the considered standardization φ of M .

The term �local blowing-up� in the statement of the main theorem stands, as usual, for blowing-
up with an admissible center which is locally closed, that is, closed in some open subset of the
ambient space considered. The existence of such local blowing-ups is guaranteed by the Propo-
sition 3.1.10 below where we prove that any point in a generalized manifold has a neighborhood
which is standardizable (this is just given by the existence of local coordinates).

However, the global situation is not that easy. We show in 2.4.2 concrete examples of general-
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ized analytic manifolds which are not standardizable. Such examples are interpreted as exotic
examples that could complicate the theory of generalized analytic manifolds in its full generality.
In fact, with this peculiarity in mind, no good notion of blowing-up is possible when the closed
admissible center to be blown-up has not a neighborhood which admits a standardization. This
is the case of the example in 2.3.5: it consists of a three dimensional generalized manifold whose
boundary consists of a circle which has no standardizable open neighborhood. The geometric
interpretation of this pathological example is that this center has not a good "global normal
bundle" of half-lines.

The existence of such pathological examples of non-standardizable generalized manifolds may
constitute an essential point of di�culty on the attempt to prove a Global Resolution of Singu-

larities of generalized functions.

This problem is, roughly speaking, as follows. Start with M a neighborhood of a given �x point
of the manifold. Can we improve our statement of Local Monomialization Theorem so that the
family Σ consists of a single sequence of blowing-ups ( |J | = 1)

π : Mn
πn→Mn−1

πn−1→ Mn−2 · · ·
π1→M0 = M

and such that, moreover, each πj is a global blowing-up; that is, a blowing-up with respect to a
closed admissible center of the whole manifold Mj−1 ?

A global resolution of singularities in the category of generalized manifolds and generalized
functions is a desirable result which we have not attacked and a natural continuation of the
subject that we present in this text. It remains as an open question of, in our modest opinion,
great interest.
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Chapter 1

Generalized power series.

In this chapter we introduce the algebra of generalized power series both in the formal and
convergent setting. Most of the basic properties on these series are presented and proved in the
work of Van den Dries and Speissegger [1]. We prove here a new property, proposition 1.1.20,
which will be fundamental for our purposes.

1.1 Formal generalized power series.

1.1.1 Basic de�nitions.

Let [0,∞) denote the set of non-negative real numbers and (0,∞) the set of positive real num-
bers. For reasons to be clear below, once we have �xed a natural number m, elements in [0,∞)m

will be called exponents and they will be usually denoted by α, β, etc. On the other hand,
elements of (0,∞)m will be called weight vectors and they will be usually denoted by ρ, τ , etc.

For exponents α = (α1, α2, . . . , αm) and β = (β1, β2, . . . , βm) and a weight vector ρ = (ρ1, ρ2, . . . , ρm)
we put as usual α+ β = (α1 + β1, α2 + β2 . . . , αm + βm) and |α|ρ = ρ1α1 + ρ2α2 + . . .+ ρmαm.
When ρ = (1, ..., 1), sometimes we use the standard notation |α| = α1 + · · ·+ αm for |α|ρ.

We partially order [0,∞)m as follows. For exponents α and β,

α = (α1, . . . , αm) ≤ β = (β1, . . . , βm)⇔ αi ≤ βi ∀i ∈ {1, . . . ,m}

We call the order given the division order.

De�nition 1.1.1. A subset of [0,∞)m will be called good if it is contained in a cartesian
product of well ordered subsets of [0,∞).

Proposition 1.1.2. Let m ∈ N and let S, T ⊆ [0, 1)m be good subsets of [0,∞)m and ρ be a
weight vector. Then

i) S is countable.

ii) The set {(ρ1α1, ρ2α2, . . . , ρmαm) : α ∈ S} is good.

iii) The set Smin of minimal elements of S for the division order is �nite, and each element
β ∈ S is greater or equal to some element of Smin.

iv) The set S ∪ T is a good subset of [0,∞)m.

v) The set ∑
(S) := {α1 + . . .+ αk : k ∈ N and α1, . . . , αk ∈ S}

is a good subset of [0,∞)m. In particular, by iv), S + T := {s+ t : s ∈ S, t ∈ T} is a good
subset of [0,∞)m too, since S + T ⊆

∑
(S ∪ T ).
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vi) The set {|α|ρ : α ∈ S} is a well ordered subset of [0,∞) and for any c ∈ [0,∞) the set
Sρ(c) := {α ∈ S : |α|ρ = c} is �nite.

Proof. For i), it is enough to show the result for m = 1, but this is a well known result : given
x ∈ S there exists its successor, x+ de�ned by

x+ := min{y ∈ S : y > x}

and we can �nd a rational number qx ∈ Q between x and x+.

For ii), as S is good, S ⊆ S1×S2×···×Sm with Si ⊆ [0,∞) well ordered for all i ∈ {1, 2, . . . ,m}.
Then, {(ρ1α1, ρ2α2, . . . , ρmαm) : α ∈ S} ⊆ ρ1S1 × ρ2S2 × · · · × ρmSm.

iii), iv) and v) are proved in lemma 4.2 and 4.3 in [1]. vi) is proved in the same paper, for
the special case of ρ = (1, ..., 1). The proof for general ρ ∈ (0,∞)m goes in the same lines: If
{|α|ρ : α ∈ S} is not well ordered we can take an in�nite sequence {αn}n∈N in S such that
the sequence {|αn|ρ}n∈N is strictly decreasing. This implies that at least one of the projections
{αnj }n∈N must contain a strictly decreasing subsequence against the fact that S is good.

Assume now that we can take an in�nite sequence {αn}n∈N such that |αn|ρ = c. As it is in�nite
there must be one in�nite projection. If there are no strictly decreasing subsequences in this
projection, there must be an increasing subsequence. As the value of |αn|ρ is constant, there
must exists a strictly decreasing sequence in other projection, which is impossible because S is
good.

Let X = (X1, X2, . . . , Xm) be variables and let X∗ denote the multiplicative monoid whose
elements are the monomials Xα := Xα1

1 Xα2
2 · · · Xαm

m with α = (α1, α2, . . . , αm) ∈ [0,∞)m

multiplied according to Xα · Xβ = Xα+β . The identity element of X∗ is X0 = 1, where
0 = (0, . . . , 0).

De�nition 1.1.3. Let A be a commutative ring with 1 6= 0. A formal generalized power

series in the variables X with coe�cients in A is a map s : [0,∞)m −→ A, that we write as the
formal series

s = s(X) :=
∑

α∈[0,∞)m

sαX
α,

where sα = s(α), such that the set Supp (s) := {α ∈ [0,∞)m : sα 6= 0}, called the support of s,
is a good subset of [0,∞)m.

Let A[[X∗]] denote the set of generalized power series in the variables X with coe�cients in A.
If the support of s is �nite we say that s is a generalized polynomial on X∗, and we write
A[X∗] for the set of generalized polynomials on X∗ with coe�cients in A. We consider the power
series ring A[[X]] also as subset of A[[X∗]], namely as the subset of all series s as above for which
Supp(s) ⊆ Nm. (Note that Nm is a good subset of [0, 1)m.)

The operations of sum and product on A[[X∗]] are de�ned as usually : Given a ∈ A and
s, t ∈ A[[X∗]] with s =

∑
α∈[0,∞)m sαX

α and t =
∑

α∈[0,∞)m tαX
α

as :=
∑

α∈[0,∞)m

(asα)Xα

s+ t :=
∑

α∈[0,∞)m

(sα + tα)Xα

st :=
∑

α∈[0,∞)m

(
∑

β+γ=α

sβtγ)Xα
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It is obvious that as ∈ A[[X∗]]. On the other hand, notice that Supp(s+ t) ⊆Supp(s)∪Supp(t).
So, by proposition 1.1.2, Supp(s+ t) is good and s+ t is a well de�ned element in A[[X∗]].

Notice also that for every α ∈ [0,∞)m we have the inclusion

{β + γ ∈ Supp(s) + Supp(t) : β + γ = α} ⊆ {δ ∈ Supp(s) + Supp(t) : |δ| = |α|}

So, by proposition 1.1.2, for each α ∈ [0,∞)m there are only a �nite number of β ∈Supp(s) and
γ ∈Supp(t) such that β + γ = α, so

∑
β+γ=α sβtγ is a �nite sum in the ring A and then a well

de�ned element of A. Hence the series st as above is well de�ned as a map from [0,∞)m to A.
Moreover, since Supp(st) ⊆ Supp(s)+Supp(t), by proposition 1.1.2 again, st is an element in
A[[X∗]].

The set A[[X∗]] with these operations is an A-algebra. Notice also that these operations are
compatible with the standard operations in the ring A[X]: considering a variable Xi as the
series with support equal to {(0, . . . , 0, 1(i), 0, . . . , 0)}, taking a natural power Xn

i is just the
series with support {(0, ..., 0, n(i), ..., 0)}. Moreover, the generalized polynomials A[X∗] and the
formal power series A[[X]] with their standard operations, are subalgebras of A[[X∗]].

The constant term of a series s =
∑
sαX

α ∈ A[[X∗]] is the element s0 = s(0) ∈ A. Notice
that the map

s =
∑

sαX
α ∈ A[[X∗]] 7−→ s0 ∈ A

sending a series to its constant term is an A-algebra homomorphism.

Fix a weight vector ρ = (ρ1, . . . , ρm) ∈ (0,∞)m. Let s =
∑

α∈[0,∞)m sαX
α ∈ A[[X∗]]. The

ρ-order of s is de�ned as:

ordρ(s) =


min{|α|ρ : sα 6= 0} if s 6= 0.

∞ if s = 0.

In the special case of weight vector ρ = (1, . . . , 1), the ρ-order of a series s will be called simply
order of s and denoted by ord(s).

Given s1, s2 ∈ A[[X∗]] we have that

i) ordρ(s1 + s2)≥ min{ordρ(s1),ordρ(s2)}

ii) ordρ(s1s2)≥ordρ(s1)+ordρ(s2), with equality if A is an integral domain.

As a consequence, we obtain that A[[X∗]] is an integral domain if A is an integral domain.

De�nition 1.1.4. Given a weight vector ρ and a series s =
∑
sαX

α ∈ A[[X∗]] we de�ne the
initial part of s (relative to ρ) as

Inρ(s) =
∑

|α|ρ=ordρ(s)

sαX
α

The series s ∈ A[[X∗]] will be called ρ-homogeneous if it is equals to its initial part relative to
ρ.

A series is quasi-homogeneous if it is ρ-homogeneous for a weight vector ρ.

Finally, for any series s ∈ A[[X∗]] and any weight vector ρ we write:

s = Inρ(s) + resρ(s)

where res(s)ρ =
∑
|α|ρ>ordρ(s) sαX

α, is called the ρ-residual part of s. It is a series whose
ρ-order is strictly greater than that of the series s.
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Remark 1.1.5. Notice that, by property vi) in 1.1.2, the initial part Inρ(s) is in fact a polyno-
mial.

De�nition 1.1.6. We say that a family {sj}j∈J in A[[X∗]] is sumable if :

i) For each α ∈ [0,∞)m there are only �nitely many j ∈ J such that α ∈Supp(sj), and

ii)
⋃
j∈JSupp(sj) is a good subset of [0,∞)m.

In this case, if we put sj =
∑

α∈[0,∞)m sjαX
α for every j ∈ J , we de�ne the sum of {sj}j∈J

denoted by
∑

j∈J sj to be the map from [0,∞)m to A which we write in series notation as∑
j∈J

sj :=
∑

α∈[0,∞)m

(
∑
j∈J

sjα)Xα.

Notice that it is well de�ned by condition i). We claim that
∑

j∈J sj ∈ A[[X∗]] : The support of∑
j∈J sj is the set

Supp(
∑
j∈J

sj) = {α ∈ [0,∞)m :
∑
j∈J

sjα 6= 0}.

If α ∈Supp(
∑

j∈J sj),
∑

j∈J sjα 6= 0 so there exists at least some j ∈ J such that sjα 6= 0. Thus
Supp(

∑
j∈J sj) ⊆

⋃
j∈JSupp(sj). As

⋃
j∈JSupp(sj) is a good subset by condition ii), then so is

Supp(
∑

j∈J sj).

Notice that if s =
∑

α sαX
α is a generalized power series then the family {sαXα}α∈Supp(s) is

summable and that its sum is nothing but s.

The following lemma (cf. 4.2 of [1]) characterize the set of units in A[[X∗]]. We reproduce here
its proof in order to start getting familiar with the kind of arguments that we use repeatedly in
the sequel.

Lemma 1.1.7. Let s =
∑

α∈[0,∞)m sαX
α ∈ A[[X∗]]. Then s is a unit in A[[X∗]] if and only if

its constant term s0 is a unit in A.

Proof. . If ss′ = 1 with s′ =
∑

β∈[0,∞)m s
′
βX

β , then s0s
′
0 = 1, so s0 is a unit in A. Conversely,

if bs0 = 1 with b ∈ A, then bs = 1 − s′ with ord(s′) > 0. Let us see �rst that the family
{s′n}n∈N is summable : if α ∈ [0,∞)m since ord(s′) > 0 and ord(s′n) ≥ n ord(s′) there exists
N ∈ N big enough such that Nord(s′) > |α|. Then for any n ≥ N , α 6∈Supp(s′n) and condition
i) of 1.1.6 is satis�ed. For condition ii) notice that Supp(s′n) ⊆

∑
(Supp(s′)) for all n ∈ N,

so
⋃
n∈NSupp(s′n) ⊆

∑
Supp(s′), which is a good subset of [0,∞)m. So there exists the sum∑

n∈N s
′n ∈ A[[X∗]]. As 1 = (1 − s′)

∑
n∈N s

′n, we have that 1 = bs(
∑

n∈N s
′n) so s is a unit in

A[[X∗]].

Remark 1.1.8. In the proof of 1.1.7 it is proved implicitly that if s ∈ A[[X∗]] with ord(s) > 0
then {sn}n∈N is a summable family.

De�nition 1.1.9. Given s ∈ A[[X∗]], we de�ne the minimal support of s as the set

Suppmin(s) := {α ∈ Supp(s) : α is minimal for the division order}

Notice that, di�erently of the classical formal setting, the algebra A[[X∗]] is not Noetherian:

the ideal generated by {X1/N
1 : N ∈ N} is not �nitely generated. If it was the case, take the

generator with smallest order in the variable X1, say s with ordX1(s) > 0. We can �nd N ∈ N
such that 1/N <ordX1(s), so s does not divide X1/N .

Nevertheless, we have the following �niteness property, which is a consequence of property iii)
of proposition 1.1.2.
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Proposition 1.1.10. Given s ∈ A[[X∗]] its minimal support is �nite and the series s can be
written as

s =
∑

α∈Suppmin(s)

Xαuα (1.1)

where uα ∈ A[[X∗]] satis�es uα(0) 6= 0 for any α ∈ Suppmin(s).

The expression (1.1) is called a monomial presentation for s. It is unique up to a change
on the elements uα, for instance, taking s(X,Y ) = X + Y + XY we have two possible choices,
X(1 + Y ) + Y and X + Y (1 +X).

De�nition 1.1.11. A series s ∈ A[[X∗]] will be called of monomial type if s = Xαu where
u ∈ A[[X∗]] with u(0) 6= 0. A series is of monomial type if and only if its minimal support has
only one element.

Lemma 1.1.12. If s = s1s2 ∈ R[[X∗]] is the product of two series s1, s2 ∈ R[[X∗]] and s is of
monomial type, then s1 and s2 are both of monomial type.

Proof. Put s1s2 = Xαu where u ∈ A[[X∗]] with u(0) 6= 0. Write a monomial presentation for s1

and s2:
s1 =

∑
α1∈Suppmin(s1)

Xα1
uα1 ; s2 =

∑
α2∈Suppmin(s2)

Xα2
vα2

Since s1s2 = Xαu there exists β1 ∈Supp(s1), β2 ∈Supp(s2) such that α = β1 +β2 ≤ α1 +α2 for
any α1 ∈Supp(s1) and α2 ∈Supp(s2). Suppose that there exists α1 ∈Supp(s1) such that β1 6≤ α1.
This implies that there exists j ∈ {1, . . . ,m} such that β1

j > α1
j . Then, αj = β1

j + β2
j > α1

j + β2
j ,

an so α 6≤ α1 +β2, contradiction. Thus β1 ≤ α1 for any α1 ∈Supp(s1) so s1 is of monomial type.
Similar for s2.

Mixed series. Let (X,Y ) = (X1, . . . , Xm, Y1, . . . , Yn) be a tuple of (m+ n) distinct variables.
Let

s =
∑

(α,β)∈[0,∞)m+n

sαβX
αY β ∈ A[[(X,Y )∗]]

From now on we put

SuppX(s) := {α ∈ [0,∞)m : exists β ∈ [0,∞)n with (α, β) ∈ Supp(s)} = prX(Supp(s))

SuppY (s) := {β ∈ [0,∞)n : exists α ∈ [0,∞)m with (α, β) ∈ Supp(s)} = prY (Supp(s)).

where prX (respectively prY ) denotes the projection onto the �rst m coordinates (respectively
last n coordinates) of Rm+n.

We consider for β ∈SuppY (s), the following series in the X-variables

s·,β(X) :=
∑

α∈SuppY (s)

sαβX
α

Recall that Supp(s·,β(X)) ⊆SuppX(s) for each β which is good because is the projection of a
good subset, so s·,β(X) ∈ A[[X∗]].

If we de�ne for β ∈SuppY (s), sβ := s·,β(X)Y β we can see sβ both as an element of A[[(X,Y )∗]]
and as an element of (A[[X∗]])[[Y ∗]]. In both cases the family {sβ}β∈SuppY (s) is clearly summable,
so we can consider its sum ∑

β∈SuppY (s)

sβ =
∑

β∈SuppY (s)

(
∑

α∈SuppX(s)

sαβX
α)Y β
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as an element in A[[(X,Y )∗]] or in (A[[X∗]])[[Y ∗]]. Notice that in the former case, this gives
nothing but s. This procedure permits to identify A[[(X,Y )∗]] with a subring of (A[[X∗]])[[Y ∗]]
via the injective ring homomorphism

A[[(X,Y )∗]]→ (A[[X∗]])[[Y ∗]]∑
sαβX

αY β 7→
∑
β

(
∑
α

sαβX
α)Y β

Note that this homomorphism is not surjective in general: withm,n > 0, the series
∑∞

k=1X
1/k
1 Y k

1

is in (A[[X∗]])[[Y ∗]], but not in (the image of) A[[(X,Y )∗]]. Notice, however, that we have a
natural inclusion, (A[[X∗]])[Y ∗] ⊆ A[[(X,Y )∗]].

We shall also work with the subring A[[X∗, Y ]] of A[[(X,Y )∗]], consisting of those s ∈ A[[(X,Y )∗]]
in which the Y -variables have only natural numbers as exponents, that is whose support is
included in Rm≥0 × Nn, i.e., such that SuppY (s) ⊆ Nn. Similarly to the above, we identify
A[[X∗, Y ]] with the corresponding subring of A[[X∗]][[Y ]]; notice again that the example above
shows that A[[X∗, Y ]] ( (A[[X∗]])[[Y ]]. On the other hand, we have the equality A[[X∗, Y ]] =
(A[[Y ]])[[X∗]].

As a matter of terminology, in the ring A[[X∗, Y ]], variables X will be called generalized (or
non-analytic) and variables Y will be called analytic.

Partial derivatives. The operation s 7→ ∂s
∂Xi
∈ A[[X]] does not extend naturally to A[[X∗]],

but the modi�ed operation s 7→ Xi
∂s
∂Xi

on A[[X]] does have a good extension ∂i to A[[X∗]]: given
s =

∑
sαX

α ∈ A[[X∗]], we de�ne

∂is :=
∑

αisαX
α ∈ A[[X∗]]

On the other hand, considering s ∈ A[[X∗, Y ]] as an element of A[[X∗]][[Y ]], the partial deriva-
tives ∂s/∂Yj de�ned as usual belong to A[[X∗, Y ]], and in fact Yj∂s/∂Yj = ∂m+js.

1.1.2 Newton polyhedron of generalized series.

In this paragraph, let us use the following quite well known terminology about polyhedron that
can be found in the modern book [11], for instance.

A subset ∆ of a real a�ne space E is called a (�nite) convex polyhedron of E if it is a
�nite intersection of closed half-spaces in E (a closed half-space is the closure of one of the two
connected components of E \H where H is an a�ne hyperplane in E). The dimension of ∆ is
the minimum dimension of an a�ne subspace of E containing ∆. It has dimension equal to that
of E if and only if ∆ has a non-empty interior in E.

An a�ne hyperplane H in Rn is called a supporting hyperplane for ∆ if ∆ is contained in
one of the two closed half-spaces determined by H. A face of ∆ is the intersection of ∆ with
a supporting hyperplane. It is easy to see that there are only �nitely many faces of a convex
polyhedron ∆ and that a face is a convex polyhedron in the supporting hyperplane. A face of a
face of ∆ is called a subface of ∆. A face which is not equal to the whole ∆ is called a proper
face. A face of dimension 0 is called a vertex and a face of dimension one is called an edge .

It is a well known result that a bounded convex polyhedron is nothing more than the convex hull
of its vertices and, reciprocally, the convex hull of �nitely many points in E is a bounded convex
polyhedron in E.

Finally, a (�nite) polyhedral complex in E is a �nite union of convex polyhedra in E such
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that the intersection of two of them is either empty or a common face of both. For example, if ∆
is a convex polyhedron in E with non-empty interior, then its frontier is a polyhedral complex,
equal to the union of all proper faces of ∆.

Now, given s ∈ A[[X∗]], we can de�ne its Newton polyhedron in the usual way. Consider
N (s) :=Supp(s) + Rm≥0 and de�ne the Newton Polyhedron ∆(s) as

∆(s) = convex hull of (N (s))

Using the property of �nite monomial presentation of s (cf. Proposition 1.1), we have that
Suppmin(s) is �nite and that

N (s) = Suppmin(s) + Rm≥0.

In this situation, we can assure that the Newton polyhedron ∆(s) is a �nite convex polyhedron
as we have de�ned above, which justi�es the given name.

(1, 3)

( 9
2
, 1)

(4, 8
3
)

Figure 1.1: Newton polygon and minimal support.

Notice that every vertex of the polyhedron is an element of the minimal support of s but not
reciprocally (see Fig. 1.1). By property iii) of 1.1.2 we conclude that the Newton polyhedron of
a generalized power series has �nitely many vertices.

Given a weight vector ρ ∈ (0,∞)m, the initial part Inρ(s) of a given series with respect to ρ can
be determined geometrically using the Newton polyhedron of s in the usual way. For any non
negative constant c ∈ R≥0, we de�ne the hyperplane of Rm

Hρ,c := {(x1, x2, . . . , xm) ∈ Rm : ρ1x1 + ρ2x2 + . . .+ ρmxm = c}

Lemma 1.1.13. Fix ρ ∈ (0,∞)m a weight vector. Given a series s ∈ A[[X∗]],

i) The ρ-order of s is given by ordρ(s) = sup{c ∈ R≥0 : Hρ,c ∩∆(s) = ∅}

ii) We have that
Hρ,ordρ(s) ∩ Fr(∆(s)) = Convex Hull(Supp(Inρ(s)))

Proof. First notice that if c ∈ R≥0 is such that Hρ,c∩∆(s) 6= ∅ then for all c′ > c, Hρ,c∩∆(s) 6= ∅
by de�nition of ∆(s). On the other hand, Hρ,ordρ(s) ∩ N (s) 6= ∅, by de�nition of ordρ(s). Thus
ordρ(s) is an upper bound of {c ∈ R≥0 : Hρ,c∩N (s) = ∅}. Let c′ = sup{c ∈ R≥0 : Hρ,c∩N (s) =
∅}. Notice that, since ∆(s) is connected, for any c for which Hρ,c∩∆(s) = ∅, the hyperplane Hρ,c

is a supporting hyperplane of the polyhedron ∆(s). By continuity, we must have also that Hρ,c′ is
a supporting hyperplane and, moreover, Hρ,c′∩∆(s) 6= ∅. But thenHρ,c′∩∆(s) = Hρ,c′∩Fr(∆(s))
which is a face of the polyhedron. This face contains at least one vertex of ∆(s), that is an element
α ∈ ∆(s). Since α ∈ Hρ,c′ , we have |α|ρ = c′ and thus, by de�nition of the ρ-order, we obtain
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ordρ(s) ≤ c′, giving the required equality.

For the second part of the lemma, notice that we have proved that Hρ,ordρ(s) is a supporting
hyperplane of ∆ and thus it cuts the polyhedron in a face F of it. This face contains no line
parallel to a coordinate axis, so F is a bounded face and hence, F is the convex hull of its vertices.
Being this set of vertices included in the hyperplane Hρ,ordρ(s), it is contained in Supp(Inρ(s))
and thus Hρ,ordρ(s) ∩ ∆(s) ⊂ Convex Hull(Supp(Inρ(s))). The other inclusion is obvious since
Supp(Inρ(s)) ⊂ F and F is convex.

1.1.3 Composition morphisms.

Recall that in the classical framework of formal power series, the composition of series makes
sense: we can change variables by series with no constant term. Formally, if s ∈ A[[Y ]], and
t = (t1, t2, . . . , tn) ∈ A[[W ]]n, where W = (W1, . . . ,Wn), with t1(0) = . . . = tn(0) = 0 we may
substitute t for Y in s and obtain an element s(t(W )) ∈ A[[W ]]. This operation of substitution
satis�es the following natural property: for any �xed n-tuple of series t(W ) ∈ A[[W ]]n, the map
s 7→ s(t(W )) from A[[Y ]] to A[[W ]] is an A-algebra homomorphism.

We can proceed similarly in the situation of mixed power series, already studied in [1], page 4393,
when we just substitute analytic variables by formal series. More precisely, let s ∈ A[[X∗, Y ]],
where X is m-dimensional and Y is n-dimensional, and let t = (t1, t2, . . . , tn) ∈ A[[W ]]n with
t1(0) = . . . = tn(0) = 0. Since A[[X∗, Y ]] ⊆ A[[X∗]][[Y ]], we may substitute t for Y in s
and obtain an element s(X, t(W )) ∈ A[[X∗]][[W ]]. One easily checks that in fact s(X, t(W )) ∈
A[[X∗,W ]] (see part i) of Proposition 1.1.14 below). Again, once t(W ) is �xed, the map s ∈
A[[X∗, Y ]] 7→ s(X, t(W )) ∈ A[[X∗,W ]] is an algebra homomorphism.

However, the general problem of composition of generalized power series is much more delicate.
Take for instance just the simple example s = Y 1/2 ∈ R[[Y ∗]] with Y a single variable. If we want
that substitution gives rise to an algebra homomorphism (or if we want any reasonable de�nition
of substitution), to substitute Y by a generalized power series t(W ) must be interpreted as a
"square root" of t(W ). But then, choosing for instance t(W ) = W1 +W2 in two variables, there
is no reasonable candidate in R[[W ∗]] whose square is equal to W1 +W2. However, in the special
case of A = R, there is a subset of real generalized power series which is characterized precisely
by this condition, the series of monomial type. Let us prove that they are exactly those series
that can be plugged into variables in every generalized power series (propositions 1.1.14 and
1.1.20).

Proposition 1.1.14. Let X = (X1, X2, . . . , Xm), Y = (Y1, Y2, . . . , Yn), Z = (Z1, Z2, . . . , Zr)
and W = (W1,W2, . . . ,Wl) denote multi-variables.

i) Let s =
∑

(α,I)∈[0,∞)m×Nn s(α,I)X
αY I ∈ A[[X∗, Y ]] and let t = (t1, t2, . . . , tn) ∈ A[[W ]]n

with t1(0) = . . . = tn(0) = 0. The family

{s(α,I)X
αti11 t

i2
2 · · · t

in
n } α∈SuppX(s)

I=(i1,i2,...,in)∈Nn

is summable and its sum, denoted by s(X, t1, t2, . . . , tn), or for short, s(X, t(W )), is in
A[[X∗,W ]]. Moreover, the map s 7→ s(X, t(W )) is an A-algebra homomorphism from
A[[X∗, Y ]] to A[[X∗,W ]].

ii) Let s =
∑

(α,I)∈[0,∞)m×Nn s(α,I)X
αY I ∈ A[[X∗, Y ]] and let t = (t1, t2, . . . , tn) ∈ A[[Z∗]]n

with t1(0) = . . . = tn(0) = 0. The family

{s(α,I)X
αti11 t

i2
2 · · · t

in
n } α∈SuppX(s)

I=(i1,i2,...,in)∈Nn
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is summable and its sum, denoted by s(X, t1, t2, . . . , tn), or for short, s(X, t(Z)), is in
A[[X∗, Z∗]]. Moreover, the map s 7→ s(X, t(Z)) is an A-algebra homomorphism from
A[[X∗, Y ]] to A[[X∗, Z∗]].

iii) If u =
∑

α∈[0,∞)m uαX
α ∈ R[[X∗]] is such that u0 > 0, the family{(u − u0)k}k∈N is

summable and then we can de�ne for every a > 0

ua :=
∑
k∈N

(
a

k

)
ua−k0 (u− u0)k ∈ R[[X∗]]

iv) Let s =
∑
sαX

α ∈ R[[X∗]] and t = (t1, t2, . . . , tm) ∈ R[[Z∗]]m. If ti = Zβ
i
ui, with

βi 6= (0, ..., 0), ui ∈ R[[Z∗]] and ui(0) > 0 for all i ∈ {1, 2, . . . ,m} (that is, ti is of
monomial type), the family {sαtα1

1 tα2
2 · · · tαmm }α∈Supp(s) is summable and its sum, denoted

by s(t1, t2, . . . , tn) is in R[[Z∗]]. Moreover, the map s 7→ s(t1, . . . , tn) is an R-algebra
homomorphism from R[[X∗]] to R[[Z∗]].

Proof. For i), let us call for any α ∈ SuppX(s) and I = (i1, i2, . . . , in) ∈ Nn

q(α,I) := s(α,I)X
αti11 t

i2
2 · · · t

in
n

Notice that if (γ, J) ∈ [0,∞)m×Nl, (γ, J) ∈Supp(q(α,I)) if γ = α. Since t1(0) = . . . = tn(0) = 0,

for any 1 ≤ i ≤ n there exists J̃i ∈ Nl with J̃i 6= 0 such that W J̃i divides ti. Then, for
I = (i1, i2, . . . , in) ∈ Nn, W i1J̃1+i2J̃2+···+inJ̃n divides ti11 t

i2
2 · · · tinn . As there are only �nitely many

I = (i1, i2, . . . , in) ∈ Nn such that i1J̃1 + i2J̃2 + · · · + inJ̃n ≤ J we have condition i) of 1.1.6
summable family. On the other hand,⋃

α∈SuppX(s)
I=(i1,i2,...,in)∈Nn

Supp(q(α,I)) ⊆ SuppX(s)× Nl

which is a good set.

We can reason analogously for ii), but in this case, using the analogous notation,⋃
α∈SuppX(s)

I=(i1,i2,...,in)∈Nn

Supp(q(α,I)) ⊆ SuppX(s)×
∑

(∪ni=1Supp(ti))

which is a good set by properties 1.1.2.

Part iii) is an immediate consequence of remark 1.1.8.

For part iv), we write

ti = Zβ
i
(ui(0) + εi)

where εi(0) = 0 and βi = (βi1, β
i
2, . . . , β

i
r) 6= 0 for i = 1, 2, . . . ,m. We de�ne for any α =

(α1, α2, . . . , αm) ∈ Supp(s),

qα := sαZ
α1β1+α2β2+···+αmβm(u1(0) + ε1)α1(u2(0) + ε2)α2 · · · (um(0) + εm)αm (1.2)

By part iii), qα ∈ R[[Z∗]] for any α ∈ Supp(s). We have to prove that the family {qα}α∈Supp(s)

is summable. For i ∈ {1, 2, . . . ,m},

(ui(0) + εi)
αi =

∑
k∈N

(
αi
k

)
ui(0)αi−kεki
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Let γ = (γ1, γ2, . . . , γr) ∈ [0,∞)r. If γ ∈Supp(qα),

γ = α1β
1 + α2β

2 + · · ·+ αmβ
m + δ(α) (1.3)

where δ(α) = (δ(α)1, δ(α)2, . . . , δ(α)r) ∈
∑

(∪mi=1Supp(εi)). Suppose that there are in�nitely
many α = (α1, α2, . . . , αm) ∈ Supp(s) such that γ ∈Supp(qα). Take a sequence {αn}n∈N of
di�erent elements in Supp(s) such that γ ∈Supp(qαn) for n ∈ N. As Supp(s) is good, there
exists j ∈ {1, 2, . . . ,m} such that {αnj }n∈N is strictly increasing. Take k ∈ {1, 2, . . . ,m} such
that βjk 6= 0. Since

γk = αn1β
1
k + αn2β

2
k + · · ·+ αnmβ

m
k + δ(αn)k

and all the terms involved are non-negative, either {δ(αn)k}n∈N or {αni }n∈N for at least one
i 6= j should be strictly decreasing which is impossible because

∑
(∪mi=1Supp(εi)) and Supp(s)

are good.

On the other hand, by (1.3),
⋃
α∈Supp(s)Supp(qα) ⊆

∑
(∪mi=1SuppXi(s)β

i ∪ Suppεi)) where

SuppXi(s) is the projection on the ith-component of Supp(s), and by proposition 1.1.2∑
(∪mi=1SuppXi(s)β

i ∪ Suppεi))

is good.

Remark 1.1.15. Let s =
∑
sαX

α ∈ R[[X∗]], M1,M2, . . . ,Mm ∈ R[[Z∗]] be monomials (Mi =
Zβ

i
with βi 6= 0), W = (W1,W2, . . . ,Wm) be variables and λ1, λ2, . . . , λm ∈ R>0. If we de�ne

for any α = (α1, α2, . . . , αm) ∈ Supp(s)

tα := sαM
α1
1 (λ1 +W1)α1Mα2

2 (λ2 +W2)α2 · · ·Mαm
m (λm +Wm)αm

by part iii) of proposition 1.1.14 above, tα ∈ R[[Z∗,W ]]. In fact, the sum of the family

{tα := sαM
α1
1 (λ1 +W1)α1Mα2

2 (λ2 +W2)α2 · · ·Mαm
m (λm +Wm)αm}α=(α1,α2,...,αm)∈Supp(s)

(summable in R[[Z∗,W ∗]] by part iv)), belongs to R[[Z∗,W ]]. This is a consequence of the proof
of part iv). We denote this sum by s(Mα1

1 (λ1 +W1)α1 ,Mα2
2 (λ2 +W2)α2 , . . . ,Mαm

m (λm+Wm)αm).

Examples 1.1.16. i) Let Gm+n denote the group of permutations of m + n elements, and
Gm,n the subgroup of Gm+n permuting on the one hand the �rst m elements between
them and the n last elements on the other. Then if σ ∈ Gm,n, it induces an A-algebra
automorphism of A[[X∗, Y ]] by putting

σ(
∑

sα,βX
αY β) =

∑
sα,βσ(XαY β)

where σ(XαY β) := Xα1

σ(1) · · ·X
αm
σ(m)Y

β1
σ(m+1)−m · · ·Y

βn
σ(m+n)−m. We usually write σs for σ(s),

where s ∈ A[[X∗, Y ]]. Also corresponding to σ we de�ne a map σ : Rm+n → Rm+n by
σ(x, y) = (xσ(1), . . . , xσ(m), yσ(m+1)−m . . . , yσ(m+n)−m). (For a polyradius r = (r1, . . . , rm)
the case n = 0 applies, so that σ(r) = (rσ(1), . . . , rσ(m)).)

ii) Assume m ≥ 2. Given distinct i, j ∈ {1, 2, . . . ,m} and γ > 0, we de�ne an injective monoid
homomorphism ςγij : X∗ → X∗ such that ςγij(Xk) = Xk for k 6= i and ςγij(Xi) = XiX

γ
j , as

follows:
ςγij(X

α) := Xα1
1 Xα2

2 · · ·X
αj−1

j−1 X
γαi+αj
j X

αj+1

j+1 · · ·X
αm
m = XαXγαi

j

It extends to an injective A-algebra endomorphism of A[[X∗]] by putting ςγij(
∑
sαX

α) :=∑
sας

γ
ij(X

α). To avoid too many nested parentheses, we will write ςγijs instead of ςγij(s).
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Proposition 1.1.14 shows that, in the context of real generalized power series, substitution of
variables Xi by other series ti is possible if the substitute series ti are of monomial type. In the
following proposition we prove a reciprocal result, that is, if a real generalized power series t, in
any given number of variables, can be the "substitute" of a variable in any generalized power
series, then t must be of monomial type. A correct statement of this reciprocal property makes
use of the special series X1/N , for N ∈ N, where to substitute the variable X by t; that is,
existence of N th-roots of t for any N . For our purposes, we state this result in the slightly more
general context of mixed series.

De�nition 1.1.17. Let s ∈ R[[X∗, Y ]] be a formal generalized real power series where X =
(X1, . . . , Xm), Y = (Y1, . . . , Yn) are respectively the generalized and the analytic variables. Sup-
pose that s 6≡ 0. For N ∈ N≥0 we say that s has has an N th-root if there exists sN ∈ R[[X∗, Y ]]
such that (sN )N = s.

Lemma 1.1.18. Let s ∈ R[[X∗]]. Suppose that s 6≡ 0 and that s has an N th-root for any
N ∈ N. Then, for any weight vector ρ ∈ (0,∞)m, the initial part of s, Inρ(s) have an N th-root
for any N ∈ N. Moreover, any N th-root of Inρ(s) is ρ-homogeneous whose ρ-degree is equal to
ordρ(s)/N .

Proof. Put s = Inρ(s)+resρ(s) where resρ(s) is the residual part of s with respect to ρ. Let
sN ∈ R[[X∗, Y ]] be an N th-root of s and put sN =Inρ(sN )+resρ(sN ). We have

s = (sN )N = (Inρ(sN ) + resρ(sN ))N = (Inρ(sN ))N +
N∑
k=1

(
N

k

)
Inρ(sN )N−kresρ(sN )k

Since ordρ(Inρ(sN )) <ordρ(resρ(sN )), ordρ((Inρ(sN ))N ) <ordρ(Inρ(sN )N−kresρ(sN )k) for all k ∈
{1, 2, . . . , N} which implies that Inρ(s) =(Inρ(sN ))N . This argument also shows that any N th-
root of Inρ(s) is ρ-homogeneous and its ρ-degree is equal to ordρ(s)/N by property 2 of the order
function ordρ.

Corollary 1.1.19. Let s ∈ R[[X∗]]. Suppose that s 6≡ 0 and that s has an N th-root for any
N ∈ N. Let, for all N ∈ N, sN ∈ R[[X∗]] be an N th-root of s, that is (sN )N = s. Then, for any
weight vector ρ, Inρ(s) = (Inρ(sN ))N and so ordρ(In(sN )) =ordρ(In(s))/N .

Proposition 1.1.20. Let s ∈ R[[X∗, Y ]] be a formal generalized real power series where X =
(X1, . . . , Xm), Y = (Y1, . . . , Yn) are respectively the generalized and the analytic variables. Sup-
pose that s 6≡ 0 and that for any integer N ∈ N≥0 there exists a N th-root sN ∈ R[[X∗, Y ]] of s,
that is (sN )N = s. Then s = Xαu, where α ∈ [0,∞)m and u ∈ R[[X∗, Y ]] is a unit such that
u(0, 0) > 0.

Proof. If m = 0, the result is well know : If s = s(Y ) ∈ R[[Y ]] is a usual formal power series
with all N -roots then s is a unit. Otherwise, any N th-root of s is not a unit. Thus ord(sN ) ≥ 1,
because sN ∈ R[[Y ]], and then the order of s would be greater or equal to N for all N ∈ N and
thus s = 0. In addition, s(0) > 0 because s2(0)2 = s(0).

If m > 0. Consider s as an element of (R[[Y ]])[[X∗]]. Suppose that the Newton polyhedron of s
(as an element of (R[[Y ]])[[X∗]]) has only one vertex, that is, s = Xαu(X,Y ) with u(0, Y ) 6= 0.
If ord(u(0, Y )) = 0, u(0, 0) 6= 0 and in particular u(0, 0) > 0. If not, (sN )N = s = Xαu; if Xα/N

does not divide sN , there exists i ∈ {1, 2, . . . ,m} such that Xαi/N
i does not divides s, that is, such

that αi/N < min(SuppXi(sN )) which implies that αi < min(SuppXi(s
N
N = s)), contradiction.

Thus, Xα/N divides sN , so sN = Xα/N tN and Xα(tN )N = (sN )N = s = Xαu. Then u has all
the N th-roots which implies that u(0, Y ) is 0 or it is a unit by the case m = 0, n ∈ N.

Now we prove that the Newton polyhedron of s (as an element of (R[[Y ]])[[X∗]]) can not have
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more that one vertex. Suppose that it has at least two di�erent vertices. Then, the Newton
polyhedron has at least one edge [α, β] with α 6= β which is not parallel to a coordinate axis.
Then there exists a weight vector ρ = (ρ1, . . . , ρm) ∈ (0,∞)m and a supporting hyperplane of
∆(s) of the form Hρ,c = {ρ1x1 + ρ2x2 + . . . + ρmxm = c} with c ≥ 0 that cuts the Newton
polyhedron exactly in the edge [α, β].

Write s as the sum s =pρ(s)+rρ(s) where pρ(s) is the ρ-homogeneous part of s and rρ(s) is the
residual part, whose ρ-order is strictly bigger than µ =ordρ(s). Recall that pρ is a polynomial in
R[[Y ]][X∗] (see properties 1.1.2). Moreover, our choice of ρ implies that Supp(pρ) is contained
in the segment [α, β] and that its extremities α and β both belong to Supp(pρ)

For any N ∈ N, let sN be a N th-root of s. As we have seen in Corollary 1.1.19, the ρ-initial
part pρ,N =Inρ(sN ) of sN is an N th-root of pρ. Notice also that pρ,N is ρ-homogeneous of degree
ordρ(s)/N .

Thus, our proposition will be �nished once we prove the following claim, which is a particular
case of the proposition:

Claim: Suppose that SuppX(s) is contained in the segment [α, β] where α 6= β, non parallel
to any of the coordinate axis, and that α, β ∈SuppX(s). Then s can not have an N th-root in
R[[X∗, Y ]] for any natural number N .

Proof of the Claim.- Assume that s has an N th-root sN ∈ R[[X∗, Y ]] for any N . Consider m− 1
independent weight vectors ρ1, . . . , ρm−1 such that the line containing the segment [α, β] is the
intersection of hyperplanes of the form Hρj ,cj with cj ≥ 0, for j = 1, . . . ,m − 1. Then s is

ρj-homogeneous for any j and, by Lemma 1.1.18, the N th-root sN is ρj-homegeneous too; that
is, its support is contained in the hyperplane of the form Hρj ,dj (in fact dj = cj/N). Therefore
SuppX(sN ) is contained in a line which is parallel to [α, β] (in fact in the line containing the
segment [α/N, β/N ]). We can write

s =
∑
λ∈[0,1]

sλX
(1−λ)α+λβ

Notice that this sum is �nite since sN is a quasi-homogeneous polynomial.

Let us call Supp∗(s) := {λ ∈ [0, 1] : sλ 6= 0}. Recall that our hypothesis that α, β ∈SuppX(s)
implies that 0, 1 ∈Supp∗(s). As (sN )N = s, we have that for λ ∈ R,

sλ =
∑

λ1+λ2+···+λN=Nλ,λj∈Supp∗(sN )

sN,λ1sN,λ2 · · · sN,λN (1.4)

Let λ0 := min(Supp∗(sN )) and λ1 := max(Supp∗(sN )). Let us show that λ0 = 0 and that
λ1 = 1. In fact, taking λ = λ0 in the expression (1.4), we see that there is just a summand
in that expression which is (sN,λ0)N 6= 0. We can also see that if λ < λ0 then sλ = 0 in the
expression (1.4) by the de�nition of λ0. Since sλ = 0 for λ < 0 and s0 6= 0, this shows that
λ0 = 0. Analogously, we show that λ1 = 1.

Let N big enough such that if λ ∈ Supp∗(s), then λ = 0 or λ > 1/N (this is possible because
Supp∗(s) is �nite). For λ = 1/N , we have in the expression (1.4) the summands corresponding
to the tuples of the form

(λ1, λ2, . . . , λN ) = (0, . . . , 1(jth), . . . , 0)

for j = 1, 2, . . . , N . Each of them gives rise to the same coe�cient (sN,1)(sN,0)N−1 6= 0 because
sN,1 6= 0 6= sN,0. On the other hand, since λ = 1/N 6∈ Supp∗(s) there must exist other N -tuples

(λ1, λ2, . . . , λN ) ∈ [[0, 1] ∩ Supp∗(s)]N
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which are di�erent of the N -tuples (0, . . . , 1(jth), . . . , 0) and such that λ1 + λ2 + · · · + λN = 1.
Since all λj ≥ 0, there exists λ1 ∈Supp∗(sN ) with 0 < λ1 < 1. Now, for λ = λ1/N we have in
(1.4) the summands corresponding to the tuples

(λ1, λ2, . . . , λN ) = (0, . . . ,

jth︷︸︸︷
λ1 , . . . , 0)

for j = 1, 2, . . . , N . They give rise to the same summand

(sN,λ1)(sN,0)N−1 6= 0

As λ1/N 6∈Supp∗(s), there must be N -tuples

(λ1, λ2, . . . , λN ) ∈ [Supp∗(s)]N

di�erent from (0, . . . ,

jth︷︸︸︷
λ1 , . . . , 0) with λ1 + λ2 + · · · + λN = λ1. Since all λj ≥ 0, there exist

λ2 ∈Supp∗(sN ) with 0 < λ2 < λ1 < 1. We construct in this way a strictly decreasing sequence
in Supp∗(sN ) which is impossible.

1.1.4 The b invariant

Let us introduce here a numerical invariant, that will be used in the proof of the main theorem in
chapter 3, associated to a series that measures how far it is a series from being of monomial type.
Below, we will see how does this invariant behaves under some speci�c transformations of the
type of example ii) in 1.1.16 (those corresponding to the local expression of certain blowing-up
morphism to be de�ned in chapter 3). Both the invariant and its behavior is already introduced
and discussed in the paper [1]; we just reproduce here the same arguments since they are crucial
to our purposes.

Let α, β ∈ [0,∞)m be exponents. Put inf(α, β) := (min{α1, β1}, . . . ,min{αm, βm}). If inf(α, β) ∈
{α, β}, then put d(α, β) = 0. If inf(α, β) 6∈ {α, β}, there are two possibilities:

i) inf(α, β) = 0. Let a := |{j ∈ {1, . . . ,m} : αj 6= 0}| and b := |{j ∈ {1, . . . ,m} : βj 6= 0}|.
Then, d(α, β) = a+ b.

ii) inf(α, β) 6= 0. Then, d(α, β) := d(α− inf(α, β), β − inf(α, β)).

Finally, write Xα|Xβ or "Xα divides Xβ" i� α ≤ β, gcd(Xα, Xβ) := X inf(α,β) and d(Xα, Xβ) :=
d(α, β).

The mapping d : [0,∞)m → N measures how far is {α, β} to be totally ordered by the division
order.

For m ≥ 2, di�erent i, j ∈ {1, . . . ,m} and γ > 0 let ςγij denote the morphism given in example
ii) of 1.1.16.

Lemma 1.1.21. i) d(Xα, Xβ) = 0 if and only {α, β} is totally ordered by the division order,
or equivalently, either Xα | Xβ or Xβ | Xα.

ii) If m = 1, d(Xα, Xβ) = 0.

iii) If m ≥ 2 and d(Xα, Xβ) = 0, then d(ςγij(X
α), ςγij(X

β)) = 0 for any di�erent i, j ∈
{1, . . . ,m} and γ > 0.

iv) d(Xα, Xβ) = d(Xβ, Xα).
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v) If d(Xα, Xβ) 6= 0, then there exists di�erent i, j ∈ {1, . . . ,m} and γ > 0 such that

d(ςγij(X
α), ςγij(X

β)) < d(Xα, Xβ)

and
d(ς

1/γ
ji (Xα), ς

1/γ
ji (Xβ)) < d(Xα, Xβ)

Proof. We reproduce the proof given in [1] of point v) because of the relevance of that point
on the proof of the main result of this work. Suppose d(Xα, Xβ) 6= 0. Suppose �rst that
gcd(Xα, Xβ) = 1. Then we can choose di�erent i, j ∈ {1, . . . ,m} such that αi 6= 0 and βj 6= 0.

Let γ := βj/αi. Then ςγij(X
α) = XαX

βj
j and ςγij(X

β) = Xβ . Dividing Xβ and XαX
βj
j by its

gcd, X
βj
j , we obtain d(ςγij(X

α), ςγij(X
β)) < d(Xα, Xβ). Analogously, d(ς

1/γ
ji (Xα), ς

1/γ
ji (Xβ)) <

d(Xα, Xβ).

For the general case, take i, j ∈ {1, . . . ,m} and γ > 0 such that

d(ςγij(X
α−ω), sγij(X

β−ω)) < d(Xα, Xβ)

and
d(ς

1/γ
ji (Xα−ω), ς

1/γ
ji (Xβ−ω)) < d(Xα, Xβ)

where ω = inf(α, β). The identity ςγij(X
α) = ςγij(X

α−ω)ςγij(X
ω) then implies

d(ςγij(X
α), ςγij(X

β)) = d(ςγij(X
α−ω), ςγij(X

β−ω));

hence, d(ςγij(X
α), ςγij(X

β)) < d(Xα, Xβ). The case of s1/γ
ji is again similar.

De�nition 1.1.22. Given s ∈ A[[X∗]], we de�ne

b(s) = (b1(s), b2(s)) := (#Suppmin(s)− 1, b2(s)) ∈ N2 (1.5)

where

b2(s) =


0 if b1(s) = 0

min{d(α, β) : α, β ∈ Suppmin(s), α 6= β} if b1(s) 6= 0.

Notice that b(s) = (0, 0), if and only if s is of monomial type. Consequently, ifm = 1, b(s) = (0, 0)
for any s ∈ A[[X∗]].

We order N2 lexicographically in what follows.

Proposition 1.1.23. Let s ∈ A[[X∗]].

i) If b(s) = (0, 0) and m ≥ 2, then for any di�erent i, j ∈ {1, . . . ,m} and γ > 0

b(ςγij(s)) = (0, 0)

ii) If b(s) 6= (0, 0), then there exists di�erent i, j ∈ {1, . . . ,m} and γ > 0 such that

b(ςγij(s)) < b(s) and b(ς
1/γ
ji (s) < b(s)

Proof. It follows from the de�nition of b and lemma 1.1.21. For a detailed proof see [1], propo-
sition 4.14.
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1.1.5 Weierstrass preparation theorem.

Now we state a Weierstrass Division and Preparation Theorem for formal generalized
series as it appears in [1].

De�nition 1.1.24. Let n > 0. A power series s ∈ A[[X∗, Y ]] is called regular in Yn of order d
if

s(0, 0, Yn) = uY d
n + terms of higher degree in Yn

with u a unit in A. Put Y ′ := (Y1, . . . , Yn−1).

Theorem 1.1.25. Let n > 0 and let s ∈ A[[X∗, Y ]] be regular in Yn of order d.

1. There is for each s′ ∈ A[[X∗, Y ]] a unique pair (Q,R) with Q ∈ A[[X∗, Y ]] and R ∈
A[[X∗, Y ′]][Yn], such that

s′ = Qs+R and degYn(R) < d.

2. s factors uniquely as s = uP , where u is a unit in A[[X∗, Y ]] and P ∈ A[[X∗, Y ′]][Yn] is a
monic polynomial of degree d in Yn.

Note that the polynomial P has the form

P = Y d
n + a1(X,Y ′)Y d−1

n + . . .+ ad(X,Y
′)

with ai(0, 0) non units in A for 1 ≤ i ≤ d because it is monic and s is regular in Yn of order d
(if there exists i such that ai(0, 0) is a unit, s would be regular of order smaller or equal than
i < d).

Implicit functions. We obtain as a corollary an Implicit Functions Theorem:

Corollary 1.1.26. Let s = (s1, s2, . . . , sk) ∈ A[[X∗, Y,W ]]k where X = (X1, X2, . . . , Xm),
Y = (Y1, Y2, . . . , Yn) and W = (W1,W2, . . . ,Wk). Suppose that sj(0) = 0 for j = 1, 2 . . . , k and

that the matrix
(
∂sj
∂Wi

(0)
)

1≤i,j≤k
is not singular. Then there exists t1, t2, . . . , tk ∈ A[[X∗, Y ]]

with ti(0) = 0 such that sj(X,Y, t1(X,Y ), t2(X,Y ), . . . , tk(X,Y )) ≡ 0 for j = 1, 2 . . . , k.

Proof. By induction on k. If k = 1, since ∂s1
∂W1

(0) 6= 0, s1 is regular of order 1 in W1. By
Weierstrass preparation,

s1 = (W1 − a(X,Y,W2,W3, . . . ,Wk))u1

We take t1 = a, which solves the problem.

Let k ≥ 2 and suppose the result true for k− 1. We can suppose ∂s1
∂W1

(0) 6= 0 and ∂sj
∂W1

(0) = 0 for

j = 2, 3 . . . , k (if this is not the case, change the order of the si to have
∂s1
∂W1

(0) 6= 0 and then pick

s̃1 := s1 and s̃j := sj −
∂sj
∂W1

(0)

∂s1
∂W1

(0)
s1 for j = 2, 3 . . . , k. If the result is proved for the s̃j we obtain

t1, t2, . . . , tk ∈ A[[X∗, Y ]] with ti(0) = 0 such that s̃j(X,Y, t1(X,Y ), t2(X,Y ), . . . , tk(X,Y )) ≡ 0.
Notice that the same ti solve the initial problem.)

Since ∂s1
∂W1

(0) 6= 0, s1 is regular of order 1 in W1. By Weierstrass preparation,

s1 = (W1 − a(X,Y,W2,W3, . . . ,Wk))u1

We de�ne for j = 2, 3 . . . , k,

sj := sj(X,Y, a(X,Y,W2,W3, . . . ,Wk),W2,W3, . . . ,Wk)
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which are in A[[X∗, Y,W2,W3, . . . ,Wk]] because a(0) = 0 (see proposition 1.1.14). On the other
hand,

∂sj
∂Wi

(0) =
∂sj
∂W1

(a(0))
∂a

∂Wi
(0) +

∂sj
∂Wi

(0) =
∂sj
∂Wi

(0)

for 1 ≤ i, j ≤ k. Then, the matrix
(
∂sj
∂Wi

(0)
)

2≤i,j≤k
=
(
∂sj
∂Wi

(0)
)

2≤i,j≤k
which is not singular

because ∂sj
∂W1

(0) = 0 for j ∈ {2 . . . , k}, so by the induction assumption, there exits t2, . . . , tk ∈
A[[X∗, Y ]] with ti(0) = 0 such that

sj(X,Y, a(t2(X,Y ), . . . , tk(X,Y )), t2(X,Y ), . . . , tk(X,Y )) = sj(X,Y, t2(X,Y ), . . . , tk(X,Y )) ≡ 0

for j = 2, 3 . . . , k. Take t1 = a(t2(X,Y ), . . . , tk(X,Y )).

1.2 Convergent generalized power series

In this section, we consider the subring of convergent series in the ring of formal generalized
power series, where convergence is de�ned in a very natural way. The most part of the concepts
and results are already given in the paper [1] but we reproduce here some of them when the
arguments are useful for our purposes.

Convergent generalized power series give rise, passing to the limit in the partial sums, to functions
in their domains of convergence, as much as the convergent standard power series give rise to
the analytic functions. We will call those functions "generalized analytic functions". They will
be our objects of study during the rest of this text.

1.2.1 Basic de�nitions.

Given any family {cj}j∈J of positive real numbers, we can consider its sum∑
j∈J

cj ∈ [0,∞]

With this notation we mean, as usual, that
∑

j∈J cj is equal to c ∈ [0,∞) if for any ε > 0 there

exists a �nite set J(ε) ⊂ J such that for any �nite subset J̃ of J containing J(ε) we have,

|
∑
j∈J

cj − c| < ε.

If
∑

j∈J cj is not equal to c for any c ∈ [0,∞) we say that
∑

j∈J cj is equal to ∞. The reader
familiarized with this concept can go directly to De�nition 1.2.5.

We recall a property about interchanging index of summation in these kind of in�nite sums.

Lemma 1.2.1. Let {ci,j}(i,j)∈I×J be a family of positive real numbers, ci,j > 0 for any (i, j) ∈
I × J . It is equivalent:

i)
∑

(i,j)∈I×J ci,j = C <∞.

ii) For each i ∈ I,
∑

j∈J ci,j = Ci <∞ and
∑

i∈I Ci = C.

iii) For each j ∈ J ,
∑

i∈I ci,j = Cj <∞ and
∑

j∈J C
j = C.

Proof. Let us show the equivalence between i) and ii), being the equivalence between i) and iii)
analogous.
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i) ⇒ ii). Suppose that there exists C ∈ R>0 such that
∑

(i,j)∈I×J ci,j = C. Let i ∈ I, and J0 a
�nite subset of J . Since the ci,j are positif and

∑
(i,j)∈I×J ci,j = C,

∑
j∈J0 ci,j ≤ C. Let

Ci := sup
J0⊆J
J0�nite

{
∑
j∈J0

ci,j}

Notice that Ci ≤ C, for any i ∈ I. We claim that Ci =
∑

j∈J ci,j : �rst, if J1 ⊆ J is �nite,∑
j∈J1 ci,j ≤ Ci by de�nition of Ci. Let ε > 0. Since Ci − ε is not an upper bound of de family

{
∑

j∈J0 ci,j} J0⊆J
J0�nite

, there exists J0 ⊆ J �nite such that Ci − ε <
∑

j∈J0 ci,j , which implies that

Ci −
∑

j∈J0 ci,j < ε. Thus, Ci =
∑

j∈J ci,j .

Let us prove now that
∑

i∈I Ci = C. Notice that if I0 ⊆ I is �nite,
∑

i∈I0 Ci ≤ C (if not, there
should exist a �nite I0 ⊆ I such that

∑
i∈I0 Ci = C + ε with ε > 0. Let, for i ∈ I0, J0(i) ⊆ J

�nite such that Ci −
∑

j∈J0(i) ci,j <
ε
]I0

, where ]I0 denotes the number of elements in I0. Let
J0 = ∪i∈I0J0(i). Then,

C + ε−
∑

(i,j)∈I0×J0

ci,j =
∑
i∈I0

Ci −
∑

(i,j)∈I0×J0

ci,j < ε

which implies that C <
∑

(i,j)∈I0×J0 ci,j . Contradiction.) If ε > 0, there exists I0 × J0 ⊆ I × J
�nite such that C −

∑
(i,j)∈I0×J0 ci,j < ε. But,∑

(i,j)∈I0×J0

ci,j =
∑
i∈I0

(
∑
j∈J0

ci,j) ≤
∑
i∈I0

Ci

Then,
C −

∑
i∈I0

Ci ≤ C −
∑

(i,j)∈I0×J0

ci,j < ε

So, C =
∑

i∈I Ci.

ii)⇒ i). Let us show �rst that if Λ ⊆ I×J is �nite, then
∑

(i,j)∈Λ ci,j ≤ C. Suppose Λ = I0×J0

with I0 and J0 �nite, then
∑

(i,j)∈Λ ci,j =
∑

i∈I0(
∑

j∈J0 ci,j) ≤
∑

i∈I0 Ci ≤ C.

Let ε > 0. As
∑

i∈I Ci = C, there exists I0 ⊆ I �nite such that C −
∑

i∈I0 Ci <
ε
2 . For each

i ∈ I0 let J0(i) ⊆ J �nite such that Ci −
∑

j∈J0(i) ci,j <
ε

2]I0
where ]I0 denotes the number of

elements in I0. Let J0 := ∪i∈I0J0(i). It is �nite and for any i ∈ I0, Ci−
∑

j∈J0 ci,j <
ε

2]I0
. Then,∑

i∈I0 Ci −
∑

(i,j)∈I0×J0 ci,j <
ε
2 . Thus, C −

∑
(i,j)∈I0×J0 ci,j < ε.

Now, if A is a normed ring with norm | · |, we can generalize the concept of the sum of a family
of elements in A.

Lemma 1.2.2. Given any family {aj}j∈J of elements of A, there is at most one element a ∈ A
such that

for each ε >0 there is a �nite subset J(ε) ⊆ J with

|
∑
j∈J̃

aj − a| <ε for any �nite set J̃ ⊆ J that contains J(ε). (1.6)

Proof. Suppose a, b ∈ A satisfying (1.6). For ε > 0, there exists Ja(ε), Jb(ε) ⊆ J �nite such that
|
∑

j∈Ja(ε) aj − a| <
ε
2 and |

∑
j∈Jb(ε) aj − b| <

ε
2 . Then, with J(ε) = Ja(ε) ∪ Jb(ε), |a − b| ≤

|a−
∑

j∈J(ε) aj |+ |
∑

j∈J(ε) aj − b| < ε for any ε > 0.

De�nition 1.2.3. With the notation of Lemma 1.2.2 above, if a ∈ A has property (1.6), we say
that

∑
j∈I aj exists in A and de�ne

∑
j∈I aj := a.
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We show here some properties of these kind of sums which will be useful for the rest of the
chapter.

Lemma 1.2.4. Let {aj}j∈J be a family of elements of A.

i) If
∑

j∈J aj exists in A, then, for any �nite subset J̃ ⊆ J ,
∑

j 6∈J̃ aj exists in A and
∑

j 6∈J̃ aj =∑
j∈J aj −

∑
j∈J̃ aj .

ii) If
∑

j∈J aj exists in A, then, for any ε > 0 there exists a �nite subset J(ε) ⊆ J , such that

|
∑

j 6∈J̃ aj | < ε for any J̃ ⊆ J �nite containing J(ε).

iii) If A is complete and
∑

j∈I |aj | <∞,
∑

j∈I aj exists in A.

iv) If
∑

j∈J aj exists in A and
∑

j∈J |aj | <∞, then, |
∑

j∈J aj | ≤
∑

j∈J |aj |.

Proof. For i), let J̃ ⊆ J be a �nite subset of J . Let ε > 0 and J(ε) ⊆ J be �nite such that
|
∑

j∈J aj −
∑

j∈J̄ aj | < ε for any J̄ ⊆ J �nite containing J(ε). Let J∗(ε) := J(ε)∩ (J \ J̃). If J∗

is a �nite subset of J \ J̃ with J∗(ε) ⊆ J∗, J(ε) ⊆ J̃ ∪ J∗, so

|(
∑
j∈J

aj −
∑
j∈J̃

aj)−
∑
j∈J∗

aj | = |
∑
j∈J

aj −
∑

j∈J̃∪J∗
aj | < ε

For ii), let ε > 0 and J(ε) ⊆ J be �nite such that |
∑

j∈J aj −
∑

j∈J̃ aj | < ε for J̃ ⊆ J �nite
containing J(ε). By part i), |

∑
j 6∈J̃ aj | = |

∑
j∈J aj −

∑
j∈J̃ aj |.

For iii), we claim that under these hypothesis, aj 6= 0 for only countably many j ∈ J . For
that, it su�ces to prove that if X is a subset of strictly positive real numbers and C > 0 a
constant such that for any �nite subset Y ⊆ X,

∑
x∈Y x ≤ C, then X is countable. Suppose

that there exists {xn}n∈N a strictly increasing sequence of elements of X. Then, for any N ∈ N,
Nx1 <

∑N
i=1 xi ≤ C, which is impossible. So given x ∈ X there exists its antecessor, x− de�ned

by
x− := max{y ∈ X : y < x}

and we can �nd a rational number qx ∈ Q between x− and x. So we can suppose J = N. The
sequence {Sn :=

∑n
j=1 aj}n∈N is a Cauchy sequence in A, because for m < n, |Sn − Sm| ≤∑n

k=m |ak| n,m→∞
// 0 . Since A is complete,

∑
n∈N an exists in A.

For iv), let ε > 0. Let J(ε) ⊆ J be �nite such that |
∑

j∈J aj −
∑

j∈J̃ aj | < ε for J̃ ⊆ J �nite
containing J(ε). Thus

|
∑
j∈J

aj−
∑
j∈J̃

aj | ≥
∣∣∣|∑
j∈J

aj |−|
∑
j∈J̃

aj |
∣∣∣ ≥ |∑

j∈J
aj |−|

∑
j∈J̃

aj | ≥ |
∑
j∈J

aj |−
∑
j∈J̃

|aj | ≥ |
∑
j∈J

aj |−
∑
j∈J
|aj |

which implies |
∑

j∈J aj | −
∑

j∈J |aj | < ε for any ε > 0.

From now on, unless indicated otherwise, we let A denote a normed ring with norm | · |. We let
r, l ∈ (0,∞)m denote polyradii, and we write r ≤ l if ri ≤ li for all i, and r < l if ri < li for all i
(notice that r < l does not mean r ≤ l and r 6= l). Also if α ∈ [0,∞)m, we put rα = rα1

1 · · · rαmm .

De�nition 1.2.5. For s =
∑

α∈[0,∞)m sαX
α ∈ A[[X∗]] and a polyradius r we de�ne

‖s‖r :=
∑

α∈[0,∞)m

|sα|rα ∈ [0,∞]

We have, for s, t ∈ A[[X∗]] and polyradii r, l ∈ (0,∞)m (see [1], page 4391):
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1. ‖s‖r = 0 if and only if s = 0;

2. ‖s+ t‖r ≤ ‖s‖r + ‖t‖r;

3. ‖st‖r ≤ ‖s‖r‖t‖r;

4. if r ≤ l, then ‖s‖r ≤ ‖s‖l.

We now de�ne
A{X∗}r := {s ∈ A[[X∗]] : ‖s‖r <∞}

Note that A{X∗}r is a normed ring with norm ‖ · ‖r. It is clearly a subring of A[[X∗]] containing
A[X∗]. We put

A{X∗} :=
⋃
r

A{X∗}r

Since A{X∗}r ⊇ A{X∗}l if r ≤ l, A{X∗} is also a subring of A[[X∗]]. Put also, for mixed
variables X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn),

A{X∗, Y } := A[[X∗, Y ]] ∩A{(X,Y )∗},

and
A{X∗, Y }(r,l) := A[[X∗, Y ]] ∩A{(X,Y )∗}(r,l)

for polyradii r = (r1, . . . , rm), l = (l1, . . . , ln).

Now, always for a normed ring A, we generalize the concept of summable family (cf. 1.1.6) of
formal generalized power series in the following way (see 5.7 of [1]):

De�nition 1.2.6. Let J be any index set and assume that {sj =
∑

α sj,αX
α}j∈J is a family in

A[[X∗]] such that

i) for each α ∈ [0, 1)m we have
∑

j∈J |sj,α| <∞ and
∑

j∈J sj,α exists in A

ii) ∪j∈JSupp(sj) is a good subset of [0, 1)m.

Then, if we de�ne
∑

j∈J sj :=
∑

α(
∑

j∈J sj,α)Xα,
∑

j∈J sj ∈ A[[X∗]].

Proposition 1.2.7. Let {sj =
∑

α sj,αX
α}j∈J be a family in A[[X∗]] satisfying i) and ii) of

De�nition 1.2.6. Suppose that
∑

j∈J ‖sj‖r <∞. Then ‖
∑

j∈J sj‖r ≤
∑

j∈J ‖sj‖r and we obtain
that

i)
∑

j∈J sj actually belongs to A{X∗}r and

ii)
∑

j∈J sj is also the sum of the family {sj}j∈J in the normed ring (A{X∗}r, ‖ · ‖r).

Proof. By lemma 1.2.1, ∑
j∈J
‖sj‖r =

∑
j∈J

(
∑
α

|sj,α|rα) =
∑
α

(
∑
j∈J
|sj,α|)rα

On the other hand,
‖
∑
j∈J

sj‖r =
∑
α

|
∑
j∈J

sj,α|rα

Thus, by part iv) of Lemma 1.2.4, ‖
∑

j∈J sj‖r ≤
∑

j∈J ‖sj‖r < ∞ which implies consequence
i). For ii), let ε > 0. Since

∑
j∈J ‖sj‖r <∞, by i) and ii) of Lemma 1.2.4 there exists J(ε) ⊆ J

�nite such that
∑

j 6∈J(ε) ‖sj‖r < ε. Then,

‖
∑
j∈J

sj −
∑
j∈J(ε)

sj‖r = ‖
∑
j 6∈J(ε)

sj‖r ≤
∑
j 6∈J(ε)

‖sj‖r < ε
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Remark 1.2.8. Let s =
∑

α sαX
α ∈ A{X∗}r. Let for any Λ ∈ PF ([0,∞)m), sΛ :=

∑
α∈Λ sαX

α,
where PF ([0,∞)m) denotes the set of �nite subsets of [0,∞)m. Then, by Lemma 1.2.4, for any
ε > 0 there exists a Λ(ε) ∈ PF ([0,∞)m) such that

‖s− sΛ‖r = ‖
∑
α 6∈Λ

sαX
α‖r < ε

for any Λ ∈ PF ([0,∞)m) with Λ(ε) ⊆ Λ.

1.2.2 Properties of convergent series

We show here those properties of formal series with an analogous statement in the convergent
setting: composition morphisms, Weierstrass preparation and implicit functions. We need the
following lemma

Lemma 1.2.9. If s =
∑
sαX

α ∈ A{X∗}, then limr→0 ‖s‖r = |s(0)|.

Proof. (see [1], 5.5) It su�ces to show that limr→0 ‖s− s(0)‖r = 0, so replacing s by s− s(0) we
may as well assume that s(0) = 0. Take l such that ‖s‖l < ∞, and �x ε > 0. Let J ⊆Supp(s)
be �nite such that

∑
α 6∈J |sα|lα < ε/2 (Lemma 1.2.4), and let l̃ ≤ l be a polyradius such that∑

α∈J |sα|l̃α < ε/2 . Then for every r ≤ l̃ (Lemma 1.2.4),

‖s‖r = ‖
∑
α 6∈J

sαX
α +

∑
α∈J

sαX
α‖r ≤ ‖

∑
α 6∈J

sαX
α‖r + ‖

∑
α∈J

sαX
α‖r ≤

∑
α 6∈J
|sα|rα +

∑
α∈J
|sα|l̃α < ε

Since ε was arbitrary, this proves the lemma.

Using the same notation as in Proposition 1.1.14 the following "convergent version" of the prop-
erties of composition of series holds:

Proposition 1.2.10. Let X = (X1, X2, . . . , Xm), Y = (Y1, Y2, . . . , Yn), Z = (Z1, Z2, . . . , Zµ)
and W = (W1,W2, . . . ,Wl) denote multi-variables.

i) Let s =
∑

(α,I)∈[0,∞)m×Nn s(α,I)X
αY I ∈ A{X∗, Y } and let t = (t1, t2, . . . , tn) ∈ A{W}n

with t1(0) = . . . = tn(0) = 0. Then s(X, t(W )) is in A{X∗,W}. Moreover, the map
s 7→ s(X, t(W )) is an A-algebra homomorphism from A{X∗, Y } to A{X∗,W}.

ii) Let s =
∑

(α,I)∈[0,∞)m×Nn s(α,I)X
αY I ∈ A{X∗, Y } and let t = (t1, t2, . . . , tn) ∈ A{Z∗}n

with t1(0) = . . . = tn(0) = 0. Then, s(X, t(Z)), is in A{X∗, Z∗}. Moreover, the map
s 7→ s(X, t(Z)) is an A-algebra homomorphism from A{X∗, Y } to A{X∗, Z∗}.

iii) Let a > 0. If u =
∑

α∈[0,∞)m uαX
α ∈ R{X∗} is such that u0 > 0,

ua :=
∑
k∈N

(
a

k

)
ua−k0 (u− u0)k ∈ R{X∗}

iv) Let s =
∑
sαX

α ∈ R{X∗} and t = (t1, t2, . . . , tm) ∈ R{Z∗}m. If ti = Zβ
i
ui, with

βi 6= (0, ..., 0), ui ∈ R{Z∗} and ui(0) > 0 for all i ∈ {1, 2, . . . ,m} (that is, ti is of monomial
type), s(t1, t2, . . . , tm) is in R{Z∗}. Moreover, the map s 7→ s(t1, . . . , tm) is an R-algebra
homomorphism from R{X∗} to R{Z∗}.

Proof. We use Proposition 1.2.7 to prove the convergence of the formal series obtained in Propo-
sition 1.1.14

For i), let us call for any α ∈ SuppX(s) and I = (i1, i2, . . . , in) ∈ Nn

q(α,I) := s(α,I)X
αti11 t

i2
2 · · · t

in
n
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Then, it su�ces to prove that there exists polyradius r̃ ∈ (0,∞)m and l̃ ∈ (0,∞)n such that
‖
∑

(α,I) q(α,I)‖(r̃,l̃) < ∞. Take polyradius (r, l) ∈ (0,∞)m+n such that s ∈ R
{
X∗, Y

}
(r,l)

and

t1, . . . , tn ∈ R{W}l. Now, take l̃ < l such that ‖ti‖l̃ < li (which is possible by Lemma 1.2.9
because ti(0) = 0 for i = 1, 2, . . . , n.) Thus,∑

(α,I)

‖q(α,I)‖(r,l̃) =
∑
(α,I)

|s(α,I)|rα‖t1‖i1l̃1‖t2‖
i2
l̃2
· · · ‖tn‖inl̃n <

∑
(α,I)

|s(α,I)|rαlI = ‖s‖(r,l) <∞

The same argument is valid for ii). For iii), if we put ε := u − u(0) ∈ R
{
X∗
}
, ε(0) = 0. So it

is enough to prove that there exists a polyradius r ∈ (0,∞)m such that
∑

k ‖ε‖kr < ∞. Notice
that this is a particular case of ii).

For iv), we de�ne for any α = (α1, α2, . . . , αm) ∈ Supp(s),

qα := sαt
α1
1 tα2

2 · · · t
αm
m

By part iii), qα ∈ R{Z∗} for any α ∈ Supp(s). Let δ = (δ1, δ2, . . . , δm) ∈ (0,∞)m be a
polyradius such that s ∈ R

{
X∗
}
δ
. Since t1(0) = t2(0) = . . . = tm(0) = 0, by Proposition

1.2.9 there exists a polyradius r ∈ (0,∞)µ such that ‖ti‖r < δi for i = 1, 2, . . . ,m. Then,
‖qα‖r ≤ |sα|‖t1‖α1

r ‖t2‖α2
r · · · ‖tm‖αmr < |sα|δα for any α ∈Supp(s) which implies that∑

α

‖qα‖r <
∑
α

|sα|δα = ‖s‖δ <∞

Remark 1.2.11. Let s =
∑
sαX

α ∈ R{X∗}, M1,M2, . . . ,Mm ∈ R{Z∗} be monomials (Mi =
Zβ

i
with βi 6= 0),W = (W1,W2, . . . ,Wm) be variables and λ1, λ2, . . . , λm ∈ R>0. If we de�ne for

i = 1, 2, . . . ,m, ti := Mi(λi +Wi), by remark 1.1.15, s(t1, t2, . . . , tm) ∈ R[[Z∗,W ]]. Analogously
to the proof of part iv) we obtain that in fact s(t1, t2, . . . , tm) ∈ R{Z∗,W}.

Example 1.2.12. Notice that in particular, with the notation of the example 1.1.16, if s ∈
A{X∗, Y } and σ ∈ Gm,n, σs ∈ A{X∗, Y }.

Corollary 1.2.13. Let s ∈ A{X∗}. Then s is a unit in A{X∗} if and only if s(0) is a unit in A.

Proof. The necessity is clear. Suppose then s(0) 6= 0 and write s = s(0)(1−t) for some t ∈ A{X∗}
with t(0) = 0. Then 1−t has inverse 1+t+t2+. . . ∈ A[[X∗]]. The series s̄ :=

∑
k∈NW

k ∈ A{W}.
By part ii) of Proposition 1.2.10, 1 + t+ t2 + . . . = s̄(t) ∈ A{X∗}.

The Weierstrass Preparation Theorem is also true in the convergent case (see 5.10 of [1]).

Theorem 1.2.14. Let n > 0 and let s ∈ A{X∗, Y } be regular in Yn of order d.

1. There is for each s′ ∈ A{X∗, Y } a unique pair (Q,R) with Q ∈ A{X∗, Y } and R ∈
A{X∗, Y ′}[Yn], such that

s′ = Qs+R and degYn(R) < d.

2. s factors uniquely as s = UP , where U ∈ A{X∗, Y } is a unit and P ∈ A{X∗, Y ′}[Yn] is
monic of degree d in Yn.

Corollary 1.2.15. Let s = (s1, s2, . . . , sk) ∈ A{X∗, Y,W}k where X = (X1, X2, . . . , Xm),
Y = (Y1, Y2, . . . , Yn) and W = (W1,W2, . . . ,Wk). Suppose that sj(0) = 0 for j = 1, 2 . . . , k and

that the matrix
(
∂sj
∂Wi

(0)
)

1≤i,j≤k
is not singular. Then there exists t1, t2, . . . , tk ∈ A{X∗, Y } with

ti(0) = 0 such that sj(X,Y, t1(X,Y ), t2(X,Y ), . . . , tk(X,Y )) ≡ 0 for j = 1, 2 . . . , k.

35



Proof. By induction on k. If k = 1, since ∂s1
∂W1

(0) 6= 0, s1 is regular of order 1 in W1. By
Weierstrass preparation,

s1 = (W1 − a(X,Y,W2,W3, . . . ,Wk))u1

We take t1 = a, which solves the problem.

Let k ≥ 2 and suppose the result true for k− 1. We can suppose ∂s1
∂W1

(0) 6= 0 and ∂sj
∂W1

(0) = 0 for

j = 2, 3 . . . , k (if this is not the case, change the order of the si to have
∂s1
∂W1

(0) 6= 0 and then pick

s̃1 := s1 and s̃j := sj −
∂sj
∂W1

(0)

∂s1
∂W1

(0)
s1 for j = 2, 3 . . . , k. If the result is proved for the s̃j we obtain

t1, t2, . . . , tk ∈ A{X∗, Y } with ti(0) = 0 such that s̃j(X,Y, t1(X,Y ), t2(X,Y ), . . . , tk(X,Y )) ≡ 0.
Notice that the same ti solve the initial problem.)

Since ∂s1
∂W1

(0) 6= 0, s1 is regular of order 1 in W1. By Weierstrass preparation,

s1 = (W1 − a(X,Y,W2,W3, . . . ,Wk))u1

We de�ne for j = 2, 3 . . . , k,

sj := sj(X,Y, a(X,Y,W2,W3, . . . ,Wk),W2,W3, . . . ,Wk)

which are in A{X∗, Y,W2,W3, . . . ,Wk} because a(0) = 0 (see proposition 1.1.14). On the other
hand,

∂sj
∂Wi

(0) =
∂sj
∂W1

(a(0))
∂a

∂Wi
(0) +

∂sj
∂Wi

(0) =
∂sj
∂Wi

(0)

for 1 ≤ i, j ≤ k. Then, the matrix
(
∂sj
∂Wi

(0)
)

2≤i,j≤k
=
(
∂sj
∂Wi

(0)
)

2≤i,j≤k
which is not singular

because ∂sj
∂W1

(0) = 0 for j ∈ {2 . . . , k}, so by the induction assumption, there exits t2, . . . , tk ∈
A{X∗, Y } with ti(0) = 0 such that

sj(X,Y, a(t2(X,Y ), . . . , tk(X,Y )), t2(X,Y ), . . . , tk(X,Y )) = sj(X,Y, t2(X,Y ), . . . , tk(X,Y )) ≡ 0

for j = 2, 3 . . . , k. Take t1 = a(t2(X,Y ), . . . , tk(X,Y )).

Notice that in Corollary 1.2.15 we do not ask the partial derivatives of the sj to be convergent.
However, one can ask if the formal partial derivative (de�ned in 1.1.1) of a convergent series is
convergent too. Paragraph 5.9 of [1] answer a�rmatively this question:

Lemma 1.2.16. (cf. 5.9 [1]) Let s ∈ R
{
X∗, Y

}
. If i ∈ {1, . . . ,m}, then the partial derivative

(∂s/∂Xi) ∈ R
{
X∗, Y

}
, and if j ∈ {1, . . . , n}, (∂s/∂Yj) ∈ R

{
X∗, Y

}
.

1.2.3 Functions de�ned by convergent series.

From now on we are only interested in the case A = R, with the norm on R given by the usual
absolute value. Note that Corollary 1.2.13 implies that R

{
X∗
}
is a local ring with maximal ideal

{s ∈ R
{
X∗
}

: s(0) = 0}, and if m = 1, then R
{
X∗
}
is a valuation ring.

Given a polyradius ξ = (ξ1, . . . , ξm+n) ∈ (0,∞)m+n, we put

Im,n,ξ := [0, ξ1)× · · · × [0, ξm)× (−ξm+1, ξm+1)× · · · × (−ξm+n, ξm+n);

and
Clos(Im,n,ξ) := [0, ξ1]× · · · × [0, ξm]× [−ξm+1, ξm+1]× · · · × [−ξm+n, ξm+n]

we will denote [0,∞)m×Rn by Im,n,∞. We also write R
{
X∗, Y

}
ξ
instead of R

{
X∗, Y

}
(r,l)

where

r = (ξ1, . . . , ξm) and l = (ξm+1, . . . , ξm+n). If n = 0 we write Im,ξ instead of Im,0,ξ.
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Most of the time we will consider polyradius whose components have all the same value, usually
ε > 0 or δ > 0. In that case ε (respectively δ, etc.) will denote a positif constant ε or polyradius
ε = (ε, . . . , ε) with di�erent length, and its signi�cant will be deduced by the context.

Finally, to emphasize the length of the multi-variables involved X = (X1, X2, . . . , Xm), Y =
(Y1, Y2, . . . , Yn), etc. we put R

{
X∗, Y

}
m,n

. Then, for instance, if ε > 0, to denote the R-algebra
of convergent series in the variables Z = (Z1, Z2),W = (W1,W2,W3), where the variables Z
are generalized and the variables W are analytic and the polyradius of converge is ε, we put
R{Z∗,W}2,3,ε.

De�nition 1.2.17. Let m,n ∈ N and ξ ∈ (0,∞)m+n a polyradius. To an element s =∑
sα,βX

αY β ∈ R
{
X∗, Y

}
m,n,ξ

we associate a function on Im,n,ξ as follows. Given (x, y) ∈Clos(Im,n,ξ),
the series

∑
sα,βx

αyβ converges absolutely to a real number. Thus we can de�ne the function

Sξ(s) : Clos(Im,n,ξ) −→ R

Sξ(s)(x, y) :=
∑

sα,βx
αyβ

Lemma 1.2.18. Let s ∈ R
{
X∗, Y

}
ξ
. If ξ̃ < ξ, Sξ̃(s) is equal to the restriction of Sξ(s) to the

polyinterval Im,n,ξ̃, that is Sξ̃(s) = Sξ(s)|Im,n,ξ̃ .

Proof. Immediate by de�nition of the sum morphism.

For a real valued function f : X → R we let ‖f‖∞ denote its uniform norm, that is

‖f‖∞ = sup{|f(x)| : x ∈ X} ∈ [0,∞]

Lemma 1.2.19. Let s =
∑

(α,β) sα,βX
αY β ∈ R

{
X∗, Y

}
m,n,ξ

. Then, ‖Sξ(s)‖∞ ≤ ‖s‖ξ. In
particular, with the notation of Remark 1.2.8, for any Λ ∈ PF (Supp(s)), since Sξ(s)− Sξ(sΛ) =
Sξ(s− sΛ), ‖Sξ(s)− Sξ(sΛ)‖∞ ≤ ‖s− sΛ‖ξ.

Proof. Let (x, y) ∈Clos(Im,n,ξ). Then,

|Sξ(s)(x, y)| = |
∑
(α,β)

sα,βx
αyβ| ≤

∑
(α,β)

|sα,β||xα||yβ| ≤ ‖s‖ξ

Let C0(Clos(Im,n,ξ);R) denote the ring of all real valued continuous functions on Clos(Im,n,ξ).

Proposition 1.2.20. The function Sξ(s) is continuous on Clos(Im,n,ξ). Moreover, the map

Sξ : R
{
X∗, Y

}
m,n,ξ

−→ C0(Clos(Im,n,ξ);R)

s 7→ Sξ(s)

is an R-algebra homomorphism.

Proof. For each Λ ∈ PF ([0,∞)m × Nn), the series sΛ =
∑

(α,β)∈Λ sα,βX
αY β ∈ R

{
X∗, Y

}
m,n,ξ

.
Since Λ is �nite the corresponding associated function Sξ(sΛ) : (x, y) ∈Clos(Im,n,ξ) 7→ sΛ(x, y) ∈
R is continuous. Let ε > 0. By Remark 1.2.8, there exists Λ ⊆ [0,∞)m × Nn �nite such that
‖s− sΛ‖ξ < ε

3 . Let (x, y) ∈Clos(Im,n,ξ). Then,

|Sξ(s)(x, y)− Sξ(sΛ)(x, y)| = |
∑

(α,β)6∈Λ

sα,βx
αyβ| ≤ ‖s− sΛ‖ξ <

ε

3
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Since Sξ(sΛ) is continuous on Clos(Im,n,ξ), there exists δ > 0 such that if |(x, y) − (z, w)| < δ,
then |Sξ(sΛ)(x, y)− Sξ(sΛ)(z, w)| < ε

3 . Thus, if (z, w) ∈Clos(Im,n,ξ) with |(x, y)− (z, w)| < δ,

|Sξ(s)(x, y)− Sξ(s)(z, w)| ≤ |Sξ(s)(x, y)− Sξ(sΛ)(x, y)|+
|Sξ(sΛ)(x, y)− Sξ(sΛ)(z, w)|+ |Sξ(sΛ)(z, w)− Sξ(s)(z, w)| < ε

Now let us prove that Sξ is an R-algebra homomorphism. Let s, t ∈ R
{
X∗, Y

}
m,n,ξ

and c ∈ R.
First notice that if s or t have �nite support, Sξ(cs) = cSξ(s), Sξ(s + t) = Sξ(s) + Sξ(t) and
Sξ(st) = Sξ(s)Sξ(t). The result then follows from Remark 1.2.8 and Lemma 1.2.19: Let ε > 0.
By Remark 1.2.8 there exists Λ = Λ(ε) ∈ PF ([0,∞)m × Nn) such that ‖cs − (cs)Λ‖ξ < ε

2 and
|c|‖s− sΛ‖ξ < ε

2 . By Lemma 1.2.19,

‖Sξ(cs)− cSξ(s)‖∞ = ‖Sξ(cs)− cSξ(s)± cSξ(sΛ)‖∞ ≤
≤ ‖Sξ(cs)− Sξ((cs)Λ)‖∞ + ‖cSξ(s)− cSξ(sΛ)‖∞ ≤

≤ ‖cs− (cs)Λ‖ξ + |c|‖s− sΛ‖ξ =< ε

Since ε was arbitrary, Sξ(cs) = cSξ(s).

Analogously for the sum, if ε > 0, let Λ = Λ(ε) ∈ PF ([0,∞)m×Nn) such that ‖(s+t)−(s+t)Λ‖ξ <
ε
3 , ‖s− sΛ‖ξ < ε

3 and ‖t− tΛ‖ξ < ε
3 . By Lemma 1.2.19,

‖Sξ(s+ t)− (Sξ(s) + Sξ(t))‖∞ = ‖Sξ(s+ t)− (Sξ(s) + Sξ(t))± Sξ((s+ t)Λ)‖∞ ≤
≤ ‖Sξ(s+ t)− Sξ((s+ t)Λ)‖∞ + ‖Sξ(sΛ)− Sξ(s)‖∞ + ‖Sξ(tΛ)− Sξ(t)‖∞ ≤

≤ ‖(s+ t)− ((s+ t)Λ)‖ξ + ‖sΛ − s‖ξ + ‖tΛ − t‖ξ < ε

Since ε was arbitrary, Sξ(s+ t) = Sξ(s) + Sξ(t).

Analogously for the product, if ε > 0, let Λ = Λ(ε) ∈ PF ([0,∞)m×Nn) such that ‖(st)−(st)Λ‖ξ <
ε
3 , ‖s‖ξ‖t− tΛ‖ξ <

ε
3 and ‖t‖ξ‖s− sΛ‖ξ < ε

3 . By Lemma 1.2.19,

‖Sξ(st)− Sξ(s)Sξ(t)‖∞ = ‖Sξ(st)− Sξ(s)Sξ(t)± Sξ((st)Λ)‖∞ =

= ‖Sξ(st)− Sξ((st)Λ) + Sξ(sΛ)Sξ(tΛ)− Sξ(s)Sξ(t)‖∞ ≤
≤ ‖Sξ(st)− Sξ((st)Λ)‖∞ + ‖Sξ(s)Sξ(t)− Sξ(sΛ)Sξ(tΛ)± Sξ(s)Sξ(tΛ)‖∞ =

≤ ‖Sξ(st)− Sξ((st)Λ)‖∞ + ‖Sξ(s)(Sξ(t)− Sξ(tΛ)) + Sξ(tΛ)(Sξ(sΛ)− Sξ(s))‖∞ ≤
≤ ‖Sξ(st)− Sξ((st)Λ)‖∞ + ‖Sξ(s)‖∞‖Sξ(t)− Sξ(tΛ)‖∞ + ‖Sξ(tΛ)‖∞‖Sξ(sΛ)− Sξ(s)‖∞ ≤

≤ ‖st− (st)Λ‖ξ + ‖s‖ξ‖t− tΛ‖ξ + ‖tΛ‖ξ‖sΛ − s‖ξ < ε

Since ε was arbitrary, Sξ(st) = Sξ(s)Sξ(t).

We call Sξ the sum morphism. Using the same notation as in Proposition 1.1.14:

Proposition 1.2.21. Let X = (X1, X2, . . . , Xm), Y = (Y1, Y2, . . . , Yn), Z = (Z1, Z2, . . . , Zµ)
and W = (W1,W2, . . . ,Wk) denote multi-variables.

i) Let s ∈ R{X∗, Y } and let t = (t1, t2, . . . , tn) ∈ R{W}n with t1(0) = . . . = tn(0) = 0. Then,
for convenient strictly positif ε,

Sε(s(X, t(W ))(x,w) = Sε(s)(x, Sε(t1)(w), Sε(t2)(w), . . . , Sε(tn)(w))

for any (x,w) ∈Clos(Im,k,ε).

ii) Let s ∈ R{X∗, Y } and let t = (t1, t2, . . . , tn) ∈ R{Z∗}n with t1(0) = . . . = tn(0) = 0. Then,
for convenient strictly positif ε,

Sε(s(X, t(Z))(x,w) = Sε(s)(x, Sε(t1)(z), Sε(t2)(z), . . . , Sε(tn)(z))

for any (x, z) ∈Clos(Im+µ,ε).

38



iii) Let s =
∑
sαX

α ∈ R{X∗} and t = (t1, t2, . . . , tm) ∈ R{Z∗}m. If ti = Zβ
i
ui, with

βi 6= (0, ..., 0), ui ∈ R{Z∗} and ui(0) > 0 for all i ∈ {1, 2, . . . ,m} (that is, ti is of monomial
type), there exists ε > 0 such that

Sε(s(t1, t2, . . . , tm)) = Sε(Sε(t1)(z), Sε(t2)(z), . . . , Sε(tm)(z))

for any z ∈Clos(Iµ,ε).

iv) If s ∈ R
{
X∗, Y

}
m,n

and j ∈ {1, 2, . . . , n} there exists ε > 0 such that for each (x, y) ∈ Im,n,ε
the partial derivative (∂(Sε(s))/∂yj)(x, y) exists and

Sε(∂s/∂Yj)(x, y) = (∂(Sε(s))/∂yj)(x, y)

v) If s ∈ R
{
X∗, Y

}
m,n

and i ∈ {1, 2, . . . ,m} there exists ε > 0 such that for each interior
point (x, y) of Im,n,ε, the partial derivative (∂(Sε(s))/∂xi)(x, y) exists and

xi(∂(Sε(s))/∂xi)(x, y) = Sε(∂si)(x, y)

vi) If s ∈ R
{
X∗, Y

}
m,n

and σ ∈ Gm,n (see 1.1.16) then there exists ε > 0 such that

Sε(σs)(x, y) = Sε(s)(σ(x, y))

for all (x, y) ∈ Im,n,ε.

Proof. The result is immediate if all the series involved have �nite support. For general series,
we apply Remark 1.2.8 and Lemma 1.2.19 as in the proof of 1.2.20.

Proposition 1.2.22. Given ν ∈ (0,∞)m and ξ ∈ (0,∞)m+n, the sum morphisms

Sξ : R
{
X∗
}
m,ν
−→ C0(Clos(Im,ν);R)

and

Sξ : R
{
X∗, Y

}
m,n,ξ

−→ C0(Clos(Im,n,ξ);R)

are injective.

Proof. We reproduce the proof given in [1] for the �rst morphism, being analogous the proof for
the mixed case.

Let s =
∑
sαX

α ∈ R
{
X∗
}
ξ
and assume s 6= 0; we will show that Sξ(s) cannot vanish identically

on any Im,ξ̃ with ξ̃ < ξ small enough (which is more than what we need). By induction on m:

if m = 1 then X = X1 and, assuming s has order δ, we can write s = Xδ(sδ +
∑

α>δ sαX
α−δ)

with sδ 6= 0. Put t := sδ +
∑

α>δ sαX
α−δ. It follows from Lemma 1.2.9 that Sξ(t)(x) 6= 0 for all

x ∈ (0, ξ̃], where ξ̃ > 0 is small enough.

Let m > 1; assume our claim holds for R{(X ′)∗}ξ′(X ′ = (X1, X2, . . . , Xm−1), ξ = (ξ′, ξm) ∈
(0,∞)m). Write a nonzero s ∈ R

{
X∗
}
ξ
as s =

∑
αm≥0 sαmX

αm
m ∈ (R{(X ′)∗}ξ′){X∗m}ξm , and

note that {αm : sαm 6= 0} is a well ordered subset of [0,∞). Hence ‖s‖ξ =
∑
‖sαm‖ξ′ξαmm

and Sξ(s)(x) =
∑
Sξ′(sαm)(x′)xαmm for all x = (x′, xm) ∈ Im,ξ. Fix some αm ∈ [0,∞) with

sαm 6= 0; by the inductive assumption there are x′ ∈ Im−1,ξ′ arbitrarily close to the origin such
that Sξ′(sαm)(x′) 6= 0. For such x′ we have shown above (case m = 1) that Sξ(s)(x′, xm) =∑
Sξ′(sαm)(xm)αm is nonzero for all su�ciently small xm ∈ (0, ξm].

39



Taylor expansion. Let s =
∑

(α,J) sα,JX
αY I ∈ R

{
X∗, Y

}
m,n,ξ

. Let (a, b) = (a1, . . . , am, b1, . . . , bn) ∈
Im,n,ξ. Let s((a, b) + (Z,W )) denote the sum of the family (summable by 1.2.10)

{sα,J(a1 + Z1)α1 · · · (am + Zm)αm(b1 +W1)j1 · · · (bn +Wn)jn}(α,J)∈[0,∞)m×Nn

Notice that s((a, b)+(Z,W ))(0) =
∑

(α,J) sα,Ja
αbI which is a real number because (a, b) ∈ Im,n,ξ.

Recall that s((a, b) + (Z,W )) ∈ R{Z∗,W} and that for any i ∈ {1, . . . ,m} such that ai 6= 0,
the variable Zi is analytic on s((a, b) + (Z,W )). Put m′ := |{i ∈ {1, . . . ,m} : ai 6= 0}|. Then,
if σ is a permutation of {1, . . . ,m} such that σ({i ∈ {1, . . . ,m} : ai 6= 0}) = {1, . . . ,m′},
T(a,b)(s) := σs((a, b) + (Z,W )) ∈ R{(Z1, . . . , Zm′)

∗, Zm′+1, . . . , Zm,W}.

On the other hand, suppose that f ∈ C0(Im,n,ξ;R) is in the image of the sum morphism Sξ, that
is, there exists s ∈ R

{
X∗, Y

}
m,n,ξ

such that f = Sξ(s). Let (a, b) ∈ Im,n,ξ. Put m′ := |{i ∈
{1, . . . ,m} : ai 6= 0}|, and let σ be a permutation of {1, . . . ,m} such that σ({i ∈ {1, . . . ,m} :
ai 6= 0}) = {1, . . . ,m′}. We consider the map (z, w) = θ(a,b),σ(x, y) := (σ(x), y) − (σ(a), b).
If ε > 0 there exists δ > 0 such that if (x, y) close enough to (a, b) (‖(x, y) − (a, b)‖ < δ),
(z, w) = θ(a,b),σ(x, y) ∈ Im′,(m−m′)+n,ε. Let us call f(a,b) := f ◦ θ(a,b),σ. The next proposition
assures that f(a,b) is the sum of a convergent series, in fact of the series T(a,b)(s):

Proposition 1.2.23. Given s ∈ R
{
X∗, Y

}
m,n,ξ

and (a, b) ∈ Im,n,ξ there exists 0 < ε < ξ such
that Sε(T(a,b)(s)) = f(a,b)

R
{
X∗, Y

}
m,n,δ

Sδ //

T(a,b)

��

C0(Im,n,ξ → R)

θ(a,b),σ
��

R{Z∗,W}m′,(m−m′)+n,ε
Sε // C0(Im′,(m−m′)+n,ε → R)

We obtain as a consequence that the sum of a convergent series is analytic on the interior of its
domain of de�nition.

Proof. See 6.7 of [1].
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Chapter 2

Generalized analytic manifolds.

In this chapter we introduce the concept of Generalized Analytic Manifold. We use the general-
ized power series analogously to the power series in the classical case of analytic manifolds. One
of the main peculiarities is that Generalized Analytic Manifolds will be manifolds with boundary
and corners. This is a geometrical consequence of the existence of non analytic variables in the
generalized case: a function like xλ for a non integer λ is only de�ned for positive values of the
variable x.

For a better comprehension of the di�erences with the classical analytic case, we will use ana-
lytic manifolds with boundary and corners. We present in the �rst section a brief recall of these
objects and their properties in the language of subsheaves on R-algebras of continuous functions
(called locally ringed spaces).

The Appendix is devoted to a brief exposition of the general concepts and basic properties
in this theory. In a few words, we consider the category C where an object of C is a pair
X = (|X|,CX) where |X| is a topological space and CX is a sheaf of R-algebras of continuous
functions over |X| such that, for each p ∈ |X|, the stalk CX,p is a local R-algebra. The morphisms
between two objects X = (|X|,CX) and Y = (|Y |,CY ) are pairs (ϕ,ϕ]) where ϕ : |X| → |Y |
is a continuous map and ϕ] : CY → ϕ∗CX is the associated morphism of sheaves determined
by ϕ by composition; that is, if f ∈ CY (V ) is a section over the open set V of |Y |, then
ϕ](f) = f ◦ϕ ∈ ϕ∗CX(V ) = CX(ϕ−1(V )). In what follows, we are interested in two speci�c sub-
categories, O and G of C. Their objects are objects in C and the morphisms between two objects
are exactly those morphisms when considered as objects in C (brie�y, they are full subcategories
of C, see de�nition B.0.22 of the appendix).

In both cases O and G, an object will be a locally ringed space on R-algebras of continuous
functions whose underlying topological space is a topological manifold with boundary of pure
dimension, all of them locally homeomorphic to a local model Rk≥0 for some k. By a convenient
choice of the second component of the object (that is the sheaf of continuous functions), objects
in the subcategory O will be the (standard) real analytic manifolds with boundary and corners,
when the chosen sheaf is such that it is locally isomorphic to the sheaf of analytic functions in
the local model (those which are sums of standard real convergent power series). Objects of the
subcategory G, on the contrary, are de�ned with the property that the sheaf is locally isomorphic
to the sheaf of generalized analytic functions on the local model (to be de�ned below by means
of convergent generalized power series). They will be called generalized real analytic manifolds.

At the end of this chapter, we introduce the concept of standardizable generalized analytic mani-
fold which will permit to consider some generalized analytic manifolds as a standard real analytic
manifolds with an enrichment of the structure. Certain well known operations in standard an-
alytic manifolds such as blowing-ups with smooth centers could be translated to standardizable
generalized analytic manifolds (and this will be the purpose of the next chapter).
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However, we show in 2.4.2 that there exist examples of generalized analytic manifolds which are
not standardizable. Such examples are interpreted as exotic examples that could complicate the
theory of generalized analytic manifolds in its full generality.

2.1 Analytic manifolds with boundary and corners.

For k ∈ N, Rk≥0 denotes the topological subspace of Rk consisting on those points p = (p1, p2, . . . , pk)

in Rk such that pi ≥ 0 for i = 1, 2, . . . , k.

De�nition 2.1.1. The local model of (real) analytic manifold with boundary and cor-

ners of dimension k is the locally ringed space Ak+ := (Rk≥0,OAk+
) whose underlying topological

space is Rk≥0 and the sheaf OAk+
is de�ned by the assignment, for any open subset V ⊂ Rk≥0:

V 7→ OAk+
(V )

where OAk+
(V ) consists on the set of real functions f : V → R for which there exists an open

neighborhood of V in Rk, W ⊇ V , and f̃ : W → R an analytic function on W whose restriction
to V is equal to f . We will simply say that f is analytic on V for such a function.

Notice that OAk+
together with the restriction of functions as restrictions morphisms, certainly

de�ne a sheaf on Rk≥0. Moreover, it is clear that for every open set V ⊂ Rk≥0, OAk+
(V ) is a

sub-R-algebra of the R-algebra of real continuous functions on V and that the stalk OAk+,p
is a

local R-algebra for any p. Thus Ak+ is a locally ringed space on local R-algebras of continuous
functions, that is, an element of the category C (see the Appendix for the details).

De�nition 2.1.2. A (real) analytic manifold with boundary and corners, or for short,
a standard analytic manifold of dimension k is a locally ringed space on R-algebras of con-
tinuous functions A = (|A|,OA) ∈ Objects(C), where |A| is a Hausdor� topological space with a
countable open basis, such that any point of |A| has an open neighborhood isomorphic in C to
Ak+|V := (V,OAk+

|V ) for some V open subset of Rk≥0 .

In other words, a locally ringed space A = (|A|,OA) ∈ Objets(C) is a k-dimensional analytic
manifold with boundary and corners if for any p ∈ |A| there exits an open neighborhood U of
p, an open V ⊆ Rk≥0 and an isomorphism (ϕ : A|U → Ak+|V ) ∈ MorphismsC(A|U ,Ak+|V ). In
particular, if U is an open subset of A, the sections of OA over U are exactly those continuous
functions f : U → R such that for any p ∈ U there exists W an open neighborhood of p and an
homeomorphism ϕ : U ∩W → ϕ(U ∩W ) ⊆ Rk≥0 such that f ◦ ϕ−1 is analytic (that is, it admits
an analytic extension to a neighborhood of ϕ(p) in Rk).

Remark 2.1.3. If α > 0 is not integer, then the map x ∈ R≥0 7→ xα ∈ R≥0 is not a section of
A1

+, because it has not an analytical extension to an open neighborhood of 0 in R.

De�nition 2.1.4. If A = (|A|,OA) is a standard analytic manifold, an open submanifold of

A is the locally ringed space A|U = (U,OA|U ) where U is an open subset of |A| (see the appendix
for the notation). It is clear that an open submanifold is also a standard analytic manifold with
boundary and corners.

Given two analytic manifolds A, B with boundary and corners a morphism between them
is by de�nition a morphism ϕ : A → B of the category C (we will usually call it an analytic

morphism). In this way we de�ne the category of analytic manifolds with boundary and corners,
denoted by O by

objects(O) := {A ∈ objects(C) : A is an analytic manifold with border and corners}
morphisms(O) := {(ϕ : A→ B) ∈ morphisms(C) : A,B ∈ objects(O)}
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Thus, by de�nition, O is a full subcategory of C. Recall that a morphism (ϕ,ϕ]) between two
analytic manifolds with border and corners A = (|A|,OA) and B = (|B|,OB) is determined
by a continuous map between the topological spaces ϕ : |A| → |B| (but not any continuous
map!) because the associated morphism of sheaves ϕ] is given by composition with ϕ: if V is an
open subset of |B| and f ∈ OB(V ), ϕ](f) = f ◦ ϕ ∈ OA(ϕ−1(V )) (see proposition B.0.21 in the
appendix). Such a morphism is an isomorphism if and only if ϕ : |A| → |B| is an homeomorphism
and for all p ∈ |A| the R-algebras homomorphism induced in the stalk

ϕ]p : OB,ϕ(p) −→ OA,p
ϕ]p(fϕ(p)) = (f ◦ ϕ)p

is an isomorphism. We will denote frequently a morphism (ϕ,ϕ]) simply by the underlying
continuous map ϕ, the associated sheaf morphism ϕ] being completely determined by ϕ.

Remark 2.1.5. Notice that if V1 and V2 are respectively open subsets of Rk1≥0 and Rk2≥0, and

ϕ ∈MorphO(Ak1+ |V1 ,A
k2
+ |V2), there exists an open neighborhood W of V1 in Rk1 and an analytic

mapping ϕ̃ : W → V2 (in the sense that each component of ϕ̃ = (ϕ̃1, . . . , ϕ̃k2) is an analytic
function on W ) such that ϕ̃|V1 = ϕ. This is a consequence of the de�nition of O and the fact
that the projection functions πj : p = (p1, p2, . . . , pk2) ∈ V2 7→ pj ∈ R are sections of OAk2+

|V2
for any j = 1, 2, . . . , k2. Hence πj ◦ ϕ = ϕj ∈ OAk1+

|V1 which implies that for any j = 1, 2, . . . , k2

there exists an open neighborhood Wj of V1 and an analytic function ϕ̃j : Wj → R such that
ϕ̃j |V1 = ϕj . We take W = ∩k2j=1Wj and ϕ̃ = (ϕ̃1, . . . , ϕ̃k2). Notice that by the identity principle
for analytic functions ϕ̃ is the unique analytic function satisfying ϕ̃|V1 = ϕ.

In particular, if p ∈ V1 we can de�ne the di�erential of ϕ at p, dpϕ := dpϕ̃, a linear map from
Rk1 to Rk2 . As a consequence, if (ϕ,ϕ]) is an isomorphism, �rst of all ϕ : V1 → V2 is an homeo-
morphism so k1 = k2 = k, and the inverse of ϕ, ϕ−1 : V2 → V1 induces a morphism too. So there
exists ψ̃ analytic on U an open neighborhood of V2 in Rk with ψ̃|V2 = ϕ−1. As ψ̃|V2 = ϕ̃−1|V2
by the identity principle for analytic functions ψ̃ = ϕ̃−1 so for any p ∈ V1, if we put q = ϕ(p),
dq(ϕ

−1) = (dpϕ)−1, that is, dpϕ is a linear isomorphism.

We have seen that if ϕ ∈MorphO(Ak1+ |V1 ,A
k2
+ |V2), the components of the continuous map (ϕ1, . . . , ϕk2)

are analytic functions. Conversely, if we have k2 analytic functions on a neighborhood of V1 in
Rk2 , ϕ1, . . . , ϕk2 such that ϕj(p) ≥ 0 for any p ∈ V1, the continuous map ϕ = (ϕ1, . . . , ϕk2) :

V1 → ϕ(V1) ⊆ Rk2≥0 induces a morphism (ϕ,ϕ]) : Ak1+ |V1 → Ak2+ |ϕ(V1).

Examples 2.1.6. Some examples of standard analytic manifolds are

i) Let ORk denote the sheaf of analytic functions over Rk. Then (Rk,ORk) is a standard
analytic manifold. To see that, remark that the homeomorphism ϕ : Rk → Rk>0 ⊆ Rk≥0

de�ned by ϕ(y1, . . . , yk) = (ey1 , . . . , eyk) induces an isomorphism (of locally ringed spaces)
from (Rk,ORk) to Ak+|Rk>0

= (Rk>0,OAk+
|Rk>0

). Then, in particular, for V open subset of Rk,
if we let OV denote the sheaf of analytic functions on V , (V,OV ) is a standard analytic
manifold.

ii) More generally, if M = (|M |,OM ) is a real analytic manifold (with the sheaf-theoretic
interpretation; that is, that OM is the sheaf of real analytic function on the underlying
variety |M |), then M is a standard analytic manifold. This is an immediate consequence
of example above.

iii) For any k, an example of k dimensional standard analytic manifold is the local model
Ak+ = (Rk≥0,OAk+

).
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iv) Consider Rm≥0 × Rn with the product topology. Let Φ : Rm≥0 × Rn → Rm≥0 × Rn>0 ⊂ Rm+n
≥0

be the map de�ned by

(x, y) ∈ Rm≥0 × Rn Φ−→ (x, ϕ(y)) = (x, ey1 , . . . , eyk) ∈ Rm≥0 × Rn>0

It is a homeomorphism. We can endow a structure of standard analytic manifold to Rm≥0×
Rn via this homeomorphism: just consider the sheaf Om,n de�ned by assigning to each
open set V ⊂ Rm≥0 × Rn the R-algebra of functions f : V → R such that f ◦ Φ−1|Φ(V ) ∈
Am+n

+ (Φ(V )), that is there exists W an open neighborhood of Φ(V ) in Rm+n
≥0 and an

analytic function g on W such that g|Φ(V ) = f ◦ Φ−1|Φ(V ). For reasons that will be clear
below, we call the standard analytic manifold

Am+ × Rn := (Rm≥0 × Rn,Om,n)

the (m,n) mixed local model. Notice that by the moment Am+ × Rn is just a notation.
We show in proposition 2.1.16 below that the category O has product. In particular the
product of the standard analytic manifolds Am+ and Rn has sense and it agrees with the
given here.

Let A = (|A|,OA) be a standard analytic manifold and p ∈ |A|. A local chart at p will be a
pair (U,w) where U is an open neighborhood of p in |A| and

w : U −→ V

w(q) =(w1(q), . . . , wk(q))

is a homeomorphism which induces an isomorphism of standard analytic manifolds A|U =
(U,OA|U ) and Ak+|V = (V,OAk+

|V ). The components w1, . . . , wk will be called local coordi-

nates at p. We say that a local chart is centered at p if it sends p to the origin.

If p = (p1, . . . , pk) ∈ Rk≥0, we put A(p) := {i ∈ {1, . . . , k} : pi = 0}, mp :=number of elements in
A(p), np := k −mp and for ε > 0, IA(p),ε := B1 × B2 × · · ·Bk ⊆ Rk, where the Bi is either the
interval [0, ε) ⊂ R if i ∈ A(p) or the interval (−ε, ε) if i 6∈ A(p). Notice that for any p ∈ Rk≥0, the
set {(p+ IA(p),ε) ∩ Rk≥0 : ε > 0} is a fundamental system of neighborhoods of p in Rk≥0.

Proposition 2.1.7. The map

p ∈ Rk≥0 7−→ mp ∈ N

is upper semi-continuous.

Proof. Let p = (p1, . . . , pk) ∈ Rk≥0 and 0 < ε < mini 6∈A(p){pi}. Hence p + IA(p),ε is an open
neighborhood of p in Rk≥0 and if q ∈ p+ IA(p),ε with qi = 0, then pi = 0 (since |qi| ≥ pi − ε > 0
for any i 6∈ A(p)) which implies that A(q) ⊆ A(p) and so mq ≤ mp.

Let p ∈ Rk≥0, and σ a permutation of {1, . . . , k} such that σ(A(p)) = {1, . . . ,mp}. We denote by
θp,σ the a�ne map

θp,σ(q1, . . . , qk) = p+ (qσ(1), . . . , qσ(k))

Let ε > 0 be such that for any q ∈ (p+IA(p),ε),mq ≤ mp. Then θp,σ restricts to a homeomorphism
from [0, ε)mp×(−ε, ε)np to Vp := p+IA(p),ε. We claim that its inverse θ−1

p,σ induces an isomorphism
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from Ak+|Vp to (Amp+ × Rnp)|[0,ε)mp×(−ε,ε)np : consider the diagram

Vp

Φ ◦ θ−1
p,σ

��

θ−1
p,σ

**

f◦ θ−1
p,σ

&&
[0, ε)mp × (−ε, ε)np

Φtt

f // R

Φ([0, ε)mp × (−ε, ε)np)
f◦Φ−1

88

Then it su�ces to prove that Φ ◦ θ−1
p,σ induces an isomorphism between Ak+|Vp and Ak+|Φ([0,ε)mp×(−ε,ε)np ).

This follows from the fact that

Φ ◦ θ−1
p,σ(p+ (x1, . . . , xmp , y1, . . . ynp)) = (xσ(1), . . . , xσ(mp), e

yσ(mp+1)−mp , . . . , eyσ(k)−mp )

Hence we have proved

Proposition 2.1.8. For any point p ∈ Rk≥0 there exists ε > 0 small enough and an open
neighborhood (depending on ε) isomorphic to (Amp+ × Rnp)|[0,ε)mp×(−ε,ε)np .

Corollary 2.1.9. Let Ak+|V be an open submanifold of Ak+. Then any point p ∈ V has an open
neighborhood isomorphic to Amp+ × Rnp .

Proof. By proposition above it su�ces to notice that the map

ϕ : [0, ε)m × (−ε, ε)n → Rm≥0 × Rn

ϕ(x1, . . . , xm, y1, . . . , yn) = (
x1

ε− x1
, . . . ,

xm
ε− xm

,
y1

ε− (y1)2
, . . . ,

yn
ε− (yn)2

)

induces an isomorphism between (Amp+ × Rnp)|[0,ε)mp×(−ε,ε)np and (Amp+ × Rnp).

2.1.1 Strati�cation by the number of boundary components.

Let, for the rest of the section, A = (|A|,OA) denote a k dimensional standard analytic manifold.
A direct consequence of the de�nition is that the underlying space |A| is a topological manifold of
dimension k with boundary, because each point in |A| has an open neighborhood homeomorphic
to an open subset of Rk≥0, a topological manifold of dimension k with boundary (see the annex
for details). Another consequence is that if int(|A|) denotes the interior of this manifold then
the open submanifold

A|int(A) = (int(|A|),OA|int(|A|))

is a real analytic manifold because any section of OA|int(|A|) is an analytic function. This implies
that at points in the interior of the manifold, the dimension is the only local invariant by isomor-
phisms. As we show below, this is not the case for points at the boundary ∂|A|: looking at the
standard local model Ak+, although any two points in the boundary have topologically equivalent
neighborhoods, they would not have necessarily isomorphic neighborhoods in the category O.
In fact, the number of coordinate hyperplanes ("boundary components"), passing through the
point will be invariant for local isomorphisms.

Let p ∈ |A| and (U, y) be a local chart at p and de�ne mp := |{i ∈ {1, . . . , k} : yi(p) = 0}|. We
are going to prove that mp does not depend on the local chart chosen but only on the point p.
We need the following proposition
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Proposition 2.1.10. Let V1 and V2 two open subsets of Rk≥0 and suppose that the standard
analytic manifolds Ak+|V1 = (V1,OAk+

|V1) and Ak+|V2 = (V2,OAk+
|V2) are isomorphic via ϕ. Then

for each p ∈ V1, mp = mϕ(p).

Proof. Suppose Ak+|V1 = (V1,OAk+
|V1) and Ak+|V2 = (V2,OAk+

|V2) isomorphic via ϕ. In particular,
by Remark 2.1.5, the di�erential dpϕ is a linear isomorphism for any p ∈ V1.

Claim.- If i 6∈ A(p) and ei = (0, ..., 0, 1(ith), 0, ..., 0) is the ith vector of the canonical basis of Rk
then, for any j ∈ A(ϕ(p)), the jth-coordinate of dpϕ(ei) is equal to zero.

Once the claim proved, we obtain that mϕ(p) ≤ mp because in Mp, the jacobian matrix of dpϕ,
there are k −mp columns (dpϕ(el) for any l 6∈ A(p)) ci = (c1,i, . . . ck,i), 1 ≤ i ≤ k −mp, with
cj,i = 0 for at least mϕ(p) positions j. Since Mp is invertible, the columns c1, . . . , ck−mp as
vectors in Rk are linearly independent but all of them lie in the k−mϕ(p) dimensional subspace⋂
j∈A(ϕ(p)){(x1, . . . , xk) ∈ Rk : xj = 0}, so necessary k −mp ≤ k −mϕ(p), i.e. mϕ(p) ≤ mp.

Proof of the claim.- Denote by ϕ̃ the extension of ϕ to an analytic mapping from a neighborhood
of p in Rk. Write Taylor's formula of order one:

ϕ̃(p+ tei) = ϕ̃(p) + tdpϕ(ei) + o(t). (2.1)

Since i 6∈ A(p), we have that p+ tei ∈ V1 for every t ∈ R su�ciently small and thus ϕ̃(p+ tei) =
ϕ(p+tei) ∈ V2. Suppose that the jth-coordinate of dpϕ(ei) is equal to λj 6= 0, for instance λj > 0.
Then, for every t < 0 with |t| su�ciently small, taking into account that the jth-coordinate of
ϕ(p) is equal to zero, the formula (2.1) above gives that the jth-coordinate of ϕ(p+ tei) has the
sign of tλj , i.e., negative which is impossible since V2 ⊂ Rk≥0.

Since (ϕ,ϕ]) is an isomorphism, we can prove symmetrically that if i 6∈ A(ϕ(p)) and ei =

(0, ..., 0, 1(ith), 0, ..., 0) is the ith vector of the canonical basis of Rk then, for any j ∈ A(p), the
jth-coordinate of dϕ(p)ϕ

−1(ei) is equal to zero and hence mp ≤ mϕ(p).

Remark 2.1.11. We obtain as a corollary of proposition 2.1.10 and corollary 2.1.9 that given a
standard analytic manifold A = (|A|,OA), any point p ∈ |A| has an open neighborhood U in |A|
such that the open submanifold A|U is isomorphic to Amp+ × Rnp . By de�nition, each p ∈ |A| is
in the domain of a chart (U, φ) where the range of φ is an open subset of Rk≥0. By Proposition
2.1.10, we can choose such a chart centered at p, i.e., such that φ(p) = (0, ..., 0) if and only if
mp = k. If we want to have always a chart centered at any given point, we can think that there
is not a single local model for standard analytic manifold of a given dimension k, namely Ak+,
but several ones, Am+ × Rn with m+ n = k.

De�nition 2.1.12. Let A = (|A|,OA) be a standard analytic manifold. The function m : |A| →
N de�ned by

m(p) := mp = |{i ∈ {1, . . . , k} : wi(p) = 0}|,
where w = (w1, . . . , wk) is a local chart on p is well de�ned. Moreover, m is an upper semi-
continuous function. Given a point p, we will say also that mp is the number of boundary

components of the point p.

For j ∈ {0, 1, . . . , k} let
D(j) := {p ∈ |A| : mp = j}

Let j0 := max{j ∈ {0, 1, . . . , k} : D(j) 6= ∅}. We call D(j0) the lime of A.

Let {D(j)i}i∈Ij be the connected components of D(j). We consider the partition of the under-
lying space |A| by these sets

|A| =
k⋃
j=0

(∪ij∈IjD(j)ij )
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Proposition 2.1.13. For each j ∈ {0, ..., k} and each i ∈ Ij , D(j)i is a locally closed set and the
restricted sheaf (D(j)i,OA|D(j)i) gives rise to a real analytic manifold of dimension k − j. The
family DM = {D(j)ij} ij∈Ij

j∈{0,...,k}
is a locally �nite strati�cation of |A|; that is, for every stratum

D(j)i, its boundary
∂D(j)i = D(j)i \D(j)i

is a locally �nite union of strata of dimension not greater than the dimension of D(j)i. Moreover,
the boundary ∂|A| of |A| is the union of all strata of dimension strictly smaller than k.

Proof. All stated properties are true if they are true locally at each point of the manifold. Thus
the proof follows from the de�nition of A as being locally isomorphic to open submanifolds of
the local standard model Ak+ after checking that proposition is true for the (�nite) strati�cation
DAk+

of Rk≥0.

De�nition 2.1.14. Let |X| be a k dimensional Hausdor� topological space with a countable
open basis. We say that a family {(Uλ, ϕλ)}λ∈Λ is an O-atlas of |X| if

i) For any λ ∈ Λ, Uλ is an open subset of |X| and ϕλ : Uλ → Vλ := ϕλ(Uλ) ⊆ Rk≥0 is an
homeomorphism.

ii) X =
⋃
λ∈Λ Uλ

iii) For any λ, µ ∈ Λ, ϕλ ◦ ϕ−1
µ : ϕµ(Uµ ∩ Uλ)→ ϕλ(Uµ ∩ Uλ) is an isomorphism in O.

Let U an open subset of |X|. We denote by OX(U) the set of continuous functions f : U → R
such that for any p ∈ U , there exists an open V ⊆ U such that f ◦ ϕ−1

λ : ϕλ(V ∩ Uλ) → R has
an analytic extension to an open neighborhood of ϕ(p) in Rk for any λ ∈ Λ such that p ∈ Uλ.

Proposition 2.1.15. The pair X = (|X|,OX) is a standard analytic manifold.

Proof. By de�nition, X ∈Obj(C). Let p ∈ |X|. Let λ ∈ Λ such that p ∈ Uλ. Then, ϕ−1
λ induces

a morphism from Ak+|ϕλ(Uλ) to X|Uλ by de�nition of X. Moreover, ϕλ : Uλ → ϕλ(Uλ) induces
a morphism from X|Uλ to Ak+|ϕλ(Uλ) : let V be an open subset of ϕλ(Uλ) and g : V → R a
section of OAk+

over V . Then, g ◦ ϕλ ∈ OX(ϕ−1
λ (V )) because if q ∈ ϕ−1

λ (V ), and µ ∈ Λ is such

that q ∈ Uµ, f ◦ ϕλ ◦ ϕ−1
µ ∈ OAk+

(ϕµ ◦ ϕ−1
λ (V )) since by condition iii) of 2.1.14 g ∈ OAk+

(V ) 7→
g ◦ ϕλ ◦ ϕ−1

µ ∈ OAk+
(ϕµ ◦ ϕ−1

λ (V )) is an isomorphism.

Proposition 2.1.16. O is a category with product.

Proof. We show �rst that given V1 ⊂ Rk1≥0 and V2 ⊂ Rk2≥0 open sets, there exists a product of the

open submanifolds of the local model Ak1+ |V1 and Ak2+ |V2 . Let V = V1×V2 ⊂ Rk≥0 the topological
product of V1 and V2, where k = k1 + k2. Considering V as open submanifold of Ak+ we claim
that V , together with the usual projections pi : V → Vi, i = 1, 2, is a product of Ak1+ |V1 and
Ak2+ |V2 .

Let A be a standard manifold and αi : A → Vi morphisms of O. Since V is the topological
product of V1 and V2, there exists a unique continuous map Φ : A → V such that pi ◦ Φ = αi.
Let us see that Φ is a morphism in the category O. Let U be an open subset of V . It su�ces to
see that for every f ∈ OAk+

(U), f ◦ Φ ∈ OA(Φ−1(U)). Let a ∈ U and ϕ a local homeomorphism

at a from W , an open neighborhood of a, to ϕ(W ) ⊆ Rm≥0 (m =dimension of A) inducing an
isomorphism between the open submanifolds A|W and Am+ |ϕ(W ). Thus, for any q ∈ ϕ(W )

f ◦ Φ ◦ ϕ−1(q) = f(p1 ◦ Φ ◦ ϕ−1(q), p2 ◦ Φ ◦ ϕ−1(q)) = f(α1 ◦ ϕ−1(q), α2 ◦ ϕ−1(q))
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Since αi : A → Vi, i = 1, 2, are morphisms and pi(U) is an open subset of Vi, αi ◦ ϕ−1 ∈
OAm+ (ϕ(α−1

i (pi(U)))). Thus αi ◦ ϕ−1 have an analytic expansion on a neighborhood of ϕ(a).
As f ∈ OAk+

(U), f has an analytic expansion on a neighborhood of (α1(a), α2(a)) ∈ U , which
implies that f(α1 ◦ ϕ−1, α2 ◦ ϕ−1) has an analytic expansion on a neighborhood of ϕ(a) as was
to be proved.

Finally, just notice that if Wi is an open subset of Vi and gi ∈ OAki+
(Wi), gi ◦ pi ∈ OAk+

(p−1
i (Wi))

because for any (vi,1, vi,2) ∈ p−1
i (Wi), gi ◦ pi(vi,1, vi,2) = gi(vi,i) which has an analytic expansion

on a neighborhood of (vi,1, vi,2) since gi has an analytic expansion on a neighborhood of vi,i.

Now, let A1 and A2 be two standard analytic manifolds of dimension k1 and k2 respectively. We
start by constructing a triplet P = (|P |, p1 : P → A1, p2 : P → A2) as a candidate to be the
product of A1 and A2.

It is logical to pick as underlying topological space for P the cartesian product |P | = |A1| × |A2|
with the product topology and as morphisms p1 : P → A1, p2 : P → A2 the morphisms induced
by the projections maps

p1 = pr1 : |P | = |A1| × |A2| → |A1| p2 = pr2 : |P | = |A1| × |A2| → |A2|

We construct now the sheaf OP that will determine the structure of standard manifold for P .
In order to de�ne the sheaf OP as a subsheaf of the sheaf of continuous functions, it is enough
to associate to any element of a basis of open sets of the topology of |P | a R-subalgebra of
continuous functions with. After that, we need to show that with this structure, |P | is locally
isomorphic to Ak1+k2

+ .

As a basis of open sets of the topological product |A1| × |A2|, we can consider the set

B = {U1 × U2 ⊆ |A1| × |A2| : Ui ⊂ |Ai| is the domain of a coordinate chart , i = 1, 2}

Let U1 × U2 ∈ B. Then Ai|Ui is isomorphic to Aki+ |Vi via ϕi for i = 1, 2. Let Φ be the map

Φ = (ϕ1, ϕ2) : U1 × U2 → V1 × V2 ⊆ Rk1≥0 × Rk2≥0 = Rk1+k2
≥0

Put k = k1 + k2. Then Φ is an homeomorphism and V1 × V2 is an open subset of Rk≥0. Let us
de�ne

ΓΦ(U1 × U2,OP ) = {f : U1 × U2 → R/f ◦ Φ−1 ∈ Γ(V1 × V2,OAk+
)}

First of all let us prove that this de�nition does not depend on the morphisms ϕ1, ϕ2 such that
(U1, ϕ1), (U2, ϕ2) are local charts which will endow the topological product with a well de�ned
structure of standard analytic manifold. Let

ϕ′i : Ui → V ′i

be isomorphisms between Ai|Ui and Aki+ |Vi and we de�ne

Φ′ = (ϕ′1, ϕ
′
2) : U1 × U2 → V ′1 × V ′2

then ΓΦ = ΓΦ′ . We can illustrate the situation with the diagram

V ′1 × V ′2

Φ◦Φ′−1

&&

f◦Φ′−1

&&

U1 × U2

f
��

Φ //Φ′oo V1 × V2

Φ′◦Φ−1

��

f◦Φ−1

xxR
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The result is clear once we notice that Φ ◦ Φ′−1 and Φ′ ◦ Φ−1 are morphisms of standard an-
alytic manifolds (thus both isomorphisms), which can be seen using the de�nition of product
and that there exists the product of open submanifolds of the local model. So A1 × A2 =
(|A1| × |A2|,OA1×A2) ∈Obj(O). Remark that the natural projections pi : |A1| × |A2| → |Ai| are
morphisms from A1 × A2 to Ai. To �nish, we have to prove that (A1 × A2, p1, p2) is a solution
of the universal problem. But this is easy: if B is a standard analytic manifold and βi : B → Ai
are morphisms for i = 1, 2, the map Φ : B → A1 ×A2 de�ned by Φ = (β1, β2) is continuous and
induce a morphism of standard analytic manifolds since this property is a local one and locally
A1 ×A2 has the structure of product, by de�nition.

Proposition 2.1.17. O is a category with gluing.

Proof. Let B, A1, A2 be standard analytic manifolds and ϕi : B → Ai be open immersions (see
appendix B) decomposing in

A1|U1

h

��

i1 // A1

B

ϕ̃2 ''

ϕ̃1

77

ϕ1

%%

ϕ2

99A2|U2

i2 // A2

Notice that h = ϕ̃2 ◦ ϕ̃1
−1 : A1|U1 → A2|U2 is an isomorphism. Let |A| be the topological space

obtained by the quotient of the topological disjoint union |A1| t |A2| by the equivalence relation

a1 ∼ a2 if a1 = a2 or a1 ∈ U1, a2 ∈ U2 and a2 = h(a1)

Denote by π : |A1| t |A2| → |A| the quotient map. For i = 1, 2 de�ne αi : |Ai| → |A| as the
composition of the inclusion |Ai| ⊂ |A1| t |A2| with the quotient map.

A1 � r

%%%%

α1

��
|A1| t |A2| π // |A|

A2

, �

9999

α2

BB

Then we have that αi is continuous, that its image Wi = αi(|Ai|) is an open set of |A|, that
αi : |Ai| →Wi is a homeomorphism and that |A| = W1 ∪W2. Now we want to de�ne a sheaf of
continuous functions (on local algebras) OA on |A| such that A = (|A|,OA) is a standard analytic
manifold and αi is a morphism of standard analytic manifolds. Using a general construction of
gluing ringed spaces (see Appendix for details), it su�ces to de�ne such a sheaf OWi on Wi for
i = 1, 2 such that, for any open set V ⊂ W1 ∩W2, we have OW1(V ) = OW2(V ): explicitly, OA
will be given by

OA(U) = {f : U → R : f ◦ αi ∈ OAi(α
−1
i (U)), i = 1, 2}

De�ne
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if V ⊆Wi is open, OWi(V ) = {f : V → R : f ◦ αi ∈ OAi(α
−1
i (V ))}.

With this de�nition, Ai is isomorphic (in C) to Wi via αi. Now, let V ⊂W1∩W2 be an open set.
The homeomorphism α−1

1 ◦α2 induces an isomorphism (of standard analytic manifolds) between
the open submanifold α−1

2 (V ) of A2 and α−1
1 (V ) of A1. Thus, if f : V → R is continuous, we

have
f ◦ α1 ∈ OA1(α−1

1 (V ))⇔ f ◦ α2 ∈ OA1(α−1
2 (V ))

which shows OW1(V ) = OW2(V ), as required. We claim that A = (|A|,OA) is the gluing of
A1, A2 with respect to the open immersions ϕ1, ϕ2. To see this, let (β1, β2, T ) be a triplet where
T = (|T |,OT ) is a standard analytic manifold and βi : Ai → T are open immersions such that
β1 ◦ ϕ1 = β2 ◦ ϕ2. We have to show that there exists an unique morphism f : A→ T such that
βi = f ◦ αi for i = 1, 2. Uniqueness of f comes from the fact that |A| is the solution of the same
universal problem in the category of topological spaces: the map f : |A| → |T | must be de�ned
by

f(p) = α−1
1 (p) for p ∈W1 and f(p) = α−1

2 (p) for p ∈W2

We just have to prove that f is a morphism of standard analytic manifolds. This is a property
that we can check locally. But f is locally de�ned either by β1 ◦ α−1

1 on W1 or by β2 ◦ α−1
2 on

W2, both morphisms in the category of standard analytic manifolds.

2.1.2 Local expression of morphisms.

Let A = (|A|,OA) and B = (|B|,OB) be standard analytic manifolds and ϕ : |A| → |B| a
continuous map which induces a morphism from A to B. Let p ∈ |A| and ϕ(p) ∈ |B|. We want
to investigate how is the local expression of the morphism ϕ when we take local coordinates
centered at p and at ϕ(p).

More precisely, consider a local chart at p, i.e. an isomorphism φ : A|Up → Amp+ × Rnp |U0 where
Up is a neighborhood of p in |A| and U0 is a neighborhood of 0 in Rmp≥0 × Rnp , and consider,
correspondingly, a local chart ψ : B|Vϕ(p) → V0 at ϕ(p) (one can chose U0 and V0 to be the whole
space, according to corollary 2.1.9).

A|Up
(ϕ,ϕ]) //

(φ,φ])
��

B|Vϕ(p)
(ψ,ψ])
��

Amp+ × Rnp Amϕ(p)+ × Rnϕ(p)

Then, the map h := ψ ◦ ϕ ◦ φ−1 : Rmp≥0 × Rnp → Rmϕ(p)≥0 × Rnϕ(p) has an analytic extension to a
neighborhood of 0 ∈ Rmp+np .

Reciprocally, any such continuous map h : U0 → V0 that induces a morphism (resp. isomorphism)
h : Amp+ ×Rnp |U0 → Amϕ(p)+ ×Rnϕ(p) |V0 gives rise, by reversing the charts φ and ψ to a morphism
(resp. isomorphism) from an open submanifold of A containing p to an open submanifold of B
containing ϕ(p).

In the following proposition, we just describe the conditions for a continuous map h to give rise
to a morphism or an isomorphism between the corresponding open submanifolds of the local
models Am+ × Rn = (Rm≥0 × Rn,Om,n).

Proposition 2.1.18. Let m,n,m′, n′ be natural numbers, k = m+n and k′ = m′+n′. Let U , V
be open neighborhoods of the origin in Rm≥0×Rn and in Rm′≥0×Rn

′
respectively. Let h : U → V be

a continuous map with h(0) = 0, and h = (h1, ..., hk′) be the components of h as a map ranging
in Rk′ . Denote by (x, y) = (x1, . . . , xm, y1, . . . , yn) and (z, w) = (z1, . . . , zm′ , w1, . . . , wn′) the
coordinates in Rm≥0 × Rn and Rm′≥0 × Rn′ . Then
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i) h induces a morphism (h, h]) : Am+ × Rn|U0 → Am′+ × Rn′ |V0 where U0 and V0 are open
neighborhoods of the origin in Rm≥0×Rn and Rm′≥0×Rn′ respectively, if and only if each hj
has an analytic extension on a neighborhood of the origin in Rk.

ii) Assume that k = k′ and that h induces a morphism (h, h]) : Am+ × Rn|U → Am′+ × Rn′ |V .
Then (h, h]) is an isomorphism in the category O if and only if m = m′, n = n′, h is an
homeomorphism and for any j = 1, 2, . . . ,m,

zj = hj(x, y) = xi(j)gj(x, y)

where gj an analytic function at 0 such that gj(x, y) 6= 0 for any (x, y) ∈ W for W a
desirable neighborhood of 0 in Rm≥0 × Rn and j → i(j) a permutation of {1, . . . ,m}.

Proof. Necessity of part i) follows from the fact that the projections functions prj : (p1, . . . , pk) ∈
Rm′≥0×Rn

′ → pj ∈ R are sections of Om′,n′ over any open neighborhood of the origin in Rm′≥0×Rn
′
,

so if h induces a morphism, each prj ◦ h = hj is a section of Om,n over an open neighborhood of
the origin in Rm≥0 × Rn which implies that they admit an analytic extension to a neighborhood
of the origin in Rk. Conversely, suppose that each hj admits an analytic extension to U0 ⊆ U an
open neighborhood of the origin in Rk. In particular, by the open mapping theorem for analytic
functions, h is an open map, so V0 := h(U0) is an open subset of V . Let W be an open subset of
V0 and f a section of Om′,n′ over W . Then f ◦ h ∈ Om,n(h−1(W )) because it admits an analytic
extension for any p ∈ h−1(W ).

For ii), suppose that the continuous map h : U0 → V0 induces an isomorphism of standard
manifolds

(h, h]) : Am+ × Rn|U0 → Am
′

+ × Rn
′ |V0

Since h(0) = 0, by proposition 2.1.10 m = m′ and hence n = n′. Notice that h is an homeomor-
phism, so

h(∂(Rm≥0 × Rn)) = ∂(Rm≥0 × Rn) =

m⋃
i=1

{(z, w) ∈ Rm≥0 × Rn : zi = 0} (2.2)

Condition (2.2) implies that for any j = 1, 2, . . . ,m there exists αj = (αj1, . . . , α
j
m) ∈ Nm with

αj 6= 0 such that

hj(x, y) = xα
j
gj(x, y) = x

αj1
1 · · ·x

αjm
m gj(x, y) (2.3)

with gj analytic at 0, and gj(0, y) 6= 0 for any y 6= 0 close enough to 0 ∈ Rn. Suppose gj(0, 0) = 0.
Then, there exists ij ∈ {1, . . . , n} such that yij divides gj and then yij divides hj . This is not
possible, because then we could take (x0, y0) an interior point of {(x, y) ∈ Rm≥0 × Rn : yij = 0}
such that h(x0, y0) ∈ {(z, w) ∈ Rm≥0 × Rn : zij = 0}, against (2.2).

Each of the �rst m lines of the jacobian matrix of the di�erential at 0 ∈ Rm≥0 ×Rn, d0h, is given
by ∇(hj)(0, 0). By (2.3)

x
αj1−1
1 x

αj2−1
2 · · ·xα

j
m−1
m divides ∇(hj)(x, y) (2.4)

As h induces an isomorphism, d0ϕ is a linear isomorphism of Rk. Then, there are not lines of
zeroes on its jacobian matrix. Since αj 6= 0 and (2.4), for any j ∈ {1, . . . ,m} there exists a
unique i(j) ∈ {1, . . . ,m} such that αji(j) = 1 being the other components of αj equal to zero. We
have then for any j = 1, 2, . . .m,

hj(x, y) = xi(j)gj(x, y)

Now, we prove that the map j → i(j) is a permutation of {1, . . . ,m}. This follows from the fact
that if we make the same construction for h−1,

h−1(z, w) = (zl(1)f1(z, w), . . . , zl(m)fm(z, w), fm+1(z, w), . . . , fk(z, w)),
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since h ◦ h−1(z, w) = (z, w) and h−1 ◦ h(x, y) = (x, y), for 1 ≤ j ≤ m,

zj = zl(i(j))fi(j)(z, w)gj(h
−1(z, w))

xj = xi(l(j))gl(j)(x, y)fj(h(x, y))

hence i : j ∈ {1, . . . ,m} → i(j) ∈ {1, . . . ,m} is a permutation of {1, . . . ,m} (with inverse l).

De�nition 2.1.19. Let A = (|A|,OA) be a standard analytic manifold and p ∈ |A|. Given a
local chart (U,ϕ = (x1, . . . , xk)) of A at p and f ∈ O(U) we say that f is monomial at p with
respect to the local chart (U,ϕ) (or with respect to the coordinates x) if the Taylor
expansion of the germ fp with respect to the coordinates x is of monomial type. In other words,
that we can write locally f in the coordinates x as

f(x) = xα1
1 · · · x

αm
m g(x), x ∈ U,

where g ∈ O(U), vanishes nowhere in U , and each αi ∈ N. We say that f is monomial at

the point p if it is monomial with respect to some local chart at p. Finally, we say that f is

(locally) monomial if it is monomial at every point of A.

De�nition 2.1.20. Let ϕ : A→ B be a morphism of standard analytic manifolds. We say that
ϕ is locally monomial if for any p ∈ |A| there exists local coordinates (U, φ = (x1, . . . , xk))
centered at p such that all the components of ϕ are monomial at p with respect to these coordi-
nates.

Examples 2.1.21. i) The morphism (x, y) ∈ L× R→ (x, x+ y) ∈ A+ × R is locally mono-
mial because with respect to the new coordinates (x′, y′) = (x, x + y) its components are
monomial.

ii) As a consequence of proposition 2.1.18 the morphism (x, y) ∈ A+×R→ (x, x2(x2 + y2)) ∈
L× R is not locally monomial.

2.2 G-analytic functions.
In this section we de�ne the concept of generalized analytic function. These are the functions on
open subsets of quadrants Rk≥0 which can be represented locally by real convergent generalized
power series, in the same way as the classical real analytic functions are those locally described
by convergent power series. The principal di�erence is that depending on the position of the
point with respect to the boundary of the quadrant we are considering, the series will have a
number of analytic or generalized variables. We need some notation.

Let k,m, n ∈ N, A ⊆ {1, . . . , k} and ξ = (ξ1, . . . , ξk) ∈ (0,∞)k be a polyradius. We put

IA,ξ := B1 ×B2 × · · ·Bk ⊆ Rk,

where the Bi is either the interval [0, ξi) ⊂ R if i ∈ A or the interval (−ξi, ξi) if i 6∈ A. For a posi-
tive real number ε, we also write IA,ε for IA,(ε,...,ε). Notice that, if m+n = k and A = {1, . . . ,m},
then we have, according to the �rst chapter, a second notation IA,ξ = Im,n,ξ which will be also
used here.

Let Gk denote the group of permutations of {1, . . . , k} and Gm,n the subgroup of Gm+n consist-
ing on those permutations of {1, . . . ,m + n} such that they induce separately permutations of
{1, . . . ,m} and {m+ 1, . . . ,m+ n}. Given σ ∈ Gk,

σ : Rk → Rk

σ(w1, . . . , wk) = (wσ(1), . . . , wσ(k))
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With this notation, σ denotes a permutation of {1, ..., k} or a map from Rk to Rk. We will
deduce the meaning of σ from the context.

From now on, consider A ⊆ {1, . . . , k} and put m = m(A) = |A| and n = n(A) = k −m. Let
GA denote the subset of permutations of {1, ..., k} sending A to {1, . . . ,m}.

Remark 2.2.1. Given σ, τ ∈ GA, σ ◦ τ−1 ∈ Gm(A),n(A).

Notice that if δ > 0 is su�ciently small, then, σ restricts to an homeomorphism σ : IA,δ → Im,n,δ
(notice the abuse, again, of notation) whose inverse is also the restriction of a linear automorphism
of Rk induced by a permutation of {1, ..., k}, the inverse σ−1, of σ.

If p = (p1, . . . , pk) ∈ Rk≥0, we put

A(p) := {i ∈ {1, . . . , k} : pi = 0}

mp = m(A(p)) := |A(p)|

np = n(A(p)) := k −mp

Gp := GA(p)

Notice that the family of sets {p + IA(p),ε} , where ε > 0 is su�ciently small, is a fundamental
system of neighborhoods of p in Rk≥0. By 2.1.7 the map

p ∈ Rk≥0 7−→ mp ∈ N

is upper semi-continuous so for ε > 0 small enough, if q ∈ p + IA(p),ε, then A(q) ⊆ A(p), and
therefore mq ≤ mp.

Given p ∈ Rk≥0 and σ ∈ Gp we de�ne θp,σ as the restriction to Rmp≥0 ×Rnp of the a�ne map given
by

(w1, . . . , wk) 7→ p+ σ(w1, . . . , wk) = (p1 + wσ(1), ..., pk + wσ(k)). (2.5)

Coordinates in Rmp≥0 × Rnp will be denoted, more conveniently, by (x1, . . . , xmp , y1, . . . , ynp),
re�ecting the number and position of factors which are half real lines and those which are real
lines.

Notice that for any small δ > 0, θp,σ restricts to an homeomorphism from Imp,np,δ to p+ IA(p),δ

sending 0 ∈ Imp,np,δ to p ∈ p+ IA(p),δ.

Graphically,

θpImp,np,δ

p+ IA(p),δ0

θp(0) = p = (p1, 0)

x1

y1

(x1, y1) 7−→ (p1 + y1, x1)

z1

z2
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De�nition 2.2.2. Let V be an open set in Rk≥0 and let p ∈ V . A function f on V is said to be
generalized analytic or, shortening, G-analytic at p if there exists δ > 0, a convergent series
s ∈ R

{
X∗, Y

}
mp,np

and σ ∈ Gp such that

i) (p+ IA(p),δ) ⊆ V

ii) s ∈ R
{
X∗, Y

}
mp,np,δ

iii) Sδ(s)|Imp,np,δ = f |(p+IA(p),δ) ◦ θp,σ

We say that f is G-analytic on V if it is G-analytic at every point p of V .

Remark 2.2.3. The de�nition above does not depend on the choice of σ in the following sense:
if δ, s and σ are as in that de�nition satisfying i), ii) and iii), then for any τ ∈ Gp there exists
t ∈ R

{
X∗, Y

}
mp,np,δ

(which depends on τ) such that Sδ(t)|Imp,np,δ = f |(p+IA(p),δ) ◦ θp,τ . To

prove this claim, take τ ∈ Gp and let η = σ−1 ◦ τ , a permutation of {1, ..., k}. Denote by ηs
the series in R{(X,Y )∗} obtained by the morphism of substitution (see Proposition 1.2.10) of
the variable Xi by Xη(i) and of the variable Yi by Yη(i+m)−m. Notice that this series belongs
actually to R{X∗, Y }mp,np,δ because η induces a permutation of the generalized variables Xj and
a permutation of the analytic ones Yj . The remark follows from the observation that

θp,σ = θp,τ ◦ η

and the fact that Sδ(ηs) = Sδ(s) ◦ η, from Proposition 1.2.21.

De�nition 2.2.4. Let V be an open subset of Rk≥0. We let GLk(V ) denote the set of G-analytic
functions on V :

GLk(V ) := {f : V → R : f is G-analytic on V }

Then GLk(V ) is a R-subalgebra of the algebra of continuous functions on V with respect to the
natural inclusion R ↪→ GLk(V ) that identi�es a real number with the corresponding constant
function. It is a straightforward computation, as a consequence of the fact that the sum of
convergent series is an algebra homomorphism (see Proposition 1.2.20), to check that GLk(V ) is
a sub R-algebra of the algebra of real functions on V .

Theorem 2.2.5. i) A G-analytic function f at a point p is continuous at that point.

ii) A G-analytic function at a point in the interior of Rk≥0 in Rk (that is, a point p =

(p1, . . . , pk) ∈ Rk≥0 such that pi 6= 0 for all 1 ≤ i ≤ k) is analytic at this point.

iii) Let V be an open subset of Rk≥0, p a point in V and f : V → R a function which is
G-analytic at p. Then there exists a neighborhood of p, W ⊆ V , such that f is G-analytic
on W .

As a consequence, if V is an open subset of Rk≥0 and f : V → R is G-analytic on V , f is continuous
on V and analytic on the interior in Rk of V .

Proof. Part i) follows from the fact that f coincides with the sum of a convergent generalized
power series in a neighborhood of p and such a sum is continuous by 1.2.20. Part ii) follows from
de�nition of G-analytic function.

For iii), if f is analytic at p then, by de�nition there exists δ > 0, s ∈ R
{
X∗, Y

}
mp,np

and
σ ∈ Gp such that

1. (p+ IA(p),δ) ⊆ V and s ∈ R
{
X∗, Y

}
mp,np,δ
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2. Sδ(s)|Imp,np,δ = f |(p+IA(p),δ) ◦ θp,σ

Take δ > 0 such that δ ≤ mini 6∈A(p){pi}. Then, for all q ∈ p+ IA(p),δ, A(q) ⊆ A(p) and therefore
mq ≤ mp (see 2.1.7). We claim that f is G-analytic on p+ IA(p),δ. Let q = (q1, . . . , qk) be a point
in p+ IA(p),δ and consider a = (a1, . . . , ak) := θ−1

p,σ(q) ∈ Imp,np,δ. Put

m′ = |{i ∈ {1, . . . ,mp} : ai = 0}| and n′ = k −m′.

By Proposition 1.2.23 given a permutation τ of {1, . . . , k} such that τ(A(a)) = {1, . . . ,m′} and
ε > 0 such that

a+ τ(w) ∈ Imp,np,δ
whenever w ∈ Im′,n′,ε , there exists a unique Tas ∈ R{U∗, V }m′,n′,ε such that

Sε(Tas)(w) = Sδ(s)(a+ τ(w))

for all w ∈ Im′,n′,ε.

Consider the composition of permutations η = τσ. We have, in one hand, that η ∈ GA(q):
If j ∈ A(q) then the jth-coordinate qj of q is equal to zero. But qj = pj + aσ(j) and, since
A(q) ⊆ A(p), pj = 0 and thus aσ(j) = 0. This implies that σ(j) ∈ A(a) and then that η(j) =
τ(σ(j)) ∈ {1, . . . ,m′}.

On the other hand, we have that

θa,τ (Im′,n′,ε) ⊂ a+ τ(Im′,n′,ε) ⊂ Im,n,δ,

so that the composition θp,σ ◦θa,τ is well de�ned in Im′,n′,ε. But this composition is nothing more
than the map θq,τσ, obtaining �nally

Sε(Tas) = Sδ(s) ◦ θa,τ = f ◦ θp,σ ◦ θa,τ = f ◦ θq,τσ

which shows that f is G-analytic at the point q, as was to be proved.

For p ∈ Rk≥0 we consider the R-algebra of germs of G-analytic functions at p in the usual way: it is
the quotient of the set {(V, f) : p ∈ V, V open and f : V → R G-analytic at p} by the equivalence
relation (V, f) ∼ (U, g) if and only if there exists an open neighborhood of p, W ⊂ U ∩ V such
that f |W = g|W . Let GLk,p denote the R-algebra of germs of G-analytic functions at p.

Proposition 2.2.6. For any p ∈ Rk≥0 the R-algebra GLk,p is isomorphic to R
{
X∗, Y

}
mp,np

. As
a corollary, the R-algebra of germs of generalized analytic functions GLk,p is a local R-algebra
whose maximal ideal consists of those germs of functions which take the value zero at p.

Proof. Let p ∈ Rk≥0. As in the beginning of this section, let A(p) = {i ∈ {1, ..., k} : pi = 0} and
let Gp be the set of permutations of {1, . . . , k} that send A(p) into {1, . . . ,mp}. Fix σ ∈ Gp and
denote by θp,σ the map de�ned in Rmp≥0 × Rnp by θ(w) = p+ σ(w).

Let s ∈ R
{
X∗, Y

}
mp,np,δ

be a given convergent generalized series and denote, as in 1.2.20 by

Sδ(s) its sum, a G-analytic function on Imp,np,δ ⊂ Rk≥0. By its very de�nition, the composition
Sδ(s) ◦ θ−1

p,σ is a G-analytic function in some neighborhood of p. We can then consider the map

Fσ : R
{
X∗, Y

}
mp,np

→ GLk,p (2.6)

assigning to an element s ∈ R
{
X∗, Y

}
mp,np,δ

the germ at p of Sδ(s) ◦ θ−1
p,σ, which is well de�ned

(the germ of such a composition does not depend on the polyradius δ as long as the series has
radius of convergence greater or equal to δ). The fact that the sum operator Sδ is an algebra
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homomorphism between R
{
X∗, Y

}
mp,np

and C0(IA(p),δ;R), gives directly the result that Fσ is
an R-algebra homomorphism.

Let us see �nally that F is a bijection. It is injective thanks to the fact that the sum morphism
Sδ is injective. Surjectivity of Fσ comes from de�nition: if fp∈ GLk,p is the germ of some G-
analytic function f ∈ GLk(U) , by de�nition of GLk(U) (and Remark 2.2.3) there exists δ > 0
and s ∈ R

{
X∗, Y

}
mp,np,δ

such that Sδ(s) = f ◦ θp,σ. Then, Fσ(s) = fp.

Notice that we have proved that the morphism Fσ in (2.6) is an isomorphism for any σ ∈ Gp.
Following Remark 2.2.1, if σ, τ ∈ Gp, we obtain that given a germ fp, the two series F−1

σ (fp),
F−1
τ (fp), are obtained one from the other by the permutation σ ◦ τ−1 (or its inverse) of the

variables X,Y . This permutation belongs to the subgroup Gmp,np of permutations of the k
variables which induce separate permutations, one on the generalized variables X and another
permutation on the analytic ones Y . Thus we can de�ne

De�nition 2.2.7. Given p ∈ Rk≥0 and fp ∈ GLk,p, the series F−1
σ (fp) ∈ R

{
X∗, Y

}
mp,np

is called
the Taylor expansion of the germ fp . It is well de�ned modulo the action of Gmp,np on the
series.

Examples 2.2.8. Let us give some examples of G-analytic functions.

i) If V is an open subset of Rk≥0 and f : V → R is a function which is the restriction to V
of a real analytic function on an open set of Rk containing V , then f is G-analytic on V .
This is an easy consequence of the fact that, given variables X and Y , we have naturally
the inclusion R{X,Y } ⊂ R{X∗, Y }.

ii) If s ∈ R
{
X∗, Y

}
m,n,δ

, then its sum is G-analytic on Im,n,δ.

iii) sin(xλyµ) in R2
≥0

iv) log(1 + xλ) in R≥0

v) Let ζ denote the Riemann zeta function. Then,

ζ(− log x) =

∞∑
n=1

xlog(n) : [0, e−2)→ R

is G-analytic.

2.3 Generalized analytic manifolds.

We are going to de�ne a subcategory G of C that will be called the category of generalized
analytic manifolds.

In order to de�ne G we proceed as follows. First of all we construct a particular object Lk in
G for each k ∈ N called the Standard Local Model of dimension k. Then objects of G are those
objects in the category C which are locally isomorphic to some Lk as ringed spaces. Morphisms
in G will be the morphism in C when consider the objects of G as objects in C so that G will be
a full subcategory of C.

We consider Rk≥0 as a topological space with the topology of subspace of Rk. If U is an open set
of Rk≥0 the assignment U 7→ GLk(U) of G-analytic functions on U (see de�nition 2.2.4), together
with the restriction morphism

GLk(U)→ GLk(V ), f 7→ f |V
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each time that V ⊂ U , is a sheaf on Rk≥0. Moreover, by 2.2.4 and theorem 2.2.5, it is a subsheaf
of local R-algebras of the sheaf of continuous functions. We de�ne the standard local model

of generalized analytic manifold of dimension k as

Lk = (Rk≥0,GLk).

De�nition 2.3.1. A generalized analytic manifold or, for short, G-manifold of dimension

k is a locally ringed space M = (|M |,GM ) ∈ Objects(C), where |M | is a Hausdor� topological
space with a countable open basis, such that for every p ∈ |M | there exists an open neighborhood
U of p and an open set V ⊂ Rk≥0 such that the restrictions M |U = (U,GM |U ) and Lk|V =
(V,GLk |V ) are isomorphic in the category C.

De�nition 2.3.2. If M = (|M |,GM ) is a G-manifold, an open submanifold of M is the
locally ringed space M |U = (U,OM |U ) where U is an open subset of |M | (see the appendix for
the notation). It is clear that an open submanifold is also a G-analytic manifold.

Given two generalized analytic manifolds M = (|M |,GM ) and N = (|N |,GN ) a morphism be-
tween them is, by de�nition, a morphism of the category C. The category G of generalized
analytic manifolds is then de�ned by setting

objects(G) := {M ∈ objects(C) : M is a generalized analytic manifold}
morphisms(G) := {(ϕ : M → N) ∈ morphisms(C) : M,N ∈ objects(G)}

Recall that a morphism ϕ between two generalized analytic manifolds M = (|M |,GM ) and N =
(|N |,GN ) is determined by a continuous map between the topological spaces ϕ : |M | → |N | (but
not every continuous map between the underlying topological spaces induces a morphism between
the ringed spaces !), and that such a morphism is an isomorphism if and only if ϕ : |M | → |N |
is an homeomorphism and for all p ∈ |M | the induced homomorphism in the stalk

ϕ : GN,ϕ(p) −→ GM,p

ϕ(f |ϕ(p)) = (f ◦ ϕ)|p

is an isomorphism of R-algebras.

Examples 2.3.3. We give some examples of generalized analytic manifolds to illustrate the
de�nition. Most of them will be used through this work.

i) Let ORk denote the sheaf of analytic functions over Rk. Then (Rk,ORk) is a generalized
analytic manifold. To see that, remark that the homeomorphism ϕ : Rk → Rk>0 ⊆ Rk≥0

de�ned by ϕ(y1, . . . , yk) = (ey1 , . . . , eyk) induces an isomorphism (of locally ringed spaces)
from (Rk,ORk) to Lk|Rk>0

= (Rk>0,GLk |Rk>0
). Then, in particular, for V open subset of Rk,

if we let OV denote the sheaf of analytic functions on V , (V,OV ) is a generalized analytic
manifold.

ii) More generally, if M = (|M |,OM ) is a real analytic manifold (with the sheaf-theoretic
interpretation; that is, that OM is the sheaf of real analytic function on the underlying
variety |M |), thenM is a generalized analytic manifold. This is an immediate consequence
of example above.

iii) The local model Lk = (Rk≥0,GLk) is a generalized analytic manifold of dimension k.

iv) Consider Rm≥0 × Rn with the product topology. Let Φ : Rm≥0 × Rn → Rm≥0 × Rn>0 ⊂ Rm+n
≥0

be the map de�ned by

(x, y) ∈ Rm≥0 × Rn Φ−→ (x, ϕ(y)) = (x, ey1 , . . . , eyk) ∈ Rm≥0 × Rn>0
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It is a homeomorphism. We can endow an structure of generalized analytic manifold to
Rm≥0 × Rn via this homeomorphism: just consider the sheaf Gm,n de�ned by assigning to
each open set V ⊂ Rm≥0 × Rn the R-algebra of functions f : V → R such that f ◦ Φ−1 is
a G-function on the open set Φ(V ) of Rm+n

≥0 . For reasons that will be clear below, we call
the generalized analytic manifold

Lm × Rn := (Rm≥0 × Rn,Om,n)

the (m,n) mixed (generalized) local model. Notice that by the moment Lm × Rn is just
a notation. We show in proposition 2.3.21 below that the category G has product. In
particular the product of the standard analytic manifolds Lm and Rn has sense and it
agrees with the given here.

De�nition 2.3.4. Let p ∈ |M |. A local (generalized) chart at p will be a pair (U, z) where
U is an open neighborhood of p in |M | and

z : U −→ V

z(q) =(z1(q), . . . , zk(q))

is a homeomorphism which induces an isomorphism of generalized analytic manifolds M |U =
(U,GM |U ) and Lk|V = (V,GLk |V ). The components z1, . . . , zk will be called local coordinates

at p. We say that a local chart is centered at p if it sends p to the origin.

Proposition 2.3.5. For any point p ∈ Rk≥0 there exists ε > 0 small enough and an open
neighborhood (depending on ε) isomorphic to (Lmp × Rnp)|[0,ε)mp×(−ε,ε)np . As a consequence,
given Lk|V , an open submanifold of Lk, any point p ∈ V has an open neighborhood isomorphic
to Lmp × Rnp .

Proof. Let p ∈ Rk≥0, A(p) ⊂ {1, ..., k} and σ ∈ Gp as de�ned in 2.2. For δ > 0 su�ciently small,
the map θp,σ as in equation (2.5) restricts to a homeomorphism from the neighborhood Imp,np,δ
of (0, ..., 0) in Rk≥0 to the neighborhood IA(p),δ of p in Rk≥0. Then we have that its inverse θ−1

p,σ

induces an isomorphism between Lk|IA(p),δ
and (Lmp ×Rnp)|Imp,np,δ . In this way we can see θ−1

p,σ

as a local chart at p, centered at p. Now, it su�ces to notice that the map

ϕ : [0, ε)m × (−ε, ε)n → Rm≥0 × Rn

ϕ(x1, . . . , xm, y1, . . . , yn) = (
x1

ε− x1
, . . . ,

xm
ε− xm

,
y1

ε− (y1)2
, . . . ,

yn
ε− (yn)2

)

induces an isomorphism between (Amp+ × Rnp)|[0,ε)mp×(−ε,ε)np and (Amp+ × Rnp).

De�nition 2.3.6. Let M = (|M |,GM ) be a k-dimensional generalized analytic manifold. Let U
be an open subset of |M | and f : U → R a continuous function on U . Let p ∈ U . We just say
that f is G-analytic at p if the germ of f at p belongs to the local algebra GM,p. The function
f will be called a G-analytic function on U if it is G-analytic at every point of U . Equivalently,
since GM is a sheaf, f is G-analytic on U if it belongs to the algebra GM (U) of sections of the
structural sheaf.

By the very de�nition of G-analytic manifold, we deduce that f is G-analytic at a point p ∈ U if
and only if there exists a local chart at the point p, z : Up → V ⊆ Rk≥0 such that the function
f ◦ z−1 : V → R is G-analytic at ϕ(p). If f is G-analytic at p for all p ∈ U we say that f is
G-analytic on U .

Remark that this property does not depend on the choice of the local chart z. If U1, U2 are open
neighborhoods of p and zi : Ui → Vi are isomorphisms from M |Ui to Lk|Vi , we have the diagram
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V1

z2◦z−1
1

��

z−1
1

##

f◦z−1
1

��
U1 ∩ U2

f // R

V2

z−1
2

;;

f◦z−1
2

@@

then if f ◦ z−1
1 is G-analytic at z1(p) it is G-analytic on a neighborhood V ′ of z1(p) (see 2.2.5),

that is f ◦ z−1
1 ∈ GLk(V ′). As z1 ◦ z−1

2 is an isomorphism,

f ◦ z−1
1 ◦ z1 ◦ z−1

2 = f ◦ z−1
2 ∈ GLk(W ′)

where W ′ = z2 ◦ z−1
1 (V ′). In particular f ◦ z−1

2 is G-analytic at z2(p).

De�nition 2.3.7. Given f a G-analytic function overM and p ∈M , let (U,ϕ = (x1, . . . , xk)) be
a local chart ofM at p. The Taylor expansion of f at p with respect to these coordinates

is the series in R{X∗}, X = (X1, ..., Xk) which is the Taylor expansion of the the germ of f ◦ϕ−1

at ϕ(p) ∈ Rk≥0 (It is well de�ned up to a permutation of the generalized variables (those Xj such
that xj(p) = 0) and a permutation of the analytic ones (those Xj such that xj(p) 6= 0).

De�nition 2.3.8. Let |M | be a Hausdor� topological space with a countable open basis. We
say that a family {(Uλ, ϕλ)}λ∈Λ is an G-atlas of |M | if

i) For any λ ∈ Λ, Uλ is an open subset of |M | and ϕλ : Uλ → ϕλ(Uλ) ⊆ Rk≥0 is an homeo-
morphism.

ii) X =
⋃
λ∈Λ Uλ

iii) For any λ, µ ∈ Λ, ϕλ ◦ ϕ−1
µ : ϕµ(Uµ ∩ Uλ)→ ϕλ(Uµ ∩ Uλ) is an isomorphism in G.

Let U an open subset of |M |. We denote by GM (U) the set of continuous functions f : U → R
such that for any p ∈ U , there exists an open V ⊆ U such that f ◦ ϕ−1

λ : ϕλ(V ∩ Uλ) → R is
G-analytic at ϕ(p) ∈ Rk≥0 for any λ ∈ Λ such that p ∈ Uλ.

Proposition 2.3.9. The pair X = (|X|,OX) is a generalized analytic manifold.

Proof. By de�nition, X ∈Obj(C). Let p ∈ |X|. Let λ ∈ Λ such that p ∈ Uλ. Then, ϕ−1
λ induces

a morphism from Lk|ϕλ(Uλ) to X|Uλ by de�nition of X. Moreover, ϕλ : Uλ → ϕλ(Uλ) induces a
morphism from X|Uλ to Lk|ϕλ(Uλ) : let V be an open subset of ϕλ(Uλ) and g : V → R a section
of GLk over V . Then, g◦ϕλ ∈ GX(ϕ−1

λ (V )) because if q ∈ ϕ−1
λ (V ), and µ ∈ Λ is such that q ∈ Uµ,

f ◦ ϕλ ◦ ϕ−1
µ ∈ GLk(ϕµ ◦ ϕ−1

λ (V )) since by condition iii) of 2.3.8 g ∈ GLk(V ) 7→ g ◦ ϕλ ◦ ϕ−1
µ ∈

GLk(ϕµ ◦ ϕ−1
λ (V )) is an isomorphism.

2.3.1 Strati�cation by the number of boundary components.

Fix a k dimensional generalized analytic manifold M = (|M |,GM ). The �rst consequence of the
de�nition is the following

Theorem 2.3.10. i) The underlying space |M | is a topological manifold of dimension k with
boundary.
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ii) If int(|M |) denotes the interior of this manifold then the restricted sheaf

int(M) = (int(|M |),GM |int(|M |))

is a real analytic manifold.

Proof. i) follows from the fact that each point in |M | has an open neighborhood homeomorphic
to an open subset of Rk≥0, a topological manifold of dimension k with boundary.

ii) follows from the fact that each point p in int(|M |) has an open neighborhood Up such that the
restriction M |Up = int(|M |)|Up is isomorphic to the restriction of Lk to some open set contained
in the interior Rk>0 of Rk≥0. After this remark, use theorem 2.2.5 that asserts that a G-analytic
function at an interior point of Rk≥0 is analytic at that point.

The Theorem above shows that at points in the interior of the manifold, the dimension is the
only local invariant by isomorphisms. As we show below, this is not the case for points at
the boundary ∂|M |: looking at the standard local model Rk≥0, although any two points in the
boundary have topologically equivalent neighborhoods, they would not have necessarily isomor-
phic neighborhoods in the category of generalized analytic manifolds. In fact, the number of
coordinate hyperplanes ("boundary components"), passing through the point will be invariant
for local isomorphisms.

Let (U, z) be a local chart at p and de�ne mp := |{i ∈ {1, . . . , k} : zi(p) = 0}|. We are going to
prove that mp does not depend on the local chart chosen but only on the point p. We need the
following proposition

Proposition 2.3.11. Let U and V two open sets of Rk≥0 and suppose that the generalized ana-
lytic manifolds Lk|U = (U,GLk |U ) and Lk|V = (V,GLk |V ) are isomorphic via the homeomorphism
ϕ : U → V . Then for each p ∈ U , mp = mϕ(p) and so np = nϕ(p).

Proof. Assume that mp ≥ mϕ(p) (otherwise, take the inverse of ϕ). To say that Lk|U and Lk|V
are isomorphic via ϕ means that, for any q ∈ U the induced local homomorphism on the stalks

ϕ]q : GLk,ϕ(q) −→ GLk,q
fϕ(q) 7→ (f ◦ ϕ)q

is an isomorphism. Let p ∈ U . By lemma 2.2.6 GLk,ϕ(p) is isomorphic to R
{
X∗, Y

}
mϕ(p),nϕ(p)

and GLk,p is isomorphic to R
{
Z∗,W

}
mp,np

. It is important to recall what are the isomorphisms
considered in that proposition: they are given by the maps

F := Fσ,ϕ(p) : R
{
X∗, Y

}
mϕ(p),nϕ(p)

→ GLk,ϕ(p)

G := Fτ,p : R{Z∗,W}mp,np → GLk,p
where F (and similarly for G) sends a series s ∈ R

{
X∗, Y

}
mϕ(p),nϕ(p)

to the germ of Sδ(s)◦θ−1
ϕ(p),σ

at ϕ(p), σ being a permutation in Gϕ(p) and θϕ(p),σ is de�ned as in (2.5) We have the diagram

GLk,ϕ(p)

ϕp // GLk,p

R
{
X∗, Y

}
mϕ(p),nϕ(p)

F

OO

φ:=G−1◦ϕp◦F // R
{
Z∗,W

}
mp,np

G

OO

As Zj has all N th-roots in R
{
Z∗,W

}
mp,np

, and φ is an algebra homomorphism, we have

that φ(Zj) also have all N th-roots and then, by Proposition 1.1.20 φ(Zj) = XαjUj for all
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j ∈ {1, . . . ,mp} where the Uj are units. Notice that αj 6= 0 because Zj is not a unit and an iso-
morphism send non units to non units. Consider at ϕ(p) the local chart z̃ = (z̃1, . . . , z̃k) = θ−1

ϕ(p),σ

and at p the local chart z̃ = (z̃1, . . . , z̃k) = θ−1
p,τ (cf. proposition 2.3.5). Denote by z̃j the germ

of z̃j at ϕ(p), etc. By the way we have de�ned the isomorphism F , we have F (Zj) = z̃j for
j = 1, ...,mϕ(p) and F (Wj) = z̃j+mϕ(p)

for j = 1, ..., n. Write then z̃ = (z, w) where z are the
�rst mϕ(p) components of z̃ and w are the last nϕ(p) components. Similarly we put x̃ = (x, y)
where x are the �rst mp components of x̃ and y are the last np components.

Write the map ϕ in these coordinates as

ϕ(x, y) = (ϕ1(x, y), . . . , ϕk(x, y))

where ϕj = z̃j ◦ϕ. By de�nition, the germ of ϕj is the image by the isomorphism ϕ]p of z̃j. Using
the commutative diagram above, we obtain, in a neighborhood of p, the expression

ϕ(x, y) = (xα1u1(x, y), . . . , x
αmϕ(p)umϕ(p)(x, y), ϕmϕ(p)+1(x, y), . . . , ϕk(x, y))

where uj denotes the sum of the convergent series Uj(X,Y ) ∈ R
{
X∗, Y

}
mp,np

. Thus we have

ϕj(0, y) = 0 for j ∈ {1, . . . ,mϕ(p)} and every small y. Together with the assumptionmp ≥ mϕ(p),
this implies that ϕ restricts to a map from {(x, y)/x = 0} into {(z, w)/z = 0}. This two sets
being open subsets of Rnp and Rnϕ(p) respectively, and ϕ being injective, the Invariance of the
Domain Theorem implies that np = nϕ(p) as was to be proved.

Remark 2.3.12. A natural question that arises from the proof of the Proposition above is
whether two algebras of convergent mixed generalized series R

{
X∗, Y

}
m,n

and R{Z∗,W}m′,n′
are isomorphic if and only if m = m′ and n = n′. This is easily the case for m or m′ is equal to 0
because it is the only case where such an algebra is noetherian. In our proof we have only shown
that the number of analytic or non-analytic variables are the same if the isomorphism, φ, is given
by a morphism on the sheaf structure, that is, by "composing" series under a homeomorphism.

De�nition 2.3.13. Let M = (|M |,GM ) be a G-manifold. The function m : |M | → N de�ned by

m(p) := mp = |{i ∈ {1, . . . , k} : zi(p) = 0}|,

where z = (z1, . . . , zk) is a chart on p is well de�ned. Moreover, m is an upper semi-continuous
function. Given a point p, we will say also that mp is the number of boundary components

of the point p.

Let M be a G-manifold of dimension k. For j ∈ {0, 1, . . . , k} let

D(j) := {p ∈ |M | : mp = j}

Let j0 := max{j ∈ {0, 1, . . . , k} : D(j) 6= ∅}. We call D(j0) the lime of M .

Let {D(j)i}i∈Ij be the connected components of D(j). We consider the partition of the under-
lying space |M | by these sets

|M | =
k⋃
j=0

(∪ij∈IjD(j)ij )

Proposition 2.3.14. For each j ∈ {0, ..., k} and each i ∈ Ij , D(j)i is a locally closed set and the
restricted sheaf (D(j)i,GM |D(j)i) gives rise to a (standard) real analytic manifold of dimension
k − j. The family DM = {D(j)ij} ij∈Ij

j∈{0,...,k}
is a locally �nite strati�cation of |M |; that is, for

every stratum D(j)i, its boundary

∂D(j)i = D(j)i \D(j)i

is a locally �nite union of strata of dimension not greater than the dimension of D(j)i. Moreover,
the boundary ∂|M | of |M | is the union of all strata of dimension strictly smaller than k.
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Proof. All stated properties are true if they are true locally at each point of the manifold. Thus
the proof follows from the de�nition of M as being locally isomorphic to open submanifolds of
the local standard model Lk after checking that proposition is true for the (�nite) strati�cation
DLk of Rk≥0.

2.3.2 Local expression of morphisms

Let M = (|M |,GM ) be a G-manifold. By de�nition, each p ∈ |M | is in the domain of a chart
(U, φ) where the range of φ is an open subset of Rk≥0. As a consequence of Proposition 2.3.11,
we can choose such a chart centered at p, i.e., such that φ(p) = (0, ..., 0) if and only if mp = k.
However, by proposition 2.3.5, if we want to have always a chart centered at any given point,
we can think that there is not a single local model for standard analytic manifold of a given
dimension k, namely Lk, but several ones, Lm × Rn with m+ n = k.

Let M = (|M |,OM ) and N = (|N |,ON ) be standard analytic manifolds and ϕ : |M | → |N | a
continuous map which induces a morphism from M to N . Let p ∈ |M | and ϕ(p) ∈ |N |. We
want to investigate how is the local expression of the morphism ϕ when we take local coordinates
centered at p and at ϕ(p).

More precisely, consider a local chart at p, i.e. an isomorphism φ : M |Up → Lmp ×Rnp |U0 where
Up is a neighborhood of p in |M | and U0 is a neighborhood of 0 in Rmp≥0 × Rnp , and consider,
correspondingly, a local chart ψ : N |Vϕ(p) → V0 at ϕ(p) (one can chose U0 and V0 to be the whole
space, according to proposition 2.3.5).

M |Up
(ϕ,ϕ]) //

(φ,φ])

��

N |Vϕ(p)
(ψ,ψ])
��

Lmp × Rnp Lmϕ(p) × Rnϕ(p)

Then, the map h := ψ ◦ ϕ ◦ φ−1 : Rmp≥0 × Rnp → Rmϕ(p)≥0 × Rnϕ(p) is G-analytic at 0 ∈ Rmp+np .

Reciprocally, any such continuous map h : U0 → V0 that induces a morphism (resp. isomorphism)
h : Lmp ×Rnp |U0 → Lmϕ(p) ×Rnϕ(p) |V0 gives rise, by reversing the charts φ and ψ to a morphism
(resp. isomorphism) from an open submanifold of M containing p to an open submanifold of N
containing ϕ(p).

In the following proposition, we just describe the conditions for a continuous map h to give rise
to a morphism or an isomorphism between the corresponding open submanifolds of the local
models Lm × Rn = (Rm≥0 × Rn,Gm,n).

Proposition 2.3.15. Let m,n,m′, n′ be natural numbers, k = m+n and k′ = m′+n′. Let U , V
be open neighborhoods of the origin in Rm≥0×Rn and in Rm′≥0×Rn

′
respectively. Let h : U → V be

a continuous map with h(0) = 0, and h = (h1, ..., hk′) be the components of h as a map ranging
in Rk′ . Denote by (x, y) = (x1, . . . , xm, y1, . . . , yn) and (z, w) = (z1, . . . , zm′ , w1, . . . , wn′) the
coordinates in Rm≥0 × Rn and Rm′≥0 × Rn′ . Then

i) h induces a morphism (h, h]) : Lm × Rn|U0 → Lm′ × Rn′ |V0 where U0 and V0 are open
neighborhoods of the origin in Rm≥0×Rn and Rm′≥0×Rn′ respectively, if and only if each hj
is G-analytic at the origin in Rm≥0 × Rn, and for j = 1, 2, . . . ,m′,

hj(x, y) = xα
j
gj(x, y) = x

αj1
1 · · ·x

αjm
m gj(x, y)

for a certain αj ∈ [0,∞)m and gj a section of Gm,n with gj(x, y) > 0 for any (x, y) close
enough to the origin in Rm≥0 × Rn, and the map y 7→ (hm+1(0, y), . . . , hk(0, y)) induces an

analytic morphism from Rn to Rn′ .
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ii) Assume that k = k′ and that h induces a morphism (h, h]) : Lm × Rn|U → Lm′ × Rn′ |V .
Then (h, h]) is an isomorphism in the category G if and only if m = m′, n = n′, h is an
homeomorphism, y 7→ (hm+1(0, y), . . . , hk(0, y)) induces an analytic automorphism of Rn
and for any j = 1, 2, . . . ,m,

zj = hj(x, y) = x
aj
i(j)gj(x, y)

being aj > 0, gj an analytic function at 0 such that gj(x, y) > 0 for any (x, y) ∈W for W
a desirable neighborhood of 0 in Rm≥0 × Rn and j → i(j) a permutation of {1, . . . ,m}.

Proof. For i), suppose that h induces a morphism (h, h]) : Lm × Rn|U0 → Lm′ × Rn′ |V0 where
U0 and V0 are open neighborhoods of the origin in Rm≥0 × Rn and Rm′≥0 × Rn′ respectively. Since
the projection maps prj : (p1, . . . , pk) ∈ Rm′≥0×Rn′ → pj ∈ R are sections of Gm′,n′ over any open
neighborhood of the origin, hj = prj ◦ h = h](prj) are G-analytic at 0.

We have the diagram

Gm′,n′,0
h]0 // Gm,n,0

R
{
Z∗,W

}
m′,n′

F

OO

φ:=G−1◦h]0◦F // R
{
X∗, Y

}
m,n

G

OO

where F and G are de�ned as in 2.2.6. Notice that with the notations of 2.2.6 we can take θ
equal to the identity for F and G. Thus, for 1 ≤ j ≤ m′, F (Zj) is the germ at 0 of the projection
map prj , which implies that φ(Zj) is the Taylor expansion of hj at 0. By proposition 1.1.20,

since φ(Zj) has an N th-root for any N ∈ N (φ(Z
1/N
j )), there exists αj ∈ [0,∞)m and a unit

Uj ∈ R
{
X∗, Y

}
m,n

with Uj(0, 0) > 0 such that φ(Zj) = XαjUj . Let gj denote the sum of Uj ,
then for any (x, y) close enough to the origin in Rm≥0×Rn gj(x, y) > 0 and by construction of G,

hj(x, y) = xα
j
gj(x, y).

For m′+1 ≤ j ≤ k′, hj(0, y) = Sε(F
−1(hj))(0, y) = Sε(F

−1(hj)(0, Y )) for an ε > 0 small enough,
which implies that y 7→ hj(0, y) is analytic. Then, the map y 7→ (hm+1(0, y), . . . , hk(0, y)) induces
an analytic morphism form Rn to Rn.

To prove the reciprocal of part i), let U0 be an open neighborhood of the origin in Rm≥0 × Rn
such that gj(x, y) > 0 for any (x, y) ∈ U0 and any j with 1 ≤ j ≤ m′; such that the map
y 7→ hm′+j(0, y) is analytic at any y ∈ prRn(U0) for any j ∈ {1, . . . , n′} where prRn : (x, y) ∈
Rm≥0 ×Rn 7→ y ∈ Rn; and such that hj is G-analytic at any (x, y) ∈ U0. Put V0 := h(U0). Notice

that by the hypothesis hj(x, y) = xα
j
gj(x, y), for 1 ≤ j ≤ m′, V0 ⊆ Rm′≥0 × Rn′ . If W is an open

subset of V0 and f ∈ Gm′,n′ |V0(W ), by proposition 1.2.21 we can compose the Taylor expansions
of f and h at any (x, y) ∈ h−1(W ), so f ◦ h ∈ Gm,n|U0(h−1(W )).

To prove part ii), if h induces an isomorphism, h is an homeomorphism so k = k′, and since
h(0) = 0, by proposition 2.3.11, m = m′ and so n = n′. By part i), the coordinates x and z are
related via h by the equations

z1 = xα
1
g1(x, y)

z2 = xα
2
g2(x, y)

. . .
zm = xαmgm(x, y)


x1 = zβ

1
f1(z, w)

x2 = zβ
2
f2(z, w)

. . .
xm = zβmfm(z, w)

(2.7)

De�ne the matrices A := (αji )1≤i,j≤m and B := (βji )1≤i,j≤m. Since h ◦ h−1 = id, the product of
the matrices AB is equal to the identity matrix Idm. In particular the matrix A is invertible so,
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for all j ∈ {1, . . . ,m}, (αj1, . . . , α
j
m) 6= (0, . . . , 0).

Now we claim that
αji 6= 0⇒ αki = 0 (2.8)

for all i ∈ {1, . . . ,m} and j 6= k, j, k ∈ {1, . . . ,m}: if there existed i ∈ {1, . . . ,m} and j 6= k,
such that αji 6= 0 6= αki we would have, by 2.7, that the homeomorphism h|(Rm≥0) sends {xi = 0}
to {zk = 0 = zl} which is not possible because the Invariance of domain theorem.

Then, by (2.8), the columns of A have only one component not equal to zero. As A is invertible,
the rows too. This implies that for any j ∈ {1, . . . ,m}, there exists a unique i(j) ∈ {1, . . . ,m}
such that αji(j) 6= 0 and that if j 6= k, i(j) 6= i(k), so j 7→ i(j) is a permutation of {1, . . . ,m}. The
rest of the properties and the reciprocal follow from part i) and the implicit functions theorem
1.2.15.

De�nition 2.3.16. Let M = (|M |,GM ) be a G-analytic manifold and p ∈ |M |. Given a local
chart (U,ϕ = (x1, . . . , xk)) of M at p and f ∈ G(U) we say that f is monomial at p with

respect to the local chart (U,ϕ) (or with respect to the coordinates x) if the Taylor
expansion of the germ fp with respect to the coordinates x (see de�nition 2.3.7) is of monomial
type. In other words, that we can write locally f in the coordinates x as

f(x) = xα1
1 · · · x

αm
m g(x), x ∈ U,

where g ∈ G(U), vanishes nowhere in U , and each αi ∈ [0,∞). We say that f is monomial

at the point p if its monomial with respect to some local chart at p. Finally, we say that f is

(locally) monomial if it is monomial at every point of M .

Remark 2.3.17. i) f is monomial at any point p ∈M such that f(p) 6= 0 (by de�nition).

ii) f is monomial at p if and only if there exists local coordinates such that the Taylor expansion
of f at p with respect to these coordinates (see 2.3.7) is of monomial type. However,
we can chose di�erent local coordinates for which the Taylor expansion of f at p is not
of monomial type. For instance y1 ∈ R{y1, y2} is of monomial type but the change of
coordinates y1 = z1 + z2, y2 = z2 makes it not monomial.

iii) f is locally monomial if and only if {f = 0} has normal crossing, that is, at any point p
of {f = 0} there are local coordinates such that {f = 0} is locally at p the union of some
coordinate planes.

iv) As a consequence of Lemma 1.1.12, if f = hg and f is locally monomial, then so are h and
g.

v) If fj = xα
j
uj(x) is locally monomial for j = 1, 2, 3, then either α1 ≤ α2 or α2 ≤ α1 (see,

for instance Lemma 4.7 of [2]).

Proposition 2.3.18. If f ∈ G(M) is monomial at a point p ∈ M then there exists a neighbor-
hood U of p such that f is monomial at any point of U .

Proof. By de�nition there are coordinates around p, (U,ϕ = (x1, x2, . . . , xmp , y1, y2, . . . , ynp))
such that the function f : U → R is given by f(x, y) = xαyβh(x, y) where h ∈ G(U) vanishes
nowhere in U and α ∈ [0,∞)mp , β ∈ Nnp . We can moreover assume that f ◦ ϕ−1 ∈ GLk(ϕ(U))
is the sum of a convergent series of monomial type

s(X,Y ) = XαY βH(X,Y ) ∈ R{X∗, Y }

where H is a unit, and that ϕ(U) is contained in the domain of convergence of s. We can see
that the Taylor expansion Tas of s at any point a ∈ U is again a series of monomial type. The
proof is consequence then of Theorem 1.2.23.
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De�nition 2.3.19. Let ϕ : M → N be a morphism of G-manifolds. We say that ϕ is locally
monomial if for any p ∈ |M | there exists local coordinates (U, φ = (x1, . . . , xk)) centered at p
such that all the components of ϕ are monomial at p with respect to these coordinates.

Examples 2.3.20. i) The morphism (x, y) ∈ L × R → (x, x + y) ∈ L × R is locally mono-
mial because with respect to the new coordinates (x′, y′) = (x, x + y) its components are
monomial.

ii) As a consequence of proposition 2.3.15 the morphism (x, y) ∈ L× R→ (x, x2(x2 + y2)) ∈
L× R is not locally monomial.

2.3.3 Products

Proposition 2.3.21. G is a category with product.

In order to prove this proposition, we state �rst the version for open submanifolds of the local
models Lk:

Lemma 2.3.22. Let V1 ⊂ Rk1≥0 and V2 ⊂ Rk2≥0 be open sets and let V = V1 × V2 ⊂ Rk≥0, where

k = k1 + k2. Considering V1, V2 and V as open submanifolds of Lk1 , Lk2 and Lk respectively, we
have that V , together with the usual projections pi : V → Vi, i = 1, 2, is a product of V1 and V2.

Proof. Let A be a G-manifold and αi : A → Vi morphisms. Since V is the topological product
of V1 and V2, there exists a unique continuous map Φ : A → V such that pi ◦ Φ = αi. Let us
see that Φ is a morphism in the category of G-manifolds. It su�ces to see that for every a ∈ |A|
and for every germ fΦ(a) ∈ GV,Φ(a) of a G-analytic function f at Φ(a) ∈ V , the germ of the
composition f ◦ Φ belongs to GA,a. Put Φ(a) = (b1, b2) where bi ∈ Vi. The induced map on the
stalks αi : GVi,bi → GA,a by the morphism αi can be seen, taking local coordinates at bi ∈ Vi and
a ∈ A, as a morphism between algebras of convergent generalized power series

α̃i : R{(X(i))∗, Y (i)}m(bi),n(bi) → R{Z∗, T}m(a),n(a), i = 1, 2.

Since X(i)
j has all N th-roots, its image by α̃i has also all N th-roots and, by proposition 1.1.20, it

is of monomial type as a series in R{T}{Z∗}, namely

α̃i(X
(i)
k = M

(i)
k U

(i)
k (2.9)

where M (i)
k is a monomial in the Z variables and U (i)

k (0) 6= 0.

On the other hand, if we put X = (X(1), X(2)), Y = (Y (1), Y (2)), then GV,Φ(a) is isomorphic
to R{X∗, Y } and under this isomorphism, the morphism induced by pi on the corresponding
stalks GVi,bi and GV,Φ(a) is just the inclusion R{(X(i))∗, Y (i)} ⊂ R{X∗, Y } that assigns a series
in variables (X(i))∗, Y (i) to the same series but considered in variables X∗, Y .

Now, if f ∈ GV,Φ(a) is a G-analytic germ, it is the germ of the sum of its Taylor expansion
s = TΦ(a)f ∈ R{X∗, Y } (up to a permutation of variables, see 2.2.7). Using Proposition 1.2.10
and (2.9), the series

t(Z, T ) = s(M
(1)
1 U

(1)
1 , ...,M

(1)
m(b1)U

(1)
m(b1),M

(1)
1 U

(1)
1 , ...,M

(2)
m(b2)U

(2)
m(b2), T )

belongs to R{Z∗, T}. By construction, the germ of its sum is the composition f ◦ Φ viewed in
the local chart that we have considered for A at a. Thus, this composition is G-analytic as was
to be proved.
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Proof of Proposition 2.3.21.- Let M1 and M2 be two generalized analytic manifolds of dimension
k1 and k2 respectively. We start by constructing a triplet P = (P, p1 : P → M1, p2 : P → M2)
as a candidate to be the product of M1 and M2.

It is logical to pick as underlying topological space for P the cartesian product |P | = |M1|× |M2|
with the product topology and as morphisms p1 : P → M1, p2 : P → M2 ∈Morph(G) the
morphisms induced by the projections maps

p1 = pr1 : |P | = |M1| × |M2| → |M1| p2 = pr2 : |P | = |M1| × |M2| → |M2|

We construct now the sheave GP that will determine the structure of a G-manifold for P . In
order to de�ne the sheaf GP as a subsheaf of the sheaf of continuous functions, it is enough
to associate to any element of a basis of open sets of the topology of |P | a R-subalgebra of
continuous functions with. After that, we need to show that with this structure, |P | is locally
isomorphic to Lk1+k2 .

As a basis of open sets of the topological product |M1| × |M2|, we can consider the set

B = {U1 × U2 ⊆ |M1| × |M2| : Ui ⊂ |Mi| is the domain of a coordinate chart , i = 1, 2}

Let U1 × U2 ∈ B. Then Mi|Ui is isomorphic to Lki |Vi via ϕi for i = 1, 2. Let Φ be the map

Φ = (ϕ1, ϕ2) : U1 × U2 → V1 × V2 ⊆ Rk1≥0 × Rk2≥0 = Rk1+k2
≥0

Put k = k1 + k2. Then Φ is an homeomorphism and V1 × V2 is an open subset of Rk≥0. Let us
de�ne

ΓΦ(U1 × U2,GP ) = {f : U1 × U2 → R/f ◦ Φ−1 ∈ Γ(V1 × V2,GLk)}

First of all let us prove that this de�nition does not depend on the morphisms ϕ1, ϕ2 such that
(U1, ϕ1), (U2, ϕ2) are local charts which will endow the topological product with a well de�ned
structure of generalized analytic manifold. Let

ϕ′i : Ui → V ′i

be isomorphisms between Mi|Ui and Lki |Vi and we de�ne

Φ′ = (ϕ′1, ϕ
′
2) : U1 × U2 → V ′1 × V ′2

then ΓΦ = ΓΦ′ . We can illustrate the situation with the diagram

V ′1 × V ′2

Φ◦Φ′−1

&&

f◦Φ′−1

&&

U1 × U2

f
��

Φ //Φ′oo V1 × V2

Φ′◦Φ−1

��

f◦Φ−1

xxR

The result is clear once we notice that Φ ◦ Φ′−1 and Φ′ ◦ Φ−1 are morphisms of G-manifolds
(thus both isomorphisms), which can be seen using the de�nition of product and Lemma 2.3.22.
So M1 × M2 = (|M1| × |M2|,GM1×M2) ∈Obj(G). Remark that the natural projections pi :
|M1| × |M2| → |Mi| are morphisms from M1 × M2 to Mi. To �nish, we have to prove that
(M1 ×M2, p1, p2) is a solution of the universal problem. But this is easy: if A is a G-manifold
and αi : A→Mi are morphisms for i = 1, 2, the map Φ : A→M1×M2 de�ned by Φ = (α1, α2)
is continuous and induce a morphism of G-manifolds since this property is a local one and locally
M1 ×M2 has the structure of product, by de�nition.
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2.3.4 Gluing manifolds.

Proposition 2.3.23. G is a category with gluing.

Proof. Let |M | be the topological space obtained by the quotient of the topological disjoint union
|M1| t |M2| by the equivalence relation

m1 ∼ m2 if m1 = m2 or m1 ∈ U1, m2 ∈ U2 and m2 = h(m1)

Denote by π : |M1| t |M2| → |M | be the quotient map. For i = 1, 2 de�ne αi : |Mi| → |M | as
the composition of the inclusion |Mi| ⊂ |M1| t |M2| with the quotient map.

M1 � s

%%%%

α1

��
|M1| t |M2| n // |M |

M2

+ �

9999

α2

AA

Then we have that αi is continuous, that its image Wi = αi(|Mi|) is an open set of |M |, that
αi : |Mi| → Wi is a homeomorphism and that |M | = W1 ∪W2. Now we want to de�ne a sheaf
of continuous functions (on local algebras) GM on |M | such that M = (|M |,GM ) is a G-manifold
and αi is a morphism of G-manifolds. Using a general construction of gluing ringed spaces (see
the Appendix for details), it su�ces to de�ne such a sheaf GWi on Wi for i = 1, 2 such that, for
any open set V ⊂W1 ∩W2, we have GW1(V ) = GW2(V ): explicitly, GM will be given by

GM (U) = {f : U → R : f ◦ αi ∈ GMi(α
−1
i (U)), i = 1, 2}

De�ne

if V ⊆Wi is open, GWi(V ) = {f : V → R : f ◦ αi ∈ GMi(α
−1
i (V ))}.

With this de�nition, Mi is isomorphic (in C) to Wi via αi. Now, let V ⊂ W1 ∩W2 be an open
set. The homeomorphism α−1

1 ◦ α2 induces an isomorphism (of G-manifolds) between the open
submanifold α−1

2 (V ) of M2 and α−1
1 (V ) of M1. Thus, if f : V → R is continuous, we have

f ◦ α1 ∈ GM1(α−1
1 (V ))⇔ f ◦ α2 ∈ GM1(α−1

2 (V ))

which shows GW1(V ) = GW2(V ), as required. We claim that M = (|M |,GM ) is the gluing of
M1,M2 with respect to the open immersions ϕ1, ϕ2. To see this, let (β1, β2, T ) be a triplet where
T = (|T |,GT ) is a G-manifold and βi : Mi → T are open immersions such that β1 ◦ϕ1 = β2 ◦ϕ2.
We have to show that there exists an unique morphism f : M → T such that βi = f ◦ αi for
i = 1, 2. Uniqueness of f comes from the fact that |M | is the solution of the same universal
problem in the category of topological spaces: f : |M | must be de�ned by

f(p) = α−1
1 (p) for p ∈W1 and f(p) = α−1

2 (p) for p ∈W2

We just have to prove that f is a morphism of G-manifolds. This is a property that we can check
locally. But f is locally de�ned either by β1 ◦α−1

1 on W1 or by β2 ◦α−1
2 on W2, both morphisms

in the category of G-manifolds.
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2.3.5 An example of an exotic generalized manifold.

Let N = L1×R\{0}, D1 = D2 = L1×R and φ1 : N → D1, φ2,α : N → D2 be de�ned respectively
by φ1(x, y) = (x, y) and φ2,α(x, y) = (x, 1/y) if y > 0, φ2,α(x, y) = (xα, 1/y) if y < 0. Notice that
φ1 and φ2,α are open immersions so we can de�ne Cα as the gluing of D1 and D2 with respect to
φ1 and φ2,α.

Remark 2.3.24. Notice that C1 is nothing but is the usual cylinder with the product structure
C := R≥0×S1 in O. Then, the underlying topological space of Cα is homeomorphic to the usual
cylinder, the underlying topological space of C1.

We are going to show now that the generalized manifolds Cα and Cβ are not isomorphic if α 6= β,
although they have homeomorphic underlying spaces. For the shake of simplicity, we just consider
β = 1 and α 6= 1.

Suppose that there exists an isomorphism

f : Cα → C = C1

By the very construction of the space |Cα| = Cα as the quotient space of D1 tD2 by the relation
∼α, if πα : D1 tD2 → Cα denotes the quotient map, then Uα,j = πα(Dj), j = 1, 2, is an open
set, Cα = Uα,1 ∪ Uα,2 and we have local charts

φα,j = (xα,j , yα,j) : Uα,j → R≥0 × R

where xα,j = φα,j ◦ prR≥0
∈ G|Uα,j (Uα,j) and yα,j = φα,j ◦ prR ∈ G|Uα,j (Uα,j) for j = 1, 2. Change

of coordinates is given in Uα,1 ∩ Uα,2 by

φα,1 ◦ φ−1
α,2(a, b) =

{
(a, 1/b) if b > 0

(aα, 1/b) if b < 0

Remark that in C there exists two open subsets U1,1, U1,2 covering C isomorphic to R≥0 × R :

φ1,j = (x1,j , y1,j) : U1,j → R≥0 × R

where x1,j = φ1,j ◦ prR≥0
∈ O|U1,j (U1,j) and y1,j = φj ◦ prR ∈ O|U1,j (U1,j) for j = 1, 2 such that,

in U1,1 ∩ U1,2, the change of coordinates is given by

φ1,1 ◦ φ−1
1,2(a, b) = (a, 1/b)

Denote by the same letter the underlying homeomorphism f : Cα = |Cα| → C = |C1|. Let
p ∈ ∂Cα. Then f(p) ∈ ∂C. Suppose for instance that p ∈ Uα,1 and that f(p) ∈ U1,1. Using
Proposition 2.3.15 on local expressions of isomorphisms between G-manifolds, we can express f
in these charts (in a neighborhood of p) as:

φ1,1 ◦ ϕ ◦ φ−1
α,1|Ωp(xα,1, yα,1) = ((xα,1)βu(xα,1, yα,1), h(xα,1, yα,1)) (2.10)

where β > 0 and u, h are G-functions in a neighborhood of φα,1(p) = (0, yα,1(p)) such that
u(0, yα,1(p)) > 0 and y 7→ h(0, y) is an analytic isomorphism from a neighborhood of yα,1(p) to
a neighborhood of y1,1(f(p)) in R.

Uα,1
f //

φα,1
��

U1,1

φ1,1
��

R≥0 × R
xα,1

{{

yα,1

##

ψ=φ1,1◦f◦φ−1
α,1 // R≥0 × R

x1,1

{{

y1,1

##
R R R R
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Notice that the exponent β > 0 in the expression (2.10) above depends a priori on p and on the
charts (Uα,1, φα,1) at p and (U1,1, φ1,1) at f(p) chosen in order to express locally the isomorphism
f . We should write then (momentarily):

β = β(f, p, Uα,1 → U1,1,). (2.11)

Claim. β is locally constant.

Proof of the claim.- Consider the Taylor expansion of the �rst coordinate (xα,1)βu in (2.10) at
the point (0, yα,1(p)); i.e. a series s ∈ R

{
X∗, Y

}
for some variables X,Y (notice that there is no

ambiguity of the Taylor expansion here as was discussed in 2.2.7 since X and Y are 1-dimensional
variables). Then s is of the form

s = XβU(X,Y )

where U is a unit. This observation, together with Proposition 1.2.23 gives the proof of the
claim.

Notice now that, if p ∈ Uα,1 and that f(p) ∈ U1,1 ∩U1,2 is in the domain of the two charts, then,
β(f, p, Uα,1 → U1,1) = β(f, p, Uα,1 → U1,2) because in that domain we have y1,1 = y1,2 for the
second components of these chart, by construction of C1. So we have proved that β(f, p, Uα,1 →
U1,i) does not depend on i = 1, 2 as long as f(p) ∈ U1,1 ∩ U1,2. We simply use the notation
β(f, p, Uα,1) for this number. De�ne analogously β(f, p, Uα,2). Let now p0 := φα,1(0, 0). Note
that p0 6∈ Uα,2. Let β0 := β(f, p0, Uα,1). By construction of Cα, if p ∈ Uα,1 ∩ Uα,2 ∩ ∂Cα

β(f, p, Uα,1) =

{
β(f, p, Uα,2) if yα,1(p) > 0

αβ(f, p, Uα,2) if yα,2(p) < 0
(2.12)

Let for ε > 0 su�ciently small, p+
ε := φ−1

α,1(0, ε), p−ε := φ−1
α,1(0,−ε) ∈ Uα,1 ∩ Uα,2 ∩ ∂Cα. Then

β0 = β(f, p+
ε , Uα,1) = β(f, p−ε , Uα,1) because β is locally constant. On the other hand, by

(2.12), β0 = β(p+
ε , Uα,1) = β(p+

ε , Uα,2). Also, β(p−ε , Uα,1) = β(p+
ε , Uα,2) = β0 because they are

connected in U2 but, again by the formula (2.12) above, β(p−ε , Uα,1) = αβ(p−ε , Uα,2) which implies
that β0 = αβ0. Contradiction.

2.4 Standardizations.

Notice that OAk+
is a subsheaf of GLk over Rk≥0: if a function is the restriction of an analytic

function to an open subset of Rk≥0 its germ at any point is the germ of the sum of a convergent
power series, thus a generalized power series; this shows that this function is also G-analytic.

In other words, the identity map Id : Rk≥0 → Rk≥0 induces a morphism from Lk = (Rk≥0,GLk)→
Ak+ = (Rk≥0,OAk+

) in the category C of locally ringed spaces. We can also interpret this as saying
that we have "enriched" the structure of the model of analytic manifold with boundary and
corners Ak+ to an structure of G-analytic manifold by "adding" the generalized analytic functions
to the (standard) analytic ones.

In this section we describe and analyze this "enrichment" process for any analytic manifold with
boundary and corners.

Proposition-de�nition 2.4.1. Let A = (|A|,OA) be an analytic manifold with boundary and
corners. Let U = {(Ui, ϕi)}i∈I be an O-atlas of A. Then the subsheaf GA of the sheave of
continuous functions over |A|, whose sections over an open of |A|, U ⊆ |A| are

(f : U → R) ∈ GA(U)⇔ f |U∩Ui ◦ ϕ
−1
i |ϕi(U∩Uij) ∈ GLk(ϕi(U ∩ Ui)) ∀i ∈ I with U ∩ Ui 6= ∅.
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f |U∩Ui : U ∩ Ui
ϕi
��

f // R

ϕi(U ∩ Ui) ⊆ Vi
f̃i=f◦ϕ−1

i ∈GLk (Vi)

55

does not depend on the chosen atlas U and endows |A| with a structure of G-analytic manifold
Ae = (|A|,GA) such that the identity in |A| induces a morphism

(Id|A|, Id
]
|A|) : Ae → A

in the category C of locally ringed spaces.

We will say that the G-manifold Ae is the enrichment of the (standard) manifold A.

Proof. If {(Wj , ψj)}j∈J is another analytic atlas of A let us see that the sheaf over |A|, G′A de�ned
over any open of |A|, U ⊆ |A| by

(f : U → R) ∈ G′A(U)⇔ f |U∩Wj ◦ ψ
−1
j |ψj(U∩Wj) ∈ GLk(V ′j )

for all j ∈ J such that U ∩Wj 6= ∅ is exactly the sheaf GA : let U ⊆ |A| open. Then we have the
following commutative diagram

ψj(U ∩ Ui ∩Wj)

f◦ψ−1
j

&&
f |U∩Ui∩Wj : U ∩ Ui ∩Wj

ψj
44

ϕi **

f // R

ϕi(U ∩ Ui ∩Wj)

f◦ϕ−1
i

88

Since
f ◦ ϕ−1

i = f ◦ ψ−1
j ◦ ψj ◦ ϕ

−1
i

and
f ◦ ψ−1

j = f ◦ ϕ−1
i ◦ ϕi ◦ ψ

−1
j

we only have to show that the homeomorphism ϕi ◦ ψ−1
j induces an isomorphism between the

open G-submanifolds Lk|ψj(Ui∩Wj) to Lk|φi(Ui∩Wj). But, it induces, by de�nition of atlas, an
isomorphism between Ak+|V ′j and Ak+|Vi so by proposition 2.1.18 it is locally monomial. By

Proposition 2.3.15 we deduce that it induces a morphism between Lk|V ′j and Lk|Vi , thus an
isomorphism by taking its inverse.

On the other hand, similar arguments show that we can de�ne alternatively

Lemma 2.4.2. f ∈ Γ(U,GA) if and only if for every p ∈ U there exists some i ∈ I with p ∈ Ui
such that f ◦ ϕ−1

i is G-analytic at the point ϕi(p) ∈ Rk≥0.

This implies that the homeomorphisms ϕi induce isomorphisms of locally ringed spaces between
GA|Ui and Lk|ϕi(Ui), which shows that Ae is a G-manifold.

Remark 2.4.3. For A a standard analytic manifold we could give the de�nition of enrichment
as a generalized analytic manifold Ã with the same underlying topological space and such that
the identity map induces a morphism Ã → A. But with this de�nition, we would have several
di�erent G-manifolds as possible enrichments of the same standard analytic manifold. As an
example, consider L2 = (R2

≥0,GL2) with global coordinates (y1, y2) on R2
≥0. Let

φ : (R2
≥0)(y1,y2) → (R2

≥0)(x1,x2)
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be the map de�ned by

φ(y1, y2) = (y2
1(y2

1 + y2
2), y2)

It is an homeomorphism with inverse

φ−1(x1, x2) = (

√√
x4

2 + 4x1 − x2
2

2
, x2)

For V ⊆ R2
≥0 an open subset of R2

≥0 we de�ne

G′(V ) := φ∗G(φ−1(V )) = {g : V → R : g ◦ φ|φ−1(V ) ∈ GL2(φ−1(V ))}

With this de�nition, (L2)′ = (R2
≥0,G′) ∈Obj(C), that is, it is a locally ringed space on local

algebras of continuous functions, and the homeomorphism φ : R2
≥0 → R2

≥0 induces an isomor-
phism of locally ringed spaces, because if g ∈ G′(V ), g ◦ φ ∈ GL2(φ−1(V )), and if h ∈ GL2(U),
h ◦ φ−1 ∈ G′(φ(U)) because h ◦ φ−1 ◦ φ = h ∈ GL2(φ−1(φ(U))). This implies that (L2)′ is a
generalized analytic manifold.

Notice that the sections on open sets of the quadrant R2
≥0 for the sheaf G′ contains the analytic

functions; i.e. that the identity map of the quadrant induces a morphism (L2)′ → A2
+. However,

G′ 6= GL2 , i.e., these sections do not consist on the generalized analytic functions on open sets
(moreover, the identity map on the quadrant does not induce a morphism L2 → (L2)′). In fact,
if G′ = GL2 then the function y2

1(y2
1 + y2

2) = x1 ◦ φ which is a section of G′, would have all its
N th-roots which is not the case. This implies that L2 and (L2)′ are two di�erent objects and
that the identity map of R2

≥0 does not induce an isomorphism.

However, given an analytic series s(X1, X2) ∈ R{X1, X2}ε convergent on a neighborhood of the
origin of (R2

≥0)(x1,x2) we have that Sε(s) ◦ φ(y1, y2) = Sε(s)(y
2
1(y2

1 + y2
2), y2) and s(Y 2

1 (Y 2
1 +

Y 2
2 ), Y2) ∈ R{Y1, Y2}. Which implies that Sε(s) ∈ G′. This shows that the germs at the

origin on (L2)′ contains the germs of analytic functions at zero on the usual sense. That is,
R{X1, X2} ⊆ G′(0,0).

Example 2.4.4. For any k ∈ N, (Ak+)e = Lk.

Remark 2.4.5. The enrichment is not a functor. In other words, given A = (|A|,OA) and
B = (|B|,OB) two analytic manifolds with border and corners and ϕ : A→ B a morphism, then
the underlying continuous map ϕ : |A| → |B| does not induce in general a morphism between Ae

and Be. Take for instance the morphism ϕ : A2
+ → A1

+ given by the map (x, y) → x + y. This
map does not induce a morphism between the enrichments L2 → L1.

In fact, using Proposition 2.3.15, we can state:

Proposition 2.4.6. Let A = (|A|,OA) and B = (|B|,OB) be standard analytic manifolds
and let π : B → A be a morphism. Then its underlying continuous map induces a morphism
πe : Be → Ae of G-manifolds if and only if π is locally monomial.

2.4.1 Standardizable generalized manifolds.

Enrichments of standard analytic manifolds are good candidates of generalized manifold to extend
those operations that we know already to be well behaved for standard manifolds. In the next
chapter we will follow this line of reasoning for the operation of blowing-up.

This motivates the following de�nition.

71



De�nition 2.4.7. Let M = (|M |,GM ) be a generalized analytic manifold. We say that M is
standardizable if it is isomorphic to the enrichment of an standard analytic manifold; that is,
if there exists a standard analytic manifold with boundary and corners A and an isomorphism
φe : M → Ae of G-manifolds where Ae is the enrichment of A. Notice that then the composition
φ = id ◦ φe : M → A:

M

φ !!

φe // Ae

id
��
A

is a morphism of locally ringed spaces whose underlying continuous map φ : |M | → |A| is a
homeomorphism.

In this situation we say that the pair (A, φ : M → A) is a standardization of M .

Notice that if M = (|M |,GM ) is a generalized analytic manifold, A = (|A|,OA) a standard
analytic manifold and φ : M → A a morphism whose underlying continuous map φ : |M | → |A|
is a homeomorphism, then, in general φ−1 : |Ae| → |M | does not induce a morphism from Ae

to M . Consider for instance M = A = R = (R,OR) and φ : x 7→ x3. We have, however the
following:

Proposition 2.4.8. Let M = (|M |,GM ) be a generalized analytic manifold, A = (|A|,OA)
a standard analytic manifold and φ : M → A a morphism whose underlying continuous map
φ : |M | → |A| is a homeomorphism. Then, if φ−1 : |Ae| → |M | induces a morphism from Ae to
M it is in fact an isomorphism so that (A, φ) is a standardization of M .

Proof. Since φ is an homeomorphism, the dimension ofM , A and Ae is the same, k. Let p ∈ |A|.
Put ψ = φ−1, m = mp and m′ = mψ(p). Since ψ = (ψ1, . . . , ψk) induces a morphism from Ae to
M , by proposition 2.3.15 there are local coordinates (x, y) centered at p and (z, w) at ψ(p) such
that the components of ψ are expressed in those coordinates as

ψj(x, y) = xα
j
gj(x, y)

with αj ∈ [0,∞)m, gj G-analytic at 0 and gj(0, 0) > 0 for any j ∈ {1, . . . ,m′} and for j ∈
{m′ + 1, . . . , k}, ψj is G-analytic at 0 and the map y 7→ (ψm′+1(0, y), . . . , ψk(0, y)) induces
an analytic morphism from Rk−m to Rk−m′ . Since φ : M → A is a morphism, in particular
y 7→ (φm+1(0, w), . . . , φk(0, w)) induces an analytic morphism from Rk−m′ to Rk−m. Then,
m = m′ and y 7→ (ψm′+1(0, y), . . . , ψk(0, y)) induces an analytic isomorphism from Rk−m to
Rk−m. As ψ is an homeomorphism, if there exists j ∈ {1, . . . ,m} with αji 6= 0 6= αjl for i 6= l,
ψ({xi = 0 = xl}) ⊆ {zj = 0}, against the Invariance of domain theorem. Thus, by proposition
2.3.15, ψ induces an isomorphism.

As it is the case for enrichments, standardizations do not behave always functorially; i.e. mor-
phisms between standard manifolds which are standardizations of generalized manifolds do not
"lift" to a morphism between these generalized manifolds. But, using Proposition 2.4.6, we can
say

Proposition 2.4.9. - Let M , N be standardizable G-manifolds and let (A, φ), (B,φ′) be stan-
dardizations of M and N respectively. Given a morphism π : B → A, there exists a morphism
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π̃ : N →M such that φ ◦ π̃ = π ◦ φ′

M

φ !!

φe // Ae

id
��

Be

id
��

πeoo N

φ′}}

(φ′)eoo

π̃

��

A B
πoo

if and only if π is locally monomial. We say that in this case also that π lifts to N and that φ′

is the lifting (notice that it is unique).

Proof. Using Proposition 2.4.6, π lifts to the enrichments πe : Be → Ae i� π is locally monomial.
But πe exists i� π̃ = (φe)−1 ◦ πe ◦ φ′e exists.

2.4.2 An example of a non-standardizable manifold.

We want to prove here �nally that there are generalized analytic manifolds which are not stan-
dardizable. In fact,

Proposition 2.4.10. The (exotic) cylinder Cα constructed in 2.3.5 is standarizable if and only
if α = 1.

Proof. Assume the same notations as in 2.3.5. Fix α > 0 and suppose that there exists a
standardization (A, φ) of the G-manifold Cα. Denote also by φ the underlying homeomorphism
φ : Cα = |Cα| → |A|. Let Vi = φ(Uα,i) for i = 1, 2, an open subset of |A| homeomorphic to
R≥0 × R. Let Di = Vi ∩ ∂|A| be the boundary inside this open set. The proof is �nished once
we show the two following claims.

Claim 1.- For i = 1, 2 there exists an analytic function hi in a neighborhood of Di in Vi (thus
a G-analytic function for the structure of the enrichment Ae) such that Di is the zero locus
of hi and, in the intersection V1 ∩ V2, the quotients h1/h2 and h2/h1 (both de�ned outside the
boundary) remain bounded in a neighborhood of any point of the boundary ∂|A|∩V1∩V2, except
possibly for a discrete subset of points.

Claim 2.- If α 6= 1, the analogous claim 1 for Cα is not true: there are no G-analytic functions
hi on a neighborhood of ∂Cα ∩Uα,i for i = 1, 2, having the boundary ∂Cα as the zero locus and
such that h1/h2 and h2/h1 remain bounded in a neighborhood of each point of the boundary
except for a discrete subset of them.

Proof of claim 1.- We take an analytic coordinate chart (xi, yi) centered at some point qi ∈ Di

such that Di = {xi = 0} and we consider hi as the analytic continuation in Vi (simply connected
domain) of the coordinate function xi, locally de�ned and analytic in a neighborhood of qi. Given
a point q ∈ Vi, the function hi writes in analytic coordinates (x, y) at q for which x = 0 is the
boundary as

hi(x, y) = xγ(q)H(x, y), where γi(q) ∈ N≥1 and H(0, y) 6≡ 0.

The fact that the change of coordinates (x, y) and (x′, y′) centered at two points in the boundary
satis�es x′ = xU(x, y), where U is a unity (see Proposition 2.1.18), implies that the exponent γi(q)
is well de�ned independently of the chosen coordinates at q. Moreover, it is locally constant with
respect to q and thus constant for every q ∈ Vi. Since γi(qi) = 1 we have the same exponent, 1,
for every point of the whole boundary ∂|A|. This gives the desired condition about the quotients
h1/h2 and h2/h1 in the intersection V1 ∩ V2.

Proof of Claim 2.- Suppose that hi is a G-analytic function in a neighborhood of ∂Cα ∩ Uα,i for
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i = 1, 2 whose zero locus is equal to the boundary. Consider the coordinates (xα,i, yα,i) globally
de�ned in Uα,i (see the notations in 2.3.5). Then we can write hi globally in its domain of
de�nition as:

hi(xα,i, yα,i) = xβiα,iHi,

where βi ∈ R>0 and Hi is a G-analytic function in a neighborhood of ∂Cα ∩ Uα,i such that the
restriction Hi|∂Cα to the boundary does not vanishes identically (thus, since this restriction is
analytic, its zero locus is a discrete subset of ∂Cα∩Uα,i). Now, consider an open set Ωε, for ε = +
or −, contained in ∂Cα ∩ {εyα,1 > 0} where neither H1 or H2 vanishes. Taking into account the
expression of the change of variables between (xα,1, yα,1) and (xα,2, yα,2), we can write

h1 = xβα,1H1 = xβ1α,2H1 in Ω+,

h1 = xβα,1H1 = xαβ1α,2 H1 in Ω−.

If the condition about the quotients h1/h2 and h2/h1 is true in both open sets Ω+ and Ω− then
we must have β2 = β1 = αβ1, which is impossible if α 6= 1.
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Chapter 3

Local monomialisation.

We attack in this chapter the main result in this work: to transform a given G-analytic function
in a neighborhood of a point into locally monomial functions by means of local blowing-ups with
admissible centers. This is a kind of result that can be untitled as Local Monomialisation of

generalized analytic functions, since this is the name of the analogous (well known) result on
real analytic functions (see [5] or [2] for instance). It can be considered inside the frame of the
theory of reduction of singularities in the category of generalized analytic manifolds. In order to
state correctly the Theorem of Local Monomialisation, we need �rst to de�ne what a blowing-up
morphism is.

The plan is as follows. First we de�ne the kind of "admissible" centers to be blown-up, both in the
category of standard and generalized analytic manifolds. These centers are closed "subvarieties"
locally given at any point by the annihilation of several coordinate functions.

Second, we recall what a blowing-up morphism is in the category of (standard) real analytic
manifolds with boundary and corners. This a quite well known notion in the category of analytic
manifolds without boundary. In our point of view, since the analytic manifolds that we consider
have boundary and corners, we follow the suitable approach of considering the so called oriented

real blowing-up, in contrast with the (relatively more usual) projective real blowing-up. The main
di�erence is that, in the former case, points of the center of blowing-ups are replaced by the set
of half-lines, normal to the center, de�ned by means of a system of coordinates; while for the
projective blowing-up, points are replaced by the set of normal lines through them. At boundary
points, we have no entire but half-lines, thus showing the convenience of the use of oriented
blowing-up.

As a consequence, the exceptional divisor (the inverse image of the center) always becomes a new
boundary component to the blown-up space even if the center of blowing-up is contained in the
interior of the standard analytic manifold (where normal entire lines are de�ned). The choice for
this kind of blowing-up also at interior points is based only on consideration of coherency.

In compensation, we do not alter the properties of orientability of the manifold, although in these
pages, where we only use local blowing-ups (that is, whose center is just a closed "subvariety"
on some open domain), this point does not give us an advantage.

Third, we introduce the concept of blowing-up morphism in the category of generalized analytic
manifolds. This notion has a (a priori unexpectable) peculiarity that does not occur in the
standard case: if we proceed de�ning directly the blowing-up for the local model (as we may
do in the standard case) by "gluing" the local charts of a standard blowing-up and then take
the enrichments, we could obtain di�erent (non-isomorphic) blowing-up morphisms for di�erent
choices of local coordinates. Thus, our concept of blowing-up morphism is not only attached to
an admissible center of blowing-up, but relative also to a standardization of the manifold.
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With this peculiarity in mind, no good notion of blowing-up is possible when the center to
be blown-up has not a neighborhood which admits a standardization. A concrete example of
this situation can be constructed using the example of the exotic cylinder Cα with α 6= 1 (cf.
2.3.5): put Dα = Cα × L1, whose boundary ∂Cα × {0} is a curve isomorphic to the circle S1 (an
admissible center of codimension 2) with no open standardizable neighborhood. The geometric
interpretation of this pathological example is that this center has not a good "global normal
bundle" of half-lines: once you start at a point with half-lines in some given coordinates you
return, after a turn in the circle, with a "non-compatible" family of half-lines with respect to
another system of coordinates.

3.1 Admissible centers.

We give here the de�nition of regular submanifold both in the category O of standard real an-
alytic manifolds with boundary and corners and in the category G of generalized real analytic
manifolds. Admissible centers to be considered below for blowing-up are among regular sub-
manifolds of a very speci�c nature (those having also normal crossings with the boundary of the
manifold).

The lack of di�erentiability of a morphism in the later case prevents to de�ne immersions in
the usual way. However, as it is de�ned in the book of Gunning & Rossi [10], the immersion
condition is replaced by the fact that the morphism induced on the stalks is surjective.

In this section, the notation A stands either for the standard category A = O or for the gener-
alized one A = G.

3.1.1 Submanifolds and regular subsubmanifolds.

De�nition 3.1.1. Let M = (|M |,AM ) and N = (|N |,AN ) be A-manifolds. A morphism
ϕ : N →M is a submanifold if

i) ϕ is injective

ii) for each p ∈ |N |, the induced homomorphism in the ring of germs

ϕ]p : GM,ϕ(p) → GN,p

is surjective.

If in addition, ϕ(|N |) is a closed subset of |M | we say that the submanifold ϕ : N → M is
closed. A submanifold ϕ : N → M is said to be a regular submanifold of M if moreover
ϕ : |N | → ϕ(|N |) is an homeomorphism.

Remark 3.1.2. Notice that the condition that ϕ is injective and continuous implies (by the
Theorem of Invariance of the Domain) that dim(N) ≤dim(M). On the other hand, it can be
shown, though we will not make use of, that in the standard category A = O, the condition ii)
is equivalent to the usual condition for immersions, that is, that the di�erential dϕp at the point
p is injective.

Examples 3.1.3. i) The morphism induced by the map

t ∈ R1
≥0 7→ (t, t, 0) ∈ R3

≥0

is a closed regular submanifold (of A3
+ in the standard category O and of L3 in the G

category).
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ii) Let m,n ∈ N. Consider the O-manifold product Am+ × Rn. Then the morphism i :
Am+ × Rn → Rm+n induced by the inclusion mapping i : Rm≥0 × Rn ↪→ Rm+n is a regular
submanifold.

iii) Letm,n ∈ N. Consider the G-manifold product Lm×Rn. Then the morphism i : Lm×Rn →
Rm+n induced by the inclusion mapping i : Rm≥0 × Rn ↪→ Rm+n is a regular submanifold.

3.1.2 Admissible centers.

De�nition 3.1.4. A regular submanifold ϕ : N → M between A-manifolds is said to be an
admissible center if for every p ∈ |N |, there exist A-coordinates x and y, centered at p and at
ϕ(p), respectively, such that, up to permutation of the target variables y, ϕ writes locally as

ϕ(x) = (x, 0).

Example 3.1.5. i) The morphisms induced by the map

t ∈ R1
≥0 7→ (t, t, 0) ∈ R3

≥0

are not admissible (neither in the standard or generalized category).

ii) For any a ≥ 0 the morphism induced by

t ∈ [0, 1] 7→ (a, t, 1− t) ∈ R3
≥0

is a closed admissible center.

Proposition 3.1.6. Let M = (|M |,AM ) be a A-manifold and |Y | a connected subset of |M |.
Suppose that for any p ∈ |Y | there exists (Up, ϕp = (x1, . . . , xk)) a A-local chart at p and
Jp ⊆ {1, . . . , k} such that

ϕp(|Y | ∩ Up) = {q ∈ Up : xj(q) = xj(p) for any j ∈ Jp} (3.1)

Then there exists a unique structure of A-manifold over |Y |, say Y = (|Y |,GY ) such that the
morphism induced by the inclusion map i : |Y | ↪→ |M | is an admissible center. Reciprocally, if
ϕ : N →M is an admissible center, then |Y | = ϕ(|N |) has the above property.

Proof. For any p ∈ |Y | put lp = k−#Jp, Vp := |Y | ∩Up, πp : (x1, . . . , xk) ∈ Rk 7→ (xj)j 6∈Jp ∈ Rlp
and ψp = πp ◦ ϕp

Vp = |Y | ∩ Up
ϕp //

ψp %%

Rk≥0

πp
��

Rlp≥0

(3.2)

Since lp is locally constant on |Y | and |Y | is connected lp is constantly equals to l. We check
easily that {(Vp, ψp)}p∈|Y | is a A-atlas of |Y | (the change of variables between two such local
charts comes from considering some components of a change of variables x → y for two local
charts of the ambient manifold M where some of the variables between the x are substituted by
a constant). We can consider Y = (|Y |,AY ) the A-manifold associated to this atlas as in 2.3.8.

Now we prove that i : Y ↪→M is a closed regular submanifold. Let p ∈ |Y | and i]p : GM,p → GY,p
the induced homomorphism in the stalks. Taking local coordinates (Up, ϕp = (x1 . . . , xk)) at i(p)
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and (Vp, ψp = (xj)j 6∈Jp) at p we have the isomorphisms F and G, (as in Proposition 2.2.6 for the
generalized category and the analogous for the standard category):

GM,p
i]p // GY,p

R{X�} φ //

F

OO

R{(X(p))�}

G

OO

where � is equal to an asterisque ∗ in the generalized category (and nothing in the standard
one), X(p) = (Xj)j 6∈Jp . We have that φ = G−1 ◦ i]p ◦F is given by substituting those variables Xj

such that j ∈ Jp by a constant (equal to zero if Xj is a boundary variable). Thus, φ is surjective
and consequently i]p too.

Uniqueness of the structure AY comes from the following observation: if (Up, ϕ) is a local chart
of M at p satisfying the condition (3.1) and if πp stands for the same meaning as in the diagram
(3.2) then ψ = πp ◦ ϕ is a local chart of the A-manifold Y .

In the sequel, we will just use the expression "Y is an admissible center of M" or "Y ⊂M is an
admissible center" if Y = (|Y |,AY ) is in the conditions of Proposition 3.1.6 with |Y | ⊂ |M |.

With the notations of proposition 3.1.6 above, for each p ∈ |Y |, there exists a local chart (Up, x)

with p ∈ Up such that M |Up is isomorphic to Y |Up × Lm′p × Rn′p in the generalized case (and to

Y |Up × Am
′
p

+ × Rn′p in the standard case) where m′p = |{j 6∈ Jp : j ∈ A(ϕp(p))}| and n′p = |{j 6∈
Jp : j 6∈ A(ϕp(p))}|. We call Up together with the isomorphism M |Up ∼= Y |Up × Lm′p × Rn′p a
normalizing chart for Y . We have that m′p and n

′
p does not depend on the normalizing chart

and that dim(Y ) = k−m′p−n′p. In a normalizing chart, we have that Y is described as the zeros
of the last m′p + n′p coordinates and that the restriction of the �rst k −m′p − n′p coordinates to
Y gives a chart for the structure AY of Y as a regular subvariety of M .

Example 3.1.7. The numbers m′p and n
′
p may depend on the point p ∈ |Y | (although its sum,

equal to the codimension of Y in M is independent of p). Take for instance for M = L2, with
coordinates (x, y), the admissible center whose underline space is

|Y | = {(x, y) ∈ R2
≥0 : x+ y = 1}

3.1.3 Standardizable admissible centers.

Let A be a standard analytic manifold and let Y ⊂ A be an admissible center. By its very
de�nition, the inclusion i : Y ↪→ A is a morphism which is locally of monomial type. Thus, using
2.4.6, it lifts to a morphism ie : Y e ↪→ Ae, which is, moreover, an admissible center.

We have not, however, the reciprocal of the above situation.

Example 3.1.8. Consider the G-manifold L1 × R with coordinates (x, y). Let Y ↪→ L1 × R
be the regular submanifold where |Y | = {(x, y) ∈ R≥0 × R : y = xα} where α > 0 is not
rational. Then Y ⊂ L1 × R is an admissible center (in the category G). However, if we consider
the standardization φ : L1 × R → A1

+ × R induced by the identity (that is, so that L1 × R is
the enrichment of A1

+ × R), then the image φ(|Y |) = |Y | does not satisfy the property (3.1) in
Proposition 3.1.6.

In view of this example we give the following de�nition.

De�nition 3.1.9. Let M be a G-manifold and let Y ⊂M be an admissible center. We say that
Y is standardizable inside M or that the pair (M,Y ) is standardizable if there exists a
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standardization φ : M → A of M such that |Z| = φ(|Y |) ⊂ |A| has the property (??); thus |Z| is
the underlying space of an admissible center Z ⊂ A. If such a standardization φ exists, we will
say that φ is a standardization of the pair (M,Y ).

As we have seen in Example 2.4.2, the regular subvariety ∂Cα of the exotic cylinder Cα is an
admissible center of Cα but the pair (Cα, ∂Cα) is not standardizable if α 6= 1 (in fact there exists
no open neighborhood of ∂Cα which is a standardizable G-manifold. This is an example of a non
standardizable admissible center of codimension 1, but we can construct similar examples of any
codimension just by making the product of Cα by the local models Lk.

This pathology occurs only on the global setting, the local counterpart being always simpler (the
proof comes easily from the de�nitions):

Proposition 3.1.10. Let M be a G-manifold and let Y ⊂M be an admissible center. Given a
point p ∈ |Y |, there exists an open neighborhood Up of p in |M | such that Y |Up is a standardizable
admissible center inside Up.

3.2 Blowing-up on standard analytic manifolds.

In this section we recall the notion of blowing-up with a closed admissible center in a standard
analytic manifold (with boundary and corners). We will proceed by de�ning explicit models
and explicit charts of blowing-up morphisms, although the notion could be given in categorical
terms as a solution of a universal problem inside the category of these manifolds (this is the way
the blowing-up morphisms are de�ned for instance in Hironaka's paper [15] for the category of
complex analytic spaces).

We start with the very well known case of the (polar) blowing-up of a point in the model Rk of
analytic manifold without boundary.

Theorem 3.2.1. Let R̃k := A1
+ × Sk−1 the product in the category O of A1

+ and Sk−1. We
de�ne

πR
k

0 : R≥0 × Sk−1 −→ Rk

πR
k

0 (r, (x1, . . . , xk)) = (rx1, . . . , rxk)

Then, the map πR
k

0 is continuous and proper. Moreover, it induces a morphism form R̃k to Rk,
(πR

k

0 )−1(0) = {0} × S1 is a closed regular submanifold of R̃k (in fact an admissible center), and

the restriction πR
k

0 |R̃k\(πRk
0 )−1(0)

induces an isomorphism between R̃k \ (πR
k

0 )−1(0) and Rk \ {0}.

Moreover, the morphism πR
k

0 is locally of monomial type.

The pair (R̃k, πRk0 ) will be called the blowing up of Rk with center the origin. If p ∈ Rk is
any point and Tp : Rk → Rk is the translation of the point p to the origin, totally analogous

properties as above are true for the morphism πR
k

p = Tp ◦ πk0 : R̃k = A1
+ × Sk−1 → Rk. The pair

(R̃k, πRkp ) in this case is called the blowing-up in Rk with center the point p.

In all the cases, we call, as usual, (πR
k

p )−1(p) the exceptional divisor of the (corresponding)
blowing-up.

Now we can de�ne the blowing up at any point in each of the mixed models Am+ ×Rn for analytic
manifolds with boundary and corners.

Let m,n ∈ N. Consider the O-manifold product Am+ × Rn as a regular submanifold of Rm+n by
the set-theoretic inclusion (see Example 3.1.3)
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Theorem-de�nition 3.2.2. Let p ∈ Rm≥0×Rn ⊂ Rm+n and let (R̃m+n, πR
m+n

p ) be the blowing-

up in Rm+n with center p. Then R̃m,np = (πR
m+n

p )−1(Rm≥0 × Rn) ⊂ R≥0 × Sm+n−1 is a regular

subvariety of R̃m+n (by set-theoretic inclusion) and the restriction induces an analytic morphism

πm,np = πR
m+n

p |
R̃m,np

: R̃m,np → Am+ × Rn

which is proper and a local isomorphism at any point except for those in (πm,np )−1(p), which is a

regular subvariety of R̃m,np of codimension 1 (in fact an admissible center). The pair (R̃m,np , πm,np )
is called the blowing-up of Am+ ×Rn at the point p and (πm,np )−1(p) is called the exceptional
divisor of the blowing-up.

The de�nition of blowing-up at a point as we have stated above gives explicitly the blown-up
space together with the blowing-up morphism. But it is one of the possibilities to consider a
blowing-up morphism. We need not to be attached to a concrete form of a blowing-up, mostly
if we have the aim to de�ne it in general analytic manifolds. So we de�ne:

De�nition 3.2.3. Let p ∈ Rm≥0 × Rn. A blowing-up of Am+ × Rn at the point p is any pair
(B, πp) whereB is a standard analytic manifold with boundary and corners and πp : B → Am+×Rn

is an analytic morphism such that there exists an analytic isomorphism θ : B → R̃m,n with
πp = πm,np ◦ θ

B

θ
��

πp

��
R̃m,n

πm,np // Am+ × Rn

Examples 3.2.4. i) Consider two copies of R≥0 with coordinates x1 and x2 respectively.
Let B be the disjoint union R≥0 t R≥0. Then the two copies of R≥0 embed as open
coordinate domains of B giving rise to a structure of O-manifold to B. Together with the
map π : B → R which is well de�ned in these charts as

π(x1) = x1;π(x2) = −x2

the pair (B, π) is a blowing-up of R at the origin.

ii) The pair (A+, idA+) is a blowing-up of A+ at the origin.

iii) If m = 1 = n, we take two copies of R2
≥0 and R1

≥0 × R with coordinates (x1, y1), (x3, y3)
and (x2, y2) respectively. Let B be the quotient space obtained from the disjoint union
(R2
≥0) t (R≥0 × R) t (R2

≥0) by the relation

(x1, y1) ∼ (x2, y2)⇔ y1y2 6= 0, y2 > 0, x1y1 = x2, and x1 = x2y2

(x2, y2) ∼ (x3, y3)⇔ y2y3 6= 0, y2 < 0, x3y3 = x2 and − x3 = x2y2

Then the two copies of R2
≥0 and R≥0 × R embed as open coordinate domains of B giving

rise to a structure of O-manifold to this quotient topological space. Together with the map
π : B → R≥0 × R which is well de�ned in these charts as

π(x1, y1) = (x1y1, x1);π(x2, y2) = (x2, x2y2);π(x3, y3) = (x3y3,−x3)

the pair (B, π) is a blowing-up of A1
+ × R1 at the origin.
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x1

y1

x2

y2

B

x3

y3

iv) If m = 0, n = 2, we take four copies of R≥0 ×R with coordinates (x1, y1), (x2, y2), (x3, y3)
and (x4, y4) respectively. Let B be the quotient space obtained from the disjoint union
(R≥0 × R) t (R≥0 × R) t (R≥0 × R) t (R≥0 × R) by the relation

(x1, y1) ∼ (x2, y2)⇔ y1 > 0, y2 < 0, x1 = −x2y2 and x1y1 = x2

(x1, y1) ∼ (x4, y4)⇔ y1 < 0, y4 > 0, x1 = x4y4 and x1y1 = −x4

(x2, y2) ∼ (x3, y3)⇔ y2 > 0, y3 < 0, x2y2 = x3 and x2 = −x3y3

(x3, y3) ∼ (x4, y4)⇔ y3 > 0, y4 < 0,−x3 = x4y4 and x3y3 = x4

Then the four copies of R≥0 × R embed as open coordinate domains of B giving rise
to a structure of O-manifold to this quotient topological space. Together with the map
π : B → R2 which is well de�ned in these charts as

π(x1, y1) = (x1, x1y1);π(x2, y2) = (−x2y2, x2);π(x3, y3) = (−x3,−x3y3);π(x4, y4) = (x4y4,−x4)

the pair (B, π) is a blowing-up of R2 at the origin.

x1

x2

x3

x4

y1

y2

y3

y4

B

v) Take m = 2, n = 0. Consider two copies of A2
+ with coordinates (x1, y1) and (x2, y2)

respectively. Let B be the quotient space obtained from the disjoint union R2
≥0 t R2

≥0 by
the relation

(x1, y1) ∼ (x2, y2)⇔ x1y2 6= 0, x1 = x2y2 and y2 = x1y1
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Then the two copies of R2
≥0 embed as open coordinate domains of B giving rise to a

structure of O-manifold to this quotient topological space. Together with the map π :
B → R2

≥0 which is well de�ned in these charts as

π(x1, y1) = (x1, x1y1), π(x2, y2) = (x2y2, y2),

the pair (B, π) is a blowing-up of A2
+ at the origin.

x1

y1

x2

y2

B

3.2.1 Blowing up points in analytic manifolds.

Now we want to de�ne the blowing-up at a point in any standard analytic manifold with boundary
and corners. In a natural way, we use the fact that any point has a neighborhood U which is
isomorphic to one of the models Am+ × Rn and then consider the blowing-up as de�ned in this
model which can be carried to the blowing-up on U . But this involves the ambiguity of the
chosen isomorphism. So we need to prove �rst the following result:

Proposition 3.2.5. Let θ : Am+ × Rn → Am+ × Rn an isomorphism sending the origin to the

origin. Then there exists an isomorphism θ̃ : R̃m,n → R̃m,n such that πm,n0 ◦ θ̃ = θ ◦ πm,n0

R̃m,n

πm,n0

��

θ̃ // R̃m,n

πm,n0

��
Am+ × Rn θ // Am+ × Rn

Proof. Considering Am+ ×Rn as a regular submanifold of Rm+n, and taking into ac account that
the blowing-up morphism πm,n0 is de�ned as the restriction of the blowing-up of Rm+n at 0 to
the corresponding spaces, it is enough to prove the case where m = 0.

This is a quite well known result: the isomorphism θ̃ is unambiguously determined at any point
outside the exceptional divisor D0 = (π0,n

0 )−1(0) = {0} × Sn−1 ⊆ A1
+ × Sn−1 = R̃0,n. If we

write θ = (θ1, . . . , θn) the components of the map θ : Rn → Rn, the explicit expression is, for
(r, x) ∈ R≥0 × Sn−1 with r 6= 0:

θ̃ : (r, x) 7−→ (ρ =
√
θ1(rx)2 + · · ·+ θn(rx)2, (

θ1(rx)

ρ
, . . . ,

θn(rx)

ρ
))

Use now the Taylor expansion of θ of order 1 at the origin

θ(w) = L(w) +O(‖w‖2)

where L is a linear isomorphism, to conclude that the expression above extends to a local iso-
morphism at any point of the exceptional divisor.
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Now we can extend the Theorem-De�nition 3.2.2 to general analytic manifolds.

Let A = (|A|,OA) be a standard analytic manifold with boundary and corners and let p ∈ |A|.
Take a local chart ϕ : U → Rm≥0 × Rn centered at p. Consider the two open immersions

U \ {p} ψ1 // A

U \ {p} ψ2 // R̃m,n

where ψ1 is the set-theoretic inclusion and ψ2 = i ◦ (πm,n0 )−1 ◦ ϕ−1

U \ {p} ϕ−1

−−→ Am+ × Rn \ {0} → R̃m,n \ (πm,n0 )−1(0) ↪→ R̃m,n

Let Ã(ϕ) be the gluing manifold associated to these immersions and πAp (ϕ) : Ã(ϕ) → A the
corresponding projection onto A.

Theorem-de�nition 3.2.6. i) The morphism πAp (ϕ) is proper and surjective and it induces

an isomorphism from the open submanifold |Ã(ϕ)|\πAp (ϕ)−1(p) to |A|\{p} and πAp (ϕ)−1(p)

is a regular submanifold of Ã(ϕ) of codimension 1 (in fact an admissible center.)

ii) If ϕ′ : U ′ → Rm≥0×Rn is another local chart centered at p then there exists an isomorphism

θϕ,ϕ′ : Ã(ϕ)→ Ã(ϕ′) such that πAp (ϕ′) ◦ θϕ,ϕ′ = πAp (ϕ).

A blowing up of A at p is any pair (Ã, πAp ) where Ã is an O-manifold and πAp (ϕ) : Ã → A is

a morphism such that there exists an isomorphism θ : Ã→ Ã(ϕ).

3.2.2 Blowing-up an admissible center.

In the previous paragraph we have de�ned the blowing-up of a standard analytic manifold at
a point (an admissible center of dimension zero). Here we de�ne the blowing-up with center a
closed admissible center of any dimension.

Let A = (|A|,OA) be a standard analytic manifold with boundary and corners and let Z =
(|Z|,OZ) ⊂ A be a closed (connected) admissible center of A. Recall from the paragraph 3.1.2
that for any point p ∈ |A| we have an open neighborhood U of p in A which is a normalizing
domain for the subvariety Y , that is, that

A|U ' Y |U × Am
′
p

+ × Rn
′
p .

(If p 6∈ |Y |, since |Y | is closed, we take U that does not intersect |Y | so that Y |U = ∅). We
can moreover assume that the isomorphism above restrict to the identity between U ∩ Y and
Y |U ×{0}. The natural numbers may depend on the point p but not in the neighborhood U (cf.
Example 3.1.7).

The following Lemma generalizes Lemma 3.2.6

Lemma 3.2.7. Let U and V be two normalizing domains of Y :

ϕU : A|U ∼= Z|U × Am(U)
+ × Rn(U)

and
ϕV : A|V ∼= Z|V × Am(V )

+ × Rn(V )
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De�ne πAZ (U) := (id, π
Am(U)
+ ×Rn(U)

0 ) : Z|U ×
˜Am(U)

+ × Rn(U) → Z|U × Am(U)
+ × Rn(U) (and analo-

gously πAZ (V )), where the second component is the blowing-up of Am
′(U)

+ × Rn′(U) at the origin.
Assume that U ∩ V 6= ∅. Then m′(U) = m′(V ), n′(U) = n′(V ). In this case, there exists a
unique isomorphism

θ̃ : (πAZ (U))−1(ϕU (U ∩ V ))→ (πAZ (V ))−1(ϕV (U ∩ V ))

such that ϕ−1
U ◦ πAZ (V ) ◦ θ̃ = ϕ−1

V ◦ πAZ (U).

Proof. The �rst claim follows from the fact that if q ∈ U ∩ V then m′(U) = m′p = m′(V ) and
n′(U) = n′p = n′(V ) because of the invariance of the number of boundary components of an
O-manifold at a point.

The change of normalizations θ = ϕV ◦ϕ−1
U is an isomorphism between an open submanifoldW1 of

Y |U×Am
′

+ ×Rn
′
and an open submanifoldW2 of Y |V×Am

′
+ ×Rn

′
such that Y |W1 = Y |W2 = Y |U∩V .

Using Proposition 2.1.18, the isomorphism θ writes (with evident notations) as

θ : (q, (x′, y′)) 7→ (q, (z′(q, x′, y′), w′(q, x′, y′))),

where q ∈ |Y | ∩ U ∩ V , z′, w′ are analytic in all arguments, each component of z′ is divisible
by some of the variables x′ and, moreover, for any �xed q, the jacobian matrix of (z′, w′) with
respect to the variables (x′, y′) is non singular. We proceed similarly as in the proof of Lemma
2.4.6 (this time as a parametric version with parameter q ∈ Y ) to lift the isomorphism θ to an
isomorphism θ̃ to the blown-up spaces.

Theorem-de�nition 3.2.8. Let A = (|A|,OA) be a standard analytic manifold and Z =
(|Z|,OZ) an admissible center. Consider the topological space

|Ã| =
⊔

U normalizing chart

|U ∩ Z| × ˜Am(U)
+ × Rn(U)

/
∼

where the equivalence relation is de�ned for p = (a, x) ∈ |U∩Z|× ˜Am(U)
+ × Rn(U) and q = (b, y) ∈

|V ∩ Z| × ˜Am(V )
+ × Rn(V ) as

p ∼ q ⇔ θ̃(a, x) = (b, y)

where θ̃ : ZU∩V ×
˜Am(U)

+ × Rn(U) → ZU∩V ×
˜Am(V )

+ × Rn(V ) is the isomorphism given in lemma
3.2.7.

For any U normalizing chart of Z, let U(U) be an O-atlas of ˜Am(U)
+ × Rn(U). Then, {|Z ∩ U | ×

U(U)}U normalizing chart is an O-atlas of |Ã| because the change of charts are analytic. Then we
can endow |Ã| with an structure of O-manifold Ã = (|Ã|,OÃ).

The map πAZ : |Ã| → |A| de�ned by the restriction of the blowing-up morphism πAZ (U) for any
normalizing domain is a well de�ned continuous, surjective, proper map that induces a morphism
from Ã to A. Moreover, it restricts to an isomorphism from the open submanifold Ã\ (πAZ )−1(Z)
onto A \ Z.

Any pair (B, π) where B is an O-manifold and π : B → A is a morphism for which there exists
an isomorphism θ : B → Ã such that πAZ ◦ θ = π will be called a blowing-up of A with center

Z. The inverse image π−1(Z) will be called the exceptional divisor of the blowing-up π. It
is a regular subvariety of B of codimension one (in fact an admissible center).
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The de�nition above of blowing-up with an admissible center in an analytic manifold is of global
nature. In fact, the Theorem above shows that for any closed admissible center Y ⊂ A there
always exists a blowing-up of A with center Y . This is a result which will be untrue in the
category of generalized manifolds.

For our purposes later, we will not need to make blowing-ups repeatedly with global closed
admissible centers in the whole manifold, but only with centers that are locally closed, i.e.,
closed in some open submanifold.

De�nition 3.2.9. Let A be a standard analytic manifold with boundary and corners. A local

blowing-up on A (with locally closed admissible center) is a pair (B, π) where B is an
O-manifold and π : B → A is a morphism obtained as the composition

π = i ◦ τ : B → U ↪→ A,

where i : U ↪→ A is an open submanifold and τ : B → U is a blowing-up on U with an admissible
center Y ⊂ U closed in U .

Example 3.2.10. As an example, if Y ⊂ A is an admissible center of an analytic manifold
A, ϕ : U ' Y |U × Am′+ × Rn′ is a normalizing chart and ( ˜Rm′,n′ , πm′,n′) is the blowing up on
Am′+ × Rn′ at the origin, the composition

π = iU ◦ ϕ−1 ◦ (id, πm
′n′) : Y |U × ˜Rm′,n′ → A

is a local blowing-up.

All of this kind of examples with codimension of Y less or equal than two (that is,m′+n′ ≤ 2) can
be made explicit with the use of Examples 3.2.4 with the role ofm,n there asm′, n′ here. In order
to give precise expressions in local charts, we just take the expressions already presented in those
corresponding examples and take the cartesian product with the identity for local coordinates
on the subvariety Y .

Recall once more that blowing-up a center of codimension one may produce some e�ect, contrary
to the case of standard projective blowing-up in analytic manifolds without boundary: if for
instance we have m′ = 0, n′ = 1, the local blowing-up writes as

π : Y |U × A1
+ t Y |U × A1

+ → Y |U × R;π(q, y) = (q,±y), for (q, y) ∈ Y |U × A1
+,

where the sign + or − depends if the point is in the �rst or the second of the copies Y |U × A1
+.

Geometrically, we add a new boundary component, {y = 0}, of codimension one so that the
non-boundary normal-to-Y variable y becomes a boundary variable after the blowing-up.

3.3 Blowing-up on generalized analytic manifolds.

In this paragraph, we de�ne the notion of blowing-up generalized manifolds with admissible cen-
ters.

The same approach as in the case of standard manifolds (i.e. de�ne the blowing-up of a point in
the local models and then use coordinates in a general manifold) does not work. The problem is
that the analogous of Proposition 3.2.5, that permits to de�ne the blowing-up independently of
the used coordinates, does not hold.
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Example 3.3.1. Let M = L2 be the quadrant in the plane, as the local model of G-manifold,
with coordinates (x, y). A (a priori) good candidate for the blowing-up of M can be constructed
as follows (analogously as in example iv) in 3.2.4): consider the G-manifold M̃ = (|M̃ |,GM̃ )

where |M̃ | is the quotient space from the disjoint union of two copies of L2 with coordinates
(x1, y1) and (x2, y2), respectively, by the equivalence relation

x1 6= 0, y2 6= 0, x1 = x2y2 and y2 = x1y1,

and where the sheaf GM̃ is obtained by the consideration of the two systems of coordinates (x1, y1)

and (x2, y2) as a G-atlas. Then we consider π0 : M̃ →M as the G-morphism induced by the map
de�ned by π0(x1, y1) = (x1, y1) and π0(x2, y2) = (x2y2, y2). This morphism π0 has the required
properties analogous to those in De�nition-Theorem 3.2.6. Consider now the isomorphism

θ : M →M, θ(x, y) = (xα, y),

where α > 0 is di�erent from 1. Then there is no isomorphism θ̃ : M̃ → M̃ with the property

π0 ◦ θ̃ = θ ◦ π0. (3.3)

(There is no even a local isomorphism de�ned in a neighborhood of the exceptional divisor π−1
0 (0)

satisfying (3.3)).

The reason is obvious: the isomorphism θ gives a correspondence between the family of "half-
lines" {y = λx}λ inside the quadrant into the family of curves (regular submanifolds) {y =
λxα}λ. The morphism π0 has the e�ect of "opening" the family of half-lines so that each element
accumulate to a single point in the exceptional divisor, whereas it does not open the later family
so that the inverse image of each member of that family accumulate to a unique point in the
exceptional divisor. As a consequence, any morphism θ̃ satisfying (3.3) would not be 1 : 1 in
restriction to the exceptional divisor.

The above example makes necessary in the category of generalized manifolds to speak, not
about a blowing-up with an admissible center, but about a blowing-up with an admissible center
relatively to some coordinates.

When we want to precise what does it mean relatively to some coordinates we �nd out that a
more convenient terminology is that of the standardizations.

Theorem-de�nition 3.3.2. Let M be a G-manifold and let Y ⊂ M be a closed (connected)
admissible center inM such that the pair (M,Y ) is standardizable by means of a standardization
φ : M → A. Let Z = φ(Y ) ⊂ A, by de�nition of standardization, a (closed and connected)
admissible center in A. Let (Ã, πAZ ) be a blowing-up on A with center Z. Then there exists
a triple (M̃, πMY , φ̃) where M̃ is a G-manifold, πMY : M̃ → M is a morphism of G-manifolds
and φ̃ : M̃ → Ã is a standardization of M̃ such that (Ã, πAZ ) is a blowing-up of A with center
Z = φ(Y ) and the diagram

Y ⊆M

φ

��

M̃
πMYoo

φ̃
��

Z = φ(Y ) ⊆ A Ã
πAZoo

commutes.

If (Ã, πAZ ) is another blowing-up on A with center Z and (M̃, πMY , φ̃) is the corresponding triple,

then there exist isomorphisms θ̃ : Ã → Ã and ψ̃ : M̃ → M̃ and a standardization φ̃ : M̃ → Ã
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making the whole diagram

M̃
πMY

xx ψ̃��

φ̃





M

φ

��

M̃
πMYoo

φ̃

��

A Ã
πAZoo

Ã
πAZ

ff
θ̃

__

(3.4)

commuting. Any such triple so constructed will be called a blowing-up of M with center

Y relatively to the standardization φ. For any such blowing-up, the inverse image D =
(πMY )−1(Y ) is a regular submanifold of codimension 1, called the exceptional divisor of the
blowing-up and πMY is a proper, surjective morphism which restricts to an isomorphism from
M̃ \D to M \ Y .

Proof. The existence of such a triple (M̃, πMY , φ̃) is given as follows. Given a blowing-up (Ã, πAZ )
with center Z, we consider just M̃ as the enrichment Ãe of the analytic manifold Ã and φ̃ :
M̃ → Ã as the morphism induced by the identity map in the underlying spaces. The morphism
of blowing-up πMY : M̃ → M is given by using Proposition 2.4.6: the blowing-up morphism πAZ
is locally monomial by Theorem-De�nition 3.2.8.

The second claim about the commutativity of the diagram (3.4) is proved similarly: the existence

of the isomorphism θ̃ : Ã → Ã is guaranteed by Theorem-De�nition 3.2.8. This isomorphism,

being locally monomial, lifts to an isomorphism ψ̃ : M̃ → M̃ with the required properties of
commutativity.

The rest of the properties come easily from the corresponding properties on the bottom row
of the standard analytic manifolds: In one hand, any topological property of the underlying
map, πAY , of the blowing-up of A with center Z is directly translated to the map πMY since the
standardizations φ and φ̃ are homeomorphisms. On the other hand, if p is a point of M̃ not in
the exceptional divisor D of πMY then φ̃(p) is not in the exceptional divisor of πAZ and, since the
later is a local isomorphism at that point, the same occurs for πMY at p.

De�nition 3.3.3. LetM be a generalized analytic manifold. A local blowing-up on A (with

locally closed admissible center) is a pair (N, π, φ) where N is a G-manifold, π : N →M is
a morphism obtained as the composition

π = i ◦ τ : N → U ↪→M,

where i : U ↪→ M is an open submanifold and τ : N → U is a blowing-up morphism on U with
an admissible center Y ⊂ U closed in U with respect to some standardization φ : U → V of the
pair (U, Y ).

Example 3.3.4. Using Proposition 3.1.10, if Y ⊂ M is an admissible center of generalized
manifold M and ϕ : U ' Y |U × Lm′ × Rn′ is a normalizing chart, then we can assume that
Y |U ⊂ U is standardizable.

A particular case that we will use repeatedly is when Y is of codimension two (m′ + n′ = 2).
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Denote by (xi, xj) the variables of Lm′ × Rn′ they can be generalized or analytic variables).
Consider the closed admissible center Y = {xi = xj = 0} inside U . Let γ > 0 and consider the
standardization of the pair (U, Y ) given by

φγ : U → Am+ × Rn, φγ(x, y) = (x1, . . . , x
γ
i , . . . , xj , y).

Let π : M̃ → U ↪→ M the local blowing-up with center Y relatively to the standardization φγ .
Then M̃ is covered by two charts (x′, y′) and (x′′, y′′), both with values in Rm′≥0 × Rn′ , such that
the expression of the blowing-up morphism is

π(x′, y′) = (x′1, . . . , x
′
i, . . . , (x

′
i)
γx′j , . . . , y

′),

π(x′′, y′′) = (x′1, . . . , x
′
j , . . . , (x

′
j)

1/γx′i, . . . , y
′),

We notice again that the de�nition of blowing-up on a generalized manifold with a closed ad-
missible center requires also to specify a standardization of the manifold (or at least of an open
submanifold containing the center). If such a standardization does not exists then, a priori, we
have not the possibility to blow-up this center.

The example of the exotic cylinder (cf. Example 2.3.5) gives an example. Consider Cα one of
those exotic cylinders with α 6= 1 and put M = Cα × L1. Then Y = ∂Cα × {0} is an admissible
center of M of codimension two. It has no standardizable open neighborhood in M so it can
no be used as a center of blowing-up with the meaning of Theorem-De�nition 3.3.2. Geometri-
cally, there is no good "generalized normal bundle along Y ". Very roughly speaking, if we start
at some point p ∈ |Y | with a family of (local) regular surfaces of the form {x = zγ}γ , where
(x, y, z) ∈ Cα × L1 are coordinates at p, then the exponent γ transforms into another one and
the corresponding surfaces locally de�ned do not match.

3.4 Local Monomialisation Theorem.

Before the statement of the main result, we consider the following useful de�nition.

De�nition 3.4.1. Let M be a generalized analytic manifold and p a point in M . A proper

étoilé-neighborhood (or é-neighborhood) of p (the name is taken from what Hironaka calls
"voûte étoilé") is a �nite family

Σ = {πj : Wj →M,Lj}j∈J

where

1. each πj is the composition of a sequence of �nitely many local blowing-ups (with admissible
centers)

πj : Wj = Wj,nj

πj,nj→ Wj,nj−1

πj,nj−1

→ Wj,nj−2 · · ·
πj,1→ Wj,0 = M

2. each Lj is a compact subset of |Wj | such that ∪j∈Jπj(Lj) is a compact neighborhood of p
in |M |.

Theorem 3.4.2. (Local Monomialisation of G-analytic functions) LetM be a generalized
analytic manifold and f ∈ G(M) a G-analytic function. Given p ∈ |M | there exists a proper
é-neighborhood Σ = {πj : Wj →M,Lj}j∈J of p such that for all j ∈ J , f ◦πj : Wj → R is locally
monomial at any point of Lj . We can furthermore take such a proper é-neighborhood such that
any of the local blowing-ups involved in it is with an admissible center of codimension ≤ 2.

The following result about "composition" of proper é-neighborhoods is an easy consequence of
the de�nitions
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Remark 3.4.3. Let p ∈ M and Σ = {πj : Wj → M,Lj}j∈J a proper é-neighborhood of p.
Suppose that for every q ∈ L = ∪j∈JLj there exists a proper é-neighborhood Σq = {πq,j :
Wq,j → Wj , Lq,j}j∈J(q) of q. Then since Vq := ∪j∈J(q)πq,j(Lq,j) is a neighborhood of q, by
compactness of L (in the disjoint union of the topological spaces |Wj |), there exists �nitely many
points q1, q2, . . . , ql ∈ L, such that L ⊆ Vq1 ∪ Vq2 ∪ . . . ∪ Vql . Then, the set

l⋃
i=1

{πj ◦ πqi,j : Wqi,j →M,Lqi,j}j∈J(qi)

is a proper é-neighborhood.

We will make use of the remark above several times during the proof of Theorem 3.4.2. Notably
in order to reduce the proof to every point of the exceptional divisor after a local blowing-up
with an admissible center that passes through the point p. More precisely:

Lemma 3.4.4. Let U be a neighborhood of p in |M | and let Y ⊂ U a standardizable admissible
center such that p ∈ |Y |. Let πUY : Ũ → U ↪→ M be the local blowing-up of M with center Y
with respect to a given standardization φ of Y ⊂ U . Let D = (πUY )−1(Y ) be the exceptional
divisor of the blowing-up and Dp = (πUY )−1(p) the �ber over p. If Theorem 3.4.2 holds at any
point q ∈ |Dp| then it holds at the point p.

Proof. For any q ∈ |Dp|, let Σq = {πq,j : Wq,j → Ũ , Lq,j} be a é-neighborhood of q for which
Theorem 3.4.2 is true. Denote by Vq = ∪jπq,j(Lq,j), a (compact) neighborhood of q in Ũ , and
consider a smaller compact neighborhood Ṽq of q such that Ṽq is contained in the interior int(Vq)
of Vq. Notice that Σq is also a proper é-neighborhood of any point in Ṽq. Since the blowing-
up is a proper mapping (see 3.3.2), there exists �nitely many points q1, ..., qn ∈ |Dp| such that
Dp ⊂ ∪lṼql . Then Σ = {πUY : int(Vql) → U, Ṽql}l is a proper é-neighborhood of p. The result
follows from the Remark 3.4.3 above.

The rest of this section is devoted to the proof of the Main result Theorem 3.4.2. We prove it
by induction on the dimension of M . Notice that if k =dimM = 1 the result is immediate. For
k ≥ 2 the proof is given in several steps.

3.4.1 The case of a Weierstrass polynomial

Proposition 3.4.5. Let p ∈ M , dimM = k ≥ 2 and f ∈ G(M). Assume that theorem 3.4.2 is
true for dimM < k. Assume that the number m(p) of boundary components ofM at p is strictly
smaller than k and that there exists a local chart (U,ϕ = (x, y)) where y is an analytic variable
such that

f(x, y) = yd + a1(x)yd−1 + a2(x)yd−2 + . . .+ ad(x)

with ai ∈ G(U) is independent of the coordinate y and ai(p) = 0 for all i. Then Theorem 3.4.2
is true for f at p.

Proof. If d = 1 the change of coordinates x1 = x, y1 = y − a1(x) gives a new local chart (see
Proposition 2.3.15) for which f is monomial at p. If d > 1, we make �rst the Tschirnhausen
transformation: y  y − a1(x)

d so that in these new coordinates we write

f(x, y) = yd + b2(x)yd−2 + b3(x)yd−3 + . . .+ bd(x)

with bi ∈ G(U) does not depend on the coordinate y and and bi(p) = 0 for all i. Remark that
we can consider the bi as G-analytic functions on the (admissible) subvariety M ′ = {(x, y) ∈ U :
y = 0} of U which is a G-manifold of dimension k − 1.
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Special case.- We consider �rst the special case where we can furthermore write

f(x, y) = yd + xα2u2(x)yd−2 + . . .+ xαdud(x)

such that the set of vectors {αl/l}l=2,...,d is totally ordered (by the division order). Take r such
that αr/r ≤ αj/j for all j, 2 ≤ j ≤ d. Take l such that αr,l 6= 0. Consider the admissible center
Y = {y = xl = 0} ⊂ U , closed in U and of codimension 2, together with the standardization of
the pair (U, Y ) given by

φ : U → Rk−1
≥0 × R, φ = (x1, . . . , xl−1, x

αr,l/r
l , xl+1, . . . , x−1, y).

The corresponding (local) blowing-up πUY : Ũ → M with center Y and with respect to this
standardization is such that Ũ is covered by two charts (x′, y′) and (x′′, y′′), both with values in
Rm≥0 × Rn, so that the exceptional divisor (πUY )−1(Y ) has equations {x′l = 0} and {y′′ = 0} and
such that the morphism πUY writes

πUY (x′, y′) = (x′, (x′l)
αr,l/ry′),

πUY (x′′, y′′) = (x′′1, . . . , (y
′′)r/αr,lx′′l , . . . , y

′′).

Let q ∈ (πUY )−1(Y ). There are 3 cases

1. q is the origin of the chart (x′′, y′′).

We obtain
(y′′)d + . . .+ (x′′)αjuj(x

′′)(y′′)
d−j+αj,l r

αr,l + . . .

As αr/r ≤ αj/j for all 2 ≤ j ≤ d, rαj,lαr,l
− j ≥ 0 and we can factor out (y′′)d

(y′′)d(1 + . . .+ (x′′)αjuj(x
′′)(y′′)

αj,l
r
αr,l
−j

+ . . .)

and the expression in brackets is a unit

2. q is the domain of the chart (x′, y′) but it is not the origin of this chart.

In order to simplify notations, put (x, y) instead of (x′, y′). Then, locally around q we have
coordinates (x, λ+ y) where λ = −y(q). We obtain

x
d
αr,l
r

l (λ+ y)d + . . .+ x
(d−j)

αr,l
r

+αj,l
l x′α

′
juj(x)(λ+ y)d−j + . . .

(notice that here x′α
′
j means x

α1,j

1 · · ·xαj,l−1

l−1 x
αj,l+1

l+1 · · ·xαj,mm )). As αr/r ≤ αj/j for all 2 ≤
j ≤ d, αj,l − jαr,l/r ≥ 0 and we can factor out x

dαr,l/r
l

x
d
αr,l
r

l ((λ+ y)d + . . .+ x
αj,l−j

αr,l
r

l x′α
′
juj(x)(λ+ y)d−j + . . .)

by the Tschirnhausen transformation the coe�cient of yd−1 is λ 6= 0 so the expression in
brackets is regular of order less or equal to d − 1 in y and by Weierstrass preparation we
can assume that is a Weierstrass polynomial of degree less or equal to d− 1.

3. q is the origin of the chart (x′, y′).

Again, we put (x, y) instead of (x′, y′). We obtain

x
d
αr,l
r

l yd + . . .+ x
(d−j)

αr,l
r

+αj,l
l x′α

′
juj(x)yd−j + . . .
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As αr/r ≤ αj/j for all 2 ≤ j ≤ d, αj,l − jαr,l/r ≥ 0 and we can factor out x
dαr,l/r
l

x
d
αr,l
r

l (yd + . . .+ x
αj,l−j

αr,l
r

l x′α
′
juj(x)yd−j + . . .)

If αr,i = 0 for all i 6= l then the expression in brackets is regular of order d − l, and
by Weierstrass preparation we can assume that is a W. polynomial of degree d − r. If
there exists i 6= l such that αr,i 6= 0 we proceed by making a local blowing-up with the
corresponding center of codimension two relatively to a suitable standardization such that
the morphism has the expression in two charts (x′, y′), (x′′, y′′)

πUY (x′, y′) = (x′, (x′l)
αr,i/ry′),

πUY (x′′, y′′) = (x′′1, . . . , (y
′′)r/αr,ix′′l , . . . , y

′′).

This works analogously because we have chosen r such that αr/r ≤ αj/j for all j, 2 ≤ j ≤ d,
which means that αr,s/r ≤ αj,s/j for all j, 2 ≤ j ≤ d and 1 ≤ s ≤ k − 1. The "bad" case
will be again at the origin of the chart (x′, y′) but we will have the same polynomial with
less variables x appearing in the monomial of the coe�cient of yd−r. After at most k − 1
steps we have �nished.

General case.- Let b ∈ G(M ′) denote the G-analytic function obtained as the product of all
non-zero functions among the bi as well as their non-zero di�erences. By the hypothesis that
Theorem 3.4.2 is true for dimension smaller than k, there exists a proper é-neighborhood σ′ =
{π′j : W ′j → M ′, L′j} of p in M ′ (where the centers for the local blowing-ups involved are of
codimension ≤ 2) such that b ◦ π′j is monomial at any point of Lj , for any j. Fix some δ > 0
such that (−δ, δ) is contained in the range of values of the coordinate y. Consider, for each j,
the morphism obtained by "�bering" π′j on the variable y; precisely:

πj : Wj = W ′j × (−δ, δ)→M, πj(q, t) = ϕ−1(x(π′j(q)), t).

Then πj is a composition of local blowing-ups with admissible centers (as in 3.3.3). We conclude
that

Σ = {πj : Wj →M,Lj = L′j × [−δ/2, δ/2]}

is an é-neighborhood of the point p (with centers of codimension ≤ 2). Using Lemma 3.4.4, it
su�ces to prove Theorem 3.4.2 for the transform, f ◦ πj ∈ G(Wj), of f by πj at any (�xed but
arbitrary) point in Lj , in fact, taking δ su�ciently small, at any point of L′j × {0} ⊂ Wj . Fix
some of these points (q, 0). By construction, there exist local coordinates x′ at q ∈W ′j such that
b ◦ π′j is locally monomial at q with respect to x′. Consequently, using iv) of Remark 2.3.17,
the transformation bl ◦ πj of each of the coe�cients bl is locally monomial with respect to the
same coordinates at q. Moreover, considering b also as a function in M and, since b◦πj does not
depend on the second component of Wj = W ′j × (−δ, δ), we conclude that it is locally monomial
at the point (q, 0) ∈ Lj with respect to the coordinates (x′, t) in Wj = W ′j × (−δ, δ) (where t
is the usual coordinate in R). Write locally at (q, 0), bl ◦ πj = (x′)αlu′l(x

′, t) where u′l does not
vanish at (q, 0). Then we have a local expression of f ◦ πj at (q, 0) as

f ◦ πj = td + (x′)α2u′2t
d−2 + · · ·+ (x′)αdu′d.

The proposition is �nished, thanks to the special case considered above, once we prove the
following

Claim.- Up to a further composition of local blowing-ups with admissible centers of codimension
≤ 2, we can suppose that the set of vectors {αl/l}l=2,...,d is totally ordered (by the division order).

Proof of the Claim.- First, after performing blowing-ups with centers at the coordinate planes
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x′i = 0 (of codimension 1), we can suppose that the number of boundary components of q in

W ′j is maximal, equal to m(q) = k − 1. In this case, (bl ◦ π′j)1/l = (x′)αl/l(u′)
1/l
l is a G-analytic

function. Now, consider the function b̃ obtained as the product of all non-zero functions and
of the non-zero di�erences among the family {(bl ◦ π′j)1/l}l. Repeating the argument, Theorem

[main] being by hypothesis true for b̃, up to further local blowing-ups, b̃ and all its factors can
be considered as a locally monomial function (with respect to the same system of coordinates).
Now v) of Remark 2.3.17 gives the desired result about the exponents αl/l.

3.4.2 The b invariant for a G-analytic function.

Let M be a G-manifold, p ∈ |M | and f a G-analytic function at p. Let (U,ϕ = (x, y)) be a local
chart of M centered at p (x = (x1, . . . , xmp) and y = (y1, . . . , ynp)). Assume the notations of
paragraph 1.1.4. By 2.3.7 and, we can de�ne b(f, p, (U,ϕ)) := b(s) ∈ N2 where s ∈ R{X∗, Y } ⊆
(R[[Y ]])[[X∗]] is the Taylor expansion of f at p with respect to the coordinates (x, y) (notice that
s is de�ned up to a permutation σ ∈ Gm,n, but for such a σ we have that b(s) = b(σs)).

Proposition 3.4.6. b(f, p, (U,ϕ)) does not depend on the local chart (U,ϕ).

Proof. Let (V, ψ = (z, w)) be another local chart at p. Denote by sϕ ∈ R
{
X∗, Y

}
and sψ ∈

R{Z∗,W} respectively the Taylor expansion of f at p with respect to the coordinates (x, y)
and (z, w). Denote by φ : R{Z∗,W} → R

{
X∗, Y

}
the isomorphism induced by the change of

coordinates as in 2.3.11. Notice that up to a permutation σ ∈ Gmp,np , we can suppose φ(sψ) = sϕ.
By 2.3.15, for 1 ≤ j ≤ mp, zj = x

aj
i(j)gj(x, y) with aj > 0, gj(0, 0) > 0 and i a permutation of the

index {1, . . . ,m}. Thus, φ(Zj) = X
aj
i(j)Gj where Gj ∈ R

{
X∗, Y

}
is such that Gj(0, 0) > 0. Then

for any exponent α ∈ [0,∞)m, φ(Zα) = Xa(α)G where G ∈ R
{
X∗, Y

}
is such that Gj(0, 0) > 0

and a(α) := (ai−1(1)αi−1(1), . . . , ai−1(m)αi−1(m)). Since (ai−1(1), . . . , ai−1(m)) ∈ (0,∞)m, for any
α, β ∈ [0,∞)m, a(α) ≤ a(β) ⇔ α ≤ β, which in turn implies d(α, β) = d(a(α), a(β)). Then, as
φ(sψ) = sϕ, b(sϕ) = b(sψ) and so b(f, p, (U,ϕ)) = b(f, p, (V, ψ)).

Then, we let b(f, p) = (b1(f, p), b2(f, p)) ∈ N2 denote the invariant of a G-analytic function in
a point p of M . As a corollary, the numerical data I(f, p) = (mp, np, b(f, p)) is a well de�ned
invariant in N4 depending only on f and the point p. In fact, the �rst two components depends
only on p and M . Notice that with this de�nition, b2(f, p) > 0 implies mp > 1.

The following result permits to prove theorem 3.4.2 by induction in the invariant I(f, p) in
lexicographic order when b2(f, p) > 0.

Theorem 3.4.7. Let f ∈ G(M) and p ∈ |M | and assume that b2(f, p) > 0. Then there exists
a local blowing-up π : M̃ → M with admissible center Y through p, of codimension 2, such
that for any point q in the �ber π−1(p) of the exceptional divisor, the transformed function
f̃ = f ◦ π ∈ G(M̃) satis�es

I(f̃ , q) < I(f, p).

Proof. Consider a local chart (U, (x, y)) centered at p where x = (x1, ..., xm), y = (y1, ..., yn),
where m = mp, n = np, and let s ∈ R

{
X∗, Y

}
m,n

be the Taylor expansion of f at p with
respect to these coordinates. Then b(f, p) = b(s), considered s as a series in R{Y }[[X∗]]. By
Proposition 1.1.23, there exists γ > 0 and two di�erent indices i, j ∈ {1, . . . ,m} such that the

transformations ςγij y ς1/γ
ji (de�ned in 3.3.4) applied to s gives series with smaller b-invariant.

Consider the closed admissible center Y = {xi = xj = 0} inside U and the standardization of
the pair (U, Y ) given by

φ : U → Am+ × Rn, φ(x, y) = (x1, . . . , x
γ
i , . . . , xj , y).
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Let π : M̃ → U ↪→M the local blowing-up with center Y and associated to the standardization
φ. Then, as in the example 3.3.4, M̃ is covered by two charts (x′, y′) and (x′′, y′′), both with
values in Rm≥0 × Rn, such that the expression of the blowing-up morphism is

π(x′, y′) = (x′1, . . . , x
′
i, . . . , (x

′
i)
γx′j , . . . , y

′),

π(x′′, y′′) = (x′′1, . . . , x
′′
j , . . . , (x

′′
j )

1/γx′′i , . . . , y
′′).

Thus, we see that the Taylor expansion of f̃ at the origin p1 of the �rst (respectively p2 the origin
of the second) chart with respect to (x′, y′) (respectively with respect to (x′′, y′′)) is just ςγij(s)

(respectively ς1/γ
ji (s)). Moreover, mp1 = mp2 = m and thus the Theorem is proved at those two

points by our choice of the admissible center using Lemma 1.1.23.

Finally, for any point q ∈ π−1(p) di�erent from p2 in in the domain of the �rst chart we can use
the local chart ((x′)q, y′) centered at q where (x′)ql = x′l if l 6= j and (x′)qj = x′j−x′j(q). Assuming
that q 6= p1 we have x′j(q) 6= 0 and thus (x′)qj becomes an analytic variable (it takes positive an
negative values in a neighborhood of the point q). The rest of coordinates remaining unchanged,
we obtain that mq = mp − 1 and thus also I(f̃ , q) < I(f, p) and we are done.

In order to �nish the proof of theorem 3.4.2 it remains the case b2(f, p) = 0. In this situation,
there are two possibilities:

1. np = 0. Then f is already locally monomial at p.

2. np > 0. Then there exists a local chart (U,ϕ = (x, y)) centered at p, α ∈ [0,∞)mp and
g ∈ GM (U) such that

f(x, y) = xαg(x, y)

with g(0, y) 6≡ 0 in ϕ(U). Then, there exist a suitable change of coordinates involving only
the y variables making ynp regular in g. By Weierstrass Preparation Theorem, g is under
the hypothesis of Proposition 3.4.5 and the result follows.
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Appendix A

Sheaves and ringed spaces.

We reproduce the de�nitions and results from the sheaves theory that we need as they appear
in [8].

De�nition A.0.8. Let X be a topological space. A presheaf F of rings on X consists of the
data

(a) for every open subset U ⊆ X, a ring F(U) and

(b) for every inclusion V ⊆ U of open subsets of X, a morphism of rings ρUV : F(U)→ F(V )

subject to the conditions

(0) F(∅) = {0},

(1) ρUU is the identity map F(U)→ F(U), and

(2) if W ⊆ V ⊆ U are three open subsets, then ρUW = ρVW ◦ ρUV .

As a matter of terminology, if F is a presheaf on X, we refer to F(U) as the sections of the
presheaf F over the open set U , and we sometimes use the notation Γ(U,F) to denote the ring
F(U). We call the maps ρUV restrictions maps, and we sometimes write s|V instead of ρUV (s)
if s ∈ F(U).

A sheaf is roughly speaking a presheaf whose sections are determinated by local data. To be
precise, we give the following de�nition.

De�nition A.0.9. A presheaf F on a topological space X is a sheaf if it satis�es the following
supplementary conditions:

(3) if U is an open set, if {Vi} is an open covering of U , and if s ∈ F(U) is an element such
that s|Vi = 0 for all i, then s = 0;

(4) if U is an open set, if {Vi} is an open covering of U and if we have elements si ∈ F(Vi)
for each i, with the property that for each i, j, si|Vi∩Vj = sj |Vi∩Vj , then there is an element
s ∈ F(U) such that s|Vi = si for each i. (Note condition (3) implies that s is unique).

Example A.0.10. Let X be a topological space. For each open set U ⊆ X, let C0(U ;R) be the
ring of continuous real-valued functions on U , and for each V ⊆ U , let ρUV : C0(U ;R)→ C0(V ;R)
be the restriction map (in the usual sense). Then the assignment U 7→ C0(U ;R) for any U open
subset of X together with the restriction of maps as restrictions morphisms is a sheaf of rings
on X that we call the sheaf of continuous functions on X and denote by CC(X). It is clear that
CC(X) is a presheaf of rings. To verify the conditions (3) and (4), we note that a function which
is 0 locally is 0, and a function which is continuous locally is continuous. In the same way we
can de�ne the sheaf of real analytic functions on a real analytic manifold. If M is a real analytic
manifold we denote by OM the sheaf of real analytic functions on M .

95



A directed set is a partially ordered set (I,≤) with the additional property that every pair of
elements has a lower bound. Let (I,≤) be a directed set. Let {Ai : i ∈ I} be a family of
rings indexed by I and fji : Aj → Ai be a ring homomorphism for all i ≤ j with the following
properties:

1. fii : Ai → Ai is the identity of Ai for all i ∈ I, and

2. fki = fji ◦ fkj for all i ≤ j ≤ k.

Then the pair 〈Ai, fij〉 is called a direct system over I. The underlying set of the direct limit, A,
of the direct system 〈Ai, fij〉 is de�ned as the disjoint union of the Ai's modulo an equivalence
relation ∼ :

A = lim−→Ai =
∐
i

Ai
/
∼

Here, if xi ∈ Ai and xj ∈ Aj , xi ∼ xj if there is some k ∈ I, k ≤ i and k ≤ j such that
fik(xi) = fjk(xj). One naturally obtains from this de�nition canonical morphisms φi : Ai → A
sending each element to its equivalence class. The ring operations on A are de�ned via these
maps in the obvious manner.

Let F be a presheaf on X, and p a point of X. Let EX(p) be the set of all open neighborhoods
of p on X. We order partially EX(p) with the inclusion order. Actually (EX(p),⊆) is a directed
set, because if U, V ∈ EX(p), U ∩ V ∈ EX(p) and is a lower bound of U and V . We construct
a direct system over EX(p) considering the family of rings {F(U) : U ∈ EX(p)} and the ring
homomorphisms ρUV : F(U)→ F(V ) for V ⊆ U .

De�nition A.0.11. If F is a presheaf on X, and if p is a point of X, we de�ne the stalk Fp of
F at p to be the direct limit of the rings F(U) for all open sets U containing p via the restriction
maps ρ.

Thus an element of Fp is represented by a pair 〈U, s〉, where U is an open neighborhood of p,
and s is an element of F(U). Two such pairs 〈U, s〉 and 〈V, t〉 de�ne the same element of Fp if
and only if there is an open neighborhood W of p with W ⊆ U ∩ V , such that s|W = t|W . Thus
we may speak of elements of the stalk Fp as germs of sections of F at the point p. In the case
of topological space X and its sheaf of continuous functions (example A.0.10) CC(X), the stalk
CC(X),p at a point p is just the local ring of germs of continuous functions at p.

De�nition A.0.12. If F and H are presheaves on X, a morphism ϕ] : F → H consists of a
morphism of rings ϕ](U) : F(U)→ H(U) for each open set U , such that whenever V ⊆ U is an
inclusion, the diagram

F(U)
ϕ](U) //

ρUV
��

H(U)

ρ′UV
��

F(V )
ϕ](V ) // H(V )

is commutative, where ρ and ρ′ are the restriction maps in F and H. If F and H are sheaves on
X, we use the same de�nition for a morphism of sheaves. An isomorphism is a morphism which
has a two-sided inverse.

Note that a morphism ϕ] : F → H of presheaves on X induces a morphism ϕ]p : Fp → Hp on
the stalks, for any point p ∈ X, given by ϕ]p(〈U, s〉) = 〈U,ϕ](U)(s)〉 such that if U is an open
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neighborhood of p the following diagram is commutative

F(U)
ϕ](U) //

��

H(U)

��
Fp

ϕ]p // Hp

The following proposition (which would be false for presheaves) illustrates the local nature of a
sheaf.

Proposition A.0.13. Let ϕ] : F → H be a morphism of sheaves on a topological space X.
Then ϕ] is an isomorphism if and only if the induced map on the stalk ϕ]p : Fp → Hp is an
isomorphism for every p ∈ X.

Proof. If ϕ] is an isomorphism it is clear that each ϕ]p is an isomorphism. Conversely, assume
ϕ]p is an isomorphism for all p ∈ X. To show that ϕ] is an isomorphism, it will be su�cient to
show that ϕ](U) : F(U) → H(U) is an isomorphism for all U , because then we can de�ne an
inverse morphism ψ] by ψ](U) = (ϕ])−1(U) for each U . First we show ϕ](U) is injective. Let
s ∈ F(U), and suppose ϕ](U)(s) ∈ H(U) is 0. Then for every point p ∈ U , the image ϕ](s)p of
ϕ](s) in the stalk Hp is 0. Since ϕ]p is injective for each p, we deduce that sp = 0 in Fp for each
p ∈ U . To say that sp = 0 means that s and sp have the same image in Fp, which means that
there is an open neighborhood Wp of p, with Wp ⊆ U , such that s|Wp = 0. Now U is covered by
the neighborhoods Wp of all its points, so by the sheaf property (3), s is 0 on U . Thus ϕ](U) is
injective.

Next we show that ϕ](U) is surjective. Suppose we have a section t ∈ H(U). For each p ∈ U , let
tp be its germ at p. Since ϕ]p is surjective, we can �nd sp ∈ Fp such that ϕ]p(sp) = tp. Let sp be
represented by a section s(p) on a neighborhood Vp of p. Then ϕ](s(p)) and t|Vp are two elements
of H(Vp), whose germs at p are the same. Hence, replacing Vp by a smaller neighborhood of p
if necessary, we may assume that ϕ](s(p)) = t|Vp in H(Vp). Now U is covered by the open sets
Vp, and on each Vp we have a section s(p) ∈ F(Vp). If p, q are two points, then s(p)|Vp∩Vq and
s(q)|Vp∩Vq are two sections of F(Vp ∩ Vq), which are both sent by ϕ] to t|Vp∩Vq . Hence, by the
injectivity of ϕ] proved above they are equal. Then by the sheaf property (4), there is a section
s ∈ F(U) such that s|Vp = s(p) for each p. Finally we have to check that ϕ(s) = t. Indeed, ϕ(s)
and t are two sections of H(U), and for each p, ϕ](s)|Vp = t|Vp , hence by the sheaf property (3)
applied to ϕ](s)− t, we conclude that ϕ](s) = t.

De�nition A.0.14. A subsheaf of a sheaf F is a sheaf F ′ such that for every open set U ⊆ X,
F ′(U) is a subring of F(U), and the restrictions maps of the sheaf F ′ are induced by those of
F . It follows that for any point p, the stalk F ′p is a subring of Fp.

Example A.0.15. Let M = (|M |,OM ) be a real analytic manifold. Then, OM is the sheaf of
real analytic functions on |M |. We can consider CC(|M |), the sheaf of continuous functions on
|M | (as a topological space). Then we can see that OM is a subsheaf of CC(|M |), because any
analytic function in an open set of M , U , is continuous on U . The second condition is veri�ed
because we are dealing with sheaves of functions and the restrictions maps are the restrictions
in the usual sense.

So far we have talked only about sheaves on a single topological space. Now we de�ne some
operations on sheaves, associated with a continuous map from one topological space to another.

De�nition A.0.16. Let ϕ : X → Y be a continuous map of topological spaces. For any sheaf
F on X, we de�ne the direct image sheaf ϕ∗F on Y by (ϕ∗F)(V ) = F(ϕ−1(V )) for any open
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set V ⊆ Y , and the restrictions maps ρ′VW := ρϕ−1(V )ϕ−1(W ) for any open set W ⊆ V where ρ
is the restriction map of F . For any sheaf H on Y , we de�ne the inverse image sheaf ϕ−1H on
X to be the sheaf associated to the presheaf U → limV⊇ϕ(U)H(U), where U is any open set in
X, and the limit is taken over all open set V of Y containing ϕ(U). As a particular case, if Z is
a subset of X, regarded as a topological subspace with the induced topology, i : Z → X is the
inclusion map, and if F is a sheaf on X, then we call i−1F the restriction of F to Z, and we
often denote it by F|Z . Note that the stalk of F|Z at any point p ∈ Z is just Fp.

De�nition A.0.17. A ringed space is a pair (X,FX) consisting of a topological space X and
a sheaf of rings FX on X.

Then, if X is a topological space the pair (X,CC(X)) is a ringed space.

A morphism of ringed spaces from (X,FX) to (Y,FY ) is a pair (ϕ,ϕ]) of a continuous map
ϕ : X → Y and a morphism ϕ] : FY → ϕ∗FX of sheaves of rings on Y .

The ringed space (X,FX) is a locally ringed space if for each point p ∈ X, the stalk FX,p is a
local ring. Notice that if X is a topological space the pair (X,CC(X)) is in fact a locally ringed
space, because for any p ∈ X, Mp := {fp ∈ CC(X),p : f(p) = 0} is the unique maximal ideal of
CC(X),p.

A morphism of locally ringed spaces is a morphism (ϕ,ϕ]) of ringed spaces, such that for
each point p ∈ X, the induced map (see below) of local rings ϕ]p : FY,ϕ(P ) → ϕ∗FX,p is a local

homomorphism of local rings. We explain this last condition. First of all, given a point p ∈ X, the
morphism of sheaves ϕ] : FY → ϕ∗FX induces a homomorphism of rings FY (V )→ FX(ϕ−1(V )),
for every open set V in Y . As V ranges over all open neighborhoods of ϕ(p), ϕ−1(V ) ranges over
a subset of the neighborhoods of p. Taking direct limits we obtain a map

FY,ϕ(p) = lim−→V FY (V )→ lim−→V FX(ϕ−1(V ))

and the latter limit maps to the stalk FX,p.

Thus we have an induced homomorphism ϕ]p : FY,ϕ(p) → FX,p. We require that this be a local
homomorphism: if A and B are local rings with maximal ideals MA and MB respectively, a
homomorphism φ : A → B is called a local homomorphism if φ−1(MB) =, or equivalently, if
φ(MA) ⊆MB. An isomorphism of local ringed spaces is a morphism with a two-sided inverse.
Thus a morphism (ϕ,ϕ]) is an isomorphism if and only if ϕ is a homeomorphism of the underlying
topological spaces, and ϕ] is an isomorphism of sheaves.

Example A.0.18. Let X and Y be topological spaces and consider the locally ringed spaces
(X,CC(X)) and (Y,CC(Y )). Let ϕ : X → Y a continuous function. De�ne, for any V open
subset of Y , ϕ](V ) : f ∈ CC(Y )(V ) 7→ f ◦ ϕ ∈ CC(X)(ϕ

−1(V )). Notice that ϕ](V ) is a well
de�ned ring homomorphism because ϕ−1(V ) is an open subset of X and f ◦ ϕ is a continuous
function on ϕ−1(V ) whenever f is a continuous function on V since ϕ is continuous, and for any
f, g ∈ CC(Y )(V ), (f + g) ◦ ϕ = (f ◦ ϕ) + (g ◦ ϕ), (fg) ◦ ϕ = (f ◦ ϕ)(g ◦ ϕ), and the diagram

CC(Y )(V )
ϕ](V ) //

ρVW

��

CC(X)(ϕ
−1(V ))

ρϕ−1(V )ϕ−1(W )

��
CC(Y )(W )

ϕ](W ) // CC(X)(ϕ
−1(W ))

is commutative for every open W ⊆ V .

Hence ϕ] : CC(Y ) → ϕ∗CC(X) given by ϕ](V ) : f ∈ CC(Y )(V ) 7→ f ◦ ϕ ∈ CC(X)(ϕ
−1(V )) for any
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V open subset of Y is a morphism of sheaves and thus the pair (ϕ,ϕ]) is a morphism of ringed
spaces. Even more, if p ∈ X, the induced homomorphism on the stalk ϕ]p : CC(Y ),ϕ(p) → CC(X),p

is given by ϕ]p : fp ∈ CC(Y ),ϕ(p) 7→ (f ◦ ϕ)p ∈ CC(X),p. Recall that CC(X),p and CC(Y ),ϕ(p) are local
rings with maximal ideals respectively MCC(X),p

= {gp ∈ CC(X),p : g(p) = 0} and MCC(Y ),ϕ(p)
=

{fϕ(p) ∈ CC(Y ),ϕ(p) : f(ϕ(p)) = 0}. Let fϕ(p) ∈ MCC(Y ),ϕ(p)
. Then, ϕ]p(fϕ(p)) = (f ◦ ϕ)p and

f ◦ ϕ(p) = f(ϕ(p)) = 0. Thus ϕ]p(MCC(Y ),ϕ(p)
) ⊆ MCC(X),p

which implies that (ϕ,ϕ]) is a
morphism of locally ringed spaces.
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Appendix B

Locally ringed spaces on R-algebras of
continuous functions.

Let C denote the category whose objects are locally ringed spaces on R-algebras of continuous
functions, and the morphisms between two objects are the morphisms as locally ringed spaces.
Put

C = (Objets(C),Morphisms(C)) = (Obj(C),Morph(C))

An objet on C is a locally ringed space X = (|X|,CX), where |X| is a topological space and CX
is a sheaf of R-algebras of continuous functions over |X|; that is, if U is an open subset of |X| the
sections over U , CX(U), is an R-subalgebra of the algebra of continuous real-valued functions on
U . Notice that this implies that the inclusion morphism R ↪→ CX(U) sends a constant a ∈ R to
the function constantly equal to a in CX(U) for any open subset U of |X|.
Example B.0.19. Given |X| a topological space we de�ne the object C(X) = (|X|,CC(X)) in
C where CC(X) is the sheaf of continuous real-valued functions on |X|. Then, for any p ∈ |X|,
the stalk at p, CC(X),p is a local R-algebra whose maximal ideal is

MCC(X),p
= {fp ∈ CC(X),p : f(p) = 0 for any representant f : U → R of fp}

It is the unique maximal ideal because every gp 6∈MCC(X),p
is a unit of CC(X),p, i.e. has an inverse

in CC(X),p. In fact, the assignment |X| 7→ C(X) is a functor from the category of topological
spaces and continuous maps to the category C.

Notice that if X = (|X|,CX) is another object in C whose underlying topological space is |X|,
the sheaf CX is by de�nition a subsheaf of CC(X) and hence for any p ∈ |X| the stalk at p, CX,p,
is naturally considered as a local R-subalgebra of CC(X),p. Notice also that for any U open subset
of |X| the following diagram is commutative

R

idR
��

� � // CC(X)(U)

R �
� // CX(U)

?�

⊆
OO

where the hooked arrow CX(U) ↪→ CC(X)(U) is the set inclusion CX(U) ⊆ CC(X)(U). This

implies that the induced inclusion morphism on the stalks CX,p
i−→ CC(X),p makes

CC(X),p

R
- 


;;

� q

##
CX,p
?�

i

OO
(B.1)
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commutative.

Proposition B.0.20. Let X = (|X|,CX) be an object in C, and for any point p ∈ |X| let
MCX,p denote the maximal ideal of CX,p and CX,p

i−→ CC(X),p the morphism in (B.1). They are
equivalent

i) The morphism CX,p
i−→ CC(X),p is local (i.e. i(MCX,p) ⊆ MCC(X),p

), and the morphism

R ↪→ CX,p
/
MCX,p induced by the inclusion morphism R ↪→ CX,p is an isomorphism.

ii) MCX,p = MCC(X),p
∩ CX,p = {fp ∈ CX,p : f(p) = 0 for any representant f : U → R of fp}

iii) Any section of CX which does not vanish at p is locally invertible at p in CX

Proof. Consider the diagram

R

idR

��

� � // CC(X),p

/
MCC(X),p

R �
� // CX,p

/
MCX,p

?�
i

OO
(B.2)

If we suppose i), every arrow in (B.2) is an isomorphism. We have that MCX,p ⊆MCC(X),p
∩CX,p

since i is local. Conversely, if fp ∈ CX,p is such that f(p) = 0, i(fp) ∈ MCC(X),p
. Following the

diagram anticlockwise, fp ∈MCX,p .

Suppose ii). Then, CX,p
i−→ CC(X),p is local and the injective homomorphism R ↪→ CX,p is

surjective because given fp + MCX,p either f(p) = 0, which implies by ii) that fp ∈ MCX,p or
f(p) 6= 0, so it is the germ of the function constantly equals to f(p).

Given X = (|X|,CX) and Y = (|Y |,CY ) two objects in C we denote by MorphC(X,Y ) the set of
morphisms of C from X to Y . A morphism (ϕ,ϕ]) ∈MorphC(X,Y ) is given by a continuous map
ϕ : |X| → |Y | between the underlying topological spaces, and a morphism of sheaves ϕ] : CY →
ϕ∗CX , such that for any p ∈ |X| the induced morphism in the stalks ϕ]p : CY,ϕ(p) → CX,p is a
local homomorphism of R-algebras (recall that given two local algebras A and B with maximal
ideal respectively MA and MB an homomorphism ϕ] : A→ B is called local if ϕ](MA) ⊆MB.)

Proposition B.0.21. LetX = (|X|,CX), Y = (|Y |,CY ) be objects of C and (ϕ,ϕ]) ∈MorphC(X,Y ).
If X,Y satisfy one of the equivalent conditions of proposition B.0.20, then the morphism of
sheaves ϕ] is given by composition with ϕ; that is, for any V open subset of |Y |,

ϕ](V ) : f ∈ CY (V ) 7→ f ◦ ϕ ∈ CX(ϕ−1(V ))

Proof. Let V be an open subset of |Y |. We have to prove that ϕ](V )(f) = f ◦ ϕ for any
f ∈ CY (V ). So let f ∈ CY (V ) and p ∈ ϕ−1(V ). We want the equality ϕ](V )(f)(p) = (f ◦ ϕ)(p).
Put a = f(ϕ(p)) and de�ne g : V → R by g(q) = f(q) − a. Then g = f − a ∈ CY (V )
and g(ϕ(p)) = 0 so gϕ(p) = (f − a)ϕ(p) ∈ MCY,ϕ(p) . As the induced homomorphism on the

stalks ϕ]p : CY,ϕ(p) → CX,p is a local homomorphism, ϕ]p(gp) ∈ MCX,p . Thus, by lemma B.0.20,

0 = ϕ]p(gϕ(p))(p) = ϕ]p((f − a)ϕ(p))(p) = ϕ]p(fp)(p)− a.

As a question of notation, as the morphism of sheaves ϕ] is completely determined by the contin-
uous mapping ϕ, we will use frequently the same letter ϕ for the underlying continuous mapping
and the morphism itself, so saying simply that ϕ : X → Y is a morphism of locally ringed spaces
or in the category C.

We have that a morphism (ϕ,ϕ]) ∈MorphC(X,Y ) is an isomorphism if and only if ϕ is a home-
omorphism of the underlying topological spaces, and ϕ] is an isomorphism of sheaves, or equiv-
alently the homomorphisms induced on the stalks are isomorphisms for any point.
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De�nition B.0.22. Let S = (Obj(S),Morph(S)) be a subcategory of C. If for any X,Y ∈ S,
MorphX,Y (S) =MorphX,Y (C) we say that S is a full subcategory of C.

Product.

De�nition B.0.23. LetS be a subcategory of C. Given two objets of the category,X,Y ∈Obj(S),
a product of X, Y in S is a triple (P, pX , pY ) where P is an object P ∈Obj(S) and pX : P → X
and pY : P → Y are morphisms such that for every triplet

A = (A,αX : A→ X,αY : A→ Y )

with A ∈Obj(S) and αX , αY ∈Morph(S) there exists an unique morphism, Φ : A → P such
that αX = pX ◦ Φ and αY = pY ◦ Φ

A

αY

��

αX

��

Φ

��
P

pX

xx

pY

&&
X Y

By de�nition the product is unique up to unique isomorphism in the category (in the sense that
if (A,αX , αY ) is another product then Φ in the diagram above is an isomorphism).

If for any X,Y ∈Obj(S) there exists a product of X, Y in S, we say that S is a category

with product.

Similar de�nitions apply for the product of a �nite family of objects in the category. We use it
without any more description of the details.

Gluing.

De�nition B.0.24. Let S be a subcategory of C. Let X,Y ∈Obj(S). An open immersion on
X is a morphism ϕ : Y → X for which there exists an open set U ⊂ |X| such that ϕ decompose
in

ϕ = i ◦ ϕ̃ : Y
ϕ̃−→ X|U

i
↪→ X

where ϕ̃ is an isomorphism.

Remark B.0.25. Let Y,X1, X2 ∈Obj(S) and ϕi : Y → Xi open immersions decomposing in

X1|U1

h

��

� � i1 // X1

Y

ϕ̃2 ''

ϕ̃1

77

ϕ1

%%

ϕ2

99X2|U2

� � i2 // X2

Then h = ϕ̃2 ◦ ϕ̃1
−1 : X1|U1 → X2|U2 is an isomorphism.
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De�nition B.0.26. Given two objets of the category, X,Y ∈Obj(S) and open immersions
ϕ1 : Y → X1, ϕ2 : Y → X2, we de�ne the gluing of X1 and X2 with respect to the open

immersions ϕ1 and ϕ2 as a triplet (X,α1, α2) where X ∈Obj(S), αi : Xi → X are open
immersions for i = 1, 2 satisfying α1 ◦ϕ1 = α2 ◦ϕ2 and such that for any other triplet (T, β1, β2)
where T ∈Obj(S) and βi : Xi → T are open immersions such that β1 ◦ϕ1 = β2 ◦ϕ2 there exists
an unique morphism f : X → T such that βi = f ◦ αi for i = 1, 2.

X1|U1

h

��

� � i1 // X1

α1   

β1

��
Y

ϕ̃1

<<

ϕ̃2 ""

X
∃!f // T

X2|U2

� � i2 // X2

α2

>>

β2

DD

If for any X,Y ∈Obj(S) and open immersions ϕ1 : Y → X1, ϕ2 : Y → X2, there exists the
gluing of X1 and X2 with respect to the open immersions ϕ1 and ϕ2, we say that the category
S is a category with gluing.

Similar de�nitions apply for the gluing of a �nite (or even more generally in�nite) family of open
immersions {ϕi : Y → Xi}i∈I . However, we do not use it in this text so we omit the details.
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